prompt
stringlengths 162
4.26M
| response
stringlengths 109
5.16M
|
---|---|
Generate the Verilog code corresponding to the following Chisel files.
File btb.scala:
package boom.v3.ifu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import boom.v3.common._
import boom.v3.util.{BoomCoreStringPrefix}
import scala.math.min
case class BoomBTBParams(
nSets: Int = 128,
nWays: Int = 2,
offsetSz: Int = 13,
extendedNSets: Int = 128
)
class BTBBranchPredictorBank(params: BoomBTBParams = BoomBTBParams())(implicit p: Parameters) extends BranchPredictorBank()(p)
{
override val nSets = params.nSets
override val nWays = params.nWays
val tagSz = vaddrBitsExtended - log2Ceil(nSets) - log2Ceil(fetchWidth) - 1
val offsetSz = params.offsetSz
val extendedNSets = params.extendedNSets
require(isPow2(nSets))
require(isPow2(extendedNSets) || extendedNSets == 0)
require(extendedNSets <= nSets)
require(extendedNSets >= 1)
class BTBEntry extends Bundle {
val offset = SInt(offsetSz.W)
val extended = Bool()
}
val btbEntrySz = offsetSz + 1
class BTBMeta extends Bundle {
val is_br = Bool()
val tag = UInt(tagSz.W)
}
val btbMetaSz = tagSz + 1
class BTBPredictMeta extends Bundle {
val write_way = UInt(log2Ceil(nWays).W)
}
val s1_meta = Wire(new BTBPredictMeta)
val f3_meta = RegNext(RegNext(s1_meta))
io.f3_meta := f3_meta.asUInt
override val metaSz = s1_meta.asUInt.getWidth
val doing_reset = RegInit(true.B)
val reset_idx = RegInit(0.U(log2Ceil(nSets).W))
reset_idx := reset_idx + doing_reset
when (reset_idx === (nSets-1).U) { doing_reset := false.B }
val meta = Seq.fill(nWays) { SyncReadMem(nSets, Vec(bankWidth, UInt(btbMetaSz.W))) }
val btb = Seq.fill(nWays) { SyncReadMem(nSets, Vec(bankWidth, UInt(btbEntrySz.W))) }
val ebtb = SyncReadMem(extendedNSets, UInt(vaddrBitsExtended.W))
val mems = (((0 until nWays) map ({w:Int => Seq(
(f"btb_meta_way$w", nSets, bankWidth * btbMetaSz),
(f"btb_data_way$w", nSets, bankWidth * btbEntrySz))})).flatten ++ Seq(("ebtb", extendedNSets, vaddrBitsExtended)))
val s1_req_rbtb = VecInit(btb.map { b => VecInit(b.read(s0_idx , s0_valid).map(_.asTypeOf(new BTBEntry))) })
val s1_req_rmeta = VecInit(meta.map { m => VecInit(m.read(s0_idx, s0_valid).map(_.asTypeOf(new BTBMeta))) })
val s1_req_rebtb = ebtb.read(s0_idx, s0_valid)
val s1_req_tag = s1_idx >> log2Ceil(nSets)
val s1_resp = Wire(Vec(bankWidth, Valid(UInt(vaddrBitsExtended.W))))
val s1_is_br = Wire(Vec(bankWidth, Bool()))
val s1_is_jal = Wire(Vec(bankWidth, Bool()))
val s1_hit_ohs = VecInit((0 until bankWidth) map { i =>
VecInit((0 until nWays) map { w =>
s1_req_rmeta(w)(i).tag === s1_req_tag(tagSz-1,0)
})
})
val s1_hits = s1_hit_ohs.map { oh => oh.reduce(_||_) }
val s1_hit_ways = s1_hit_ohs.map { oh => PriorityEncoder(oh) }
for (w <- 0 until bankWidth) {
val entry_meta = s1_req_rmeta(s1_hit_ways(w))(w)
val entry_btb = s1_req_rbtb(s1_hit_ways(w))(w)
s1_resp(w).valid := !doing_reset && s1_valid && s1_hits(w)
s1_resp(w).bits := Mux(
entry_btb.extended,
s1_req_rebtb,
(s1_pc.asSInt + (w << 1).S + entry_btb.offset).asUInt)
s1_is_br(w) := !doing_reset && s1_resp(w).valid && entry_meta.is_br
s1_is_jal(w) := !doing_reset && s1_resp(w).valid && !entry_meta.is_br
io.resp.f2(w) := io.resp_in(0).f2(w)
io.resp.f3(w) := io.resp_in(0).f3(w)
when (RegNext(s1_hits(w))) {
io.resp.f2(w).predicted_pc := RegNext(s1_resp(w))
io.resp.f2(w).is_br := RegNext(s1_is_br(w))
io.resp.f2(w).is_jal := RegNext(s1_is_jal(w))
when (RegNext(s1_is_jal(w))) {
io.resp.f2(w).taken := true.B
}
}
when (RegNext(RegNext(s1_hits(w)))) {
io.resp.f3(w).predicted_pc := RegNext(io.resp.f2(w).predicted_pc)
io.resp.f3(w).is_br := RegNext(io.resp.f2(w).is_br)
io.resp.f3(w).is_jal := RegNext(io.resp.f2(w).is_jal)
when (RegNext(RegNext(s1_is_jal(w)))) {
io.resp.f3(w).taken := true.B
}
}
}
val alloc_way = if (nWays > 1) {
val r_metas = Cat(VecInit(s1_req_rmeta.map { w => VecInit(w.map(_.tag)) }).asUInt, s1_req_tag(tagSz-1,0))
val l = log2Ceil(nWays)
val nChunks = (r_metas.getWidth + l - 1) / l
val chunks = (0 until nChunks) map { i =>
r_metas(min((i+1)*l, r_metas.getWidth)-1, i*l)
}
chunks.reduce(_^_)
} else {
0.U
}
s1_meta.write_way := Mux(s1_hits.reduce(_||_),
PriorityEncoder(s1_hit_ohs.map(_.asUInt).reduce(_|_)),
alloc_way)
val s1_update_cfi_idx = s1_update.bits.cfi_idx.bits
val s1_update_meta = s1_update.bits.meta.asTypeOf(new BTBPredictMeta)
val max_offset_value = Cat(0.B, ~(0.U((offsetSz-1).W))).asSInt
val min_offset_value = Cat(1.B, (0.U((offsetSz-1).W))).asSInt
val new_offset_value = (s1_update.bits.target.asSInt -
(s1_update.bits.pc + (s1_update.bits.cfi_idx.bits << 1)).asSInt)
val offset_is_extended = (new_offset_value > max_offset_value ||
new_offset_value < min_offset_value)
val s1_update_wbtb_data = Wire(new BTBEntry)
s1_update_wbtb_data.extended := offset_is_extended
s1_update_wbtb_data.offset := new_offset_value
val s1_update_wbtb_mask = (UIntToOH(s1_update_cfi_idx) &
Fill(bankWidth, s1_update.bits.cfi_idx.valid && s1_update.valid && s1_update.bits.cfi_taken && s1_update.bits.is_commit_update))
val s1_update_wmeta_mask = ((s1_update_wbtb_mask | s1_update.bits.br_mask) &
(Fill(bankWidth, s1_update.valid && s1_update.bits.is_commit_update) |
(Fill(bankWidth, s1_update.valid) & s1_update.bits.btb_mispredicts)
)
)
val s1_update_wmeta_data = Wire(Vec(bankWidth, new BTBMeta))
for (w <- 0 until bankWidth) {
s1_update_wmeta_data(w).tag := Mux(s1_update.bits.btb_mispredicts(w), 0.U, s1_update_idx >> log2Ceil(nSets))
s1_update_wmeta_data(w).is_br := s1_update.bits.br_mask(w)
}
for (w <- 0 until nWays) {
when (doing_reset || s1_update_meta.write_way === w.U || (w == 0 && nWays == 1).B) {
btb(w).write(
Mux(doing_reset,
reset_idx,
s1_update_idx),
Mux(doing_reset,
VecInit(Seq.fill(bankWidth) { 0.U(btbEntrySz.W) }),
VecInit(Seq.fill(bankWidth) { s1_update_wbtb_data.asUInt })),
Mux(doing_reset,
(~(0.U(bankWidth.W))),
s1_update_wbtb_mask).asBools
)
meta(w).write(
Mux(doing_reset,
reset_idx,
s1_update_idx),
Mux(doing_reset,
VecInit(Seq.fill(bankWidth) { 0.U(btbMetaSz.W) }),
VecInit(s1_update_wmeta_data.map(_.asUInt))),
Mux(doing_reset,
(~(0.U(bankWidth.W))),
s1_update_wmeta_mask).asBools
)
}
}
when (s1_update_wbtb_mask =/= 0.U && offset_is_extended) {
ebtb.write(s1_update_idx, s1_update.bits.target)
}
}
| module ebtb_0( // @[btb.scala:67:29]
input [6:0] R0_addr,
input R0_en,
input R0_clk,
output [39:0] R0_data,
input [6:0] W0_addr,
input W0_en,
input W0_clk,
input [39:0] W0_data
);
ebtb_ext ebtb_ext ( // @[btb.scala:67:29]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (W0_en),
.W0_clk (W0_clk),
.W0_data (W0_data)
); // @[btb.scala:67:29]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Transposer.scala:
package gemmini
import chisel3._
import chisel3.util._
import Util._
trait Transposer[T <: Data] extends Module {
def dim: Int
def dataType: T
val io = IO(new Bundle {
val inRow = Flipped(Decoupled(Vec(dim, dataType)))
val outCol = Decoupled(Vec(dim, dataType))
})
}
class PipelinedTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] {
require(isPow2(dim))
val regArray = Seq.fill(dim, dim)(Reg(dataType))
val regArrayT = regArray.transpose
val sMoveUp :: sMoveLeft :: Nil = Enum(2)
val state = RegInit(sMoveUp)
val leftCounter = RegInit(0.U(log2Ceil(dim+1).W)) //(io.inRow.fire && state === sMoveLeft, dim+1)
val upCounter = RegInit(0.U(log2Ceil(dim+1).W)) //Counter(io.inRow.fire && state === sMoveUp, dim+1)
io.outCol.valid := 0.U
io.inRow.ready := 0.U
switch(state) {
is(sMoveUp) {
io.inRow.ready := upCounter <= dim.U
io.outCol.valid := leftCounter > 0.U
when(io.inRow.fire) {
upCounter := upCounter + 1.U
}
when(upCounter === (dim-1).U) {
state := sMoveLeft
leftCounter := 0.U
}
when(io.outCol.fire) {
leftCounter := leftCounter - 1.U
}
}
is(sMoveLeft) {
io.inRow.ready := leftCounter <= dim.U // TODO: this is naive
io.outCol.valid := upCounter > 0.U
when(leftCounter === (dim-1).U) {
state := sMoveUp
}
when(io.inRow.fire) {
leftCounter := leftCounter + 1.U
upCounter := 0.U
}
when(io.outCol.fire) {
upCounter := upCounter - 1.U
}
}
}
// Propagate input from bottom row to top row systolically in the move up phase
// TODO: need to iterate over columns to connect Chisel values of type T
// Should be able to operate directly on the Vec, but Seq and Vec don't mix (try Array?)
for (colIdx <- 0 until dim) {
regArray.foldRight(io.inRow.bits(colIdx)) {
case (regRow, prevReg) =>
when (state === sMoveUp) {
regRow(colIdx) := prevReg
}
regRow(colIdx)
}
}
// Propagate input from right side to left side systolically in the move left phase
for (rowIdx <- 0 until dim) {
regArrayT.foldRight(io.inRow.bits(rowIdx)) {
case (regCol, prevReg) =>
when (state === sMoveLeft) {
regCol(rowIdx) := prevReg
}
regCol(rowIdx)
}
}
// Pull from the left side or the top side based on the state
for (idx <- 0 until dim) {
when (state === sMoveUp) {
io.outCol.bits(idx) := regArray(0)(idx)
}.elsewhen(state === sMoveLeft) {
io.outCol.bits(idx) := regArrayT(0)(idx)
}.otherwise {
io.outCol.bits(idx) := DontCare
}
}
}
class AlwaysOutTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] {
require(isPow2(dim))
val LEFT_DIR = 0.U(1.W)
val UP_DIR = 1.U(1.W)
class PE extends Module {
val io = IO(new Bundle {
val inR = Input(dataType)
val inD = Input(dataType)
val outL = Output(dataType)
val outU = Output(dataType)
val dir = Input(UInt(1.W))
val en = Input(Bool())
})
val reg = RegEnable(Mux(io.dir === LEFT_DIR, io.inR, io.inD), io.en)
io.outU := reg
io.outL := reg
}
val pes = Seq.fill(dim,dim)(Module(new PE))
val counter = RegInit(0.U((log2Ceil(dim) max 1).W)) // TODO replace this with a standard Chisel counter
val dir = RegInit(LEFT_DIR)
// Wire up horizontal signals
for (row <- 0 until dim; col <- 0 until dim) {
val right_in = if (col == dim-1) io.inRow.bits(row) else pes(row)(col+1).io.outL
pes(row)(col).io.inR := right_in
}
// Wire up vertical signals
for (row <- 0 until dim; col <- 0 until dim) {
val down_in = if (row == dim-1) io.inRow.bits(col) else pes(row+1)(col).io.outU
pes(row)(col).io.inD := down_in
}
// Wire up global signals
pes.flatten.foreach(_.io.dir := dir)
pes.flatten.foreach(_.io.en := io.inRow.fire)
io.outCol.valid := true.B
io.inRow.ready := true.B
val left_out = VecInit(pes.transpose.head.map(_.io.outL))
val up_out = VecInit(pes.head.map(_.io.outU))
io.outCol.bits := Mux(dir === LEFT_DIR, left_out, up_out)
when (io.inRow.fire) {
counter := wrappingAdd(counter, 1.U, dim)
}
when (counter === (dim-1).U && io.inRow.fire) {
dir := ~dir
}
}
class NaiveTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] {
val regArray = Seq.fill(dim, dim)(Reg(dataType))
val regArrayT = regArray.transpose
// state = 0 => filling regArray row-wise, state = 1 => draining regArray column-wise
val state = RegInit(0.U(1.W))
val countInc = io.inRow.fire || io.outCol.fire
val (countValue, countWrap) = Counter(countInc, dim)
io.inRow.ready := state === 0.U
io.outCol.valid := state === 1.U
for (i <- 0 until dim) {
for (j <- 0 until dim) {
when(countValue === i.U && io.inRow.fire) {
regArray(i)(j) := io.inRow.bits(j)
}
}
}
for (i <- 0 until dim) {
io.outCol.bits(i) := 0.U
for (j <- 0 until dim) {
when(countValue === j.U) {
io.outCol.bits(i) := regArrayT(j)(i)
}
}
}
when (io.inRow.fire && countWrap) {
state := 1.U
}
when (io.outCol.fire && countWrap) {
state := 0.U
}
assert(!(state === 0.U) || !io.outCol.fire)
assert(!(state === 1.U) || !io.inRow.fire)
}
| module PE_59( // @[Transposer.scala:100:9]
input clock, // @[Transposer.scala:100:9]
input reset, // @[Transposer.scala:100:9]
input [7:0] io_inR, // @[Transposer.scala:101:16]
input [7:0] io_inD, // @[Transposer.scala:101:16]
output [7:0] io_outL, // @[Transposer.scala:101:16]
output [7:0] io_outU, // @[Transposer.scala:101:16]
input io_dir, // @[Transposer.scala:101:16]
input io_en // @[Transposer.scala:101:16]
);
wire [7:0] io_inR_0 = io_inR; // @[Transposer.scala:100:9]
wire [7:0] io_inD_0 = io_inD; // @[Transposer.scala:100:9]
wire io_dir_0 = io_dir; // @[Transposer.scala:100:9]
wire io_en_0 = io_en; // @[Transposer.scala:100:9]
wire [7:0] io_outL_0; // @[Transposer.scala:100:9]
wire [7:0] io_outU_0; // @[Transposer.scala:100:9]
wire _reg_T = ~io_dir_0; // @[Transposer.scala:100:9, :110:36]
wire [7:0] _reg_T_1 = _reg_T ? io_inR_0 : io_inD_0; // @[Transposer.scala:100:9, :110:{28,36}]
reg [7:0] reg_0; // @[Transposer.scala:110:24]
assign io_outL_0 = reg_0; // @[Transposer.scala:100:9, :110:24]
assign io_outU_0 = reg_0; // @[Transposer.scala:100:9, :110:24]
always @(posedge clock) begin // @[Transposer.scala:100:9]
if (io_en_0) // @[Transposer.scala:100:9]
reg_0 <= _reg_T_1; // @[Transposer.scala:110:{24,28}]
always @(posedge)
assign io_outL = io_outL_0; // @[Transposer.scala:100:9]
assign io_outU = io_outU_0; // @[Transposer.scala:100:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_191( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
output io_q // @[ShiftReg.scala:36:14]
);
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire io_d = 1'h1; // @[SynchronizerReg.scala:80:7, :87:41]
wire _output_T_1 = 1'h1; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_347 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File RegisterFile.scala:
package saturn.backend
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import freechips.rocketchip.tile.{CoreModule}
import freechips.rocketchip.util._
import saturn.common._
class OldestRRArbiter(val n: Int)(implicit p: Parameters) extends Module {
val io = IO(new ArbiterIO(new VectorReadReq, n))
val arb = Module(new RRArbiter(new VectorReadReq, n))
io <> arb.io
val oldest_oh = io.in.map(i => i.valid && i.bits.oldest)
//assert(PopCount(oldest_oh) <= 1.U)
when (oldest_oh.orR) {
io.chosen := VecInit(oldest_oh).asUInt
io.out.valid := true.B
io.out.bits := Mux1H(oldest_oh, io.in.map(_.bits))
for (i <- 0 until n) {
io.in(i).ready := oldest_oh(i) && io.out.ready
}
}
}
class RegisterReadXbar(n: Int, banks: Int)(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams {
val io = IO(new Bundle {
val in = Vec(n, Flipped(new VectorReadIO))
val out = Vec(banks, new VectorReadIO)
})
val arbs = Seq.fill(banks) { Module(new OldestRRArbiter(n)) }
for (i <- 0 until banks) {
io.out(i).req <> arbs(i).io.out
}
val bankOffset = log2Ceil(banks)
for (i <- 0 until n) {
val bank_sel = if (bankOffset == 0) true.B else UIntToOH(io.in(i).req.bits.eg(bankOffset-1,0))
for (j <- 0 until banks) {
arbs(j).io.in(i).valid := io.in(i).req.valid && bank_sel(j)
arbs(j).io.in(i).bits.eg := io.in(i).req.bits.eg >> bankOffset
arbs(j).io.in(i).bits.oldest := io.in(i).req.bits.oldest
}
io.in(i).req.ready := Mux1H(bank_sel, arbs.map(_.io.in(i).ready))
io.in(i).resp := Mux1H(bank_sel, io.out.map(_.resp))
}
}
class RegisterFileBank(reads: Int, maskReads: Int, rows: Int, maskRows: Int)(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams {
val io = IO(new Bundle {
val read = Vec(reads, Flipped(new VectorReadIO))
val mask_read = Vec(maskReads, Flipped(new VectorReadIO))
val write = Input(Valid(new VectorWrite(dLen)))
val ll_write = Flipped(Decoupled(new VectorWrite(dLen)))
})
val ll_write_valid = RegInit(false.B)
val ll_write_bits = Reg(new VectorWrite(dLen))
val vrf = Mem(rows, Vec(dLen, Bool()))
val v0_mask = Mem(maskRows, Vec(dLen, Bool()))
for (read <- io.read) {
read.req.ready := !(ll_write_valid && read.req.bits.eg === ll_write_bits.eg)
read.resp := DontCare
when (read.req.valid) {
read.resp := vrf.read(read.req.bits.eg).asUInt
}
}
for (mask_read <- io.mask_read) {
mask_read.req.ready := !(ll_write_valid && mask_read.req.bits.eg === ll_write_bits.eg)
mask_read.resp := DontCare
when (mask_read.req.valid) {
mask_read.resp := v0_mask.read(mask_read.req.bits.eg).asUInt
}
}
val write = WireInit(io.write)
io.ll_write.ready := false.B
if (vParams.vrfHiccupBuffer) {
when (!io.write.valid) { // drain hiccup buffer
write.valid := ll_write_valid || io.ll_write.valid
write.bits := Mux(ll_write_valid, ll_write_bits, io.ll_write.bits)
ll_write_valid := false.B
when (io.ll_write.valid && ll_write_valid) {
ll_write_valid := true.B
ll_write_bits := io.ll_write.bits
}
io.ll_write.ready := true.B
} .elsewhen (!ll_write_valid) { // fill hiccup buffer
when (io.ll_write.valid) {
ll_write_valid := true.B
ll_write_bits := io.ll_write.bits
}
io.ll_write.ready := true.B
}
} else {
when (!io.write.valid) {
io.ll_write.ready := true.B
write.valid := io.ll_write.valid
write.bits := io.ll_write.bits
}
}
when (write.valid) {
vrf.write(
write.bits.eg,
VecInit(write.bits.data.asBools),
write.bits.mask.asBools)
when (write.bits.eg < maskRows.U) {
v0_mask.write(
write.bits.eg,
VecInit(write.bits.data.asBools),
write.bits.mask.asBools)
}
}
}
class RegisterFile(reads: Seq[Int], maskReads: Seq[Int], pipeWrites: Int, llWrites: Int)(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams {
val nBanks = vParams.vrfBanking
// Support 1, 2, and 4 banks for the VRF
require(nBanks == 1 || nBanks == 2 || nBanks == 4)
val io = IO(new Bundle {
val read = MixedVec(reads.map(rc => Vec(rc, Flipped(new VectorReadIO))))
val mask_read = MixedVec(maskReads.map(rc => Vec(rc, Flipped(new VectorReadIO))))
val pipe_writes = Vec(pipeWrites, Input(Valid(new VectorWrite(dLen))))
val ll_writes = Vec(llWrites, Flipped(Decoupled(new VectorWrite(dLen))))
})
val vrf = Seq.fill(nBanks) { Module(new RegisterFileBank(reads.size, maskReads.size, egsTotal/nBanks, if (egsPerVReg < nBanks) 1 else egsPerVReg / nBanks)) }
reads.zipWithIndex.foreach { case (rc, i) =>
val xbar = Module(new RegisterReadXbar(rc, nBanks))
vrf.zipWithIndex.foreach { case (bank, j) =>
bank.io.read(i) <> xbar.io.out(j)
}
xbar.io.in <> io.read(i)
}
maskReads.zipWithIndex.foreach { case (rc, i) =>
val mask_xbar = Module(new RegisterReadXbar(rc, nBanks))
vrf.zipWithIndex.foreach { case (bank, j) =>
bank.io.mask_read(i) <> mask_xbar.io.out(j)
}
mask_xbar.io.in <> io.mask_read(i)
}
io.ll_writes.foreach(_.ready := false.B)
vrf.zipWithIndex.foreach { case (rf, i) =>
val bank_match = io.pipe_writes.map { w => (w.bits.bankId === i.U) && w.valid }
val bank_write_data = Mux1H(bank_match, io.pipe_writes.map(_.bits.data))
val bank_write_mask = Mux1H(bank_match, io.pipe_writes.map(_.bits.mask))
val bank_write_eg = Mux1H(bank_match, io.pipe_writes.map(_.bits.eg))
val bank_write_valid = bank_match.orR
rf.io.write.valid := bank_write_valid
rf.io.write.bits.data := bank_write_data
rf.io.write.bits.mask := bank_write_mask
rf.io.write.bits.eg := bank_write_eg >> vrfBankBits
when (bank_write_valid) { PopCount(bank_match) === 1.U }
val ll_arb = Module(new Arbiter(new VectorWrite(dLen), llWrites))
rf.io.ll_write <> ll_arb.io.out
io.ll_writes.zipWithIndex.foreach { case (w, j) =>
ll_arb.io.in(j).valid := w.valid && w.bits.bankId === i.U
ll_arb.io.in(j).bits.eg := w.bits.eg >> vrfBankBits
ll_arb.io.in(j).bits.data := w.bits.data
ll_arb.io.in(j).bits.mask := w.bits.mask
when (ll_arb.io.in(j).ready && w.bits.bankId === i.U) {
w.ready := true.B
}
}
}
}
| module OldestRRArbiter_6( // @[RegisterFile.scala:10:7]
input clock, // @[RegisterFile.scala:10:7]
output io_in_0_ready, // @[RegisterFile.scala:11:14]
input io_in_0_valid, // @[RegisterFile.scala:11:14]
input io_in_0_bits_oldest, // @[RegisterFile.scala:11:14]
output io_in_1_ready, // @[RegisterFile.scala:11:14]
input io_in_1_valid, // @[RegisterFile.scala:11:14]
input io_in_1_bits_oldest, // @[RegisterFile.scala:11:14]
output io_in_2_ready, // @[RegisterFile.scala:11:14]
input io_in_2_valid, // @[RegisterFile.scala:11:14]
input io_in_2_bits_oldest, // @[RegisterFile.scala:11:14]
output io_in_3_ready, // @[RegisterFile.scala:11:14]
input io_in_3_valid, // @[RegisterFile.scala:11:14]
input io_in_3_bits_oldest, // @[RegisterFile.scala:11:14]
output io_in_4_ready, // @[RegisterFile.scala:11:14]
input io_in_4_valid, // @[RegisterFile.scala:11:14]
input [4:0] io_in_4_bits_eg, // @[RegisterFile.scala:11:14]
input io_out_ready, // @[RegisterFile.scala:11:14]
output [4:0] io_out_bits_eg // @[RegisterFile.scala:11:14]
);
wire _arb_io_in_0_ready; // @[RegisterFile.scala:13:19]
wire _arb_io_in_1_ready; // @[RegisterFile.scala:13:19]
wire _arb_io_in_2_ready; // @[RegisterFile.scala:13:19]
wire _arb_io_in_3_ready; // @[RegisterFile.scala:13:19]
wire _arb_io_in_4_ready; // @[RegisterFile.scala:13:19]
wire [4:0] _arb_io_out_bits_eg; // @[RegisterFile.scala:13:19]
wire oldest_oh_0 = io_in_0_valid & io_in_0_bits_oldest; // @[RegisterFile.scala:15:42]
wire oldest_oh_1 = io_in_1_valid & io_in_1_bits_oldest; // @[RegisterFile.scala:15:42]
wire oldest_oh_2 = io_in_2_valid & io_in_2_bits_oldest; // @[RegisterFile.scala:15:42]
wire oldest_oh_3 = io_in_3_valid & io_in_3_bits_oldest; // @[RegisterFile.scala:15:42]
wire _GEN = oldest_oh_0 | oldest_oh_1 | oldest_oh_2 | oldest_oh_3; // @[RegisterFile.scala:15:42]
RRArbiter_6 arb ( // @[RegisterFile.scala:13:19]
.clock (clock),
.io_in_0_ready (_arb_io_in_0_ready),
.io_in_0_valid (io_in_0_valid),
.io_in_1_ready (_arb_io_in_1_ready),
.io_in_1_valid (io_in_1_valid),
.io_in_2_ready (_arb_io_in_2_ready),
.io_in_2_valid (io_in_2_valid),
.io_in_3_ready (_arb_io_in_3_ready),
.io_in_3_valid (io_in_3_valid),
.io_in_4_ready (_arb_io_in_4_ready),
.io_in_4_valid (io_in_4_valid),
.io_in_4_bits_eg (io_in_4_bits_eg),
.io_out_ready (io_out_ready),
.io_out_bits_eg (_arb_io_out_bits_eg)
); // @[RegisterFile.scala:13:19]
assign io_in_0_ready = _GEN ? oldest_oh_0 & io_out_ready : _arb_io_in_0_ready; // @[RegisterFile.scala:10:7, :13:19, :14:6, :15:42, :17:24, :22:{22,38}]
assign io_in_1_ready = _GEN ? oldest_oh_1 & io_out_ready : _arb_io_in_1_ready; // @[RegisterFile.scala:10:7, :13:19, :14:6, :15:42, :17:24, :22:{22,38}]
assign io_in_2_ready = _GEN ? oldest_oh_2 & io_out_ready : _arb_io_in_2_ready; // @[RegisterFile.scala:10:7, :13:19, :14:6, :15:42, :17:24, :22:{22,38}]
assign io_in_3_ready = _GEN ? oldest_oh_3 & io_out_ready : _arb_io_in_3_ready; // @[RegisterFile.scala:10:7, :13:19, :14:6, :15:42, :17:24, :22:{22,38}]
assign io_in_4_ready = ~_GEN & _arb_io_in_4_ready; // @[RegisterFile.scala:10:7, :13:19, :14:6, :17:24, :22:22]
assign io_out_bits_eg = _GEN ? 5'h0 : _arb_io_out_bits_eg; // @[Mux.scala:30:73]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File LazyRoCC.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tile
import chisel3._
import chisel3.util._
import chisel3.experimental.IntParam
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.rocket.{
MStatus, HellaCacheIO, TLBPTWIO, CanHavePTW, CanHavePTWModule,
SimpleHellaCacheIF, M_XRD, PTE, PRV, M_SZ
}
import freechips.rocketchip.tilelink.{
TLNode, TLIdentityNode, TLClientNode, TLMasterParameters, TLMasterPortParameters
}
import freechips.rocketchip.util.InOrderArbiter
case object BuildRoCC extends Field[Seq[Parameters => LazyRoCC]](Nil)
class RoCCInstruction extends Bundle {
val funct = Bits(7.W)
val rs2 = Bits(5.W)
val rs1 = Bits(5.W)
val xd = Bool()
val xs1 = Bool()
val xs2 = Bool()
val rd = Bits(5.W)
val opcode = Bits(7.W)
}
class RoCCCommand(implicit p: Parameters) extends CoreBundle()(p) {
val inst = new RoCCInstruction
val rs1 = Bits(xLen.W)
val rs2 = Bits(xLen.W)
val status = new MStatus
}
class RoCCResponse(implicit p: Parameters) extends CoreBundle()(p) {
val rd = Bits(5.W)
val data = Bits(xLen.W)
}
class RoCCCoreIO(val nRoCCCSRs: Int = 0)(implicit p: Parameters) extends CoreBundle()(p) {
val cmd = Flipped(Decoupled(new RoCCCommand))
val resp = Decoupled(new RoCCResponse)
val mem = new HellaCacheIO
val busy = Output(Bool())
val interrupt = Output(Bool())
val exception = Input(Bool())
val csrs = Flipped(Vec(nRoCCCSRs, new CustomCSRIO))
}
class RoCCIO(val nPTWPorts: Int, nRoCCCSRs: Int)(implicit p: Parameters) extends RoCCCoreIO(nRoCCCSRs)(p) {
val ptw = Vec(nPTWPorts, new TLBPTWIO)
val fpu_req = Decoupled(new FPInput)
val fpu_resp = Flipped(Decoupled(new FPResult))
}
/** Base classes for Diplomatic TL2 RoCC units **/
abstract class LazyRoCC(
val opcodes: OpcodeSet,
val nPTWPorts: Int = 0,
val usesFPU: Boolean = false,
val roccCSRs: Seq[CustomCSR] = Nil
)(implicit p: Parameters) extends LazyModule {
val module: LazyRoCCModuleImp
require(roccCSRs.map(_.id).toSet.size == roccCSRs.size)
val atlNode: TLNode = TLIdentityNode()
val tlNode: TLNode = TLIdentityNode()
val stlNode: TLNode = TLIdentityNode()
}
class LazyRoCCModuleImp(outer: LazyRoCC) extends LazyModuleImp(outer) {
val io = IO(new RoCCIO(outer.nPTWPorts, outer.roccCSRs.size))
io := DontCare
}
/** Mixins for including RoCC **/
trait HasLazyRoCC extends CanHavePTW { this: BaseTile =>
val roccs = p(BuildRoCC).map(_(p))
val roccCSRs = roccs.map(_.roccCSRs) // the set of custom CSRs requested by all roccs
require(roccCSRs.flatten.map(_.id).toSet.size == roccCSRs.flatten.size,
"LazyRoCC instantiations require overlapping CSRs")
roccs.map(_.atlNode).foreach { atl => tlMasterXbar.node :=* atl }
roccs.map(_.tlNode).foreach { tl => tlOtherMastersNode :=* tl }
roccs.map(_.stlNode).foreach { stl => stl :*= tlSlaveXbar.node }
nPTWPorts += roccs.map(_.nPTWPorts).sum
nDCachePorts += roccs.size
}
trait HasLazyRoCCModule extends CanHavePTWModule
with HasCoreParameters { this: RocketTileModuleImp =>
val (respArb, cmdRouter) = if(outer.roccs.nonEmpty) {
val respArb = Module(new RRArbiter(new RoCCResponse()(outer.p), outer.roccs.size))
val cmdRouter = Module(new RoccCommandRouter(outer.roccs.map(_.opcodes))(outer.p))
outer.roccs.zipWithIndex.foreach { case (rocc, i) =>
rocc.module.io.ptw ++=: ptwPorts
rocc.module.io.cmd <> cmdRouter.io.out(i)
val dcIF = Module(new SimpleHellaCacheIF()(outer.p))
dcIF.io.requestor <> rocc.module.io.mem
dcachePorts += dcIF.io.cache
respArb.io.in(i) <> Queue(rocc.module.io.resp)
}
(Some(respArb), Some(cmdRouter))
} else {
(None, None)
}
val roccCSRIOs = outer.roccs.map(_.module.io.csrs)
}
class AccumulatorExample(opcodes: OpcodeSet, val n: Int = 4)(implicit p: Parameters) extends LazyRoCC(opcodes) {
override lazy val module = new AccumulatorExampleModuleImp(this)
}
class AccumulatorExampleModuleImp(outer: AccumulatorExample)(implicit p: Parameters) extends LazyRoCCModuleImp(outer)
with HasCoreParameters {
val regfile = Mem(outer.n, UInt(xLen.W))
val busy = RegInit(VecInit(Seq.fill(outer.n){false.B}))
val cmd = Queue(io.cmd)
val funct = cmd.bits.inst.funct
val addr = cmd.bits.rs2(log2Up(outer.n)-1,0)
val doWrite = funct === 0.U
val doRead = funct === 1.U
val doLoad = funct === 2.U
val doAccum = funct === 3.U
val memRespTag = io.mem.resp.bits.tag(log2Up(outer.n)-1,0)
// datapath
val addend = cmd.bits.rs1
val accum = regfile(addr)
val wdata = Mux(doWrite, addend, accum + addend)
when (cmd.fire && (doWrite || doAccum)) {
regfile(addr) := wdata
}
when (io.mem.resp.valid) {
regfile(memRespTag) := io.mem.resp.bits.data
busy(memRespTag) := false.B
}
// control
when (io.mem.req.fire) {
busy(addr) := true.B
}
val doResp = cmd.bits.inst.xd
val stallReg = busy(addr)
val stallLoad = doLoad && !io.mem.req.ready
val stallResp = doResp && !io.resp.ready
cmd.ready := !stallReg && !stallLoad && !stallResp
// command resolved if no stalls AND not issuing a load that will need a request
// PROC RESPONSE INTERFACE
io.resp.valid := cmd.valid && doResp && !stallReg && !stallLoad
// valid response if valid command, need a response, and no stalls
io.resp.bits.rd := cmd.bits.inst.rd
// Must respond with the appropriate tag or undefined behavior
io.resp.bits.data := accum
// Semantics is to always send out prior accumulator register value
io.busy := cmd.valid || busy.reduce(_||_)
// Be busy when have pending memory requests or committed possibility of pending requests
io.interrupt := false.B
// Set this true to trigger an interrupt on the processor (please refer to supervisor documentation)
// MEMORY REQUEST INTERFACE
io.mem.req.valid := cmd.valid && doLoad && !stallReg && !stallResp
io.mem.req.bits.addr := addend
io.mem.req.bits.tag := addr
io.mem.req.bits.cmd := M_XRD // perform a load (M_XWR for stores)
io.mem.req.bits.size := log2Ceil(8).U
io.mem.req.bits.signed := false.B
io.mem.req.bits.data := 0.U // we're not performing any stores...
io.mem.req.bits.phys := false.B
io.mem.req.bits.dprv := cmd.bits.status.dprv
io.mem.req.bits.dv := cmd.bits.status.dv
io.mem.req.bits.no_resp := false.B
}
class TranslatorExample(opcodes: OpcodeSet)(implicit p: Parameters) extends LazyRoCC(opcodes, nPTWPorts = 1) {
override lazy val module = new TranslatorExampleModuleImp(this)
}
class TranslatorExampleModuleImp(outer: TranslatorExample)(implicit p: Parameters) extends LazyRoCCModuleImp(outer)
with HasCoreParameters {
val req_addr = Reg(UInt(coreMaxAddrBits.W))
val req_rd = Reg(chiselTypeOf(io.resp.bits.rd))
val req_offset = req_addr(pgIdxBits - 1, 0)
val req_vpn = req_addr(coreMaxAddrBits - 1, pgIdxBits)
val pte = Reg(new PTE)
val s_idle :: s_ptw_req :: s_ptw_resp :: s_resp :: Nil = Enum(4)
val state = RegInit(s_idle)
io.cmd.ready := (state === s_idle)
when (io.cmd.fire) {
req_rd := io.cmd.bits.inst.rd
req_addr := io.cmd.bits.rs1
state := s_ptw_req
}
private val ptw = io.ptw(0)
when (ptw.req.fire) { state := s_ptw_resp }
when (state === s_ptw_resp && ptw.resp.valid) {
pte := ptw.resp.bits.pte
state := s_resp
}
when (io.resp.fire) { state := s_idle }
ptw.req.valid := (state === s_ptw_req)
ptw.req.bits.valid := true.B
ptw.req.bits.bits.addr := req_vpn
io.resp.valid := (state === s_resp)
io.resp.bits.rd := req_rd
io.resp.bits.data := Mux(pte.leaf(), Cat(pte.ppn, req_offset), -1.S(xLen.W).asUInt)
io.busy := (state =/= s_idle)
io.interrupt := false.B
io.mem.req.valid := false.B
}
class CharacterCountExample(opcodes: OpcodeSet)(implicit p: Parameters) extends LazyRoCC(opcodes) {
override lazy val module = new CharacterCountExampleModuleImp(this)
override val atlNode = TLClientNode(Seq(TLMasterPortParameters.v1(Seq(TLMasterParameters.v1("CharacterCountRoCC")))))
}
class CharacterCountExampleModuleImp(outer: CharacterCountExample)(implicit p: Parameters) extends LazyRoCCModuleImp(outer)
with HasCoreParameters
with HasL1CacheParameters {
val cacheParams = tileParams.dcache.get
private val blockOffset = blockOffBits
private val beatOffset = log2Up(cacheDataBits/8)
val needle = Reg(UInt(8.W))
val addr = Reg(UInt(coreMaxAddrBits.W))
val count = Reg(UInt(xLen.W))
val resp_rd = Reg(chiselTypeOf(io.resp.bits.rd))
val addr_block = addr(coreMaxAddrBits - 1, blockOffset)
val offset = addr(blockOffset - 1, 0)
val next_addr = (addr_block + 1.U) << blockOffset.U
val s_idle :: s_acq :: s_gnt :: s_check :: s_resp :: Nil = Enum(5)
val state = RegInit(s_idle)
val (tl_out, edgesOut) = outer.atlNode.out(0)
val gnt = tl_out.d.bits
val recv_data = Reg(UInt(cacheDataBits.W))
val recv_beat = RegInit(0.U(log2Up(cacheDataBeats+1).W))
val data_bytes = VecInit(Seq.tabulate(cacheDataBits/8) { i => recv_data(8 * (i + 1) - 1, 8 * i) })
val zero_match = data_bytes.map(_ === 0.U)
val needle_match = data_bytes.map(_ === needle)
val first_zero = PriorityEncoder(zero_match)
val chars_found = PopCount(needle_match.zipWithIndex.map {
case (matches, i) =>
val idx = Cat(recv_beat - 1.U, i.U(beatOffset.W))
matches && idx >= offset && i.U <= first_zero
})
val zero_found = zero_match.reduce(_ || _)
val finished = Reg(Bool())
io.cmd.ready := (state === s_idle)
io.resp.valid := (state === s_resp)
io.resp.bits.rd := resp_rd
io.resp.bits.data := count
tl_out.a.valid := (state === s_acq)
tl_out.a.bits := edgesOut.Get(
fromSource = 0.U,
toAddress = addr_block << blockOffset,
lgSize = lgCacheBlockBytes.U)._2
tl_out.d.ready := (state === s_gnt)
when (io.cmd.fire) {
addr := io.cmd.bits.rs1
needle := io.cmd.bits.rs2
resp_rd := io.cmd.bits.inst.rd
count := 0.U
finished := false.B
state := s_acq
}
when (tl_out.a.fire) { state := s_gnt }
when (tl_out.d.fire) {
recv_beat := recv_beat + 1.U
recv_data := gnt.data
state := s_check
}
when (state === s_check) {
when (!finished) {
count := count + chars_found
}
when (zero_found) { finished := true.B }
when (recv_beat === cacheDataBeats.U) {
addr := next_addr
state := Mux(zero_found || finished, s_resp, s_acq)
recv_beat := 0.U
} .otherwise {
state := s_gnt
}
}
when (io.resp.fire) { state := s_idle }
io.busy := (state =/= s_idle)
io.interrupt := false.B
io.mem.req.valid := false.B
// Tie off unused channels
tl_out.b.ready := true.B
tl_out.c.valid := false.B
tl_out.e.valid := false.B
}
class BlackBoxExample(opcodes: OpcodeSet, blackBoxFile: String)(implicit p: Parameters)
extends LazyRoCC(opcodes) {
override lazy val module = new BlackBoxExampleModuleImp(this, blackBoxFile)
}
class BlackBoxExampleModuleImp(outer: BlackBoxExample, blackBoxFile: String)(implicit p: Parameters)
extends LazyRoCCModuleImp(outer)
with RequireSyncReset
with HasCoreParameters {
val blackbox = {
val roccIo = io
Module(
new BlackBox( Map( "xLen" -> IntParam(xLen),
"PRV_SZ" -> IntParam(PRV.SZ),
"coreMaxAddrBits" -> IntParam(coreMaxAddrBits),
"dcacheReqTagBits" -> IntParam(roccIo.mem.req.bits.tag.getWidth),
"M_SZ" -> IntParam(M_SZ),
"mem_req_bits_size_width" -> IntParam(roccIo.mem.req.bits.size.getWidth),
"coreDataBits" -> IntParam(coreDataBits),
"coreDataBytes" -> IntParam(coreDataBytes),
"paddrBits" -> IntParam(paddrBits),
"vaddrBitsExtended" -> IntParam(vaddrBitsExtended),
"FPConstants_RM_SZ" -> IntParam(FPConstants.RM_SZ),
"fLen" -> IntParam(fLen),
"FPConstants_FLAGS_SZ" -> IntParam(FPConstants.FLAGS_SZ)
) ) with HasBlackBoxResource {
val io = IO( new Bundle {
val clock = Input(Clock())
val reset = Input(Reset())
val rocc = chiselTypeOf(roccIo)
})
override def desiredName: String = blackBoxFile
addResource(s"/vsrc/$blackBoxFile.v")
}
)
}
blackbox.io.clock := clock
blackbox.io.reset := reset
blackbox.io.rocc.cmd <> io.cmd
io.resp <> blackbox.io.rocc.resp
io.mem <> blackbox.io.rocc.mem
io.busy := blackbox.io.rocc.busy
io.interrupt := blackbox.io.rocc.interrupt
blackbox.io.rocc.exception := io.exception
io.ptw <> blackbox.io.rocc.ptw
io.fpu_req <> blackbox.io.rocc.fpu_req
blackbox.io.rocc.fpu_resp <> io.fpu_resp
}
class OpcodeSet(val opcodes: Seq[UInt]) {
def |(set: OpcodeSet) =
new OpcodeSet(this.opcodes ++ set.opcodes)
def matches(oc: UInt) = opcodes.map(_ === oc).reduce(_ || _)
}
object OpcodeSet {
def custom0 = new OpcodeSet(Seq("b0001011".U))
def custom1 = new OpcodeSet(Seq("b0101011".U))
def custom2 = new OpcodeSet(Seq("b1011011".U))
def custom3 = new OpcodeSet(Seq("b1111011".U))
def all = custom0 | custom1 | custom2 | custom3
}
class RoccCommandRouter(opcodes: Seq[OpcodeSet])(implicit p: Parameters)
extends CoreModule()(p) {
val io = IO(new Bundle {
val in = Flipped(Decoupled(new RoCCCommand))
val out = Vec(opcodes.size, Decoupled(new RoCCCommand))
val busy = Output(Bool())
})
val cmd = Queue(io.in)
val cmdReadys = io.out.zip(opcodes).map { case (out, opcode) =>
val me = opcode.matches(cmd.bits.inst.opcode)
out.valid := cmd.valid && me
out.bits := cmd.bits
out.ready && me
}
cmd.ready := cmdReadys.reduce(_ || _)
io.busy := cmd.valid
assert(PopCount(cmdReadys) <= 1.U,
"Custom opcode matched for more than one accelerator")
}
| module RoccCommandRouter( // @[LazyRoCC.scala:400:7]
input clock, // @[LazyRoCC.scala:400:7]
input reset, // @[LazyRoCC.scala:400:7]
output io_in_ready, // @[LazyRoCC.scala:402:14]
input io_in_valid, // @[LazyRoCC.scala:402:14]
input [6:0] io_in_bits_inst_funct, // @[LazyRoCC.scala:402:14]
input [4:0] io_in_bits_inst_rs2, // @[LazyRoCC.scala:402:14]
input [4:0] io_in_bits_inst_rs1, // @[LazyRoCC.scala:402:14]
input io_in_bits_inst_xd, // @[LazyRoCC.scala:402:14]
input io_in_bits_inst_xs1, // @[LazyRoCC.scala:402:14]
input io_in_bits_inst_xs2, // @[LazyRoCC.scala:402:14]
input [4:0] io_in_bits_inst_rd, // @[LazyRoCC.scala:402:14]
input [6:0] io_in_bits_inst_opcode, // @[LazyRoCC.scala:402:14]
input [63:0] io_in_bits_rs1, // @[LazyRoCC.scala:402:14]
input [63:0] io_in_bits_rs2, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_debug, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_cease, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_wfi, // @[LazyRoCC.scala:402:14]
input [31:0] io_in_bits_status_isa, // @[LazyRoCC.scala:402:14]
input [1:0] io_in_bits_status_dprv, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_dv, // @[LazyRoCC.scala:402:14]
input [1:0] io_in_bits_status_prv, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_v, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_mpv, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_gva, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_tsr, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_tw, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_tvm, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_mxr, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_sum, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_mprv, // @[LazyRoCC.scala:402:14]
input [1:0] io_in_bits_status_fs, // @[LazyRoCC.scala:402:14]
input [1:0] io_in_bits_status_mpp, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_spp, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_mpie, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_spie, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_mie, // @[LazyRoCC.scala:402:14]
input io_in_bits_status_sie, // @[LazyRoCC.scala:402:14]
input io_out_0_ready, // @[LazyRoCC.scala:402:14]
output io_out_0_valid, // @[LazyRoCC.scala:402:14]
output [6:0] io_out_0_bits_inst_funct, // @[LazyRoCC.scala:402:14]
output [4:0] io_out_0_bits_inst_rs2, // @[LazyRoCC.scala:402:14]
output [4:0] io_out_0_bits_inst_rs1, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_inst_xd, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_inst_xs1, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_inst_xs2, // @[LazyRoCC.scala:402:14]
output [4:0] io_out_0_bits_inst_rd, // @[LazyRoCC.scala:402:14]
output [6:0] io_out_0_bits_inst_opcode, // @[LazyRoCC.scala:402:14]
output [63:0] io_out_0_bits_rs1, // @[LazyRoCC.scala:402:14]
output [63:0] io_out_0_bits_rs2, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_debug, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_cease, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_wfi, // @[LazyRoCC.scala:402:14]
output [31:0] io_out_0_bits_status_isa, // @[LazyRoCC.scala:402:14]
output [1:0] io_out_0_bits_status_dprv, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_dv, // @[LazyRoCC.scala:402:14]
output [1:0] io_out_0_bits_status_prv, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_v, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_sd, // @[LazyRoCC.scala:402:14]
output [22:0] io_out_0_bits_status_zero2, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_mpv, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_gva, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_mbe, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_sbe, // @[LazyRoCC.scala:402:14]
output [1:0] io_out_0_bits_status_sxl, // @[LazyRoCC.scala:402:14]
output [1:0] io_out_0_bits_status_uxl, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_sd_rv32, // @[LazyRoCC.scala:402:14]
output [7:0] io_out_0_bits_status_zero1, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_tsr, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_tw, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_tvm, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_mxr, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_sum, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_mprv, // @[LazyRoCC.scala:402:14]
output [1:0] io_out_0_bits_status_xs, // @[LazyRoCC.scala:402:14]
output [1:0] io_out_0_bits_status_fs, // @[LazyRoCC.scala:402:14]
output [1:0] io_out_0_bits_status_mpp, // @[LazyRoCC.scala:402:14]
output [1:0] io_out_0_bits_status_vs, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_spp, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_mpie, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_ube, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_spie, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_upie, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_mie, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_hie, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_sie, // @[LazyRoCC.scala:402:14]
output io_out_0_bits_status_uie, // @[LazyRoCC.scala:402:14]
output io_busy // @[LazyRoCC.scala:402:14]
);
wire _cmd_q_io_deq_valid; // @[Decoupled.scala:362:21]
wire [6:0] _cmd_q_io_deq_bits_inst_opcode; // @[Decoupled.scala:362:21]
wire io_in_valid_0 = io_in_valid; // @[LazyRoCC.scala:400:7]
wire [6:0] io_in_bits_inst_funct_0 = io_in_bits_inst_funct; // @[LazyRoCC.scala:400:7]
wire [4:0] io_in_bits_inst_rs2_0 = io_in_bits_inst_rs2; // @[LazyRoCC.scala:400:7]
wire [4:0] io_in_bits_inst_rs1_0 = io_in_bits_inst_rs1; // @[LazyRoCC.scala:400:7]
wire io_in_bits_inst_xd_0 = io_in_bits_inst_xd; // @[LazyRoCC.scala:400:7]
wire io_in_bits_inst_xs1_0 = io_in_bits_inst_xs1; // @[LazyRoCC.scala:400:7]
wire io_in_bits_inst_xs2_0 = io_in_bits_inst_xs2; // @[LazyRoCC.scala:400:7]
wire [4:0] io_in_bits_inst_rd_0 = io_in_bits_inst_rd; // @[LazyRoCC.scala:400:7]
wire [6:0] io_in_bits_inst_opcode_0 = io_in_bits_inst_opcode; // @[LazyRoCC.scala:400:7]
wire [63:0] io_in_bits_rs1_0 = io_in_bits_rs1; // @[LazyRoCC.scala:400:7]
wire [63:0] io_in_bits_rs2_0 = io_in_bits_rs2; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_debug_0 = io_in_bits_status_debug; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_cease_0 = io_in_bits_status_cease; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_wfi_0 = io_in_bits_status_wfi; // @[LazyRoCC.scala:400:7]
wire [31:0] io_in_bits_status_isa_0 = io_in_bits_status_isa; // @[LazyRoCC.scala:400:7]
wire [1:0] io_in_bits_status_dprv_0 = io_in_bits_status_dprv; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_dv_0 = io_in_bits_status_dv; // @[LazyRoCC.scala:400:7]
wire [1:0] io_in_bits_status_prv_0 = io_in_bits_status_prv; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_v_0 = io_in_bits_status_v; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_mpv_0 = io_in_bits_status_mpv; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_gva_0 = io_in_bits_status_gva; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_tsr_0 = io_in_bits_status_tsr; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_tw_0 = io_in_bits_status_tw; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_tvm_0 = io_in_bits_status_tvm; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_mxr_0 = io_in_bits_status_mxr; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_sum_0 = io_in_bits_status_sum; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_mprv_0 = io_in_bits_status_mprv; // @[LazyRoCC.scala:400:7]
wire [1:0] io_in_bits_status_fs_0 = io_in_bits_status_fs; // @[LazyRoCC.scala:400:7]
wire [1:0] io_in_bits_status_mpp_0 = io_in_bits_status_mpp; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_spp_0 = io_in_bits_status_spp; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_mpie_0 = io_in_bits_status_mpie; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_spie_0 = io_in_bits_status_spie; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_mie_0 = io_in_bits_status_mie; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_sie_0 = io_in_bits_status_sie; // @[LazyRoCC.scala:400:7]
wire io_out_0_ready_0 = io_out_0_ready; // @[LazyRoCC.scala:400:7]
wire [1:0] io_in_bits_status_sxl = 2'h2; // @[Decoupled.scala:362:21]
wire [1:0] io_in_bits_status_uxl = 2'h2; // @[Decoupled.scala:362:21]
wire [1:0] io_in_bits_status_vs = 2'h0; // @[Decoupled.scala:362:21]
wire [1:0] io_in_bits_status_xs = 2'h3; // @[Decoupled.scala:362:21]
wire [7:0] io_in_bits_status_zero1 = 8'h0; // @[Decoupled.scala:362:21]
wire io_in_bits_status_mbe = 1'h0; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_sbe = 1'h0; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_sd_rv32 = 1'h0; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_ube = 1'h0; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_upie = 1'h0; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_hie = 1'h0; // @[LazyRoCC.scala:400:7]
wire io_in_bits_status_uie = 1'h0; // @[LazyRoCC.scala:400:7]
wire [22:0] io_in_bits_status_zero2 = 23'h0; // @[Decoupled.scala:362:21]
wire io_in_bits_status_sd = 1'h1; // @[Decoupled.scala:362:21]
wire _cmdReadys_io_out_0_valid_T; // @[LazyRoCC.scala:411:28]
wire io_in_ready_0; // @[LazyRoCC.scala:400:7]
wire [6:0] io_out_0_bits_inst_funct_0; // @[LazyRoCC.scala:400:7]
wire [4:0] io_out_0_bits_inst_rs2_0; // @[LazyRoCC.scala:400:7]
wire [4:0] io_out_0_bits_inst_rs1_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_inst_xd_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_inst_xs1_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_inst_xs2_0; // @[LazyRoCC.scala:400:7]
wire [4:0] io_out_0_bits_inst_rd_0; // @[LazyRoCC.scala:400:7]
wire [6:0] io_out_0_bits_inst_opcode_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_debug_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_cease_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_wfi_0; // @[LazyRoCC.scala:400:7]
wire [31:0] io_out_0_bits_status_isa_0; // @[LazyRoCC.scala:400:7]
wire [1:0] io_out_0_bits_status_dprv_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_dv_0; // @[LazyRoCC.scala:400:7]
wire [1:0] io_out_0_bits_status_prv_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_v_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_sd_0; // @[LazyRoCC.scala:400:7]
wire [22:0] io_out_0_bits_status_zero2_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_mpv_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_gva_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_mbe_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_sbe_0; // @[LazyRoCC.scala:400:7]
wire [1:0] io_out_0_bits_status_sxl_0; // @[LazyRoCC.scala:400:7]
wire [1:0] io_out_0_bits_status_uxl_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_sd_rv32_0; // @[LazyRoCC.scala:400:7]
wire [7:0] io_out_0_bits_status_zero1_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_tsr_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_tw_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_tvm_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_mxr_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_sum_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_mprv_0; // @[LazyRoCC.scala:400:7]
wire [1:0] io_out_0_bits_status_xs_0; // @[LazyRoCC.scala:400:7]
wire [1:0] io_out_0_bits_status_fs_0; // @[LazyRoCC.scala:400:7]
wire [1:0] io_out_0_bits_status_mpp_0; // @[LazyRoCC.scala:400:7]
wire [1:0] io_out_0_bits_status_vs_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_spp_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_mpie_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_ube_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_spie_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_upie_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_mie_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_hie_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_sie_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_bits_status_uie_0; // @[LazyRoCC.scala:400:7]
wire [63:0] io_out_0_bits_rs1_0; // @[LazyRoCC.scala:400:7]
wire [63:0] io_out_0_bits_rs2_0; // @[LazyRoCC.scala:400:7]
wire io_out_0_valid_0; // @[LazyRoCC.scala:400:7]
wire io_busy_0; // @[LazyRoCC.scala:400:7]
wire cmdReadys_me = _cmd_q_io_deq_bits_inst_opcode == 7'h2B; // @[Decoupled.scala:362:21]
assign _cmdReadys_io_out_0_valid_T = _cmd_q_io_deq_valid & cmdReadys_me; // @[Decoupled.scala:362:21]
assign io_out_0_valid_0 = _cmdReadys_io_out_0_valid_T; // @[LazyRoCC.scala:400:7, :411:28]
wire cmdReadys_0 = io_out_0_ready_0 & cmdReadys_me; // @[LazyRoCC.scala:389:41, :400:7, :413:15]
Queue2_RoCCCommand cmd_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (io_in_ready_0),
.io_enq_valid (io_in_valid_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_inst_funct (io_in_bits_inst_funct_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_inst_rs2 (io_in_bits_inst_rs2_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_inst_rs1 (io_in_bits_inst_rs1_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_inst_xd (io_in_bits_inst_xd_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_inst_xs1 (io_in_bits_inst_xs1_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_inst_xs2 (io_in_bits_inst_xs2_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_inst_rd (io_in_bits_inst_rd_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_inst_opcode (io_in_bits_inst_opcode_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_rs1 (io_in_bits_rs1_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_rs2 (io_in_bits_rs2_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_debug (io_in_bits_status_debug_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_cease (io_in_bits_status_cease_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_wfi (io_in_bits_status_wfi_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_isa (io_in_bits_status_isa_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_dprv (io_in_bits_status_dprv_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_dv (io_in_bits_status_dv_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_prv (io_in_bits_status_prv_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_v (io_in_bits_status_v_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_mpv (io_in_bits_status_mpv_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_gva (io_in_bits_status_gva_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_tsr (io_in_bits_status_tsr_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_tw (io_in_bits_status_tw_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_tvm (io_in_bits_status_tvm_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_mxr (io_in_bits_status_mxr_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_sum (io_in_bits_status_sum_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_mprv (io_in_bits_status_mprv_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_fs (io_in_bits_status_fs_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_mpp (io_in_bits_status_mpp_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_spp (io_in_bits_status_spp_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_mpie (io_in_bits_status_mpie_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_spie (io_in_bits_status_spie_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_mie (io_in_bits_status_mie_0), // @[LazyRoCC.scala:400:7]
.io_enq_bits_status_sie (io_in_bits_status_sie_0), // @[LazyRoCC.scala:400:7]
.io_deq_ready (cmdReadys_0), // @[LazyRoCC.scala:413:15]
.io_deq_valid (_cmd_q_io_deq_valid),
.io_deq_bits_inst_funct (io_out_0_bits_inst_funct_0),
.io_deq_bits_inst_rs2 (io_out_0_bits_inst_rs2_0),
.io_deq_bits_inst_rs1 (io_out_0_bits_inst_rs1_0),
.io_deq_bits_inst_xd (io_out_0_bits_inst_xd_0),
.io_deq_bits_inst_xs1 (io_out_0_bits_inst_xs1_0),
.io_deq_bits_inst_xs2 (io_out_0_bits_inst_xs2_0),
.io_deq_bits_inst_rd (io_out_0_bits_inst_rd_0),
.io_deq_bits_inst_opcode (_cmd_q_io_deq_bits_inst_opcode),
.io_deq_bits_rs1 (io_out_0_bits_rs1_0),
.io_deq_bits_rs2 (io_out_0_bits_rs2_0),
.io_deq_bits_status_debug (io_out_0_bits_status_debug_0),
.io_deq_bits_status_cease (io_out_0_bits_status_cease_0),
.io_deq_bits_status_wfi (io_out_0_bits_status_wfi_0),
.io_deq_bits_status_isa (io_out_0_bits_status_isa_0),
.io_deq_bits_status_dprv (io_out_0_bits_status_dprv_0),
.io_deq_bits_status_dv (io_out_0_bits_status_dv_0),
.io_deq_bits_status_prv (io_out_0_bits_status_prv_0),
.io_deq_bits_status_v (io_out_0_bits_status_v_0),
.io_deq_bits_status_sd (io_out_0_bits_status_sd_0),
.io_deq_bits_status_zero2 (io_out_0_bits_status_zero2_0),
.io_deq_bits_status_mpv (io_out_0_bits_status_mpv_0),
.io_deq_bits_status_gva (io_out_0_bits_status_gva_0),
.io_deq_bits_status_mbe (io_out_0_bits_status_mbe_0),
.io_deq_bits_status_sbe (io_out_0_bits_status_sbe_0),
.io_deq_bits_status_sxl (io_out_0_bits_status_sxl_0),
.io_deq_bits_status_uxl (io_out_0_bits_status_uxl_0),
.io_deq_bits_status_sd_rv32 (io_out_0_bits_status_sd_rv32_0),
.io_deq_bits_status_zero1 (io_out_0_bits_status_zero1_0),
.io_deq_bits_status_tsr (io_out_0_bits_status_tsr_0),
.io_deq_bits_status_tw (io_out_0_bits_status_tw_0),
.io_deq_bits_status_tvm (io_out_0_bits_status_tvm_0),
.io_deq_bits_status_mxr (io_out_0_bits_status_mxr_0),
.io_deq_bits_status_sum (io_out_0_bits_status_sum_0),
.io_deq_bits_status_mprv (io_out_0_bits_status_mprv_0),
.io_deq_bits_status_xs (io_out_0_bits_status_xs_0),
.io_deq_bits_status_fs (io_out_0_bits_status_fs_0),
.io_deq_bits_status_mpp (io_out_0_bits_status_mpp_0),
.io_deq_bits_status_vs (io_out_0_bits_status_vs_0),
.io_deq_bits_status_spp (io_out_0_bits_status_spp_0),
.io_deq_bits_status_mpie (io_out_0_bits_status_mpie_0),
.io_deq_bits_status_ube (io_out_0_bits_status_ube_0),
.io_deq_bits_status_spie (io_out_0_bits_status_spie_0),
.io_deq_bits_status_upie (io_out_0_bits_status_upie_0),
.io_deq_bits_status_mie (io_out_0_bits_status_mie_0),
.io_deq_bits_status_hie (io_out_0_bits_status_hie_0),
.io_deq_bits_status_sie (io_out_0_bits_status_sie_0),
.io_deq_bits_status_uie (io_out_0_bits_status_uie_0)
); // @[Decoupled.scala:362:21]
assign io_out_0_bits_inst_opcode_0 = _cmd_q_io_deq_bits_inst_opcode; // @[Decoupled.scala:362:21]
assign io_busy_0 = _cmd_q_io_deq_valid; // @[Decoupled.scala:362:21]
assign io_in_ready = io_in_ready_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_valid = io_out_0_valid_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_inst_funct = io_out_0_bits_inst_funct_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_inst_rs2 = io_out_0_bits_inst_rs2_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_inst_rs1 = io_out_0_bits_inst_rs1_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_inst_xd = io_out_0_bits_inst_xd_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_inst_xs1 = io_out_0_bits_inst_xs1_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_inst_xs2 = io_out_0_bits_inst_xs2_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_inst_rd = io_out_0_bits_inst_rd_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_inst_opcode = io_out_0_bits_inst_opcode_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_rs1 = io_out_0_bits_rs1_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_rs2 = io_out_0_bits_rs2_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_debug = io_out_0_bits_status_debug_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_cease = io_out_0_bits_status_cease_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_wfi = io_out_0_bits_status_wfi_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_isa = io_out_0_bits_status_isa_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_dprv = io_out_0_bits_status_dprv_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_dv = io_out_0_bits_status_dv_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_prv = io_out_0_bits_status_prv_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_v = io_out_0_bits_status_v_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_sd = io_out_0_bits_status_sd_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_zero2 = io_out_0_bits_status_zero2_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_mpv = io_out_0_bits_status_mpv_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_gva = io_out_0_bits_status_gva_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_mbe = io_out_0_bits_status_mbe_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_sbe = io_out_0_bits_status_sbe_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_sxl = io_out_0_bits_status_sxl_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_uxl = io_out_0_bits_status_uxl_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_sd_rv32 = io_out_0_bits_status_sd_rv32_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_zero1 = io_out_0_bits_status_zero1_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_tsr = io_out_0_bits_status_tsr_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_tw = io_out_0_bits_status_tw_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_tvm = io_out_0_bits_status_tvm_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_mxr = io_out_0_bits_status_mxr_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_sum = io_out_0_bits_status_sum_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_mprv = io_out_0_bits_status_mprv_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_xs = io_out_0_bits_status_xs_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_fs = io_out_0_bits_status_fs_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_mpp = io_out_0_bits_status_mpp_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_vs = io_out_0_bits_status_vs_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_spp = io_out_0_bits_status_spp_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_mpie = io_out_0_bits_status_mpie_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_ube = io_out_0_bits_status_ube_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_spie = io_out_0_bits_status_spie_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_upie = io_out_0_bits_status_upie_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_mie = io_out_0_bits_status_mie_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_hie = io_out_0_bits_status_hie_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_sie = io_out_0_bits_status_sie_0; // @[LazyRoCC.scala:400:7]
assign io_out_0_bits_status_uie = io_out_0_bits_status_uie_0; // @[LazyRoCC.scala:400:7]
assign io_busy = io_busy_0; // @[LazyRoCC.scala:400:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File SwitchAllocator.scala:
package constellation.router
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import constellation.channel._
class SwitchAllocReq(val outParams: Seq[ChannelParams], val egressParams: Seq[EgressChannelParams])
(implicit val p: Parameters) extends Bundle with HasRouterOutputParams {
val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })
val tail = Bool()
}
class SwitchArbiter(inN: Int, outN: Int, outParams: Seq[ChannelParams], egressParams: Seq[EgressChannelParams])(implicit val p: Parameters) extends Module {
val io = IO(new Bundle {
val in = Flipped(Vec(inN, Decoupled(new SwitchAllocReq(outParams, egressParams))))
val out = Vec(outN, Decoupled(new SwitchAllocReq(outParams, egressParams)))
val chosen_oh = Vec(outN, Output(UInt(inN.W)))
})
val lock = Seq.fill(outN) { RegInit(0.U(inN.W)) }
val unassigned = Cat(io.in.map(_.valid).reverse) & ~(lock.reduce(_|_))
val mask = RegInit(0.U(inN.W))
val choices = Wire(Vec(outN, UInt(inN.W)))
var sel = PriorityEncoderOH(Cat(unassigned, unassigned & ~mask))
for (i <- 0 until outN) {
choices(i) := sel | (sel >> inN)
sel = PriorityEncoderOH(unassigned & ~choices(i))
}
io.in.foreach(_.ready := false.B)
var chosens = 0.U(inN.W)
val in_tails = Cat(io.in.map(_.bits.tail).reverse)
for (i <- 0 until outN) {
val in_valids = Cat((0 until inN).map { j => io.in(j).valid && !chosens(j) }.reverse)
val chosen = Mux((in_valids & lock(i) & ~chosens).orR, lock(i), choices(i))
io.chosen_oh(i) := chosen
io.out(i).valid := (in_valids & chosen).orR
io.out(i).bits := Mux1H(chosen, io.in.map(_.bits))
for (j <- 0 until inN) {
when (chosen(j) && io.out(i).ready) {
io.in(j).ready := true.B
}
}
chosens = chosens | chosen
when (io.out(i).fire) {
lock(i) := chosen & ~in_tails
}
}
when (io.out(0).fire) {
mask := (0 until inN).map { i => (io.chosen_oh(0) >> i) }.reduce(_|_)
} .otherwise {
mask := Mux(~mask === 0.U, 0.U, (mask << 1) | 1.U(1.W))
}
}
class SwitchAllocator(
val routerParams: RouterParams,
val inParams: Seq[ChannelParams],
val outParams: Seq[ChannelParams],
val ingressParams: Seq[IngressChannelParams],
val egressParams: Seq[EgressChannelParams]
)(implicit val p: Parameters) extends Module
with HasRouterParams
with HasRouterInputParams
with HasRouterOutputParams {
val io = IO(new Bundle {
val req = MixedVec(allInParams.map(u =>
Vec(u.destSpeedup, Flipped(Decoupled(new SwitchAllocReq(outParams, egressParams))))))
val credit_alloc = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Output(new OutputCreditAlloc))})
val switch_sel = MixedVec(allOutParams.map { o => Vec(o.srcSpeedup,
MixedVec(allInParams.map { i => Vec(i.destSpeedup, Output(Bool())) })) })
})
val nInputChannels = allInParams.map(_.nVirtualChannels).sum
val arbs = allOutParams.map { oP => Module(new SwitchArbiter(
allInParams.map(_.destSpeedup).reduce(_+_),
oP.srcSpeedup,
outParams,
egressParams
))}
arbs.foreach(_.io.out.foreach(_.ready := true.B))
var idx = 0
io.req.foreach(_.foreach { o =>
val fires = Wire(Vec(arbs.size, Bool()))
arbs.zipWithIndex.foreach { case (a,i) =>
a.io.in(idx).valid := o.valid && o.bits.vc_sel(i).reduce(_||_)
a.io.in(idx).bits := o.bits
fires(i) := a.io.in(idx).fire
}
o.ready := fires.reduce(_||_)
idx += 1
})
for (i <- 0 until nAllOutputs) {
for (j <- 0 until allOutParams(i).srcSpeedup) {
idx = 0
for (m <- 0 until nAllInputs) {
for (n <- 0 until allInParams(m).destSpeedup) {
io.switch_sel(i)(j)(m)(n) := arbs(i).io.in(idx).valid && arbs(i).io.chosen_oh(j)(idx) && arbs(i).io.out(j).valid
idx += 1
}
}
}
}
io.credit_alloc.foreach(_.foreach(_.alloc := false.B))
io.credit_alloc.foreach(_.foreach(_.tail := false.B))
(arbs zip io.credit_alloc).zipWithIndex.map { case ((a,i),t) =>
for (j <- 0 until i.size) {
for (k <- 0 until a.io.out.size) {
when (a.io.out(k).valid && a.io.out(k).bits.vc_sel(t)(j)) {
i(j).alloc := true.B
i(j).tail := a.io.out(k).bits.tail
}
}
}
}
}
| module SwitchArbiter_310( // @[SwitchAllocator.scala:17:7]
input clock, // @[SwitchAllocator.scala:17:7]
input reset, // @[SwitchAllocator.scala:17:7]
output io_in_2_ready, // @[SwitchAllocator.scala:18:14]
input io_in_2_valid, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_2_3, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_2_4, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_2_5, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_2_6, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_2_7, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_2_8, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_2_9, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_1_2, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_1_3, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_1_4, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_1_5, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_1_6, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_1_7, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_1_8, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_1_9, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_0_2, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_0_3, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_0_4, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_0_5, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_0_6, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_0_7, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_0_8, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_vc_sel_0_9, // @[SwitchAllocator.scala:18:14]
input io_in_2_bits_tail, // @[SwitchAllocator.scala:18:14]
output io_in_3_ready, // @[SwitchAllocator.scala:18:14]
input io_in_3_valid, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_2_2, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_2_3, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_2_4, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_2_5, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_2_6, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_2_7, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_2_8, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_2_9, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_1_2, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_1_3, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_1_4, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_1_5, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_1_6, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_1_7, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_1_8, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_1_9, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_0_2, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_0_3, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_0_4, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_0_5, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_0_6, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_0_7, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_0_8, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_vc_sel_0_9, // @[SwitchAllocator.scala:18:14]
input io_in_3_bits_tail, // @[SwitchAllocator.scala:18:14]
output io_in_4_ready, // @[SwitchAllocator.scala:18:14]
input io_in_4_valid, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_2_2, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_2_3, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_2_4, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_2_5, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_2_6, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_2_7, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_2_8, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_2_9, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_1_2, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_1_3, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_1_4, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_1_5, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_1_6, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_1_7, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_1_8, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_1_9, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_0_2, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_0_3, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_0_4, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_0_5, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_0_6, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_0_7, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_0_8, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_vc_sel_0_9, // @[SwitchAllocator.scala:18:14]
input io_in_4_bits_tail, // @[SwitchAllocator.scala:18:14]
output io_in_5_ready, // @[SwitchAllocator.scala:18:14]
input io_in_5_valid, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_2_2, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_2_3, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_2_4, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_2_5, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_2_6, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_2_7, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_2_8, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_2_9, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_1_2, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_1_3, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_1_4, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_1_5, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_1_6, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_1_7, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_1_8, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_1_9, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_0_2, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_0_3, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_0_4, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_0_5, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_0_6, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_0_7, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_0_8, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_vc_sel_0_9, // @[SwitchAllocator.scala:18:14]
input io_in_5_bits_tail, // @[SwitchAllocator.scala:18:14]
output io_in_6_ready, // @[SwitchAllocator.scala:18:14]
input io_in_6_valid, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_2_2, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_2_3, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_2_4, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_2_5, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_2_6, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_2_7, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_2_8, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_2_9, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_1_2, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_1_3, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_1_4, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_1_5, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_1_6, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_1_7, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_1_8, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_1_9, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_0_2, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_0_3, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_0_4, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_0_5, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_0_6, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_0_7, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_0_8, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_vc_sel_0_9, // @[SwitchAllocator.scala:18:14]
input io_in_6_bits_tail, // @[SwitchAllocator.scala:18:14]
output io_in_7_ready, // @[SwitchAllocator.scala:18:14]
input io_in_7_valid, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_2_2, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_2_3, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_2_4, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_2_5, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_2_6, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_2_7, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_2_8, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_2_9, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_1_2, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_1_3, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_1_4, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_1_5, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_1_6, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_1_7, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_1_8, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_1_9, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_0_2, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_0_3, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_0_4, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_0_5, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_0_6, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_0_7, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_0_8, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_vc_sel_0_9, // @[SwitchAllocator.scala:18:14]
input io_in_7_bits_tail, // @[SwitchAllocator.scala:18:14]
output io_in_8_ready, // @[SwitchAllocator.scala:18:14]
input io_in_8_valid, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_2_2, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_2_3, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_2_4, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_2_5, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_2_6, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_2_7, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_2_8, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_2_9, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_1_2, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_1_3, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_1_4, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_1_5, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_1_6, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_1_7, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_1_8, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_1_9, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_0_2, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_0_3, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_0_4, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_0_5, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_0_6, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_0_7, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_0_8, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_vc_sel_0_9, // @[SwitchAllocator.scala:18:14]
input io_in_8_bits_tail, // @[SwitchAllocator.scala:18:14]
output io_in_9_ready, // @[SwitchAllocator.scala:18:14]
input io_in_9_valid, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_2_2, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_2_3, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_2_4, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_2_5, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_2_6, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_2_7, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_2_8, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_2_9, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_1_2, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_1_3, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_1_4, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_1_5, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_1_6, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_1_7, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_1_8, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_1_9, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_0_2, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_0_3, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_0_4, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_0_5, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_0_6, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_0_7, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_0_8, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_vc_sel_0_9, // @[SwitchAllocator.scala:18:14]
input io_in_9_bits_tail, // @[SwitchAllocator.scala:18:14]
input io_out_0_ready, // @[SwitchAllocator.scala:18:14]
output io_out_0_valid, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_2_2, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_2_3, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_2_4, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_2_5, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_2_6, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_2_7, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_2_8, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_2_9, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_1_2, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_1_3, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_1_4, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_1_5, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_1_6, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_1_7, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_1_8, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_1_9, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_0_2, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_0_3, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_0_4, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_0_5, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_0_6, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_0_7, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_0_8, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_vc_sel_0_9, // @[SwitchAllocator.scala:18:14]
output io_out_0_bits_tail, // @[SwitchAllocator.scala:18:14]
output [9:0] io_chosen_oh_0 // @[SwitchAllocator.scala:18:14]
);
reg [9:0] lock_0; // @[SwitchAllocator.scala:24:38]
wire [9:0] unassigned = {io_in_9_valid, io_in_8_valid, io_in_7_valid, io_in_6_valid, io_in_5_valid, io_in_4_valid, io_in_3_valid, io_in_2_valid, 2'h0} & ~lock_0; // @[SwitchAllocator.scala:24:38, :25:{23,52,54}, :39:21, :41:24]
reg [9:0] mask; // @[SwitchAllocator.scala:27:21]
wire [9:0] _sel_T_1 = unassigned & ~mask; // @[SwitchAllocator.scala:25:52, :27:21, :30:{58,60}]
wire [19:0] sel = _sel_T_1[0] ? 20'h1 : _sel_T_1[1] ? 20'h2 : _sel_T_1[2] ? 20'h4 : _sel_T_1[3] ? 20'h8 : _sel_T_1[4] ? 20'h10 : _sel_T_1[5] ? 20'h20 : _sel_T_1[6] ? 20'h40 : _sel_T_1[7] ? 20'h80 : _sel_T_1[8] ? 20'h100 : _sel_T_1[9] ? 20'h200 : unassigned[0] ? 20'h400 : unassigned[1] ? 20'h800 : unassigned[2] ? 20'h1000 : unassigned[3] ? 20'h2000 : unassigned[4] ? 20'h4000 : unassigned[5] ? 20'h8000 : unassigned[6] ? 20'h10000 : unassigned[7] ? 20'h20000 : unassigned[8] ? 20'h40000 : {unassigned[9], 19'h0}; // @[OneHot.scala:85:71]
wire [7:0] _GEN = {io_in_9_valid, io_in_8_valid, io_in_7_valid, io_in_6_valid, io_in_5_valid, io_in_4_valid, io_in_3_valid, io_in_2_valid}; // @[SwitchAllocator.scala:41:24]
wire [9:0] chosen = (|(_GEN & lock_0[9:2])) ? lock_0 : sel[9:0] | sel[19:10]; // @[Mux.scala:50:70]
wire [7:0] _io_out_0_valid_T = _GEN & chosen[9:2]; // @[SwitchAllocator.scala:41:24, :42:21, :44:35]
wire _GEN_0 = io_out_0_ready & (|_io_out_0_valid_T); // @[Decoupled.scala:51:35]
wire [8:0] _GEN_1 = chosen[8:0] | chosen[9:1]; // @[SwitchAllocator.scala:42:21, :58:{55,71}]
wire [7:0] _GEN_2 = _GEN_1[7:0] | chosen[9:2]; // @[SwitchAllocator.scala:42:21, :58:{55,71}]
wire [6:0] _GEN_3 = _GEN_2[6:0] | chosen[9:3]; // @[SwitchAllocator.scala:42:21, :58:{55,71}]
wire [5:0] _GEN_4 = _GEN_3[5:0] | chosen[9:4]; // @[SwitchAllocator.scala:42:21, :58:{55,71}]
wire [4:0] _GEN_5 = _GEN_4[4:0] | chosen[9:5]; // @[SwitchAllocator.scala:42:21, :58:{55,71}]
wire [3:0] _GEN_6 = _GEN_5[3:0] | chosen[9:6]; // @[SwitchAllocator.scala:42:21, :58:{55,71}]
wire [2:0] _GEN_7 = _GEN_6[2:0] | chosen[9:7]; // @[SwitchAllocator.scala:42:21, :58:{55,71}]
wire [1:0] _GEN_8 = _GEN_7[1:0] | chosen[9:8]; // @[SwitchAllocator.scala:42:21, :58:{55,71}]
always @(posedge clock) begin // @[SwitchAllocator.scala:17:7]
if (reset) begin // @[SwitchAllocator.scala:17:7]
lock_0 <= 10'h0; // @[SwitchAllocator.scala:24:38]
mask <= 10'h0; // @[SwitchAllocator.scala:27:21]
end
else begin // @[SwitchAllocator.scala:17:7]
if (_GEN_0) // @[Decoupled.scala:51:35]
lock_0 <= chosen & {~io_in_9_bits_tail, ~io_in_8_bits_tail, ~io_in_7_bits_tail, ~io_in_6_bits_tail, ~io_in_5_bits_tail, ~io_in_4_bits_tail, ~io_in_3_bits_tail, ~io_in_2_bits_tail, 2'h3}; // @[SwitchAllocator.scala:24:38, :39:21, :42:21, :53:{25,27}]
mask <= _GEN_0 ? {chosen[9], _GEN_1[8], _GEN_2[7], _GEN_3[6], _GEN_4[5], _GEN_5[4], _GEN_6[3], _GEN_7[2], _GEN_8[1], _GEN_8[0] | chosen[9]} : (&mask) ? 10'h0 : {mask[8:0], 1'h1}; // @[Decoupled.scala:51:35]
end
always @(posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File PE.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle {
val dataflow = UInt(1.W) // TODO make this an Enum
val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)?
val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats
}
class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module {
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(inputType)
val in_c = Input(cType)
val out_d = Output(dType)
})
io.out_d := io.in_c.mac(io.in_a, io.in_b)
}
// TODO update documentation
/**
* A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh.
* @param width Data width of operands
*/
class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int)
(implicit ev: Arithmetic[T]) extends Module { // Debugging variables
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(outputType)
val in_d = Input(outputType)
val out_a = Output(inputType)
val out_b = Output(outputType)
val out_c = Output(outputType)
val in_control = Input(new PEControl(accType))
val out_control = Output(new PEControl(accType))
val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W))
val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W))
val in_last = Input(Bool())
val out_last = Output(Bool())
val in_valid = Input(Bool())
val out_valid = Output(Bool())
val bad_dataflow = Output(Bool())
})
val cType = if (df == Dataflow.WS) inputType else accType
// When creating PEs that support multiple dataflows, the
// elaboration/synthesis tools often fail to consolidate and de-duplicate
// MAC units. To force mac circuitry to be re-used, we create a "mac_unit"
// module here which just performs a single MAC operation
val mac_unit = Module(new MacUnit(inputType,
if (df == Dataflow.WS) outputType else accType, outputType))
val a = io.in_a
val b = io.in_b
val d = io.in_d
val c1 = Reg(cType)
val c2 = Reg(cType)
val dataflow = io.in_control.dataflow
val prop = io.in_control.propagate
val shift = io.in_control.shift
val id = io.in_id
val last = io.in_last
val valid = io.in_valid
io.out_a := a
io.out_control.dataflow := dataflow
io.out_control.propagate := prop
io.out_control.shift := shift
io.out_id := id
io.out_last := last
io.out_valid := valid
mac_unit.io.in_a := a
val last_s = RegEnable(prop, valid)
val flip = last_s =/= prop
val shift_offset = Mux(flip, shift, 0.U)
// Which dataflow are we using?
val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W)
val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W)
// Is c1 being computed on, or propagated forward (in the output-stationary dataflow)?
val COMPUTE = 0.U(1.W)
val PROPAGATE = 1.U(1.W)
io.bad_dataflow := false.B
when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
c2 := mac_unit.io.out_d
c1 := d.withWidthOf(cType)
}.otherwise {
io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c1
c1 := mac_unit.io.out_d
c2 := d.withWidthOf(cType)
}
}.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := c1
mac_unit.io.in_b := c2.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c1 := d
}.otherwise {
io.out_c := c2
mac_unit.io.in_b := c1.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c2 := d
}
}.otherwise {
io.bad_dataflow := true.B
//assert(false.B, "unknown dataflow")
io.out_c := DontCare
io.out_b := DontCare
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
}
when (!valid) {
c1 := c1
c2 := c2
mac_unit.io.in_b := DontCare
mac_unit.io.in_c := DontCare
}
}
File Arithmetic.scala:
// A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own:
// implicit MyTypeArithmetic extends Arithmetic[MyType] { ... }
package gemmini
import chisel3._
import chisel3.util._
import hardfloat._
// Bundles that represent the raw bits of custom datatypes
case class Float(expWidth: Int, sigWidth: Int) extends Bundle {
val bits = UInt((expWidth + sigWidth).W)
val bias: Int = (1 << (expWidth-1)) - 1
}
case class DummySInt(w: Int) extends Bundle {
val bits = UInt(w.W)
def dontCare: DummySInt = {
val o = Wire(new DummySInt(w))
o.bits := 0.U
o
}
}
// The Arithmetic typeclass which implements various arithmetic operations on custom datatypes
abstract class Arithmetic[T <: Data] {
implicit def cast(t: T): ArithmeticOps[T]
}
abstract class ArithmeticOps[T <: Data](self: T) {
def *(t: T): T
def mac(m1: T, m2: T): T // Returns (m1 * m2 + self)
def +(t: T): T
def -(t: T): T
def >>(u: UInt): T // This is a rounding shift! Rounds away from 0
def >(t: T): Bool
def identity: T
def withWidthOf(t: T): T
def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates
def relu: T
def zero: T
def minimum: T
// Optional parameters, which only need to be defined if you want to enable various optimizations for transformers
def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None
def mult_with_reciprocal[U <: Data](reciprocal: U) = self
}
object Arithmetic {
implicit object UIntArithmetic extends Arithmetic[UInt] {
override implicit def cast(self: UInt) = new ArithmeticOps(self) {
override def *(t: UInt) = self * t
override def mac(m1: UInt, m2: UInt) = m1 * m2 + self
override def +(t: UInt) = self + t
override def -(t: UInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = point_five & (zeros | ones_digit)
(self >> u).asUInt + r
}
override def >(t: UInt): Bool = self > t
override def withWidthOf(t: UInt) = self.asTypeOf(t)
override def clippedToWidthOf(t: UInt) = {
val sat = ((1 << (t.getWidth-1))-1).U
Mux(self > sat, sat, self)(t.getWidth-1, 0)
}
override def relu: UInt = self
override def zero: UInt = 0.U
override def identity: UInt = 1.U
override def minimum: UInt = 0.U
}
}
implicit object SIntArithmetic extends Arithmetic[SInt] {
override implicit def cast(self: SInt) = new ArithmeticOps(self) {
override def *(t: SInt) = self * t
override def mac(m1: SInt, m2: SInt) = m1 * m2 + self
override def +(t: SInt) = self + t
override def -(t: SInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = (point_five & (zeros | ones_digit)).asBool
(self >> u).asSInt + Mux(r, 1.S, 0.S)
}
override def >(t: SInt): Bool = self > t
override def withWidthOf(t: SInt) = {
if (self.getWidth >= t.getWidth)
self(t.getWidth-1, 0).asSInt
else {
val sign_bits = t.getWidth - self.getWidth
val sign = self(self.getWidth-1)
Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t)
}
}
override def clippedToWidthOf(t: SInt): SInt = {
val maxsat = ((1 << (t.getWidth-1))-1).S
val minsat = (-(1 << (t.getWidth-1))).S
MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt
}
override def relu: SInt = Mux(self >= 0.S, self, 0.S)
override def zero: SInt = 0.S
override def identity: SInt = 1.S
override def minimum: SInt = (-(1 << (self.getWidth-1))).S
override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(denom_t.cloneType))
val output = Wire(Decoupled(self.cloneType))
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def sin_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def uin_to_float(x: UInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := x
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = sin_to_float(self)
val denom_rec = uin_to_float(input.bits)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := self_rec
divider.io.b := denom_rec
divider.io.roundingMode := consts.round_minMag
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := float_to_in(divider.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(self.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
// Instantiate the hardloat sqrt
val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0))
input.ready := sqrter.io.inReady
sqrter.io.inValid := input.valid
sqrter.io.sqrtOp := true.B
sqrter.io.a := self_rec
sqrter.io.b := DontCare
sqrter.io.roundingMode := consts.round_minMag
sqrter.io.detectTininess := consts.tininess_afterRounding
output.valid := sqrter.io.outValid_sqrt
output.bits := float_to_in(sqrter.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match {
case Float(expWidth, sigWidth) =>
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(u.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
val self_rec = in_to_float(self)
val one_rec = in_to_float(1.S)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := one_rec
divider.io.b := self_rec
divider.io.roundingMode := consts.round_near_even
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u)
assert(!output.valid || output.ready)
Some((input, output))
case _ => None
}
override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match {
case recip @ Float(expWidth, sigWidth) =>
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits)
// Instantiate the hardloat divider
val muladder = Module(new MulRecFN(expWidth, sigWidth))
muladder.io.roundingMode := consts.round_near_even
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := reciprocal_rec
float_to_in(muladder.io.out)
case _ => self
}
}
}
implicit object FloatArithmetic extends Arithmetic[Float] {
// TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array
override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) {
override def *(t: Float): Float = {
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := t_rec_resized
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def mac(m1: Float, m2: Float): Float = {
// Recode all operands
val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits)
val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize m1 to self's width
val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth))
m1_resizer.io.in := m1_rec
m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m1_resizer.io.detectTininess := consts.tininess_afterRounding
val m1_rec_resized = m1_resizer.io.out
// Resize m2 to self's width
val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth))
m2_resizer.io.in := m2_rec
m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m2_resizer.io.detectTininess := consts.tininess_afterRounding
val m2_rec_resized = m2_resizer.io.out
// Perform multiply-add
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := m1_rec_resized
muladder.io.b := m2_rec_resized
muladder.io.c := self_rec
// Convert result to standard format // TODO remove these intermediate recodings
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def +(t: Float): Float = {
require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Generate 1 as a float
val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := 1.U
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
val one_rec = in_to_rec_fn.io.out
// Resize t
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
// Perform addition
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := t_rec_resized
muladder.io.b := one_rec
muladder.io.c := self_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def -(t: Float): Float = {
val t_sgn = t.bits(t.getWidth-1)
val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t)
self + neg_t
}
override def >>(u: UInt): Float = {
// Recode self
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Get 2^(-u) as a recoded float
val shift_exp = Wire(UInt(self.expWidth.W))
shift_exp := self.bias.U - u
val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W))
val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn)
assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported")
// Multiply self and 2^(-u)
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := shift_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def >(t: Float): Bool = {
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize t to self's width
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth))
comparator.io.a := self_rec
comparator.io.b := t_rec_resized
comparator.io.signaling := false.B
comparator.io.gt
}
override def withWidthOf(t: Float): Float = {
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def clippedToWidthOf(t: Float): Float = {
// TODO check for overflow. Right now, we just assume that overflow doesn't happen
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def relu: Float = {
val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits)
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits)
result
}
override def zero: Float = 0.U.asTypeOf(self)
override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
}
}
implicit object DummySIntArithmetic extends Arithmetic[DummySInt] {
override implicit def cast(self: DummySInt) = new ArithmeticOps(self) {
override def *(t: DummySInt) = self.dontCare
override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare
override def +(t: DummySInt) = self.dontCare
override def -(t: DummySInt) = self.dontCare
override def >>(t: UInt) = self.dontCare
override def >(t: DummySInt): Bool = false.B
override def identity = self.dontCare
override def withWidthOf(t: DummySInt) = self.dontCare
override def clippedToWidthOf(t: DummySInt) = self.dontCare
override def relu = self.dontCare
override def zero = self.dontCare
override def minimum: DummySInt = self.dontCare
}
}
}
| module PE_383( // @[PE.scala:31:7]
input clock, // @[PE.scala:31:7]
input reset, // @[PE.scala:31:7]
input [7:0] io_in_a, // @[PE.scala:35:14]
input [19:0] io_in_b, // @[PE.scala:35:14]
input [19:0] io_in_d, // @[PE.scala:35:14]
output [7:0] io_out_a, // @[PE.scala:35:14]
output [19:0] io_out_b, // @[PE.scala:35:14]
output [19:0] io_out_c, // @[PE.scala:35:14]
input io_in_control_dataflow, // @[PE.scala:35:14]
input io_in_control_propagate, // @[PE.scala:35:14]
input [4:0] io_in_control_shift, // @[PE.scala:35:14]
output io_out_control_dataflow, // @[PE.scala:35:14]
output io_out_control_propagate, // @[PE.scala:35:14]
output [4:0] io_out_control_shift, // @[PE.scala:35:14]
input [2:0] io_in_id, // @[PE.scala:35:14]
output [2:0] io_out_id, // @[PE.scala:35:14]
input io_in_last, // @[PE.scala:35:14]
output io_out_last, // @[PE.scala:35:14]
input io_in_valid, // @[PE.scala:35:14]
output io_out_valid // @[PE.scala:35:14]
);
wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7]
wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7]
wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7]
wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7]
wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7]
wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7]
wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7]
wire io_in_last_0 = io_in_last; // @[PE.scala:31:7]
wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7]
wire io_bad_dataflow = 1'h0; // @[PE.scala:31:7]
wire _io_out_c_T_5 = 1'h0; // @[Arithmetic.scala:125:33]
wire _io_out_c_T_6 = 1'h0; // @[Arithmetic.scala:125:60]
wire _io_out_c_T_16 = 1'h0; // @[Arithmetic.scala:125:33]
wire _io_out_c_T_17 = 1'h0; // @[Arithmetic.scala:125:60]
wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7]
wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37]
wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37]
wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35]
wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7]
wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7]
wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7]
wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7]
wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7]
wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7]
wire [19:0] io_out_b_0; // @[PE.scala:31:7]
wire [19:0] io_out_c_0; // @[PE.scala:31:7]
reg [7:0] c1; // @[PE.scala:70:15]
wire [7:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15]
wire [7:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38]
reg [7:0] c2; // @[PE.scala:71:15]
wire [7:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15]
wire [7:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38]
reg last_s; // @[PE.scala:89:25]
wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21]
wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25]
wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25]
wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32]
wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32]
wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25]
wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53]
wire [7:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15]
wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}]
wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25]
wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27]
wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27]
wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_7 = {24'h0, _io_out_c_zeros_T_6[7:0] & _io_out_c_zeros_T_1}; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}]
wire [7:0] _GEN_2 = {3'h0, shift_offset}; // @[PE.scala:91:25]
wire [7:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15]
wire [7:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30]
wire [7:0] _io_out_c_T; // @[Arithmetic.scala:107:15]
assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33]
wire [8:0] _io_out_c_T_2 = {_io_out_c_T[7], _io_out_c_T} + {{7{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}]
wire [7:0] _io_out_c_T_3 = _io_out_c_T_2[7:0]; // @[Arithmetic.scala:107:28]
wire [7:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28]
wire [19:0] _io_out_c_T_7 = {{12{_io_out_c_T_4[7]}}, _io_out_c_T_4}; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_8 = _io_out_c_T_7; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_9 = _io_out_c_T_8; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37]
wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37]
wire [7:0] _c1_T = io_in_d_0[7:0]; // @[PE.scala:31:7]
wire [7:0] _c2_T = io_in_d_0[7:0]; // @[PE.scala:31:7]
wire [7:0] _c1_T_1 = _c1_T; // @[Arithmetic.scala:114:{15,33}]
wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53]
wire [7:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15]
wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}]
wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_16 = {24'h0, _io_out_c_zeros_T_15[7:0] & _io_out_c_zeros_T_10}; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}]
wire [7:0] _GEN_4 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15]
wire [7:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T_1 = _GEN_4; // @[Arithmetic.scala:103:30]
wire [7:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15]
assign _io_out_c_T_11 = _GEN_4; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33]
wire [8:0] _io_out_c_T_13 = {_io_out_c_T_11[7], _io_out_c_T_11} + {{7{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}]
wire [7:0] _io_out_c_T_14 = _io_out_c_T_13[7:0]; // @[Arithmetic.scala:107:28]
wire [7:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28]
wire [19:0] _io_out_c_T_18 = {{12{_io_out_c_T_15[7]}}, _io_out_c_T_15}; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_19 = _io_out_c_T_18; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_20 = _io_out_c_T_19; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37]
wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37]
wire [7:0] _c2_T_1 = _c2_T; // @[Arithmetic.scala:114:{15,33}]
wire [7:0] _mac_unit_io_in_b_T_5; // @[PE.scala:121:38]
assign _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38]
wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5; // @[PE.scala:121:38]
assign io_out_c_0 = io_in_control_propagate_0 ? {{12{c1[7]}}, c1} : {{12{c2[7]}}, c2}; // @[PE.scala:31:7, :70:15, :71:15, :119:30, :120:16, :126:16]
wire [7:0] _mac_unit_io_in_b_T_7; // @[PE.scala:127:38]
assign _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38]
wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7; // @[PE.scala:127:38]
wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35]
wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35]
always @(posedge clock) begin // @[PE.scala:31:7]
if (io_in_valid_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :102:95, :141:17, :142:8]
c1 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :70:15]
if (~(~io_in_valid_0 | io_in_control_propagate_0)) // @[PE.scala:31:7, :71:15, :102:95, :119:30, :130:10, :141:{9,17}, :143:8]
c2 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :71:15]
if (io_in_valid_0) // @[PE.scala:31:7]
last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25]
always @(posedge)
MacUnit_127 mac_unit ( // @[PE.scala:64:24]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0), // @[PE.scala:31:7]
.io_in_b (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3), // @[PE.scala:31:7, :119:30, :121:{24,38}, :127:{24,38}]
.io_in_c (io_in_b_0), // @[PE.scala:31:7]
.io_out_d (io_out_b_0)
); // @[PE.scala:64:24]
assign io_out_a = io_out_a_0; // @[PE.scala:31:7]
assign io_out_b = io_out_b_0; // @[PE.scala:31:7]
assign io_out_c = io_out_c_0; // @[PE.scala:31:7]
assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7]
assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7]
assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7]
assign io_out_id = io_out_id_0; // @[PE.scala:31:7]
assign io_out_last = io_out_last_0; // @[PE.scala:31:7]
assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Tile.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
import Util._
/**
* A Tile is a purely combinational 2D array of passThrough PEs.
* a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs
* @param width The data width of each PE in bits
* @param rows Number of PEs on each row
* @param columns Number of PEs on each column
*/
class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module {
val io = IO(new Bundle {
val in_a = Input(Vec(rows, inputType))
val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it
val in_d = Input(Vec(columns, outputType))
val in_control = Input(Vec(columns, new PEControl(accType)))
val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val in_last = Input(Vec(columns, Bool()))
val out_a = Output(Vec(rows, inputType))
val out_c = Output(Vec(columns, outputType))
val out_b = Output(Vec(columns, outputType))
val out_control = Output(Vec(columns, new PEControl(accType)))
val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val out_last = Output(Vec(columns, Bool()))
val in_valid = Input(Vec(columns, Bool()))
val out_valid = Output(Vec(columns, Bool()))
val bad_dataflow = Output(Bool())
})
import ev._
val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls)))
val tileT = tile.transpose
// TODO: abstract hori/vert broadcast, all these connections look the same
// Broadcast 'a' horizontally across the Tile
for (r <- 0 until rows) {
tile(r).foldLeft(io.in_a(r)) {
case (in_a, pe) =>
pe.io.in_a := in_a
pe.io.out_a
}
}
// Broadcast 'b' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_b(c)) {
case (in_b, pe) =>
pe.io.in_b := (if (tree_reduction) in_b.zero else in_b)
pe.io.out_b
}
}
// Broadcast 'd' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_d(c)) {
case (in_d, pe) =>
pe.io.in_d := in_d
pe.io.out_c
}
}
// Broadcast 'control' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_control(c)) {
case (in_ctrl, pe) =>
pe.io.in_control := in_ctrl
pe.io.out_control
}
}
// Broadcast 'garbage' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_valid(c)) {
case (v, pe) =>
pe.io.in_valid := v
pe.io.out_valid
}
}
// Broadcast 'id' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_id(c)) {
case (id, pe) =>
pe.io.in_id := id
pe.io.out_id
}
}
// Broadcast 'last' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_last(c)) {
case (last, pe) =>
pe.io.in_last := last
pe.io.out_last
}
}
// Drive the Tile's bottom IO
for (c <- 0 until columns) {
io.out_c(c) := tile(rows-1)(c).io.out_c
io.out_control(c) := tile(rows-1)(c).io.out_control
io.out_id(c) := tile(rows-1)(c).io.out_id
io.out_last(c) := tile(rows-1)(c).io.out_last
io.out_valid(c) := tile(rows-1)(c).io.out_valid
io.out_b(c) := {
if (tree_reduction) {
val prods = tileT(c).map(_.io.out_b)
accumulateTree(prods :+ io.in_b(c))
} else {
tile(rows - 1)(c).io.out_b
}
}
}
io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_)
// Drive the Tile's right IO
for (r <- 0 until rows) {
io.out_a(r) := tile(r)(columns-1).io.out_a
}
}
| module Tile_94( // @[Tile.scala:16:7]
input clock, // @[Tile.scala:16:7]
input reset, // @[Tile.scala:16:7]
input [7:0] io_in_a_0, // @[Tile.scala:17:14]
input [19:0] io_in_b_0, // @[Tile.scala:17:14]
input [19:0] io_in_d_0, // @[Tile.scala:17:14]
input io_in_control_0_dataflow, // @[Tile.scala:17:14]
input io_in_control_0_propagate, // @[Tile.scala:17:14]
input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14]
input [2:0] io_in_id_0, // @[Tile.scala:17:14]
input io_in_last_0, // @[Tile.scala:17:14]
output [7:0] io_out_a_0, // @[Tile.scala:17:14]
output [19:0] io_out_c_0, // @[Tile.scala:17:14]
output [19:0] io_out_b_0, // @[Tile.scala:17:14]
output io_out_control_0_dataflow, // @[Tile.scala:17:14]
output io_out_control_0_propagate, // @[Tile.scala:17:14]
output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14]
output [2:0] io_out_id_0, // @[Tile.scala:17:14]
output io_out_last_0, // @[Tile.scala:17:14]
input io_in_valid_0, // @[Tile.scala:17:14]
output io_out_valid_0, // @[Tile.scala:17:14]
output io_bad_dataflow // @[Tile.scala:17:14]
);
wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7]
wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7]
wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7]
wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7]
wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7]
wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7]
wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7]
wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7]
wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7]
wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7]
wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
wire io_out_control_0_propagate_0; // @[Tile.scala:16:7]
wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7]
wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7]
wire io_out_last_0_0; // @[Tile.scala:16:7]
wire io_out_valid_0_0; // @[Tile.scala:16:7]
wire io_bad_dataflow_0; // @[Tile.scala:16:7]
PE_350 tile_0_0 ( // @[Tile.scala:42:44]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0_0), // @[Tile.scala:16:7]
.io_in_b (io_in_b_0_0), // @[Tile.scala:16:7]
.io_in_d (io_in_d_0_0), // @[Tile.scala:16:7]
.io_out_a (io_out_a_0_0),
.io_out_b (io_out_b_0_0),
.io_out_c (io_out_c_0_0),
.io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7]
.io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7]
.io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7]
.io_out_control_dataflow (io_out_control_0_dataflow_0),
.io_out_control_propagate (io_out_control_0_propagate_0),
.io_out_control_shift (io_out_control_0_shift_0),
.io_in_id (io_in_id_0_0), // @[Tile.scala:16:7]
.io_out_id (io_out_id_0_0),
.io_in_last (io_in_last_0_0), // @[Tile.scala:16:7]
.io_out_last (io_out_last_0_0),
.io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7]
.io_out_valid (io_out_valid_0_0),
.io_bad_dataflow (io_bad_dataflow_0)
); // @[Tile.scala:42:44]
assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7]
assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7]
assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7]
assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7]
assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7]
assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7]
assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7]
assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7]
assign io_bad_dataflow = io_bad_dataflow_0; // @[Tile.scala:16:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File BankBinder.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes}
case class BankBinderNode(mask: BigInt)(implicit valName: ValName) extends TLCustomNode
{
private val bit = mask & -mask
val maxXfer = TransferSizes(1, if (bit == 0 || bit > 4096) 4096 else bit.toInt)
val ids = AddressSet.enumerateMask(mask)
def resolveStar(iKnown: Int, oKnown: Int, iStars: Int, oStars: Int): (Int, Int) = {
val ports = ids.size
val oStar = if (oStars == 0) 0 else (ports - oKnown) / oStars
val iStar = if (iStars == 0) 0 else (ports - iKnown) / iStars
require (ports == iKnown + iStar*iStars, s"${name} must have ${ports} inputs, but has ${iKnown} + ${iStar}*${iStars} (at ${lazyModule.line})")
require (ports == oKnown + oStar*oStars, s"${name} must have ${ports} outputs, but has ${oKnown} + ${oStar}*${oStars} (at ${lazyModule.line})")
(iStar, oStar)
}
def mapParamsD(n: Int, p: Seq[TLMasterPortParameters]): Seq[TLMasterPortParameters] =
(p zip ids) map { case (cp, id) => cp.v1copy(clients = cp.clients.map { c => c.v1copy(
visibility = c.visibility.flatMap { a => a.intersect(AddressSet(id, ~mask))},
supportsProbe = c.supports.probe intersect maxXfer,
supportsArithmetic = c.supports.arithmetic intersect maxXfer,
supportsLogical = c.supports.logical intersect maxXfer,
supportsGet = c.supports.get intersect maxXfer,
supportsPutFull = c.supports.putFull intersect maxXfer,
supportsPutPartial = c.supports.putPartial intersect maxXfer,
supportsHint = c.supports.hint intersect maxXfer)})}
def mapParamsU(n: Int, p: Seq[TLSlavePortParameters]): Seq[TLSlavePortParameters] =
(p zip ids) map { case (mp, id) => mp.v1copy(managers = mp.managers.flatMap { m =>
val addresses = m.address.flatMap(a => a.intersect(AddressSet(id, ~mask)))
if (addresses.nonEmpty)
Some(m.v1copy(
address = addresses,
supportsAcquireT = m.supportsAcquireT intersect maxXfer,
supportsAcquireB = m.supportsAcquireB intersect maxXfer,
supportsArithmetic = m.supportsArithmetic intersect maxXfer,
supportsLogical = m.supportsLogical intersect maxXfer,
supportsGet = m.supportsGet intersect maxXfer,
supportsPutFull = m.supportsPutFull intersect maxXfer,
supportsPutPartial = m.supportsPutPartial intersect maxXfer,
supportsHint = m.supportsHint intersect maxXfer))
else None
})}
}
/* A BankBinder is used to divide contiguous memory regions into banks, suitable for a cache */
class BankBinder(mask: BigInt)(implicit p: Parameters) extends LazyModule
{
val node = BankBinderNode(mask)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out <> in
}
}
}
object BankBinder
{
def apply(mask: BigInt)(implicit p: Parameters): TLNode = {
val binder = LazyModule(new BankBinder(mask))
binder.node
}
def apply(nBanks: Int, granularity: Int)(implicit p: Parameters): TLNode = {
if (nBanks > 0) apply(granularity * (nBanks-1))
else TLTempNode()
}
}
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Filter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet, RegionType, TransferSizes}
class TLFilter(
mfilter: TLFilter.ManagerFilter = TLFilter.mIdentity,
cfilter: TLFilter.ClientFilter = TLFilter.cIdentity
)(implicit p: Parameters) extends LazyModule
{
val node = new TLAdapterNode(
clientFn = { cp => cp.v1copy(clients = cp.clients.flatMap { c =>
val out = cfilter(c)
out.map { o => // Confirm the filter only REMOVES capability
require (c.sourceId.contains(o.sourceId))
require (c.supports.probe.contains(o.supports.probe))
require (c.supports.arithmetic.contains(o.supports.arithmetic))
require (c.supports.logical.contains(o.supports.logical))
require (c.supports.get.contains(o.supports.get))
require (c.supports.putFull.contains(o.supports.putFull))
require (c.supports.putPartial.contains(o.supports.putPartial))
require (c.supports.hint.contains(o.supports.hint))
require (!c.requestFifo || o.requestFifo)
}
out
})},
managerFn = { mp =>
val managers = mp.managers.flatMap { m =>
val out = mfilter(m)
out.map { o => // Confirm the filter only REMOVES capability
o.address.foreach { a => require (m.address.map(_.contains(a)).reduce(_||_)) }
require (o.regionType <= m.regionType)
// we allow executable to be changed both ways
require (m.supportsAcquireT.contains(o.supportsAcquireT))
require (m.supportsAcquireB.contains(o.supportsAcquireB))
require (m.supportsArithmetic.contains(o.supportsArithmetic))
require (m.supportsLogical.contains(o.supportsLogical))
require (m.supportsGet.contains(o.supportsGet))
require (m.supportsPutFull.contains(o.supportsPutFull))
require (m.supportsPutPartial.contains(o.supportsPutPartial))
require (m.supportsHint.contains(o.supportsHint))
require (!o.fifoId.isDefined || m.fifoId == o.fifoId)
}
out
}
mp.v1copy(managers = managers,
endSinkId = if (managers.exists(_.supportsAcquireB)) mp.endSinkId else 0)
}
) {
override def circuitIdentity = true
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out <> in
// In case the inner interface removes Acquire, tie-off the channels
if (!edgeIn.manager.anySupportAcquireB) {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLFilter
{
type ManagerFilter = TLSlaveParameters => Option[TLSlaveParameters]
type ClientFilter = TLMasterParameters => Option[TLMasterParameters]
// preserve manager visibility
def mIdentity: ManagerFilter = { m => Some(m) }
// preserve client visibility
def cIdentity: ClientFilter = { c => Some(c) }
// make only the intersected address sets visible
def mSelectIntersect(select: AddressSet): ManagerFilter = { m =>
val filtered = m.address.map(_.intersect(select)).flatten
val alignment = select.alignment /* alignment 0 means 'select' selected everything */
transferSizeHelper(m, filtered, alignment)
}
// make everything except the intersected address sets visible
def mSubtract(excepts: Seq[AddressSet]): ManagerFilter = { m =>
val filtered = excepts.foldLeft(m.address) { (a,e) => a.flatMap(_.subtract(e)) }
val alignment: BigInt = if (filtered.isEmpty) 0 else filtered.map(_.alignment).min
transferSizeHelper(m, filtered, alignment)
}
def mSubtract(except: AddressSet): ManagerFilter = { m =>
mSubtract(Seq(except))(m)
}
// adjust supported transfer sizes based on filtered intersection
private def transferSizeHelper(m: TLSlaveParameters, filtered: Seq[AddressSet], alignment: BigInt): Option[TLSlaveParameters] = {
val maxTransfer = 1 << 30
val capTransfer = if (alignment == 0 || alignment > maxTransfer) maxTransfer else alignment.toInt
val cap = TransferSizes(1, capTransfer)
if (filtered.isEmpty) { None } else {
Some(m.v1copy(
address = filtered,
supportsAcquireT = m.supportsAcquireT .intersect(cap),
supportsAcquireB = m.supportsAcquireB .intersect(cap),
supportsArithmetic = m.supportsArithmetic.intersect(cap),
supportsLogical = m.supportsLogical .intersect(cap),
supportsGet = m.supportsGet .intersect(cap),
supportsPutFull = m.supportsPutFull .intersect(cap),
supportsPutPartial = m.supportsPutPartial.intersect(cap),
supportsHint = m.supportsHint .intersect(cap)))
}
}
// hide any fully contained address sets
def mHideContained(containedBy: AddressSet): ManagerFilter = { m =>
val filtered = m.address.filterNot(containedBy.contains(_))
if (filtered.isEmpty) None else Some(m.v1copy(address = filtered))
}
// hide all cacheable managers
def mHideCacheable: ManagerFilter = { m =>
if (m.supportsAcquireB) None else Some(m)
}
// make visible only cacheable managers
def mSelectCacheable: ManagerFilter = { m =>
if (m.supportsAcquireB) Some(m) else None
}
// cacheable managers cannot be acquired from
def mMaskCacheable: ManagerFilter = { m =>
if (m.supportsAcquireB) {
Some(m.v1copy(
regionType = RegionType.UNCACHED,
supportsAcquireB = TransferSizes.none,
supportsAcquireT = TransferSizes.none,
alwaysGrantsT = false))
} else { Some(m) }
}
// only cacheable managers are visible, but cannot be acquired from
def mSelectAndMaskCacheable: ManagerFilter = { m =>
if (m.supportsAcquireB) {
Some(m.v1copy(
regionType = RegionType.UNCACHED,
supportsAcquireB = TransferSizes.none,
supportsAcquireT = TransferSizes.none,
alwaysGrantsT = false))
} else { None }
}
// hide all caching clients
def cHideCaching: ClientFilter = { c =>
if (c.supports.probe) None else Some(c)
}
// onyl caching clients are visible
def cSelectCaching: ClientFilter = { c =>
if (c.supports.probe) Some(c) else None
}
// removes resources from managers
def mResourceRemover: ManagerFilter = { m =>
Some(m.v2copy(resources=Nil))
}
// default application applies neither type of filter unless overridden
def apply(
mfilter: ManagerFilter = TLFilter.mIdentity,
cfilter: ClientFilter = TLFilter.cIdentity
)(implicit p: Parameters): TLNode =
{
val filter = LazyModule(new TLFilter(mfilter, cfilter))
filter.node
}
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File ClockDomain.scala:
package freechips.rocketchip.prci
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing
{
def clockBundle: ClockBundle
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
childClock := clockBundle.clock
childReset := clockBundle.reset
override def provideImplicitClockToLazyChildren = true
// these are just for backwards compatibility with external devices
// that were manually wiring themselves to the domain's clock/reset input:
val clock = IO(Output(chiselTypeOf(clockBundle.clock)))
val reset = IO(Output(chiselTypeOf(clockBundle.reset)))
clock := clockBundle.clock
reset := clockBundle.reset
}
}
abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing
class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain
{
def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name))
val clockNode = ClockSinkNode(Seq(clockSinkParams))
def clockBundle = clockNode.in.head._1
override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString
}
class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain
{
def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name))
val clockNode = ClockSourceNode(Seq(clockSourceParams))
def clockBundle = clockNode.out.head._1
override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString
}
abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing
File Jbar.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.AddressSet
class TLJbar(policy: TLArbiter.Policy = TLArbiter.roundRobin)(implicit p: Parameters) extends LazyModule
{
val node: TLJunctionNode = new TLJunctionNode(
clientFn = { seq =>
Seq.fill(node.dRatio)(seq(0).v1copy(
minLatency = seq.map(_.minLatency).min,
clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) =>
port.clients map { client => client.v1copy(
sourceId = client.sourceId.shift(range.start)
)}
}
))
},
managerFn = { seq =>
val fifoIdFactory = TLXbar.relabeler()
Seq.fill(node.uRatio)(seq(0).v1copy(
minLatency = seq.map(_.minLatency).min,
endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max,
managers = seq.flatMap { port =>
require (port.beatBytes == seq(0).beatBytes,
s"Xbar data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B")
val fifoIdMapper = fifoIdFactory()
port.managers map { manager => manager.v1copy(
fifoId = manager.fifoId.map(fifoIdMapper(_))
)}
}
))
}) {
override def circuitIdentity = uRatio == 1 && dRatio == 1
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
node.inoutGrouped.foreach { case (in, out) => TLXbar.circuit(policy, in, out) }
}
}
object TLJbar
{
def apply(policy: TLArbiter.Policy = TLArbiter.roundRobin)(implicit p: Parameters) = {
val jbar = LazyModule(new TLJbar(policy))
jbar.node
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLJbarTestImp(nClients: Int, nManagers: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val jbar = LazyModule(new TLJbar)
val fuzzers = Seq.fill(nClients) {
val fuzzer = LazyModule(new TLFuzzer(txns))
jbar.node :*= TLXbar() := TLDelayer(0.1) := fuzzer.node
fuzzer
}
for (n <- 0 until nManagers) {
TLRAM(AddressSet(0x0+0x400*n, 0x3ff)) := TLFragmenter(4, 256) := TLDelayer(0.1) := jbar.node
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzzers.map(_.module.io.finished).reduce(_ && _)
}
}
class TLJbarTest(nClients: Int, nManagers: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLJbarTestImp(nClients, nManagers, txns)).module)
io.finished := dut.io.finished
dut.io.start := io.start
}
File ClockGroup.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.prci
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.resources.FixedClockResource
case class ClockGroupingNode(groupName: String)(implicit valName: ValName)
extends MixedNexusNode(ClockGroupImp, ClockImp)(
dFn = { _ => ClockSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq) })
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroup(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupingNode(groupName)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
require (node.in.size == 1)
require (in.member.size == out.size)
(in.member.data zip out) foreach { case (i, o) => o := i }
}
}
object ClockGroup
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroup(valName.name)).node
}
case class ClockGroupAggregateNode(groupName: String)(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq.flatMap(_.members))})
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroupAggregator(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupAggregateNode(groupName)
override lazy val desiredName = s"ClockGroupAggregator_$groupName"
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in.unzip
val (out, _) = node.out.unzip
val outputs = out.flatMap(_.member.data)
require (node.in.size == 1, s"Aggregator for groupName: ${groupName} had ${node.in.size} inward edges instead of 1")
require (in.head.member.size == outputs.size)
in.head.member.data.zip(outputs).foreach { case (i, o) => o := i }
}
}
object ClockGroupAggregator
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroupAggregator(valName.name)).node
}
class SimpleClockGroupSource(numSources: Int = 1)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupSourceNode(List.fill(numSources) { ClockGroupSourceParameters() })
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
val (out, _) = node.out.unzip
out.map { out: ClockGroupBundle =>
out.member.data.foreach { o =>
o.clock := clock; o.reset := reset }
}
}
}
object SimpleClockGroupSource
{
def apply(num: Int = 1)(implicit p: Parameters, valName: ValName) = LazyModule(new SimpleClockGroupSource(num)).node
}
case class FixedClockBroadcastNode(fixedClockOpt: Option[ClockParameters])(implicit valName: ValName)
extends NexusNode(ClockImp)(
dFn = { seq => fixedClockOpt.map(_ => ClockSourceParameters(give = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSourceParameters()) },
uFn = { seq => fixedClockOpt.map(_ => ClockSinkParameters(take = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSinkParameters()) },
inputRequiresOutput = false) {
def fixedClockResources(name: String, prefix: String = "soc/"): Seq[Option[FixedClockResource]] = Seq(fixedClockOpt.map(t => new FixedClockResource(name, t.freqMHz, prefix)))
}
class FixedClockBroadcast(fixedClockOpt: Option[ClockParameters])(implicit p: Parameters) extends LazyModule
{
val node = new FixedClockBroadcastNode(fixedClockOpt) {
override def circuitIdentity = outputs.size == 1
}
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
override def desiredName = s"FixedClockBroadcast_${out.size}"
require (node.in.size == 1, "FixedClockBroadcast can only broadcast a single clock")
out.foreach { _ := in }
}
}
object FixedClockBroadcast
{
def apply(fixedClockOpt: Option[ClockParameters] = None)(implicit p: Parameters, valName: ValName) = LazyModule(new FixedClockBroadcast(fixedClockOpt)).node
}
case class PRCIClockGroupNode()(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { _ => ClockGroupSinkParameters("prci", Nil) },
outputRequiresInput = false)
File WidthWidget.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.AddressSet
import freechips.rocketchip.util.{Repeater, UIntToOH1}
// innBeatBytes => the new client-facing bus width
class TLWidthWidget(innerBeatBytes: Int)(implicit p: Parameters) extends LazyModule
{
private def noChangeRequired(manager: TLManagerPortParameters) = manager.beatBytes == innerBeatBytes
val node = new TLAdapterNode(
clientFn = { case c => c },
managerFn = { case m => m.v1copy(beatBytes = innerBeatBytes) }){
override def circuitIdentity = edges.out.map(_.manager).forall(noChangeRequired)
}
override lazy val desiredName = s"TLWidthWidget$innerBeatBytes"
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def merge[T <: TLDataChannel](edgeIn: TLEdge, in: DecoupledIO[T], edgeOut: TLEdge, out: DecoupledIO[T]) = {
val inBytes = edgeIn.manager.beatBytes
val outBytes = edgeOut.manager.beatBytes
val ratio = outBytes / inBytes
val keepBits = log2Ceil(outBytes)
val dropBits = log2Ceil(inBytes)
val countBits = log2Ceil(ratio)
val size = edgeIn.size(in.bits)
val hasData = edgeIn.hasData(in.bits)
val limit = UIntToOH1(size, keepBits) >> dropBits
val count = RegInit(0.U(countBits.W))
val first = count === 0.U
val last = count === limit || !hasData
val enable = Seq.tabulate(ratio) { i => !((count ^ i.U) & limit).orR }
val corrupt_reg = RegInit(false.B)
val corrupt_in = edgeIn.corrupt(in.bits)
val corrupt_out = corrupt_in || corrupt_reg
when (in.fire) {
count := count + 1.U
corrupt_reg := corrupt_out
when (last) {
count := 0.U
corrupt_reg := false.B
}
}
def helper(idata: UInt): UInt = {
// rdata is X until the first time a multi-beat write occurs.
// Prevent the X from leaking outside by jamming the mux control until
// the first time rdata is written (and hence no longer X).
val rdata_written_once = RegInit(false.B)
val masked_enable = enable.map(_ || !rdata_written_once)
val odata = Seq.fill(ratio) { WireInit(idata) }
val rdata = Reg(Vec(ratio-1, chiselTypeOf(idata)))
val pdata = rdata :+ idata
val mdata = (masked_enable zip (odata zip pdata)) map { case (e, (o, p)) => Mux(e, o, p) }
when (in.fire && !last) {
rdata_written_once := true.B
(rdata zip mdata) foreach { case (r, m) => r := m }
}
Cat(mdata.reverse)
}
in.ready := out.ready || !last
out.valid := in.valid && last
out.bits := in.bits
// Don't put down hardware if we never carry data
edgeOut.data(out.bits) := (if (edgeIn.staticHasData(in.bits) == Some(false)) 0.U else helper(edgeIn.data(in.bits)))
edgeOut.corrupt(out.bits) := corrupt_out
(out.bits, in.bits) match {
case (o: TLBundleA, i: TLBundleA) => o.mask := edgeOut.mask(o.address, o.size) & Mux(hasData, helper(i.mask), ~0.U(outBytes.W))
case (o: TLBundleB, i: TLBundleB) => o.mask := edgeOut.mask(o.address, o.size) & Mux(hasData, helper(i.mask), ~0.U(outBytes.W))
case (o: TLBundleC, i: TLBundleC) => ()
case (o: TLBundleD, i: TLBundleD) => ()
case _ => require(false, "Impossible bundle combination in WidthWidget")
}
}
def split[T <: TLDataChannel](edgeIn: TLEdge, in: DecoupledIO[T], edgeOut: TLEdge, out: DecoupledIO[T], sourceMap: UInt => UInt) = {
val inBytes = edgeIn.manager.beatBytes
val outBytes = edgeOut.manager.beatBytes
val ratio = inBytes / outBytes
val keepBits = log2Ceil(inBytes)
val dropBits = log2Ceil(outBytes)
val countBits = log2Ceil(ratio)
val size = edgeIn.size(in.bits)
val hasData = edgeIn.hasData(in.bits)
val limit = UIntToOH1(size, keepBits) >> dropBits
val count = RegInit(0.U(countBits.W))
val first = count === 0.U
val last = count === limit || !hasData
when (out.fire) {
count := count + 1.U
when (last) { count := 0.U }
}
// For sub-beat transfer, extract which part matters
val sel = in.bits match {
case a: TLBundleA => a.address(keepBits-1, dropBits)
case b: TLBundleB => b.address(keepBits-1, dropBits)
case c: TLBundleC => c.address(keepBits-1, dropBits)
case d: TLBundleD => {
val sel = sourceMap(d.source)
val hold = Mux(first, sel, RegEnable(sel, first)) // a_first is not for whole xfer
hold & ~limit // if more than one a_first/xfer, the address must be aligned anyway
}
}
val index = sel | count
def helper(idata: UInt, width: Int): UInt = {
val mux = VecInit.tabulate(ratio) { i => idata((i+1)*outBytes*width-1, i*outBytes*width) }
mux(index)
}
out.bits := in.bits
out.valid := in.valid
in.ready := out.ready
// Don't put down hardware if we never carry data
edgeOut.data(out.bits) := (if (edgeIn.staticHasData(in.bits) == Some(false)) 0.U else helper(edgeIn.data(in.bits), 8))
(out.bits, in.bits) match {
case (o: TLBundleA, i: TLBundleA) => o.mask := helper(i.mask, 1)
case (o: TLBundleB, i: TLBundleB) => o.mask := helper(i.mask, 1)
case (o: TLBundleC, i: TLBundleC) => () // replicating corrupt to all beats is ok
case (o: TLBundleD, i: TLBundleD) => ()
case _ => require(false, "Impossbile bundle combination in WidthWidget")
}
// Repeat the input if we're not last
!last
}
def splice[T <: TLDataChannel](edgeIn: TLEdge, in: DecoupledIO[T], edgeOut: TLEdge, out: DecoupledIO[T], sourceMap: UInt => UInt) = {
if (edgeIn.manager.beatBytes == edgeOut.manager.beatBytes) {
// nothing to do; pass it through
out.bits := in.bits
out.valid := in.valid
in.ready := out.ready
} else if (edgeIn.manager.beatBytes > edgeOut.manager.beatBytes) {
// split input to output
val repeat = Wire(Bool())
val repeated = Repeater(in, repeat)
val cated = Wire(chiselTypeOf(repeated))
cated <> repeated
edgeIn.data(cated.bits) := Cat(
edgeIn.data(repeated.bits)(edgeIn.manager.beatBytes*8-1, edgeOut.manager.beatBytes*8),
edgeIn.data(in.bits)(edgeOut.manager.beatBytes*8-1, 0))
repeat := split(edgeIn, cated, edgeOut, out, sourceMap)
} else {
// merge input to output
merge(edgeIn, in, edgeOut, out)
}
}
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
// If the master is narrower than the slave, the D channel must be narrowed.
// This is tricky, because the D channel has no address data.
// Thus, you don't know which part of a sub-beat transfer to extract.
// To fix this, we record the relevant address bits for all sources.
// The assumption is that this sort of situation happens only where
// you connect a narrow master to the system bus, so there are few sources.
def sourceMap(source_bits: UInt) = {
val source = if (edgeIn.client.endSourceId == 1) 0.U(0.W) else source_bits
require (edgeOut.manager.beatBytes > edgeIn.manager.beatBytes)
val keepBits = log2Ceil(edgeOut.manager.beatBytes)
val dropBits = log2Ceil(edgeIn.manager.beatBytes)
val sources = Reg(Vec(edgeIn.client.endSourceId, UInt((keepBits-dropBits).W)))
val a_sel = in.a.bits.address(keepBits-1, dropBits)
when (in.a.fire) {
if (edgeIn.client.endSourceId == 1) { // avoid extraction-index-width warning
sources(0) := a_sel
} else {
sources(in.a.bits.source) := a_sel
}
}
// depopulate unused source registers:
edgeIn.client.unusedSources.foreach { id => sources(id) := 0.U }
val bypass = in.a.valid && in.a.bits.source === source
if (edgeIn.manager.minLatency > 0) sources(source)
else Mux(bypass, a_sel, sources(source))
}
splice(edgeIn, in.a, edgeOut, out.a, sourceMap)
splice(edgeOut, out.d, edgeIn, in.d, sourceMap)
if (edgeOut.manager.anySupportAcquireB && edgeIn.client.anySupportProbe) {
splice(edgeOut, out.b, edgeIn, in.b, sourceMap)
splice(edgeIn, in.c, edgeOut, out.c, sourceMap)
out.e.valid := in.e.valid
out.e.bits := in.e.bits
in.e.ready := out.e.ready
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLWidthWidget
{
def apply(innerBeatBytes: Int)(implicit p: Parameters): TLNode =
{
val widget = LazyModule(new TLWidthWidget(innerBeatBytes))
widget.node
}
def apply(wrapper: TLBusWrapper)(implicit p: Parameters): TLNode = apply(wrapper.beatBytes)
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMWidthWidget(first: Int, second: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("WidthWidget"))
val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff)))
(ram.node
:= TLDelayer(0.1)
:= TLFragmenter(4, 256)
:= TLWidthWidget(second)
:= TLWidthWidget(first)
:= TLDelayer(0.1)
:= model.node
:= fuzz.node)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMWidthWidgetTest(little: Int, big: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMWidthWidget(little,big,txns)).module)
dut.io.start := DontCare
io.finished := dut.io.finished
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Configs.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package freechips.rocketchip.subsystem
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tile._
import freechips.rocketchip.rocket._
import freechips.rocketchip.tilelink._
import sifive.blocks.inclusivecache._
import freechips.rocketchip.devices.tilelink._
import freechips.rocketchip.util._
import sifive.blocks.inclusivecache.InclusiveCacheParameters
case class InclusiveCacheParams(
ways: Int,
sets: Int,
writeBytes: Int, // backing store update granularity
portFactor: Int, // numSubBanks = (widest TL port * portFactor) / writeBytes
memCycles: Int, // # of L2 clock cycles for a memory round-trip (50ns @ 800MHz)
physicalFilter: Option[PhysicalFilterParams] = None,
hintsSkipProbe: Boolean = false, // do hints probe the same client
bankedControl: Boolean = false, // bank the cache ctrl with the cache banks
ctrlAddr: Option[Int] = Some(InclusiveCacheParameters.L2ControlAddress),
// Interior/Exterior refer to placement either inside the Scheduler or outside it
// Inner/Outer refer to buffers on the front (towards cores) or back (towards DDR) of the L2
bufInnerInterior: InclusiveCachePortParameters = InclusiveCachePortParameters.fullC,
bufInnerExterior: InclusiveCachePortParameters = InclusiveCachePortParameters.flowAD,
bufOuterInterior: InclusiveCachePortParameters = InclusiveCachePortParameters.full,
bufOuterExterior: InclusiveCachePortParameters = InclusiveCachePortParameters.none)
case object InclusiveCacheKey extends Field[InclusiveCacheParams]
class WithInclusiveCache(
nWays: Int = 8,
capacityKB: Int = 512,
outerLatencyCycles: Int = 40,
subBankingFactor: Int = 4,
hintsSkipProbe: Boolean = false,
bankedControl: Boolean = false,
ctrlAddr: Option[Int] = Some(InclusiveCacheParameters.L2ControlAddress),
writeBytes: Int = 8
) extends Config((site, here, up) => {
case InclusiveCacheKey => InclusiveCacheParams(
sets = (capacityKB * 1024)/(site(CacheBlockBytes) * nWays * up(SubsystemBankedCoherenceKey, site).nBanks),
ways = nWays,
memCycles = outerLatencyCycles,
writeBytes = writeBytes,
portFactor = subBankingFactor,
hintsSkipProbe = hintsSkipProbe,
bankedControl = bankedControl,
ctrlAddr = ctrlAddr)
case SubsystemBankedCoherenceKey => up(SubsystemBankedCoherenceKey, site).copy(coherenceManager = { context =>
implicit val p = context.p
val sbus = context.tlBusWrapperLocationMap(SBUS)
val cbus = context.tlBusWrapperLocationMap.lift(CBUS).getOrElse(sbus)
val InclusiveCacheParams(
ways,
sets,
writeBytes,
portFactor,
memCycles,
physicalFilter,
hintsSkipProbe,
bankedControl,
ctrlAddr,
bufInnerInterior,
bufInnerExterior,
bufOuterInterior,
bufOuterExterior) = p(InclusiveCacheKey)
val l2Ctrl = ctrlAddr.map { addr =>
InclusiveCacheControlParameters(
address = addr,
beatBytes = cbus.beatBytes,
bankedControl = bankedControl)
}
val l2 = LazyModule(new InclusiveCache(
CacheParameters(
level = 2,
ways = ways,
sets = sets,
blockBytes = sbus.blockBytes,
beatBytes = sbus.beatBytes,
hintsSkipProbe = hintsSkipProbe),
InclusiveCacheMicroParameters(
writeBytes = writeBytes,
portFactor = portFactor,
memCycles = memCycles,
innerBuf = bufInnerInterior,
outerBuf = bufOuterInterior),
l2Ctrl))
def skipMMIO(x: TLClientParameters) = {
val dcacheMMIO =
x.requestFifo &&
x.sourceId.start % 2 == 1 && // 1 => dcache issues acquires from another master
x.nodePath.last.name == "dcache.node"
if (dcacheMMIO) None else Some(x)
}
val filter = LazyModule(new TLFilter(cfilter = skipMMIO))
val l2_inner_buffer = bufInnerExterior()
val l2_outer_buffer = bufOuterExterior()
val cork = LazyModule(new TLCacheCork)
val lastLevelNode = cork.node
l2_inner_buffer.suggestName("InclusiveCache_inner_TLBuffer")
l2_outer_buffer.suggestName("InclusiveCache_outer_TLBuffer")
l2_inner_buffer.node :*= filter.node
l2.node :*= l2_inner_buffer.node
l2_outer_buffer.node :*= l2.node
/* PhysicalFilters need to be on the TL-C side of a CacheCork to prevent Acquire.NtoB -> Grant.toT */
physicalFilter match {
case None => lastLevelNode :*= l2_outer_buffer.node
case Some(fp) => {
val physicalFilter = LazyModule(new PhysicalFilter(fp.copy(controlBeatBytes = cbus.beatBytes)))
lastLevelNode :*= physicalFilter.node :*= l2_outer_buffer.node
physicalFilter.controlNode := cbus.coupleTo("physical_filter") {
TLBuffer(1) := TLFragmenter(cbus, Some("LLCPhysicalFilter")) := _
}
}
}
l2.ctrls.foreach {
_.ctrlnode := cbus.coupleTo("l2_ctrl") { TLBuffer(1) := TLFragmenter(cbus, Some("LLCCtrl")) := _ }
}
ElaborationArtefacts.add("l2.json", l2.module.json)
(filter.node, lastLevelNode, None)
})
})
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
File Xbar.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressDecoder, AddressSet, RegionType, IdRange, TriStateValue}
import freechips.rocketchip.util.BundleField
// Trades off slave port proximity against routing resource cost
object ForceFanout
{
def apply[T](
a: TriStateValue = TriStateValue.unset,
b: TriStateValue = TriStateValue.unset,
c: TriStateValue = TriStateValue.unset,
d: TriStateValue = TriStateValue.unset,
e: TriStateValue = TriStateValue.unset)(body: Parameters => T)(implicit p: Parameters) =
{
body(p.alterPartial {
case ForceFanoutKey => p(ForceFanoutKey) match {
case ForceFanoutParams(pa, pb, pc, pd, pe) =>
ForceFanoutParams(a.update(pa), b.update(pb), c.update(pc), d.update(pd), e.update(pe))
}
})
}
}
private case class ForceFanoutParams(a: Boolean, b: Boolean, c: Boolean, d: Boolean, e: Boolean)
private case object ForceFanoutKey extends Field(ForceFanoutParams(false, false, false, false, false))
class TLXbar(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule
{
val node = new TLNexusNode(
clientFn = { seq =>
seq(0).v1copy(
echoFields = BundleField.union(seq.flatMap(_.echoFields)),
requestFields = BundleField.union(seq.flatMap(_.requestFields)),
responseKeys = seq.flatMap(_.responseKeys).distinct,
minLatency = seq.map(_.minLatency).min,
clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) =>
port.clients map { client => client.v1copy(
sourceId = client.sourceId.shift(range.start)
)}
}
)
},
managerFn = { seq =>
val fifoIdFactory = TLXbar.relabeler()
seq(0).v1copy(
responseFields = BundleField.union(seq.flatMap(_.responseFields)),
requestKeys = seq.flatMap(_.requestKeys).distinct,
minLatency = seq.map(_.minLatency).min,
endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max,
managers = seq.flatMap { port =>
require (port.beatBytes == seq(0).beatBytes,
s"Xbar ($name with parent $parent) data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B")
val fifoIdMapper = fifoIdFactory()
port.managers map { manager => manager.v1copy(
fifoId = manager.fifoId.map(fifoIdMapper(_))
)}
}
)
}
){
override def circuitIdentity = outputs.size == 1 && inputs.size == 1
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
if ((node.in.size * node.out.size) > (8*32)) {
println (s"!!! WARNING !!!")
println (s" Your TLXbar ($name with parent $parent) is very large, with ${node.in.size} Masters and ${node.out.size} Slaves.")
println (s"!!! WARNING !!!")
}
val wide_bundle = TLBundleParameters.union((node.in ++ node.out).map(_._2.bundle))
override def desiredName = (Seq("TLXbar") ++ nameSuffix ++ Seq(s"i${node.in.size}_o${node.out.size}_${wide_bundle.shortName}")).mkString("_")
TLXbar.circuit(policy, node.in, node.out)
}
}
object TLXbar
{
def mapInputIds(ports: Seq[TLMasterPortParameters]) = assignRanges(ports.map(_.endSourceId))
def mapOutputIds(ports: Seq[TLSlavePortParameters]) = assignRanges(ports.map(_.endSinkId))
def assignRanges(sizes: Seq[Int]) = {
val pow2Sizes = sizes.map { z => if (z == 0) 0 else 1 << log2Ceil(z) }
val tuples = pow2Sizes.zipWithIndex.sortBy(_._1) // record old index, then sort by increasing size
val starts = tuples.scanRight(0)(_._1 + _).tail // suffix-sum of the sizes = the start positions
val ranges = (tuples zip starts) map { case ((sz, i), st) =>
(if (sz == 0) IdRange(0, 0) else IdRange(st, st + sz), i)
}
ranges.sortBy(_._2).map(_._1) // Restore orignal order
}
def relabeler() = {
var idFactory = 0
() => {
val fifoMap = scala.collection.mutable.HashMap.empty[Int, Int]
(x: Int) => {
if (fifoMap.contains(x)) fifoMap(x) else {
val out = idFactory
idFactory = idFactory + 1
fifoMap += (x -> out)
out
}
}
}
}
def circuit(policy: TLArbiter.Policy, seqIn: Seq[(TLBundle, TLEdge)], seqOut: Seq[(TLBundle, TLEdge)]) {
val (io_in, edgesIn) = seqIn.unzip
val (io_out, edgesOut) = seqOut.unzip
// Not every master need connect to every slave on every channel; determine which connections are necessary
val reachableIO = edgesIn.map { cp => edgesOut.map { mp =>
cp.client.clients.exists { c => mp.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)}}}}
}.toVector}.toVector
val probeIO = (edgesIn zip reachableIO).map { case (cp, reachableO) =>
(edgesOut zip reachableO).map { case (mp, reachable) =>
reachable && cp.client.anySupportProbe && mp.manager.managers.exists(_.regionType >= RegionType.TRACKED)
}.toVector}.toVector
val releaseIO = (edgesIn zip reachableIO).map { case (cp, reachableO) =>
(edgesOut zip reachableO).map { case (mp, reachable) =>
reachable && cp.client.anySupportProbe && mp.manager.anySupportAcquireB
}.toVector}.toVector
val connectAIO = reachableIO
val connectBIO = probeIO
val connectCIO = releaseIO
val connectDIO = reachableIO
val connectEIO = releaseIO
def transpose[T](x: Seq[Seq[T]]) = if (x.isEmpty) Nil else Vector.tabulate(x(0).size) { i => Vector.tabulate(x.size) { j => x(j)(i) } }
val connectAOI = transpose(connectAIO)
val connectBOI = transpose(connectBIO)
val connectCOI = transpose(connectCIO)
val connectDOI = transpose(connectDIO)
val connectEOI = transpose(connectEIO)
// Grab the port ID mapping
val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client))
val outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager))
// We need an intermediate size of bundle with the widest possible identifiers
val wide_bundle = TLBundleParameters.union(io_in.map(_.params) ++ io_out.map(_.params))
// Handle size = 1 gracefully (Chisel3 empty range is broken)
def trim(id: UInt, size: Int): UInt = if (size <= 1) 0.U else id(log2Ceil(size)-1, 0)
// Transform input bundle sources (sinks use global namespace on both sides)
val in = Wire(Vec(io_in.size, TLBundle(wide_bundle)))
for (i <- 0 until in.size) {
val r = inputIdRanges(i)
if (connectAIO(i).exists(x=>x)) {
in(i).a.bits.user := DontCare
in(i).a.squeezeAll.waiveAll :<>= io_in(i).a.squeezeAll.waiveAll
in(i).a.bits.source := io_in(i).a.bits.source | r.start.U
} else {
in(i).a := DontCare
io_in(i).a := DontCare
in(i).a.valid := false.B
io_in(i).a.ready := true.B
}
if (connectBIO(i).exists(x=>x)) {
io_in(i).b.squeezeAll :<>= in(i).b.squeezeAll
io_in(i).b.bits.source := trim(in(i).b.bits.source, r.size)
} else {
in(i).b := DontCare
io_in(i).b := DontCare
in(i).b.ready := true.B
io_in(i).b.valid := false.B
}
if (connectCIO(i).exists(x=>x)) {
in(i).c.bits.user := DontCare
in(i).c.squeezeAll.waiveAll :<>= io_in(i).c.squeezeAll.waiveAll
in(i).c.bits.source := io_in(i).c.bits.source | r.start.U
} else {
in(i).c := DontCare
io_in(i).c := DontCare
in(i).c.valid := false.B
io_in(i).c.ready := true.B
}
if (connectDIO(i).exists(x=>x)) {
io_in(i).d.squeezeAll.waiveAll :<>= in(i).d.squeezeAll.waiveAll
io_in(i).d.bits.source := trim(in(i).d.bits.source, r.size)
} else {
in(i).d := DontCare
io_in(i).d := DontCare
in(i).d.ready := true.B
io_in(i).d.valid := false.B
}
if (connectEIO(i).exists(x=>x)) {
in(i).e.squeezeAll :<>= io_in(i).e.squeezeAll
} else {
in(i).e := DontCare
io_in(i).e := DontCare
in(i).e.valid := false.B
io_in(i).e.ready := true.B
}
}
// Transform output bundle sinks (sources use global namespace on both sides)
val out = Wire(Vec(io_out.size, TLBundle(wide_bundle)))
for (o <- 0 until out.size) {
val r = outputIdRanges(o)
if (connectAOI(o).exists(x=>x)) {
out(o).a.bits.user := DontCare
io_out(o).a.squeezeAll.waiveAll :<>= out(o).a.squeezeAll.waiveAll
} else {
out(o).a := DontCare
io_out(o).a := DontCare
out(o).a.ready := true.B
io_out(o).a.valid := false.B
}
if (connectBOI(o).exists(x=>x)) {
out(o).b.squeezeAll :<>= io_out(o).b.squeezeAll
} else {
out(o).b := DontCare
io_out(o).b := DontCare
out(o).b.valid := false.B
io_out(o).b.ready := true.B
}
if (connectCOI(o).exists(x=>x)) {
out(o).c.bits.user := DontCare
io_out(o).c.squeezeAll.waiveAll :<>= out(o).c.squeezeAll.waiveAll
} else {
out(o).c := DontCare
io_out(o).c := DontCare
out(o).c.ready := true.B
io_out(o).c.valid := false.B
}
if (connectDOI(o).exists(x=>x)) {
out(o).d.squeezeAll :<>= io_out(o).d.squeezeAll
out(o).d.bits.sink := io_out(o).d.bits.sink | r.start.U
} else {
out(o).d := DontCare
io_out(o).d := DontCare
out(o).d.valid := false.B
io_out(o).d.ready := true.B
}
if (connectEOI(o).exists(x=>x)) {
io_out(o).e.squeezeAll :<>= out(o).e.squeezeAll
io_out(o).e.bits.sink := trim(out(o).e.bits.sink, r.size)
} else {
out(o).e := DontCare
io_out(o).e := DontCare
out(o).e.ready := true.B
io_out(o).e.valid := false.B
}
}
// Filter a list to only those elements selected
def filter[T](data: Seq[T], mask: Seq[Boolean]) = (data zip mask).filter(_._2).map(_._1)
// Based on input=>output connectivity, create per-input minimal address decode circuits
val requiredAC = (connectAIO ++ connectCIO).distinct
val outputPortFns: Map[Vector[Boolean], Seq[UInt => Bool]] = requiredAC.map { connectO =>
val port_addrs = edgesOut.map(_.manager.managers.flatMap(_.address))
val routingMask = AddressDecoder(filter(port_addrs, connectO))
val route_addrs = port_addrs.map(seq => AddressSet.unify(seq.map(_.widen(~routingMask)).distinct))
// Print the address mapping
if (false) {
println("Xbar mapping:")
route_addrs.foreach { p =>
print(" ")
p.foreach { a => print(s" ${a}") }
println("")
}
println("--")
}
(connectO, route_addrs.map(seq => (addr: UInt) => seq.map(_.contains(addr)).reduce(_ || _)))
}.toMap
// Print the ID mapping
if (false) {
println(s"XBar mapping:")
(edgesIn zip inputIdRanges).zipWithIndex.foreach { case ((edge, id), i) =>
println(s"\t$i assigned ${id} for ${edge.client.clients.map(_.name).mkString(", ")}")
}
println("")
}
val addressA = (in zip edgesIn) map { case (i, e) => e.address(i.a.bits) }
val addressC = (in zip edgesIn) map { case (i, e) => e.address(i.c.bits) }
def unique(x: Vector[Boolean]): Bool = (x.filter(x=>x).size <= 1).B
val requestAIO = (connectAIO zip addressA) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } }
val requestCIO = (connectCIO zip addressC) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } }
val requestBOI = out.map { o => inputIdRanges.map { i => i.contains(o.b.bits.source) } }
val requestDOI = out.map { o => inputIdRanges.map { i => i.contains(o.d.bits.source) } }
val requestEIO = in.map { i => outputIdRanges.map { o => o.contains(i.e.bits.sink) } }
val beatsAI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.a.bits) }
val beatsBO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.b.bits) }
val beatsCI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.c.bits) }
val beatsDO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.d.bits) }
val beatsEI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.e.bits) }
// Fanout the input sources to the output sinks
val portsAOI = transpose((in zip requestAIO) map { case (i, r) => TLXbar.fanout(i.a, r, edgesOut.map(_.params(ForceFanoutKey).a)) })
val portsBIO = transpose((out zip requestBOI) map { case (o, r) => TLXbar.fanout(o.b, r, edgesIn .map(_.params(ForceFanoutKey).b)) })
val portsCOI = transpose((in zip requestCIO) map { case (i, r) => TLXbar.fanout(i.c, r, edgesOut.map(_.params(ForceFanoutKey).c)) })
val portsDIO = transpose((out zip requestDOI) map { case (o, r) => TLXbar.fanout(o.d, r, edgesIn .map(_.params(ForceFanoutKey).d)) })
val portsEOI = transpose((in zip requestEIO) map { case (i, r) => TLXbar.fanout(i.e, r, edgesOut.map(_.params(ForceFanoutKey).e)) })
// Arbitrate amongst the sources
for (o <- 0 until out.size) {
TLArbiter(policy)(out(o).a, filter(beatsAI zip portsAOI(o), connectAOI(o)):_*)
TLArbiter(policy)(out(o).c, filter(beatsCI zip portsCOI(o), connectCOI(o)):_*)
TLArbiter(policy)(out(o).e, filter(beatsEI zip portsEOI(o), connectEOI(o)):_*)
filter(portsAOI(o), connectAOI(o).map(!_)) foreach { r => r.ready := false.B }
filter(portsCOI(o), connectCOI(o).map(!_)) foreach { r => r.ready := false.B }
filter(portsEOI(o), connectEOI(o).map(!_)) foreach { r => r.ready := false.B }
}
for (i <- 0 until in.size) {
TLArbiter(policy)(in(i).b, filter(beatsBO zip portsBIO(i), connectBIO(i)):_*)
TLArbiter(policy)(in(i).d, filter(beatsDO zip portsDIO(i), connectDIO(i)):_*)
filter(portsBIO(i), connectBIO(i).map(!_)) foreach { r => r.ready := false.B }
filter(portsDIO(i), connectDIO(i).map(!_)) foreach { r => r.ready := false.B }
}
}
def apply(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode =
{
val xbar = LazyModule(new TLXbar(policy, nameSuffix))
xbar.node
}
// Replicate an input port to each output port
def fanout[T <: TLChannel](input: DecoupledIO[T], select: Seq[Bool], force: Seq[Boolean] = Nil): Seq[DecoupledIO[T]] = {
val filtered = Wire(Vec(select.size, chiselTypeOf(input)))
for (i <- 0 until select.size) {
filtered(i).bits := (if (force.lift(i).getOrElse(false)) IdentityModule(input.bits) else input.bits)
filtered(i).valid := input.valid && (select(i) || (select.size == 1).B)
}
input.ready := Mux1H(select, filtered.map(_.ready))
filtered
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMXbar(nManagers: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("Xbar"))
val xbar = LazyModule(new TLXbar)
xbar.node := TLDelayer(0.1) := model.node := fuzz.node
(0 until nManagers) foreach { n =>
val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff)))
ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMXbarTest(nManagers: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMXbar(nManagers,txns)).module)
dut.io.start := io.start
io.finished := dut.io.finished
}
class TLMulticlientXbar(nManagers: Int, nClients: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val xbar = LazyModule(new TLXbar)
val fuzzers = (0 until nClients) map { n =>
val fuzz = LazyModule(new TLFuzzer(txns))
xbar.node := TLDelayer(0.1) := fuzz.node
fuzz
}
(0 until nManagers) foreach { n =>
val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff)))
ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzzers.last.module.io.finished
}
}
class TLMulticlientXbarTest(nManagers: Int, nClients: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLMulticlientXbar(nManagers, nClients, txns)).module)
dut.io.start := io.start
io.finished := dut.io.finished
}
| module CoherenceManagerWrapper( // @[ClockDomain.scala:14:9]
input auto_coupler_to_bus_named_mbus_bus_xing_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_bus_named_mbus_bus_xing_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_bus_named_mbus_bus_xing_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bus_named_mbus_bus_xing_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coherent_jbar_anon_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_coherent_jbar_anon_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coherent_jbar_anon_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coherent_jbar_anon_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coherent_jbar_anon_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_coherent_jbar_anon_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_coherent_jbar_anon_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_coherent_jbar_anon_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coherent_jbar_anon_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coherent_jbar_anon_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_coherent_jbar_anon_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_coherent_jbar_anon_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coherent_jbar_anon_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_coherent_jbar_anon_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coherent_jbar_anon_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_coherent_jbar_anon_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coherent_jbar_anon_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_coherent_jbar_anon_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coherent_jbar_anon_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coherent_jbar_anon_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_l2_ctrls_ctrl_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_l2_ctrls_ctrl_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_l2_ctrls_ctrl_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_l2_ctrls_ctrl_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_l2_ctrls_ctrl_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [10:0] auto_l2_ctrls_ctrl_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [25:0] auto_l2_ctrls_ctrl_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_l2_ctrls_ctrl_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_l2_ctrls_ctrl_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_l2_ctrls_ctrl_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_l2_ctrls_ctrl_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_l2_ctrls_ctrl_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_l2_ctrls_ctrl_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_l2_ctrls_ctrl_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [10:0] auto_l2_ctrls_ctrl_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_l2_ctrls_ctrl_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coh_clock_groups_in_member_coh_0_clock, // @[LazyModuleImp.scala:107:25]
input auto_coh_clock_groups_in_member_coh_0_reset // @[LazyModuleImp.scala:107:25]
);
wire coupler_to_bus_named_mbus_widget_auto_anon_out_d_valid; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_out_d_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_corrupt; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_denied; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_sink; // @[WidthWidget.scala:27:9]
wire [3:0] coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_source; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_size; // @[WidthWidget.scala:27:9]
wire [1:0] coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_opcode; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_out_a_valid; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_out_a_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_corrupt; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_data; // @[WidthWidget.scala:27:9]
wire [7:0] coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_mask; // @[WidthWidget.scala:27:9]
wire [31:0] coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_address; // @[WidthWidget.scala:27:9]
wire [3:0] coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_source; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_size; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_opcode; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_auto_widget_anon_in_d_ready; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_auto_widget_anon_in_a_valid; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_data; // @[LazyModuleImp.scala:138:7]
wire [7:0] coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_mask; // @[LazyModuleImp.scala:138:7]
wire [31:0] coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_address; // @[LazyModuleImp.scala:138:7]
wire [3:0] coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_source; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_size; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire [2:0] coherent_jbar_out_0_d_bits_sink; // @[Xbar.scala:216:19]
wire [5:0] coherent_jbar_in_0_d_bits_source; // @[Xbar.scala:159:18]
wire [5:0] coherent_jbar_in_0_a_bits_source; // @[Xbar.scala:159:18]
wire InclusiveCache_outer_TLBuffer_auto_out_d_valid; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_d_bits_corrupt; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_auto_out_d_bits_data; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_d_bits_denied; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_d_bits_sink; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_d_bits_source; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_d_bits_size; // @[Buffer.scala:40:9]
wire [1:0] InclusiveCache_outer_TLBuffer_auto_out_d_bits_param; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_d_bits_opcode; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_c_ready; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_a_ready; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_e_valid; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_e_bits_sink; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_d_ready; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_c_valid; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_c_bits_corrupt; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_auto_in_c_bits_data; // @[Buffer.scala:40:9]
wire [31:0] InclusiveCache_outer_TLBuffer_auto_in_c_bits_address; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_c_bits_source; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_c_bits_size; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_c_bits_param; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_c_bits_opcode; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_a_valid; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_a_bits_corrupt; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire [7:0] InclusiveCache_outer_TLBuffer_auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [31:0] InclusiveCache_outer_TLBuffer_auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_a_bits_source; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_a_bits_param; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire filter_auto_anon_out_d_valid; // @[Filter.scala:60:9]
wire filter_auto_anon_out_d_bits_corrupt; // @[Filter.scala:60:9]
wire [63:0] filter_auto_anon_out_d_bits_data; // @[Filter.scala:60:9]
wire filter_auto_anon_out_d_bits_denied; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_out_d_bits_sink; // @[Filter.scala:60:9]
wire [5:0] filter_auto_anon_out_d_bits_source; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_out_d_bits_size; // @[Filter.scala:60:9]
wire [1:0] filter_auto_anon_out_d_bits_param; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_out_d_bits_opcode; // @[Filter.scala:60:9]
wire filter_auto_anon_out_a_ready; // @[Filter.scala:60:9]
wire filter_auto_anon_in_d_valid; // @[Filter.scala:60:9]
wire filter_auto_anon_in_d_ready; // @[Filter.scala:60:9]
wire filter_auto_anon_in_d_bits_corrupt; // @[Filter.scala:60:9]
wire [63:0] filter_auto_anon_in_d_bits_data; // @[Filter.scala:60:9]
wire filter_auto_anon_in_d_bits_denied; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_in_d_bits_sink; // @[Filter.scala:60:9]
wire [5:0] filter_auto_anon_in_d_bits_source; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_in_d_bits_size; // @[Filter.scala:60:9]
wire [1:0] filter_auto_anon_in_d_bits_param; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_in_d_bits_opcode; // @[Filter.scala:60:9]
wire filter_auto_anon_in_a_valid; // @[Filter.scala:60:9]
wire filter_auto_anon_in_a_ready; // @[Filter.scala:60:9]
wire filter_auto_anon_in_a_bits_corrupt; // @[Filter.scala:60:9]
wire [63:0] filter_auto_anon_in_a_bits_data; // @[Filter.scala:60:9]
wire [7:0] filter_auto_anon_in_a_bits_mask; // @[Filter.scala:60:9]
wire [31:0] filter_auto_anon_in_a_bits_address; // @[Filter.scala:60:9]
wire [5:0] filter_auto_anon_in_a_bits_source; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_in_a_bits_size; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_in_a_bits_param; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_in_a_bits_opcode; // @[Filter.scala:60:9]
wire fixedClockNode_auto_anon_out_reset; // @[ClockGroup.scala:104:9]
wire fixedClockNode_auto_anon_out_clock; // @[ClockGroup.scala:104:9]
wire clockGroup_auto_out_reset; // @[ClockGroup.scala:24:9]
wire clockGroup_auto_out_clock; // @[ClockGroup.scala:24:9]
wire coh_clock_groups_auto_out_member_coh_0_reset; // @[ClockGroup.scala:53:9]
wire coh_clock_groups_auto_out_member_coh_0_clock; // @[ClockGroup.scala:53:9]
wire _binder_auto_in_a_ready; // @[BankBinder.scala:71:28]
wire _binder_auto_in_d_valid; // @[BankBinder.scala:71:28]
wire [2:0] _binder_auto_in_d_bits_opcode; // @[BankBinder.scala:71:28]
wire [1:0] _binder_auto_in_d_bits_param; // @[BankBinder.scala:71:28]
wire [2:0] _binder_auto_in_d_bits_size; // @[BankBinder.scala:71:28]
wire [3:0] _binder_auto_in_d_bits_source; // @[BankBinder.scala:71:28]
wire _binder_auto_in_d_bits_sink; // @[BankBinder.scala:71:28]
wire _binder_auto_in_d_bits_denied; // @[BankBinder.scala:71:28]
wire [63:0] _binder_auto_in_d_bits_data; // @[BankBinder.scala:71:28]
wire _binder_auto_in_d_bits_corrupt; // @[BankBinder.scala:71:28]
wire _cork_auto_out_a_valid; // @[Configs.scala:120:26]
wire [2:0] _cork_auto_out_a_bits_opcode; // @[Configs.scala:120:26]
wire [2:0] _cork_auto_out_a_bits_param; // @[Configs.scala:120:26]
wire [2:0] _cork_auto_out_a_bits_size; // @[Configs.scala:120:26]
wire [3:0] _cork_auto_out_a_bits_source; // @[Configs.scala:120:26]
wire [31:0] _cork_auto_out_a_bits_address; // @[Configs.scala:120:26]
wire [7:0] _cork_auto_out_a_bits_mask; // @[Configs.scala:120:26]
wire [63:0] _cork_auto_out_a_bits_data; // @[Configs.scala:120:26]
wire _cork_auto_out_a_bits_corrupt; // @[Configs.scala:120:26]
wire _cork_auto_out_d_ready; // @[Configs.scala:120:26]
wire _InclusiveCache_inner_TLBuffer_auto_out_a_valid; // @[Parameters.scala:56:69]
wire [2:0] _InclusiveCache_inner_TLBuffer_auto_out_a_bits_opcode; // @[Parameters.scala:56:69]
wire [2:0] _InclusiveCache_inner_TLBuffer_auto_out_a_bits_param; // @[Parameters.scala:56:69]
wire [2:0] _InclusiveCache_inner_TLBuffer_auto_out_a_bits_size; // @[Parameters.scala:56:69]
wire [5:0] _InclusiveCache_inner_TLBuffer_auto_out_a_bits_source; // @[Parameters.scala:56:69]
wire [31:0] _InclusiveCache_inner_TLBuffer_auto_out_a_bits_address; // @[Parameters.scala:56:69]
wire [7:0] _InclusiveCache_inner_TLBuffer_auto_out_a_bits_mask; // @[Parameters.scala:56:69]
wire [63:0] _InclusiveCache_inner_TLBuffer_auto_out_a_bits_data; // @[Parameters.scala:56:69]
wire _InclusiveCache_inner_TLBuffer_auto_out_a_bits_corrupt; // @[Parameters.scala:56:69]
wire _InclusiveCache_inner_TLBuffer_auto_out_d_ready; // @[Parameters.scala:56:69]
wire _l2_auto_in_a_ready; // @[Configs.scala:93:24]
wire _l2_auto_in_d_valid; // @[Configs.scala:93:24]
wire [2:0] _l2_auto_in_d_bits_opcode; // @[Configs.scala:93:24]
wire [1:0] _l2_auto_in_d_bits_param; // @[Configs.scala:93:24]
wire [2:0] _l2_auto_in_d_bits_size; // @[Configs.scala:93:24]
wire [5:0] _l2_auto_in_d_bits_source; // @[Configs.scala:93:24]
wire [2:0] _l2_auto_in_d_bits_sink; // @[Configs.scala:93:24]
wire _l2_auto_in_d_bits_denied; // @[Configs.scala:93:24]
wire [63:0] _l2_auto_in_d_bits_data; // @[Configs.scala:93:24]
wire _l2_auto_in_d_bits_corrupt; // @[Configs.scala:93:24]
wire auto_coupler_to_bus_named_mbus_bus_xing_out_a_ready_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_mbus_bus_xing_out_d_valid_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_d_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_opcode_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_opcode; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_param_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_param; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_size_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [3:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_source_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_sink_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_sink; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_denied_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_denied; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_data_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_corrupt_0 = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_corrupt; // @[ClockDomain.scala:14:9]
wire auto_coherent_jbar_anon_in_a_valid_0 = auto_coherent_jbar_anon_in_a_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coherent_jbar_anon_in_a_bits_opcode_0 = auto_coherent_jbar_anon_in_a_bits_opcode; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coherent_jbar_anon_in_a_bits_param_0 = auto_coherent_jbar_anon_in_a_bits_param; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coherent_jbar_anon_in_a_bits_size_0 = auto_coherent_jbar_anon_in_a_bits_size; // @[ClockDomain.scala:14:9]
wire [5:0] auto_coherent_jbar_anon_in_a_bits_source_0 = auto_coherent_jbar_anon_in_a_bits_source; // @[ClockDomain.scala:14:9]
wire [31:0] auto_coherent_jbar_anon_in_a_bits_address_0 = auto_coherent_jbar_anon_in_a_bits_address; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coherent_jbar_anon_in_a_bits_mask_0 = auto_coherent_jbar_anon_in_a_bits_mask; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coherent_jbar_anon_in_a_bits_data_0 = auto_coherent_jbar_anon_in_a_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coherent_jbar_anon_in_a_bits_corrupt_0 = auto_coherent_jbar_anon_in_a_bits_corrupt; // @[ClockDomain.scala:14:9]
wire auto_coherent_jbar_anon_in_d_ready_0 = auto_coherent_jbar_anon_in_d_ready; // @[ClockDomain.scala:14:9]
wire auto_l2_ctrls_ctrl_in_a_valid_0 = auto_l2_ctrls_ctrl_in_a_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_l2_ctrls_ctrl_in_a_bits_opcode_0 = auto_l2_ctrls_ctrl_in_a_bits_opcode; // @[ClockDomain.scala:14:9]
wire [2:0] auto_l2_ctrls_ctrl_in_a_bits_param_0 = auto_l2_ctrls_ctrl_in_a_bits_param; // @[ClockDomain.scala:14:9]
wire [1:0] auto_l2_ctrls_ctrl_in_a_bits_size_0 = auto_l2_ctrls_ctrl_in_a_bits_size; // @[ClockDomain.scala:14:9]
wire [10:0] auto_l2_ctrls_ctrl_in_a_bits_source_0 = auto_l2_ctrls_ctrl_in_a_bits_source; // @[ClockDomain.scala:14:9]
wire [25:0] auto_l2_ctrls_ctrl_in_a_bits_address_0 = auto_l2_ctrls_ctrl_in_a_bits_address; // @[ClockDomain.scala:14:9]
wire [7:0] auto_l2_ctrls_ctrl_in_a_bits_mask_0 = auto_l2_ctrls_ctrl_in_a_bits_mask; // @[ClockDomain.scala:14:9]
wire [63:0] auto_l2_ctrls_ctrl_in_a_bits_data_0 = auto_l2_ctrls_ctrl_in_a_bits_data; // @[ClockDomain.scala:14:9]
wire auto_l2_ctrls_ctrl_in_a_bits_corrupt_0 = auto_l2_ctrls_ctrl_in_a_bits_corrupt; // @[ClockDomain.scala:14:9]
wire auto_l2_ctrls_ctrl_in_d_ready_0 = auto_l2_ctrls_ctrl_in_d_ready; // @[ClockDomain.scala:14:9]
wire auto_coh_clock_groups_in_member_coh_0_clock_0 = auto_coh_clock_groups_in_member_coh_0_clock; // @[ClockDomain.scala:14:9]
wire auto_coh_clock_groups_in_member_coh_0_reset_0 = auto_coh_clock_groups_in_member_coh_0_reset; // @[ClockDomain.scala:14:9]
wire [1:0] auto_l2_ctrls_ctrl_in_d_bits_param = 2'h0; // @[ClockDomain.scala:14:9]
wire [1:0] InclusiveCache_outer_TLBuffer_auto_in_b_bits_param = 2'h0; // @[Buffer.scala:40:9]
wire [1:0] InclusiveCache_outer_TLBuffer_auto_out_b_bits_param = 2'h0; // @[Buffer.scala:40:9]
wire [1:0] InclusiveCache_outer_TLBuffer_nodeOut_b_bits_param = 2'h0; // @[MixedNode.scala:542:17]
wire [1:0] InclusiveCache_outer_TLBuffer_nodeIn_b_bits_param = 2'h0; // @[MixedNode.scala:551:17]
wire [1:0] coherent_jbar__requestBOI_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] coherent_jbar__requestBOI_WIRE_1_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] coherent_jbar__beatsBO_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] coherent_jbar__beatsBO_WIRE_1_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] coherent_jbar__portsBIO_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] coherent_jbar__portsBIO_WIRE_1_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] coherent_jbar_portsBIO_filtered_0_bits_param = 2'h0; // @[Xbar.scala:352:24]
wire auto_l2_ctrls_ctrl_in_d_bits_sink = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_l2_ctrls_ctrl_in_d_bits_denied = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_l2_ctrls_ctrl_in_d_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9]
wire _childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire coh_clock_groups_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire coh_clock_groups_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire coh_clock_groups__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire clockGroup_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire clockGroup_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire clockGroup__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire fixedClockNode_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire fixedClockNode_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire fixedClockNode__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire broadcast_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire broadcast_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire broadcast__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire InclusiveCache_outer_TLBuffer_auto_in_b_valid = 1'h0; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_b_bits_corrupt = 1'h0; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_b_valid = 1'h0; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_b_bits_corrupt = 1'h0; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeOut_b_valid = 1'h0; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_nodeOut_b_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_nodeIn_b_valid = 1'h0; // @[MixedNode.scala:551:17]
wire InclusiveCache_outer_TLBuffer_nodeIn_b_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17]
wire coherent_jbar__addressC_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire coherent_jbar__addressC_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire coherent_jbar__addressC_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire coherent_jbar__addressC_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire coherent_jbar__addressC_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire coherent_jbar__addressC_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire coherent_jbar__requestBOI_WIRE_ready = 1'h0; // @[Bundles.scala:264:74]
wire coherent_jbar__requestBOI_WIRE_valid = 1'h0; // @[Bundles.scala:264:74]
wire coherent_jbar__requestBOI_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire coherent_jbar__requestBOI_WIRE_1_ready = 1'h0; // @[Bundles.scala:264:61]
wire coherent_jbar__requestBOI_WIRE_1_valid = 1'h0; // @[Bundles.scala:264:61]
wire coherent_jbar__requestBOI_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire coherent_jbar__requestBOI_T = 1'h0; // @[Parameters.scala:54:10]
wire coherent_jbar__requestDOI_T = 1'h0; // @[Parameters.scala:54:10]
wire coherent_jbar__requestEIO_WIRE_ready = 1'h0; // @[Bundles.scala:267:74]
wire coherent_jbar__requestEIO_WIRE_valid = 1'h0; // @[Bundles.scala:267:74]
wire coherent_jbar__requestEIO_WIRE_1_ready = 1'h0; // @[Bundles.scala:267:61]
wire coherent_jbar__requestEIO_WIRE_1_valid = 1'h0; // @[Bundles.scala:267:61]
wire coherent_jbar__requestEIO_T = 1'h0; // @[Parameters.scala:54:10]
wire coherent_jbar__beatsBO_WIRE_ready = 1'h0; // @[Bundles.scala:264:74]
wire coherent_jbar__beatsBO_WIRE_valid = 1'h0; // @[Bundles.scala:264:74]
wire coherent_jbar__beatsBO_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire coherent_jbar__beatsBO_WIRE_1_ready = 1'h0; // @[Bundles.scala:264:61]
wire coherent_jbar__beatsBO_WIRE_1_valid = 1'h0; // @[Bundles.scala:264:61]
wire coherent_jbar__beatsBO_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire coherent_jbar__beatsBO_opdata_T = 1'h0; // @[Edges.scala:97:37]
wire coherent_jbar__beatsCI_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire coherent_jbar__beatsCI_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire coherent_jbar__beatsCI_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire coherent_jbar__beatsCI_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire coherent_jbar__beatsCI_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire coherent_jbar__beatsCI_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire coherent_jbar_beatsCI_opdata = 1'h0; // @[Edges.scala:102:36]
wire coherent_jbar__beatsEI_WIRE_ready = 1'h0; // @[Bundles.scala:267:74]
wire coherent_jbar__beatsEI_WIRE_valid = 1'h0; // @[Bundles.scala:267:74]
wire coherent_jbar__beatsEI_WIRE_1_ready = 1'h0; // @[Bundles.scala:267:61]
wire coherent_jbar__beatsEI_WIRE_1_valid = 1'h0; // @[Bundles.scala:267:61]
wire coherent_jbar__portsBIO_WIRE_ready = 1'h0; // @[Bundles.scala:264:74]
wire coherent_jbar__portsBIO_WIRE_valid = 1'h0; // @[Bundles.scala:264:74]
wire coherent_jbar__portsBIO_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire coherent_jbar__portsBIO_WIRE_1_ready = 1'h0; // @[Bundles.scala:264:61]
wire coherent_jbar__portsBIO_WIRE_1_valid = 1'h0; // @[Bundles.scala:264:61]
wire coherent_jbar__portsBIO_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire coherent_jbar_portsBIO_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire coherent_jbar_portsBIO_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire coherent_jbar_portsBIO_filtered_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire coherent_jbar__portsBIO_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire coherent_jbar__portsCOI_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire coherent_jbar__portsCOI_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire coherent_jbar__portsCOI_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire coherent_jbar__portsCOI_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire coherent_jbar__portsCOI_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire coherent_jbar__portsCOI_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire coherent_jbar_portsCOI_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire coherent_jbar_portsCOI_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire coherent_jbar_portsCOI_filtered_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire coherent_jbar__portsCOI_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire coherent_jbar__portsEOI_WIRE_ready = 1'h0; // @[Bundles.scala:267:74]
wire coherent_jbar__portsEOI_WIRE_valid = 1'h0; // @[Bundles.scala:267:74]
wire coherent_jbar__portsEOI_WIRE_1_ready = 1'h0; // @[Bundles.scala:267:61]
wire coherent_jbar__portsEOI_WIRE_1_valid = 1'h0; // @[Bundles.scala:267:61]
wire coherent_jbar_portsEOI_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire coherent_jbar_portsEOI_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire coherent_jbar__portsEOI_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire InclusiveCache_outer_TLBuffer_auto_in_b_ready = 1'h1; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_e_ready = 1'h1; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_b_ready = 1'h1; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_e_ready = 1'h1; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeOut_b_ready = 1'h1; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_nodeOut_e_ready = 1'h1; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_nodeIn_b_ready = 1'h1; // @[MixedNode.scala:551:17]
wire InclusiveCache_outer_TLBuffer_nodeIn_e_ready = 1'h1; // @[MixedNode.scala:551:17]
wire coherent_jbar__requestAIO_T_4 = 1'h1; // @[Parameters.scala:137:59]
wire coherent_jbar_requestAIO_0_0 = 1'h1; // @[Xbar.scala:307:107]
wire coherent_jbar__requestCIO_T_4 = 1'h1; // @[Parameters.scala:137:59]
wire coherent_jbar_requestCIO_0_0 = 1'h1; // @[Xbar.scala:308:107]
wire coherent_jbar__requestBOI_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire coherent_jbar__requestBOI_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire coherent_jbar__requestBOI_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire coherent_jbar__requestBOI_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire coherent_jbar_requestBOI_0_0 = 1'h1; // @[Parameters.scala:56:48]
wire coherent_jbar__requestDOI_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire coherent_jbar__requestDOI_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire coherent_jbar__requestDOI_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire coherent_jbar__requestDOI_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire coherent_jbar_requestDOI_0_0 = 1'h1; // @[Parameters.scala:56:48]
wire coherent_jbar__requestEIO_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire coherent_jbar__requestEIO_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire coherent_jbar__requestEIO_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire coherent_jbar__requestEIO_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire coherent_jbar_requestEIO_0_0 = 1'h1; // @[Parameters.scala:56:48]
wire coherent_jbar_beatsBO_opdata = 1'h1; // @[Edges.scala:97:28]
wire coherent_jbar__portsAOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire coherent_jbar__portsBIO_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire coherent_jbar__portsCOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire coherent_jbar__portsDIO_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire coherent_jbar__portsEOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_b_bits_opcode = 3'h0; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_b_bits_size = 3'h0; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_b_bits_source = 3'h0; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_b_bits_opcode = 3'h0; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_b_bits_size = 3'h0; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_b_bits_source = 3'h0; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_b_bits_opcode = 3'h0; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_b_bits_size = 3'h0; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_b_bits_source = 3'h0; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_b_bits_opcode = 3'h0; // @[MixedNode.scala:551:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_b_bits_size = 3'h0; // @[MixedNode.scala:551:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_b_bits_source = 3'h0; // @[MixedNode.scala:551:17]
wire [2:0] coherent_jbar__addressC_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] coherent_jbar__addressC_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] coherent_jbar__addressC_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] coherent_jbar__addressC_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] coherent_jbar__addressC_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] coherent_jbar__addressC_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] coherent_jbar__requestBOI_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] coherent_jbar__requestBOI_WIRE_bits_size = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] coherent_jbar__requestBOI_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] coherent_jbar__requestBOI_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] coherent_jbar__requestEIO_WIRE_bits_sink = 3'h0; // @[Bundles.scala:267:74]
wire [2:0] coherent_jbar__requestEIO_WIRE_1_bits_sink = 3'h0; // @[Bundles.scala:267:61]
wire [2:0] coherent_jbar__requestEIO_uncommonBits_T = 3'h0; // @[Parameters.scala:52:29]
wire [2:0] coherent_jbar_requestEIO_uncommonBits = 3'h0; // @[Parameters.scala:52:56]
wire [2:0] coherent_jbar__beatsBO_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] coherent_jbar__beatsBO_WIRE_bits_size = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] coherent_jbar__beatsBO_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] coherent_jbar__beatsBO_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] coherent_jbar_beatsBO_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] coherent_jbar_beatsBO_0 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] coherent_jbar__beatsCI_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] coherent_jbar__beatsCI_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] coherent_jbar__beatsCI_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] coherent_jbar__beatsCI_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] coherent_jbar__beatsCI_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] coherent_jbar__beatsCI_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] coherent_jbar_beatsCI_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] coherent_jbar_beatsCI_0 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] coherent_jbar__beatsEI_WIRE_bits_sink = 3'h0; // @[Bundles.scala:267:74]
wire [2:0] coherent_jbar__beatsEI_WIRE_1_bits_sink = 3'h0; // @[Bundles.scala:267:61]
wire [2:0] coherent_jbar__portsBIO_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] coherent_jbar__portsBIO_WIRE_bits_size = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] coherent_jbar__portsBIO_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] coherent_jbar__portsBIO_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] coherent_jbar_portsBIO_filtered_0_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] coherent_jbar_portsBIO_filtered_0_bits_size = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] coherent_jbar__portsCOI_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] coherent_jbar__portsCOI_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] coherent_jbar__portsCOI_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] coherent_jbar__portsCOI_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] coherent_jbar__portsCOI_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] coherent_jbar__portsCOI_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] coherent_jbar_portsCOI_filtered_0_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] coherent_jbar_portsCOI_filtered_0_bits_param = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] coherent_jbar_portsCOI_filtered_0_bits_size = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] coherent_jbar__portsEOI_WIRE_bits_sink = 3'h0; // @[Bundles.scala:267:74]
wire [2:0] coherent_jbar__portsEOI_WIRE_1_bits_sink = 3'h0; // @[Bundles.scala:267:61]
wire [2:0] coherent_jbar_portsEOI_filtered_0_bits_sink = 3'h0; // @[Xbar.scala:352:24]
wire [63:0] InclusiveCache_outer_TLBuffer_auto_in_b_bits_data = 64'h0; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_auto_out_b_bits_data = 64'h0; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_nodeOut_b_bits_data = 64'h0; // @[MixedNode.scala:542:17]
wire [63:0] InclusiveCache_outer_TLBuffer_nodeIn_b_bits_data = 64'h0; // @[MixedNode.scala:551:17]
wire [63:0] coherent_jbar__addressC_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] coherent_jbar__addressC_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] coherent_jbar__requestBOI_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] coherent_jbar__requestBOI_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] coherent_jbar__beatsBO_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] coherent_jbar__beatsBO_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] coherent_jbar__beatsCI_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] coherent_jbar__beatsCI_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] coherent_jbar__portsBIO_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] coherent_jbar__portsBIO_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] coherent_jbar_portsBIO_filtered_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] coherent_jbar__portsCOI_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] coherent_jbar__portsCOI_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] coherent_jbar_portsCOI_filtered_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [31:0] InclusiveCache_outer_TLBuffer_auto_in_b_bits_address = 32'h0; // @[Buffer.scala:40:9]
wire [31:0] InclusiveCache_outer_TLBuffer_auto_out_b_bits_address = 32'h0; // @[Buffer.scala:40:9]
wire [31:0] InclusiveCache_outer_TLBuffer_nodeOut_b_bits_address = 32'h0; // @[MixedNode.scala:542:17]
wire [31:0] InclusiveCache_outer_TLBuffer_nodeIn_b_bits_address = 32'h0; // @[MixedNode.scala:551:17]
wire [31:0] coherent_jbar__addressC_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] coherent_jbar__addressC_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] coherent_jbar__requestCIO_T = 32'h0; // @[Parameters.scala:137:31]
wire [31:0] coherent_jbar__requestBOI_WIRE_bits_address = 32'h0; // @[Bundles.scala:264:74]
wire [31:0] coherent_jbar__requestBOI_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:264:61]
wire [31:0] coherent_jbar__beatsBO_WIRE_bits_address = 32'h0; // @[Bundles.scala:264:74]
wire [31:0] coherent_jbar__beatsBO_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:264:61]
wire [31:0] coherent_jbar__beatsCI_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] coherent_jbar__beatsCI_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] coherent_jbar__portsBIO_WIRE_bits_address = 32'h0; // @[Bundles.scala:264:74]
wire [31:0] coherent_jbar__portsBIO_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:264:61]
wire [31:0] coherent_jbar_portsBIO_filtered_0_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [31:0] coherent_jbar__portsCOI_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] coherent_jbar__portsCOI_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] coherent_jbar_portsCOI_filtered_0_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [5:0] coherent_jbar__addressC_WIRE_bits_source = 6'h0; // @[Bundles.scala:265:74]
wire [5:0] coherent_jbar__addressC_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:265:61]
wire [5:0] coherent_jbar__requestBOI_WIRE_bits_source = 6'h0; // @[Bundles.scala:264:74]
wire [5:0] coherent_jbar__requestBOI_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:264:61]
wire [5:0] coherent_jbar__requestBOI_uncommonBits_T = 6'h0; // @[Parameters.scala:52:29]
wire [5:0] coherent_jbar_requestBOI_uncommonBits = 6'h0; // @[Parameters.scala:52:56]
wire [5:0] coherent_jbar__beatsBO_WIRE_bits_source = 6'h0; // @[Bundles.scala:264:74]
wire [5:0] coherent_jbar__beatsBO_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:264:61]
wire [5:0] coherent_jbar__beatsBO_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] coherent_jbar__beatsCI_WIRE_bits_source = 6'h0; // @[Bundles.scala:265:74]
wire [5:0] coherent_jbar__beatsCI_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:265:61]
wire [5:0] coherent_jbar__beatsCI_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] coherent_jbar__portsBIO_WIRE_bits_source = 6'h0; // @[Bundles.scala:264:74]
wire [5:0] coherent_jbar__portsBIO_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:264:61]
wire [5:0] coherent_jbar_portsBIO_filtered_0_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [5:0] coherent_jbar__portsCOI_WIRE_bits_source = 6'h0; // @[Bundles.scala:265:74]
wire [5:0] coherent_jbar__portsCOI_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:265:61]
wire [5:0] coherent_jbar_portsCOI_filtered_0_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [7:0] InclusiveCache_outer_TLBuffer_auto_in_b_bits_mask = 8'h0; // @[Buffer.scala:40:9]
wire [7:0] InclusiveCache_outer_TLBuffer_auto_out_b_bits_mask = 8'h0; // @[Buffer.scala:40:9]
wire [7:0] InclusiveCache_outer_TLBuffer_nodeOut_b_bits_mask = 8'h0; // @[MixedNode.scala:542:17]
wire [7:0] InclusiveCache_outer_TLBuffer_nodeIn_b_bits_mask = 8'h0; // @[MixedNode.scala:551:17]
wire [7:0] coherent_jbar__requestBOI_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] coherent_jbar__requestBOI_WIRE_1_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] coherent_jbar__beatsBO_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] coherent_jbar__beatsBO_WIRE_1_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] coherent_jbar__portsBIO_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] coherent_jbar__portsBIO_WIRE_1_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] coherent_jbar_portsBIO_filtered_0_bits_mask = 8'h0; // @[Xbar.scala:352:24]
wire [5:0] coherent_jbar__beatsBO_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [5:0] coherent_jbar__beatsCI_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] coherent_jbar__beatsBO_decode_T = 13'h3F; // @[package.scala:243:71]
wire [12:0] coherent_jbar__beatsCI_decode_T = 13'h3F; // @[package.scala:243:71]
wire [32:0] coherent_jbar__requestAIO_T_2 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] coherent_jbar__requestAIO_T_3 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] coherent_jbar__requestCIO_T_1 = 33'h0; // @[Parameters.scala:137:41]
wire [32:0] coherent_jbar__requestCIO_T_2 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] coherent_jbar__requestCIO_T_3 = 33'h0; // @[Parameters.scala:137:46]
wire coupler_to_bus_named_mbus_auto_bus_xing_out_a_ready = auto_coupler_to_bus_named_mbus_bus_xing_out_a_ready_0; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_mbus_auto_bus_xing_out_a_valid; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_size; // @[LazyModuleImp.scala:138:7]
wire [3:0] coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_source; // @[LazyModuleImp.scala:138:7]
wire [31:0] coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_address; // @[LazyModuleImp.scala:138:7]
wire [7:0] coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_mask; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_data; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_auto_bus_xing_out_d_ready; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_auto_bus_xing_out_d_valid = auto_coupler_to_bus_named_mbus_bus_xing_out_d_valid_0; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_opcode = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [1:0] coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_param = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_param_0; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_size = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_size_0; // @[ClockDomain.scala:14:9]
wire [3:0] coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_source = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_source_0; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_sink = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_sink_0; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_denied = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_denied_0; // @[ClockDomain.scala:14:9]
wire [63:0] coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_data = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_data_0; // @[ClockDomain.scala:14:9]
wire coherent_jbar_auto_anon_in_a_ready; // @[Jbar.scala:44:9]
wire coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_corrupt = auto_coupler_to_bus_named_mbus_bus_xing_out_d_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire coherent_jbar_auto_anon_in_a_valid = auto_coherent_jbar_anon_in_a_valid_0; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_auto_anon_in_a_bits_opcode = auto_coherent_jbar_anon_in_a_bits_opcode_0; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_auto_anon_in_a_bits_param = auto_coherent_jbar_anon_in_a_bits_param_0; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_auto_anon_in_a_bits_size = auto_coherent_jbar_anon_in_a_bits_size_0; // @[Jbar.scala:44:9]
wire [5:0] coherent_jbar_auto_anon_in_a_bits_source = auto_coherent_jbar_anon_in_a_bits_source_0; // @[Jbar.scala:44:9]
wire [31:0] coherent_jbar_auto_anon_in_a_bits_address = auto_coherent_jbar_anon_in_a_bits_address_0; // @[Jbar.scala:44:9]
wire [7:0] coherent_jbar_auto_anon_in_a_bits_mask = auto_coherent_jbar_anon_in_a_bits_mask_0; // @[Jbar.scala:44:9]
wire [63:0] coherent_jbar_auto_anon_in_a_bits_data = auto_coherent_jbar_anon_in_a_bits_data_0; // @[Jbar.scala:44:9]
wire coherent_jbar_auto_anon_in_a_bits_corrupt = auto_coherent_jbar_anon_in_a_bits_corrupt_0; // @[Jbar.scala:44:9]
wire coherent_jbar_auto_anon_in_d_ready = auto_coherent_jbar_anon_in_d_ready_0; // @[Jbar.scala:44:9]
wire coherent_jbar_auto_anon_in_d_valid; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_auto_anon_in_d_bits_opcode; // @[Jbar.scala:44:9]
wire [1:0] coherent_jbar_auto_anon_in_d_bits_param; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_auto_anon_in_d_bits_size; // @[Jbar.scala:44:9]
wire [5:0] coherent_jbar_auto_anon_in_d_bits_source; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_auto_anon_in_d_bits_sink; // @[Jbar.scala:44:9]
wire coherent_jbar_auto_anon_in_d_bits_denied; // @[Jbar.scala:44:9]
wire [63:0] coherent_jbar_auto_anon_in_d_bits_data; // @[Jbar.scala:44:9]
wire coherent_jbar_auto_anon_in_d_bits_corrupt; // @[Jbar.scala:44:9]
wire coh_clock_groups_auto_in_member_coh_0_clock = auto_coh_clock_groups_in_member_coh_0_clock_0; // @[ClockGroup.scala:53:9]
wire coh_clock_groups_auto_in_member_coh_0_reset = auto_coh_clock_groups_in_member_coh_0_reset_0; // @[ClockGroup.scala:53:9]
wire [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [3:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [31:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_mbus_bus_xing_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_bus_named_mbus_bus_xing_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire auto_coherent_jbar_anon_in_a_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coherent_jbar_anon_in_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coherent_jbar_anon_in_d_bits_param_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coherent_jbar_anon_in_d_bits_size_0; // @[ClockDomain.scala:14:9]
wire [5:0] auto_coherent_jbar_anon_in_d_bits_source_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coherent_jbar_anon_in_d_bits_sink_0; // @[ClockDomain.scala:14:9]
wire auto_coherent_jbar_anon_in_d_bits_denied_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coherent_jbar_anon_in_d_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coherent_jbar_anon_in_d_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coherent_jbar_anon_in_d_valid_0; // @[ClockDomain.scala:14:9]
wire auto_l2_ctrls_ctrl_in_a_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_l2_ctrls_ctrl_in_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_l2_ctrls_ctrl_in_d_bits_size_0; // @[ClockDomain.scala:14:9]
wire [10:0] auto_l2_ctrls_ctrl_in_d_bits_source_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_l2_ctrls_ctrl_in_d_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_l2_ctrls_ctrl_in_d_valid_0; // @[ClockDomain.scala:14:9]
wire clockSinkNodeIn_clock; // @[MixedNode.scala:551:17]
wire clockSinkNodeIn_reset; // @[MixedNode.scala:551:17]
wire childClock; // @[LazyModuleImp.scala:155:31]
wire childReset; // @[LazyModuleImp.scala:158:31]
wire coh_clock_groups_nodeIn_member_coh_0_clock = coh_clock_groups_auto_in_member_coh_0_clock; // @[ClockGroup.scala:53:9]
wire coh_clock_groups_nodeOut_member_coh_0_clock; // @[MixedNode.scala:542:17]
wire coh_clock_groups_nodeIn_member_coh_0_reset = coh_clock_groups_auto_in_member_coh_0_reset; // @[ClockGroup.scala:53:9]
wire coh_clock_groups_nodeOut_member_coh_0_reset; // @[MixedNode.scala:542:17]
wire clockGroup_auto_in_member_coh_0_clock = coh_clock_groups_auto_out_member_coh_0_clock; // @[ClockGroup.scala:24:9, :53:9]
wire clockGroup_auto_in_member_coh_0_reset = coh_clock_groups_auto_out_member_coh_0_reset; // @[ClockGroup.scala:24:9, :53:9]
assign coh_clock_groups_auto_out_member_coh_0_clock = coh_clock_groups_nodeOut_member_coh_0_clock; // @[ClockGroup.scala:53:9]
assign coh_clock_groups_auto_out_member_coh_0_reset = coh_clock_groups_nodeOut_member_coh_0_reset; // @[ClockGroup.scala:53:9]
assign coh_clock_groups_nodeOut_member_coh_0_clock = coh_clock_groups_nodeIn_member_coh_0_clock; // @[MixedNode.scala:542:17, :551:17]
assign coh_clock_groups_nodeOut_member_coh_0_reset = coh_clock_groups_nodeIn_member_coh_0_reset; // @[MixedNode.scala:542:17, :551:17]
wire clockGroup_nodeIn_member_coh_0_clock = clockGroup_auto_in_member_coh_0_clock; // @[ClockGroup.scala:24:9]
wire clockGroup_nodeOut_clock; // @[MixedNode.scala:542:17]
wire clockGroup_nodeIn_member_coh_0_reset = clockGroup_auto_in_member_coh_0_reset; // @[ClockGroup.scala:24:9]
wire clockGroup_nodeOut_reset; // @[MixedNode.scala:542:17]
wire fixedClockNode_auto_anon_in_clock = clockGroup_auto_out_clock; // @[ClockGroup.scala:24:9, :104:9]
wire fixedClockNode_auto_anon_in_reset = clockGroup_auto_out_reset; // @[ClockGroup.scala:24:9, :104:9]
assign clockGroup_auto_out_clock = clockGroup_nodeOut_clock; // @[ClockGroup.scala:24:9]
assign clockGroup_auto_out_reset = clockGroup_nodeOut_reset; // @[ClockGroup.scala:24:9]
assign clockGroup_nodeOut_clock = clockGroup_nodeIn_member_coh_0_clock; // @[MixedNode.scala:542:17, :551:17]
assign clockGroup_nodeOut_reset = clockGroup_nodeIn_member_coh_0_reset; // @[MixedNode.scala:542:17, :551:17]
wire fixedClockNode_anonIn_clock = fixedClockNode_auto_anon_in_clock; // @[ClockGroup.scala:104:9]
wire fixedClockNode_anonOut_clock; // @[MixedNode.scala:542:17]
wire fixedClockNode_anonIn_reset = fixedClockNode_auto_anon_in_reset; // @[ClockGroup.scala:104:9]
wire fixedClockNode_anonOut_reset; // @[MixedNode.scala:542:17]
assign clockSinkNodeIn_clock = fixedClockNode_auto_anon_out_clock; // @[ClockGroup.scala:104:9]
assign clockSinkNodeIn_reset = fixedClockNode_auto_anon_out_reset; // @[ClockGroup.scala:104:9]
assign fixedClockNode_auto_anon_out_clock = fixedClockNode_anonOut_clock; // @[ClockGroup.scala:104:9]
assign fixedClockNode_auto_anon_out_reset = fixedClockNode_anonOut_reset; // @[ClockGroup.scala:104:9]
assign fixedClockNode_anonOut_clock = fixedClockNode_anonIn_clock; // @[MixedNode.scala:542:17, :551:17]
assign fixedClockNode_anonOut_reset = fixedClockNode_anonIn_reset; // @[MixedNode.scala:542:17, :551:17]
wire filter_anonIn_a_ready; // @[MixedNode.scala:551:17]
wire coherent_jbar_auto_anon_out_a_ready = filter_auto_anon_in_a_ready; // @[Jbar.scala:44:9]
wire coherent_jbar_auto_anon_out_a_valid; // @[Jbar.scala:44:9]
wire filter_anonIn_a_valid = filter_auto_anon_in_a_valid; // @[Filter.scala:60:9]
wire [2:0] coherent_jbar_auto_anon_out_a_bits_opcode; // @[Jbar.scala:44:9]
wire [2:0] filter_anonIn_a_bits_opcode = filter_auto_anon_in_a_bits_opcode; // @[Filter.scala:60:9]
wire [2:0] coherent_jbar_auto_anon_out_a_bits_param; // @[Jbar.scala:44:9]
wire [2:0] filter_anonIn_a_bits_param = filter_auto_anon_in_a_bits_param; // @[Filter.scala:60:9]
wire [2:0] coherent_jbar_auto_anon_out_a_bits_size; // @[Jbar.scala:44:9]
wire [2:0] filter_anonIn_a_bits_size = filter_auto_anon_in_a_bits_size; // @[Filter.scala:60:9]
wire [5:0] coherent_jbar_auto_anon_out_a_bits_source; // @[Jbar.scala:44:9]
wire [5:0] filter_anonIn_a_bits_source = filter_auto_anon_in_a_bits_source; // @[Filter.scala:60:9]
wire [31:0] coherent_jbar_auto_anon_out_a_bits_address; // @[Jbar.scala:44:9]
wire [31:0] filter_anonIn_a_bits_address = filter_auto_anon_in_a_bits_address; // @[Filter.scala:60:9]
wire [7:0] coherent_jbar_auto_anon_out_a_bits_mask; // @[Jbar.scala:44:9]
wire [7:0] filter_anonIn_a_bits_mask = filter_auto_anon_in_a_bits_mask; // @[Filter.scala:60:9]
wire [63:0] coherent_jbar_auto_anon_out_a_bits_data; // @[Jbar.scala:44:9]
wire [63:0] filter_anonIn_a_bits_data = filter_auto_anon_in_a_bits_data; // @[Filter.scala:60:9]
wire coherent_jbar_auto_anon_out_a_bits_corrupt; // @[Jbar.scala:44:9]
wire filter_anonIn_a_bits_corrupt = filter_auto_anon_in_a_bits_corrupt; // @[Filter.scala:60:9]
wire coherent_jbar_auto_anon_out_d_ready; // @[Jbar.scala:44:9]
wire filter_anonIn_d_ready = filter_auto_anon_in_d_ready; // @[Filter.scala:60:9]
wire filter_anonIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] filter_anonIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire coherent_jbar_auto_anon_out_d_valid = filter_auto_anon_in_d_valid; // @[Jbar.scala:44:9]
wire [1:0] filter_anonIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] coherent_jbar_auto_anon_out_d_bits_opcode = filter_auto_anon_in_d_bits_opcode; // @[Jbar.scala:44:9]
wire [2:0] filter_anonIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [1:0] coherent_jbar_auto_anon_out_d_bits_param = filter_auto_anon_in_d_bits_param; // @[Jbar.scala:44:9]
wire [5:0] filter_anonIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [2:0] coherent_jbar_auto_anon_out_d_bits_size = filter_auto_anon_in_d_bits_size; // @[Jbar.scala:44:9]
wire [2:0] filter_anonIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire [5:0] coherent_jbar_auto_anon_out_d_bits_source = filter_auto_anon_in_d_bits_source; // @[Jbar.scala:44:9]
wire filter_anonIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [2:0] coherent_jbar_auto_anon_out_d_bits_sink = filter_auto_anon_in_d_bits_sink; // @[Jbar.scala:44:9]
wire [63:0] filter_anonIn_d_bits_data; // @[MixedNode.scala:551:17]
wire coherent_jbar_auto_anon_out_d_bits_denied = filter_auto_anon_in_d_bits_denied; // @[Jbar.scala:44:9]
wire filter_anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire [63:0] coherent_jbar_auto_anon_out_d_bits_data = filter_auto_anon_in_d_bits_data; // @[Jbar.scala:44:9]
wire coherent_jbar_auto_anon_out_d_bits_corrupt = filter_auto_anon_in_d_bits_corrupt; // @[Jbar.scala:44:9]
wire filter_anonOut_a_ready = filter_auto_anon_out_a_ready; // @[Filter.scala:60:9]
wire filter_anonOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] filter_anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] filter_anonOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] filter_anonOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [5:0] filter_anonOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] filter_anonOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] filter_anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] filter_anonOut_a_bits_data; // @[MixedNode.scala:542:17]
wire filter_anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire filter_anonOut_d_ready; // @[MixedNode.scala:542:17]
wire filter_anonOut_d_valid = filter_auto_anon_out_d_valid; // @[Filter.scala:60:9]
wire [2:0] filter_anonOut_d_bits_opcode = filter_auto_anon_out_d_bits_opcode; // @[Filter.scala:60:9]
wire [1:0] filter_anonOut_d_bits_param = filter_auto_anon_out_d_bits_param; // @[Filter.scala:60:9]
wire [2:0] filter_anonOut_d_bits_size = filter_auto_anon_out_d_bits_size; // @[Filter.scala:60:9]
wire [5:0] filter_anonOut_d_bits_source = filter_auto_anon_out_d_bits_source; // @[Filter.scala:60:9]
wire [2:0] filter_anonOut_d_bits_sink = filter_auto_anon_out_d_bits_sink; // @[Filter.scala:60:9]
wire filter_anonOut_d_bits_denied = filter_auto_anon_out_d_bits_denied; // @[Filter.scala:60:9]
wire [63:0] filter_anonOut_d_bits_data = filter_auto_anon_out_d_bits_data; // @[Filter.scala:60:9]
wire filter_anonOut_d_bits_corrupt = filter_auto_anon_out_d_bits_corrupt; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_out_a_bits_opcode; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_out_a_bits_param; // @[Filter.scala:60:9]
wire [2:0] filter_auto_anon_out_a_bits_size; // @[Filter.scala:60:9]
wire [5:0] filter_auto_anon_out_a_bits_source; // @[Filter.scala:60:9]
wire [31:0] filter_auto_anon_out_a_bits_address; // @[Filter.scala:60:9]
wire [7:0] filter_auto_anon_out_a_bits_mask; // @[Filter.scala:60:9]
wire [63:0] filter_auto_anon_out_a_bits_data; // @[Filter.scala:60:9]
wire filter_auto_anon_out_a_bits_corrupt; // @[Filter.scala:60:9]
wire filter_auto_anon_out_a_valid; // @[Filter.scala:60:9]
wire filter_auto_anon_out_d_ready; // @[Filter.scala:60:9]
assign filter_anonIn_a_ready = filter_anonOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign filter_auto_anon_out_a_valid = filter_anonOut_a_valid; // @[Filter.scala:60:9]
assign filter_auto_anon_out_a_bits_opcode = filter_anonOut_a_bits_opcode; // @[Filter.scala:60:9]
assign filter_auto_anon_out_a_bits_param = filter_anonOut_a_bits_param; // @[Filter.scala:60:9]
assign filter_auto_anon_out_a_bits_size = filter_anonOut_a_bits_size; // @[Filter.scala:60:9]
assign filter_auto_anon_out_a_bits_source = filter_anonOut_a_bits_source; // @[Filter.scala:60:9]
assign filter_auto_anon_out_a_bits_address = filter_anonOut_a_bits_address; // @[Filter.scala:60:9]
assign filter_auto_anon_out_a_bits_mask = filter_anonOut_a_bits_mask; // @[Filter.scala:60:9]
assign filter_auto_anon_out_a_bits_data = filter_anonOut_a_bits_data; // @[Filter.scala:60:9]
assign filter_auto_anon_out_a_bits_corrupt = filter_anonOut_a_bits_corrupt; // @[Filter.scala:60:9]
assign filter_auto_anon_out_d_ready = filter_anonOut_d_ready; // @[Filter.scala:60:9]
assign filter_anonIn_d_valid = filter_anonOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonIn_d_bits_opcode = filter_anonOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonIn_d_bits_param = filter_anonOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonIn_d_bits_size = filter_anonOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonIn_d_bits_source = filter_anonOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonIn_d_bits_sink = filter_anonOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonIn_d_bits_denied = filter_anonOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonIn_d_bits_data = filter_anonOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonIn_d_bits_corrupt = filter_anonOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign filter_auto_anon_in_a_ready = filter_anonIn_a_ready; // @[Filter.scala:60:9]
assign filter_anonOut_a_valid = filter_anonIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonOut_a_bits_opcode = filter_anonIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonOut_a_bits_param = filter_anonIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonOut_a_bits_size = filter_anonIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonOut_a_bits_source = filter_anonIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonOut_a_bits_address = filter_anonIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonOut_a_bits_mask = filter_anonIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonOut_a_bits_data = filter_anonIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonOut_a_bits_corrupt = filter_anonIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign filter_anonOut_d_ready = filter_anonIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign filter_auto_anon_in_d_valid = filter_anonIn_d_valid; // @[Filter.scala:60:9]
assign filter_auto_anon_in_d_bits_opcode = filter_anonIn_d_bits_opcode; // @[Filter.scala:60:9]
assign filter_auto_anon_in_d_bits_param = filter_anonIn_d_bits_param; // @[Filter.scala:60:9]
assign filter_auto_anon_in_d_bits_size = filter_anonIn_d_bits_size; // @[Filter.scala:60:9]
assign filter_auto_anon_in_d_bits_source = filter_anonIn_d_bits_source; // @[Filter.scala:60:9]
assign filter_auto_anon_in_d_bits_sink = filter_anonIn_d_bits_sink; // @[Filter.scala:60:9]
assign filter_auto_anon_in_d_bits_denied = filter_anonIn_d_bits_denied; // @[Filter.scala:60:9]
assign filter_auto_anon_in_d_bits_data = filter_anonIn_d_bits_data; // @[Filter.scala:60:9]
assign filter_auto_anon_in_d_bits_corrupt = filter_anonIn_d_bits_corrupt; // @[Filter.scala:60:9]
wire InclusiveCache_outer_TLBuffer_nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire InclusiveCache_outer_TLBuffer_nodeIn_a_valid = InclusiveCache_outer_TLBuffer_auto_in_a_valid; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_a_bits_opcode = InclusiveCache_outer_TLBuffer_auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_a_bits_param = InclusiveCache_outer_TLBuffer_auto_in_a_bits_param; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_a_bits_size = InclusiveCache_outer_TLBuffer_auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_a_bits_source = InclusiveCache_outer_TLBuffer_auto_in_a_bits_source; // @[Buffer.scala:40:9]
wire [31:0] InclusiveCache_outer_TLBuffer_nodeIn_a_bits_address = InclusiveCache_outer_TLBuffer_auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] InclusiveCache_outer_TLBuffer_nodeIn_a_bits_mask = InclusiveCache_outer_TLBuffer_auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_nodeIn_a_bits_data = InclusiveCache_outer_TLBuffer_auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeIn_a_bits_corrupt = InclusiveCache_outer_TLBuffer_auto_in_a_bits_corrupt; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeIn_c_ready; // @[MixedNode.scala:551:17]
wire InclusiveCache_outer_TLBuffer_nodeIn_c_valid = InclusiveCache_outer_TLBuffer_auto_in_c_valid; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_c_bits_opcode = InclusiveCache_outer_TLBuffer_auto_in_c_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_c_bits_param = InclusiveCache_outer_TLBuffer_auto_in_c_bits_param; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_c_bits_size = InclusiveCache_outer_TLBuffer_auto_in_c_bits_size; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_c_bits_source = InclusiveCache_outer_TLBuffer_auto_in_c_bits_source; // @[Buffer.scala:40:9]
wire [31:0] InclusiveCache_outer_TLBuffer_nodeIn_c_bits_address = InclusiveCache_outer_TLBuffer_auto_in_c_bits_address; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_nodeIn_c_bits_data = InclusiveCache_outer_TLBuffer_auto_in_c_bits_data; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeIn_c_bits_corrupt = InclusiveCache_outer_TLBuffer_auto_in_c_bits_corrupt; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeIn_d_ready = InclusiveCache_outer_TLBuffer_auto_in_d_ready; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] InclusiveCache_outer_TLBuffer_nodeIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire InclusiveCache_outer_TLBuffer_nodeIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] InclusiveCache_outer_TLBuffer_nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire InclusiveCache_outer_TLBuffer_nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire InclusiveCache_outer_TLBuffer_nodeIn_e_valid = InclusiveCache_outer_TLBuffer_auto_in_e_valid; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeIn_e_bits_sink = InclusiveCache_outer_TLBuffer_auto_in_e_bits_sink; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeOut_a_ready = InclusiveCache_outer_TLBuffer_auto_out_a_ready; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] InclusiveCache_outer_TLBuffer_nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] InclusiveCache_outer_TLBuffer_nodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] InclusiveCache_outer_TLBuffer_nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_nodeOut_c_ready = InclusiveCache_outer_TLBuffer_auto_out_c_ready; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeOut_c_valid; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_c_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_c_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_c_bits_size; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_c_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] InclusiveCache_outer_TLBuffer_nodeOut_c_bits_address; // @[MixedNode.scala:542:17]
wire [63:0] InclusiveCache_outer_TLBuffer_nodeOut_c_bits_data; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_nodeOut_c_bits_corrupt; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_nodeOut_d_ready; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_nodeOut_d_valid = InclusiveCache_outer_TLBuffer_auto_out_d_valid; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_d_bits_opcode = InclusiveCache_outer_TLBuffer_auto_out_d_bits_opcode; // @[Buffer.scala:40:9]
wire [1:0] InclusiveCache_outer_TLBuffer_nodeOut_d_bits_param = InclusiveCache_outer_TLBuffer_auto_out_d_bits_param; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_d_bits_size = InclusiveCache_outer_TLBuffer_auto_out_d_bits_size; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_d_bits_source = InclusiveCache_outer_TLBuffer_auto_out_d_bits_source; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_d_bits_sink = InclusiveCache_outer_TLBuffer_auto_out_d_bits_sink; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeOut_d_bits_denied = InclusiveCache_outer_TLBuffer_auto_out_d_bits_denied; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_nodeOut_d_bits_data = InclusiveCache_outer_TLBuffer_auto_out_d_bits_data; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeOut_d_bits_corrupt = InclusiveCache_outer_TLBuffer_auto_out_d_bits_corrupt; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_nodeOut_e_valid; // @[MixedNode.scala:542:17]
wire [2:0] InclusiveCache_outer_TLBuffer_nodeOut_e_bits_sink; // @[MixedNode.scala:542:17]
wire InclusiveCache_outer_TLBuffer_auto_in_a_ready; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_c_ready; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_d_bits_opcode; // @[Buffer.scala:40:9]
wire [1:0] InclusiveCache_outer_TLBuffer_auto_in_d_bits_param; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_d_bits_size; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_d_bits_source; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_in_d_bits_sink; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_d_bits_denied; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_auto_in_d_bits_data; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_d_bits_corrupt; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_in_d_valid; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_a_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_a_bits_param; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_a_bits_size; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_a_bits_source; // @[Buffer.scala:40:9]
wire [31:0] InclusiveCache_outer_TLBuffer_auto_out_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] InclusiveCache_outer_TLBuffer_auto_out_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_auto_out_a_bits_data; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_a_bits_corrupt; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_a_valid; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_c_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_c_bits_param; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_c_bits_size; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_c_bits_source; // @[Buffer.scala:40:9]
wire [31:0] InclusiveCache_outer_TLBuffer_auto_out_c_bits_address; // @[Buffer.scala:40:9]
wire [63:0] InclusiveCache_outer_TLBuffer_auto_out_c_bits_data; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_c_bits_corrupt; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_c_valid; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_d_ready; // @[Buffer.scala:40:9]
wire [2:0] InclusiveCache_outer_TLBuffer_auto_out_e_bits_sink; // @[Buffer.scala:40:9]
wire InclusiveCache_outer_TLBuffer_auto_out_e_valid; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_nodeIn_a_ready = InclusiveCache_outer_TLBuffer_nodeOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_auto_out_a_valid = InclusiveCache_outer_TLBuffer_nodeOut_a_valid; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_a_bits_opcode = InclusiveCache_outer_TLBuffer_nodeOut_a_bits_opcode; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_a_bits_param = InclusiveCache_outer_TLBuffer_nodeOut_a_bits_param; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_a_bits_size = InclusiveCache_outer_TLBuffer_nodeOut_a_bits_size; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_a_bits_source = InclusiveCache_outer_TLBuffer_nodeOut_a_bits_source; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_a_bits_address = InclusiveCache_outer_TLBuffer_nodeOut_a_bits_address; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_a_bits_mask = InclusiveCache_outer_TLBuffer_nodeOut_a_bits_mask; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_a_bits_data = InclusiveCache_outer_TLBuffer_nodeOut_a_bits_data; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_a_bits_corrupt = InclusiveCache_outer_TLBuffer_nodeOut_a_bits_corrupt; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_nodeIn_c_ready = InclusiveCache_outer_TLBuffer_nodeOut_c_ready; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_auto_out_c_valid = InclusiveCache_outer_TLBuffer_nodeOut_c_valid; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_c_bits_opcode = InclusiveCache_outer_TLBuffer_nodeOut_c_bits_opcode; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_c_bits_param = InclusiveCache_outer_TLBuffer_nodeOut_c_bits_param; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_c_bits_size = InclusiveCache_outer_TLBuffer_nodeOut_c_bits_size; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_c_bits_source = InclusiveCache_outer_TLBuffer_nodeOut_c_bits_source; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_c_bits_address = InclusiveCache_outer_TLBuffer_nodeOut_c_bits_address; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_c_bits_data = InclusiveCache_outer_TLBuffer_nodeOut_c_bits_data; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_c_bits_corrupt = InclusiveCache_outer_TLBuffer_nodeOut_c_bits_corrupt; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_d_ready = InclusiveCache_outer_TLBuffer_nodeOut_d_ready; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_nodeIn_d_valid = InclusiveCache_outer_TLBuffer_nodeOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeIn_d_bits_opcode = InclusiveCache_outer_TLBuffer_nodeOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeIn_d_bits_param = InclusiveCache_outer_TLBuffer_nodeOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeIn_d_bits_size = InclusiveCache_outer_TLBuffer_nodeOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeIn_d_bits_source = InclusiveCache_outer_TLBuffer_nodeOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeIn_d_bits_sink = InclusiveCache_outer_TLBuffer_nodeOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeIn_d_bits_denied = InclusiveCache_outer_TLBuffer_nodeOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeIn_d_bits_data = InclusiveCache_outer_TLBuffer_nodeOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeIn_d_bits_corrupt = InclusiveCache_outer_TLBuffer_nodeOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_auto_out_e_valid = InclusiveCache_outer_TLBuffer_nodeOut_e_valid; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_out_e_bits_sink = InclusiveCache_outer_TLBuffer_nodeOut_e_bits_sink; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_in_a_ready = InclusiveCache_outer_TLBuffer_nodeIn_a_ready; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_nodeOut_a_valid = InclusiveCache_outer_TLBuffer_nodeIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_a_bits_opcode = InclusiveCache_outer_TLBuffer_nodeIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_a_bits_param = InclusiveCache_outer_TLBuffer_nodeIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_a_bits_size = InclusiveCache_outer_TLBuffer_nodeIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_a_bits_source = InclusiveCache_outer_TLBuffer_nodeIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_a_bits_address = InclusiveCache_outer_TLBuffer_nodeIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_a_bits_mask = InclusiveCache_outer_TLBuffer_nodeIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_a_bits_data = InclusiveCache_outer_TLBuffer_nodeIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_a_bits_corrupt = InclusiveCache_outer_TLBuffer_nodeIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_auto_in_c_ready = InclusiveCache_outer_TLBuffer_nodeIn_c_ready; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_nodeOut_c_valid = InclusiveCache_outer_TLBuffer_nodeIn_c_valid; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_c_bits_opcode = InclusiveCache_outer_TLBuffer_nodeIn_c_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_c_bits_param = InclusiveCache_outer_TLBuffer_nodeIn_c_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_c_bits_size = InclusiveCache_outer_TLBuffer_nodeIn_c_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_c_bits_source = InclusiveCache_outer_TLBuffer_nodeIn_c_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_c_bits_address = InclusiveCache_outer_TLBuffer_nodeIn_c_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_c_bits_data = InclusiveCache_outer_TLBuffer_nodeIn_c_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_c_bits_corrupt = InclusiveCache_outer_TLBuffer_nodeIn_c_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_d_ready = InclusiveCache_outer_TLBuffer_nodeIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_auto_in_d_valid = InclusiveCache_outer_TLBuffer_nodeIn_d_valid; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_in_d_bits_opcode = InclusiveCache_outer_TLBuffer_nodeIn_d_bits_opcode; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_in_d_bits_param = InclusiveCache_outer_TLBuffer_nodeIn_d_bits_param; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_in_d_bits_size = InclusiveCache_outer_TLBuffer_nodeIn_d_bits_size; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_in_d_bits_source = InclusiveCache_outer_TLBuffer_nodeIn_d_bits_source; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_in_d_bits_sink = InclusiveCache_outer_TLBuffer_nodeIn_d_bits_sink; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_in_d_bits_denied = InclusiveCache_outer_TLBuffer_nodeIn_d_bits_denied; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_in_d_bits_data = InclusiveCache_outer_TLBuffer_nodeIn_d_bits_data; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_auto_in_d_bits_corrupt = InclusiveCache_outer_TLBuffer_nodeIn_d_bits_corrupt; // @[Buffer.scala:40:9]
assign InclusiveCache_outer_TLBuffer_nodeOut_e_valid = InclusiveCache_outer_TLBuffer_nodeIn_e_valid; // @[MixedNode.scala:542:17, :551:17]
assign InclusiveCache_outer_TLBuffer_nodeOut_e_bits_sink = InclusiveCache_outer_TLBuffer_nodeIn_e_bits_sink; // @[MixedNode.scala:542:17, :551:17]
wire coherent_jbar_anonIn_a_ready; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_a_ready_0 = coherent_jbar_auto_anon_in_a_ready; // @[Jbar.scala:44:9]
wire coherent_jbar_anonIn_a_valid = coherent_jbar_auto_anon_in_a_valid; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonIn_a_bits_opcode = coherent_jbar_auto_anon_in_a_bits_opcode; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonIn_a_bits_param = coherent_jbar_auto_anon_in_a_bits_param; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonIn_a_bits_size = coherent_jbar_auto_anon_in_a_bits_size; // @[Jbar.scala:44:9]
wire [5:0] coherent_jbar_anonIn_a_bits_source = coherent_jbar_auto_anon_in_a_bits_source; // @[Jbar.scala:44:9]
wire [31:0] coherent_jbar_anonIn_a_bits_address = coherent_jbar_auto_anon_in_a_bits_address; // @[Jbar.scala:44:9]
wire [7:0] coherent_jbar_anonIn_a_bits_mask = coherent_jbar_auto_anon_in_a_bits_mask; // @[Jbar.scala:44:9]
wire [63:0] coherent_jbar_anonIn_a_bits_data = coherent_jbar_auto_anon_in_a_bits_data; // @[Jbar.scala:44:9]
wire coherent_jbar_anonIn_a_bits_corrupt = coherent_jbar_auto_anon_in_a_bits_corrupt; // @[Jbar.scala:44:9]
wire coherent_jbar_anonIn_d_ready = coherent_jbar_auto_anon_in_d_ready; // @[Jbar.scala:44:9]
wire coherent_jbar_anonIn_d_valid; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_d_valid_0 = coherent_jbar_auto_anon_in_d_valid; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonIn_d_bits_opcode; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_d_bits_opcode_0 = coherent_jbar_auto_anon_in_d_bits_opcode; // @[Jbar.scala:44:9]
wire [1:0] coherent_jbar_anonIn_d_bits_param; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_d_bits_param_0 = coherent_jbar_auto_anon_in_d_bits_param; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonIn_d_bits_size; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_d_bits_size_0 = coherent_jbar_auto_anon_in_d_bits_size; // @[Jbar.scala:44:9]
wire [5:0] coherent_jbar_anonIn_d_bits_source; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_d_bits_source_0 = coherent_jbar_auto_anon_in_d_bits_source; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonIn_d_bits_sink; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_d_bits_sink_0 = coherent_jbar_auto_anon_in_d_bits_sink; // @[Jbar.scala:44:9]
wire coherent_jbar_anonIn_d_bits_denied; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_d_bits_denied_0 = coherent_jbar_auto_anon_in_d_bits_denied; // @[Jbar.scala:44:9]
wire [63:0] coherent_jbar_anonIn_d_bits_data; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_d_bits_data_0 = coherent_jbar_auto_anon_in_d_bits_data; // @[Jbar.scala:44:9]
wire coherent_jbar_anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
assign auto_coherent_jbar_anon_in_d_bits_corrupt_0 = coherent_jbar_auto_anon_in_d_bits_corrupt; // @[Jbar.scala:44:9]
wire coherent_jbar_anonOut_a_ready = coherent_jbar_auto_anon_out_a_ready; // @[Jbar.scala:44:9]
wire coherent_jbar_anonOut_a_valid; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_a_valid = coherent_jbar_auto_anon_out_a_valid; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_a_bits_opcode = coherent_jbar_auto_anon_out_a_bits_opcode; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonOut_a_bits_param; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_a_bits_param = coherent_jbar_auto_anon_out_a_bits_param; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonOut_a_bits_size; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_a_bits_size = coherent_jbar_auto_anon_out_a_bits_size; // @[Jbar.scala:44:9]
wire [5:0] coherent_jbar_anonOut_a_bits_source; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_a_bits_source = coherent_jbar_auto_anon_out_a_bits_source; // @[Jbar.scala:44:9]
wire [31:0] coherent_jbar_anonOut_a_bits_address; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_a_bits_address = coherent_jbar_auto_anon_out_a_bits_address; // @[Jbar.scala:44:9]
wire [7:0] coherent_jbar_anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_a_bits_mask = coherent_jbar_auto_anon_out_a_bits_mask; // @[Jbar.scala:44:9]
wire [63:0] coherent_jbar_anonOut_a_bits_data; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_a_bits_data = coherent_jbar_auto_anon_out_a_bits_data; // @[Jbar.scala:44:9]
wire coherent_jbar_anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_a_bits_corrupt = coherent_jbar_auto_anon_out_a_bits_corrupt; // @[Jbar.scala:44:9]
wire coherent_jbar_anonOut_d_ready; // @[MixedNode.scala:542:17]
assign filter_auto_anon_in_d_ready = coherent_jbar_auto_anon_out_d_ready; // @[Jbar.scala:44:9]
wire coherent_jbar_anonOut_d_valid = coherent_jbar_auto_anon_out_d_valid; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonOut_d_bits_opcode = coherent_jbar_auto_anon_out_d_bits_opcode; // @[Jbar.scala:44:9]
wire [1:0] coherent_jbar_anonOut_d_bits_param = coherent_jbar_auto_anon_out_d_bits_param; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonOut_d_bits_size = coherent_jbar_auto_anon_out_d_bits_size; // @[Jbar.scala:44:9]
wire [5:0] coherent_jbar_anonOut_d_bits_source = coherent_jbar_auto_anon_out_d_bits_source; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_anonOut_d_bits_sink = coherent_jbar_auto_anon_out_d_bits_sink; // @[Jbar.scala:44:9]
wire coherent_jbar_anonOut_d_bits_denied = coherent_jbar_auto_anon_out_d_bits_denied; // @[Jbar.scala:44:9]
wire [63:0] coherent_jbar_anonOut_d_bits_data = coherent_jbar_auto_anon_out_d_bits_data; // @[Jbar.scala:44:9]
wire coherent_jbar_anonOut_d_bits_corrupt = coherent_jbar_auto_anon_out_d_bits_corrupt; // @[Jbar.scala:44:9]
wire coherent_jbar_out_0_a_ready = coherent_jbar_anonOut_a_ready; // @[Xbar.scala:216:19]
wire coherent_jbar_out_0_a_valid; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_a_valid = coherent_jbar_anonOut_a_valid; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_out_0_a_bits_opcode; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_a_bits_opcode = coherent_jbar_anonOut_a_bits_opcode; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_out_0_a_bits_param; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_a_bits_param = coherent_jbar_anonOut_a_bits_param; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_out_0_a_bits_size; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_a_bits_size = coherent_jbar_anonOut_a_bits_size; // @[Jbar.scala:44:9]
wire [5:0] coherent_jbar_out_0_a_bits_source; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_a_bits_source = coherent_jbar_anonOut_a_bits_source; // @[Jbar.scala:44:9]
wire [31:0] coherent_jbar_out_0_a_bits_address; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_a_bits_address = coherent_jbar_anonOut_a_bits_address; // @[Jbar.scala:44:9]
wire [7:0] coherent_jbar_out_0_a_bits_mask; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_a_bits_mask = coherent_jbar_anonOut_a_bits_mask; // @[Jbar.scala:44:9]
wire [63:0] coherent_jbar_out_0_a_bits_data; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_a_bits_data = coherent_jbar_anonOut_a_bits_data; // @[Jbar.scala:44:9]
wire coherent_jbar_out_0_a_bits_corrupt; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_a_bits_corrupt = coherent_jbar_anonOut_a_bits_corrupt; // @[Jbar.scala:44:9]
wire coherent_jbar_out_0_d_ready; // @[Xbar.scala:216:19]
assign coherent_jbar_auto_anon_out_d_ready = coherent_jbar_anonOut_d_ready; // @[Jbar.scala:44:9]
wire coherent_jbar_out_0_d_valid = coherent_jbar_anonOut_d_valid; // @[Xbar.scala:216:19]
wire [2:0] coherent_jbar_out_0_d_bits_opcode = coherent_jbar_anonOut_d_bits_opcode; // @[Xbar.scala:216:19]
wire [1:0] coherent_jbar_out_0_d_bits_param = coherent_jbar_anonOut_d_bits_param; // @[Xbar.scala:216:19]
wire [2:0] coherent_jbar_out_0_d_bits_size = coherent_jbar_anonOut_d_bits_size; // @[Xbar.scala:216:19]
wire [5:0] coherent_jbar_out_0_d_bits_source = coherent_jbar_anonOut_d_bits_source; // @[Xbar.scala:216:19]
wire [2:0] coherent_jbar__out_0_d_bits_sink_T = coherent_jbar_anonOut_d_bits_sink; // @[Xbar.scala:251:53]
wire coherent_jbar_out_0_d_bits_denied = coherent_jbar_anonOut_d_bits_denied; // @[Xbar.scala:216:19]
wire [63:0] coherent_jbar_out_0_d_bits_data = coherent_jbar_anonOut_d_bits_data; // @[Xbar.scala:216:19]
wire coherent_jbar_out_0_d_bits_corrupt = coherent_jbar_anonOut_d_bits_corrupt; // @[Xbar.scala:216:19]
wire coherent_jbar_in_0_a_ready; // @[Xbar.scala:159:18]
assign coherent_jbar_auto_anon_in_a_ready = coherent_jbar_anonIn_a_ready; // @[Jbar.scala:44:9]
wire coherent_jbar_in_0_a_valid = coherent_jbar_anonIn_a_valid; // @[Xbar.scala:159:18]
wire [2:0] coherent_jbar_in_0_a_bits_opcode = coherent_jbar_anonIn_a_bits_opcode; // @[Xbar.scala:159:18]
wire [2:0] coherent_jbar_in_0_a_bits_param = coherent_jbar_anonIn_a_bits_param; // @[Xbar.scala:159:18]
wire [2:0] coherent_jbar_in_0_a_bits_size = coherent_jbar_anonIn_a_bits_size; // @[Xbar.scala:159:18]
wire [5:0] coherent_jbar__in_0_a_bits_source_T = coherent_jbar_anonIn_a_bits_source; // @[Xbar.scala:166:55]
wire [31:0] coherent_jbar_in_0_a_bits_address = coherent_jbar_anonIn_a_bits_address; // @[Xbar.scala:159:18]
wire [7:0] coherent_jbar_in_0_a_bits_mask = coherent_jbar_anonIn_a_bits_mask; // @[Xbar.scala:159:18]
wire [63:0] coherent_jbar_in_0_a_bits_data = coherent_jbar_anonIn_a_bits_data; // @[Xbar.scala:159:18]
wire coherent_jbar_in_0_a_bits_corrupt = coherent_jbar_anonIn_a_bits_corrupt; // @[Xbar.scala:159:18]
wire coherent_jbar_in_0_d_ready = coherent_jbar_anonIn_d_ready; // @[Xbar.scala:159:18]
wire coherent_jbar_in_0_d_valid; // @[Xbar.scala:159:18]
assign coherent_jbar_auto_anon_in_d_valid = coherent_jbar_anonIn_d_valid; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_in_0_d_bits_opcode; // @[Xbar.scala:159:18]
assign coherent_jbar_auto_anon_in_d_bits_opcode = coherent_jbar_anonIn_d_bits_opcode; // @[Jbar.scala:44:9]
wire [1:0] coherent_jbar_in_0_d_bits_param; // @[Xbar.scala:159:18]
assign coherent_jbar_auto_anon_in_d_bits_param = coherent_jbar_anonIn_d_bits_param; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_in_0_d_bits_size; // @[Xbar.scala:159:18]
assign coherent_jbar_auto_anon_in_d_bits_size = coherent_jbar_anonIn_d_bits_size; // @[Jbar.scala:44:9]
wire [5:0] coherent_jbar__anonIn_d_bits_source_T; // @[Xbar.scala:156:69]
assign coherent_jbar_auto_anon_in_d_bits_source = coherent_jbar_anonIn_d_bits_source; // @[Jbar.scala:44:9]
wire [2:0] coherent_jbar_in_0_d_bits_sink; // @[Xbar.scala:159:18]
assign coherent_jbar_auto_anon_in_d_bits_sink = coherent_jbar_anonIn_d_bits_sink; // @[Jbar.scala:44:9]
wire coherent_jbar_in_0_d_bits_denied; // @[Xbar.scala:159:18]
assign coherent_jbar_auto_anon_in_d_bits_denied = coherent_jbar_anonIn_d_bits_denied; // @[Jbar.scala:44:9]
wire [63:0] coherent_jbar_in_0_d_bits_data; // @[Xbar.scala:159:18]
assign coherent_jbar_auto_anon_in_d_bits_data = coherent_jbar_anonIn_d_bits_data; // @[Jbar.scala:44:9]
wire coherent_jbar_in_0_d_bits_corrupt; // @[Xbar.scala:159:18]
assign coherent_jbar_auto_anon_in_d_bits_corrupt = coherent_jbar_anonIn_d_bits_corrupt; // @[Jbar.scala:44:9]
wire coherent_jbar_portsAOI_filtered_0_ready; // @[Xbar.scala:352:24]
assign coherent_jbar_anonIn_a_ready = coherent_jbar_in_0_a_ready; // @[Xbar.scala:159:18]
wire coherent_jbar__portsAOI_filtered_0_valid_T_1 = coherent_jbar_in_0_a_valid; // @[Xbar.scala:159:18, :355:40]
wire [2:0] coherent_jbar_portsAOI_filtered_0_bits_opcode = coherent_jbar_in_0_a_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] coherent_jbar_portsAOI_filtered_0_bits_param = coherent_jbar_in_0_a_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [2:0] coherent_jbar_portsAOI_filtered_0_bits_size = coherent_jbar_in_0_a_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [5:0] coherent_jbar_portsAOI_filtered_0_bits_source = coherent_jbar_in_0_a_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [31:0] coherent_jbar__requestAIO_T = coherent_jbar_in_0_a_bits_address; // @[Xbar.scala:159:18]
wire [31:0] coherent_jbar_portsAOI_filtered_0_bits_address = coherent_jbar_in_0_a_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [7:0] coherent_jbar_portsAOI_filtered_0_bits_mask = coherent_jbar_in_0_a_bits_mask; // @[Xbar.scala:159:18, :352:24]
wire [63:0] coherent_jbar_portsAOI_filtered_0_bits_data = coherent_jbar_in_0_a_bits_data; // @[Xbar.scala:159:18, :352:24]
wire coherent_jbar_portsAOI_filtered_0_bits_corrupt = coherent_jbar_in_0_a_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire coherent_jbar_portsDIO_filtered_0_ready = coherent_jbar_in_0_d_ready; // @[Xbar.scala:159:18, :352:24]
wire coherent_jbar_portsDIO_filtered_0_valid; // @[Xbar.scala:352:24]
assign coherent_jbar_anonIn_d_valid = coherent_jbar_in_0_d_valid; // @[Xbar.scala:159:18]
wire [2:0] coherent_jbar_portsDIO_filtered_0_bits_opcode; // @[Xbar.scala:352:24]
assign coherent_jbar_anonIn_d_bits_opcode = coherent_jbar_in_0_d_bits_opcode; // @[Xbar.scala:159:18]
wire [1:0] coherent_jbar_portsDIO_filtered_0_bits_param; // @[Xbar.scala:352:24]
assign coherent_jbar_anonIn_d_bits_param = coherent_jbar_in_0_d_bits_param; // @[Xbar.scala:159:18]
wire [2:0] coherent_jbar_portsDIO_filtered_0_bits_size; // @[Xbar.scala:352:24]
assign coherent_jbar_anonIn_d_bits_size = coherent_jbar_in_0_d_bits_size; // @[Xbar.scala:159:18]
wire [5:0] coherent_jbar_portsDIO_filtered_0_bits_source; // @[Xbar.scala:352:24]
assign coherent_jbar__anonIn_d_bits_source_T = coherent_jbar_in_0_d_bits_source; // @[Xbar.scala:156:69, :159:18]
wire [2:0] coherent_jbar_portsDIO_filtered_0_bits_sink; // @[Xbar.scala:352:24]
assign coherent_jbar_anonIn_d_bits_sink = coherent_jbar_in_0_d_bits_sink; // @[Xbar.scala:159:18]
wire coherent_jbar_portsDIO_filtered_0_bits_denied; // @[Xbar.scala:352:24]
assign coherent_jbar_anonIn_d_bits_denied = coherent_jbar_in_0_d_bits_denied; // @[Xbar.scala:159:18]
wire [63:0] coherent_jbar_portsDIO_filtered_0_bits_data; // @[Xbar.scala:352:24]
assign coherent_jbar_anonIn_d_bits_data = coherent_jbar_in_0_d_bits_data; // @[Xbar.scala:159:18]
wire coherent_jbar_portsDIO_filtered_0_bits_corrupt; // @[Xbar.scala:352:24]
assign coherent_jbar_anonIn_d_bits_corrupt = coherent_jbar_in_0_d_bits_corrupt; // @[Xbar.scala:159:18]
assign coherent_jbar_in_0_a_bits_source = coherent_jbar__in_0_a_bits_source_T; // @[Xbar.scala:159:18, :166:55]
assign coherent_jbar_anonIn_d_bits_source = coherent_jbar__anonIn_d_bits_source_T; // @[Xbar.scala:156:69]
assign coherent_jbar_portsAOI_filtered_0_ready = coherent_jbar_out_0_a_ready; // @[Xbar.scala:216:19, :352:24]
wire coherent_jbar_portsAOI_filtered_0_valid; // @[Xbar.scala:352:24]
assign coherent_jbar_anonOut_a_valid = coherent_jbar_out_0_a_valid; // @[Xbar.scala:216:19]
assign coherent_jbar_anonOut_a_bits_opcode = coherent_jbar_out_0_a_bits_opcode; // @[Xbar.scala:216:19]
assign coherent_jbar_anonOut_a_bits_param = coherent_jbar_out_0_a_bits_param; // @[Xbar.scala:216:19]
assign coherent_jbar_anonOut_a_bits_size = coherent_jbar_out_0_a_bits_size; // @[Xbar.scala:216:19]
assign coherent_jbar_anonOut_a_bits_source = coherent_jbar_out_0_a_bits_source; // @[Xbar.scala:216:19]
assign coherent_jbar_anonOut_a_bits_address = coherent_jbar_out_0_a_bits_address; // @[Xbar.scala:216:19]
assign coherent_jbar_anonOut_a_bits_mask = coherent_jbar_out_0_a_bits_mask; // @[Xbar.scala:216:19]
assign coherent_jbar_anonOut_a_bits_data = coherent_jbar_out_0_a_bits_data; // @[Xbar.scala:216:19]
assign coherent_jbar_anonOut_a_bits_corrupt = coherent_jbar_out_0_a_bits_corrupt; // @[Xbar.scala:216:19]
assign coherent_jbar_anonOut_d_ready = coherent_jbar_out_0_d_ready; // @[Xbar.scala:216:19]
wire coherent_jbar__portsDIO_filtered_0_valid_T_1 = coherent_jbar_out_0_d_valid; // @[Xbar.scala:216:19, :355:40]
assign coherent_jbar_portsDIO_filtered_0_bits_opcode = coherent_jbar_out_0_d_bits_opcode; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_portsDIO_filtered_0_bits_param = coherent_jbar_out_0_d_bits_param; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_portsDIO_filtered_0_bits_size = coherent_jbar_out_0_d_bits_size; // @[Xbar.scala:216:19, :352:24]
wire [5:0] coherent_jbar__requestDOI_uncommonBits_T = coherent_jbar_out_0_d_bits_source; // @[Xbar.scala:216:19]
assign coherent_jbar_portsDIO_filtered_0_bits_source = coherent_jbar_out_0_d_bits_source; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_portsDIO_filtered_0_bits_sink = coherent_jbar_out_0_d_bits_sink; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_portsDIO_filtered_0_bits_denied = coherent_jbar_out_0_d_bits_denied; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_portsDIO_filtered_0_bits_data = coherent_jbar_out_0_d_bits_data; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_portsDIO_filtered_0_bits_corrupt = coherent_jbar_out_0_d_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_out_0_d_bits_sink = coherent_jbar__out_0_d_bits_sink_T; // @[Xbar.scala:216:19, :251:53]
wire [32:0] coherent_jbar__requestAIO_T_1 = {1'h0, coherent_jbar__requestAIO_T}; // @[Parameters.scala:137:{31,41}]
wire [5:0] coherent_jbar_requestDOI_uncommonBits = coherent_jbar__requestDOI_uncommonBits_T; // @[Parameters.scala:52:{29,56}]
wire [12:0] coherent_jbar__beatsAI_decode_T = 13'h3F << coherent_jbar_in_0_a_bits_size; // @[package.scala:243:71]
wire [5:0] coherent_jbar__beatsAI_decode_T_1 = coherent_jbar__beatsAI_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] coherent_jbar__beatsAI_decode_T_2 = ~coherent_jbar__beatsAI_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] coherent_jbar_beatsAI_decode = coherent_jbar__beatsAI_decode_T_2[5:3]; // @[package.scala:243:46]
wire coherent_jbar__beatsAI_opdata_T = coherent_jbar_in_0_a_bits_opcode[2]; // @[Xbar.scala:159:18]
wire coherent_jbar_beatsAI_opdata = ~coherent_jbar__beatsAI_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] coherent_jbar_beatsAI_0 = coherent_jbar_beatsAI_opdata ? coherent_jbar_beatsAI_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
wire [12:0] coherent_jbar__beatsDO_decode_T = 13'h3F << coherent_jbar_out_0_d_bits_size; // @[package.scala:243:71]
wire [5:0] coherent_jbar__beatsDO_decode_T_1 = coherent_jbar__beatsDO_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] coherent_jbar__beatsDO_decode_T_2 = ~coherent_jbar__beatsDO_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] coherent_jbar_beatsDO_decode = coherent_jbar__beatsDO_decode_T_2[5:3]; // @[package.scala:243:46]
wire coherent_jbar_beatsDO_opdata = coherent_jbar_out_0_d_bits_opcode[0]; // @[Xbar.scala:216:19]
wire [2:0] coherent_jbar_beatsDO_0 = coherent_jbar_beatsDO_opdata ? coherent_jbar_beatsDO_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
assign coherent_jbar_in_0_a_ready = coherent_jbar_portsAOI_filtered_0_ready; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_out_0_a_valid = coherent_jbar_portsAOI_filtered_0_valid; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_out_0_a_bits_opcode = coherent_jbar_portsAOI_filtered_0_bits_opcode; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_out_0_a_bits_param = coherent_jbar_portsAOI_filtered_0_bits_param; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_out_0_a_bits_size = coherent_jbar_portsAOI_filtered_0_bits_size; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_out_0_a_bits_source = coherent_jbar_portsAOI_filtered_0_bits_source; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_out_0_a_bits_address = coherent_jbar_portsAOI_filtered_0_bits_address; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_out_0_a_bits_mask = coherent_jbar_portsAOI_filtered_0_bits_mask; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_out_0_a_bits_data = coherent_jbar_portsAOI_filtered_0_bits_data; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_out_0_a_bits_corrupt = coherent_jbar_portsAOI_filtered_0_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_portsAOI_filtered_0_valid = coherent_jbar__portsAOI_filtered_0_valid_T_1; // @[Xbar.scala:352:24, :355:40]
assign coherent_jbar_out_0_d_ready = coherent_jbar_portsDIO_filtered_0_ready; // @[Xbar.scala:216:19, :352:24]
assign coherent_jbar_in_0_d_valid = coherent_jbar_portsDIO_filtered_0_valid; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_in_0_d_bits_opcode = coherent_jbar_portsDIO_filtered_0_bits_opcode; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_in_0_d_bits_param = coherent_jbar_portsDIO_filtered_0_bits_param; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_in_0_d_bits_size = coherent_jbar_portsDIO_filtered_0_bits_size; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_in_0_d_bits_source = coherent_jbar_portsDIO_filtered_0_bits_source; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_in_0_d_bits_sink = coherent_jbar_portsDIO_filtered_0_bits_sink; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_in_0_d_bits_denied = coherent_jbar_portsDIO_filtered_0_bits_denied; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_in_0_d_bits_data = coherent_jbar_portsDIO_filtered_0_bits_data; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_in_0_d_bits_corrupt = coherent_jbar_portsDIO_filtered_0_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
assign coherent_jbar_portsDIO_filtered_0_valid = coherent_jbar__portsDIO_filtered_0_valid_T_1; // @[Xbar.scala:352:24, :355:40]
wire coupler_to_bus_named_mbus_widget_auto_anon_in_a_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_in_a_valid = coupler_to_bus_named_mbus_auto_widget_anon_in_a_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_opcode = coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_opcode; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_param = coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_size = coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_size; // @[WidthWidget.scala:27:9]
wire [3:0] coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_source = coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_source; // @[WidthWidget.scala:27:9]
wire [31:0] coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_address = coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_address; // @[WidthWidget.scala:27:9]
wire [7:0] coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_mask = coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_mask; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_data = coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_corrupt = coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_in_d_ready = coupler_to_bus_named_mbus_auto_widget_anon_in_d_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_in_d_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_opcode; // @[WidthWidget.scala:27:9]
wire [1:0] coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_size; // @[WidthWidget.scala:27:9]
wire [3:0] coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_source; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_sink; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_denied; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_bus_xingOut_a_ready = coupler_to_bus_named_mbus_auto_bus_xing_out_a_ready; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_mbus_bus_xingOut_a_valid; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_valid_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_a_valid; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_mbus_bus_xingOut_a_bits_opcode; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_opcode_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_opcode; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_mbus_bus_xingOut_a_bits_param; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_param_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_param; // @[ClockDomain.scala:14:9]
wire [2:0] coupler_to_bus_named_mbus_bus_xingOut_a_bits_size; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_size_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_size; // @[ClockDomain.scala:14:9]
wire [3:0] coupler_to_bus_named_mbus_bus_xingOut_a_bits_source; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_source_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_source; // @[ClockDomain.scala:14:9]
wire [31:0] coupler_to_bus_named_mbus_bus_xingOut_a_bits_address; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_address_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_address; // @[ClockDomain.scala:14:9]
wire [7:0] coupler_to_bus_named_mbus_bus_xingOut_a_bits_mask; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_mask_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_mask; // @[ClockDomain.scala:14:9]
wire [63:0] coupler_to_bus_named_mbus_bus_xingOut_a_bits_data; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_data_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_data; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_mbus_bus_xingOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_corrupt_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_corrupt; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_mbus_bus_xingOut_d_ready; // @[MixedNode.scala:542:17]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_d_ready_0 = coupler_to_bus_named_mbus_auto_bus_xing_out_d_ready; // @[ClockDomain.scala:14:9]
wire coupler_to_bus_named_mbus_bus_xingOut_d_valid = coupler_to_bus_named_mbus_auto_bus_xing_out_d_valid; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_mbus_bus_xingOut_d_bits_opcode = coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_opcode; // @[MixedNode.scala:542:17]
wire [1:0] coupler_to_bus_named_mbus_bus_xingOut_d_bits_param = coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_mbus_bus_xingOut_d_bits_size = coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_size; // @[MixedNode.scala:542:17]
wire [3:0] coupler_to_bus_named_mbus_bus_xingOut_d_bits_source = coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_source; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_mbus_bus_xingOut_d_bits_sink = coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_sink; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_mbus_bus_xingOut_d_bits_denied = coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_denied; // @[MixedNode.scala:542:17]
wire [63:0] coupler_to_bus_named_mbus_bus_xingOut_d_bits_data = coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_data; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_mbus_bus_xingOut_d_bits_corrupt = coupler_to_bus_named_mbus_auto_bus_xing_out_d_bits_corrupt; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_mbus_auto_widget_anon_in_a_ready; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire [1:0] coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_size; // @[LazyModuleImp.scala:138:7]
wire [3:0] coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_source; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_sink; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_denied; // @[LazyModuleImp.scala:138:7]
wire [63:0] coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_data; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_auto_widget_anon_in_d_valid; // @[LazyModuleImp.scala:138:7]
wire coupler_to_bus_named_mbus_widget_anonIn_a_ready; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_a_ready = coupler_to_bus_named_mbus_widget_auto_anon_in_a_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonIn_a_valid = coupler_to_bus_named_mbus_widget_auto_anon_in_a_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_anonIn_a_bits_opcode = coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_opcode; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_anonIn_a_bits_param = coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_anonIn_a_bits_size = coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_size; // @[WidthWidget.scala:27:9]
wire [3:0] coupler_to_bus_named_mbus_widget_anonIn_a_bits_source = coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_source; // @[WidthWidget.scala:27:9]
wire [31:0] coupler_to_bus_named_mbus_widget_anonIn_a_bits_address = coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_address; // @[WidthWidget.scala:27:9]
wire [7:0] coupler_to_bus_named_mbus_widget_anonIn_a_bits_mask = coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_mask; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_mbus_widget_anonIn_a_bits_data = coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonIn_a_bits_corrupt = coupler_to_bus_named_mbus_widget_auto_anon_in_a_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonIn_d_ready = coupler_to_bus_named_mbus_widget_auto_anon_in_d_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonIn_d_valid; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_d_valid = coupler_to_bus_named_mbus_widget_auto_anon_in_d_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_anonIn_d_bits_opcode; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_opcode = coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_opcode; // @[WidthWidget.scala:27:9]
wire [1:0] coupler_to_bus_named_mbus_widget_anonIn_d_bits_param; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_param = coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_anonIn_d_bits_size; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_size = coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_size; // @[WidthWidget.scala:27:9]
wire [3:0] coupler_to_bus_named_mbus_widget_anonIn_d_bits_source; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_source = coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_source; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonIn_d_bits_sink; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_sink = coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_sink; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonIn_d_bits_denied; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_denied = coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_denied; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_mbus_widget_anonIn_d_bits_data; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_data = coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
assign coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_corrupt = coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_bus_xingIn_a_ready; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_mbus_widget_anonOut_a_ready = coupler_to_bus_named_mbus_widget_auto_anon_out_a_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_mbus_widget_anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_mbus_bus_xingIn_a_valid = coupler_to_bus_named_mbus_widget_auto_anon_out_a_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_anonOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_mbus_bus_xingIn_a_bits_opcode = coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_opcode; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_widget_anonOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_mbus_bus_xingIn_a_bits_param = coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_param; // @[WidthWidget.scala:27:9]
wire [3:0] coupler_to_bus_named_mbus_widget_anonOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [2:0] coupler_to_bus_named_mbus_bus_xingIn_a_bits_size = coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_size; // @[WidthWidget.scala:27:9]
wire [31:0] coupler_to_bus_named_mbus_widget_anonOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [3:0] coupler_to_bus_named_mbus_bus_xingIn_a_bits_source = coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_source; // @[WidthWidget.scala:27:9]
wire [7:0] coupler_to_bus_named_mbus_widget_anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [31:0] coupler_to_bus_named_mbus_bus_xingIn_a_bits_address = coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_address; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_mbus_widget_anonOut_a_bits_data; // @[MixedNode.scala:542:17]
wire [7:0] coupler_to_bus_named_mbus_bus_xingIn_a_bits_mask = coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_mask; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire [63:0] coupler_to_bus_named_mbus_bus_xingIn_a_bits_data = coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_widget_anonOut_d_ready; // @[MixedNode.scala:542:17]
wire coupler_to_bus_named_mbus_bus_xingIn_a_bits_corrupt = coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_corrupt; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_bus_xingIn_d_ready = coupler_to_bus_named_mbus_widget_auto_anon_out_d_ready; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_bus_xingIn_d_valid; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_mbus_widget_anonOut_d_valid = coupler_to_bus_named_mbus_widget_auto_anon_out_d_valid; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_bus_xingIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [2:0] coupler_to_bus_named_mbus_widget_anonOut_d_bits_opcode = coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_opcode; // @[WidthWidget.scala:27:9]
wire [1:0] coupler_to_bus_named_mbus_bus_xingIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [1:0] coupler_to_bus_named_mbus_widget_anonOut_d_bits_param = coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_param; // @[WidthWidget.scala:27:9]
wire [2:0] coupler_to_bus_named_mbus_bus_xingIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [2:0] coupler_to_bus_named_mbus_widget_anonOut_d_bits_size = coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_size; // @[WidthWidget.scala:27:9]
wire [3:0] coupler_to_bus_named_mbus_bus_xingIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [3:0] coupler_to_bus_named_mbus_widget_anonOut_d_bits_source = coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_source; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_bus_xingIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_mbus_widget_anonOut_d_bits_sink = coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_sink; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_bus_xingIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_mbus_widget_anonOut_d_bits_denied = coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_denied; // @[WidthWidget.scala:27:9]
wire [63:0] coupler_to_bus_named_mbus_bus_xingIn_d_bits_data; // @[MixedNode.scala:551:17]
wire [63:0] coupler_to_bus_named_mbus_widget_anonOut_d_bits_data = coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_data; // @[WidthWidget.scala:27:9]
wire coupler_to_bus_named_mbus_bus_xingIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire coupler_to_bus_named_mbus_widget_anonOut_d_bits_corrupt = coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_corrupt; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_anonIn_a_ready = coupler_to_bus_named_mbus_widget_anonOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_valid = coupler_to_bus_named_mbus_widget_anonOut_a_valid; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_opcode = coupler_to_bus_named_mbus_widget_anonOut_a_bits_opcode; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_param = coupler_to_bus_named_mbus_widget_anonOut_a_bits_param; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_size = coupler_to_bus_named_mbus_widget_anonOut_a_bits_size; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_source = coupler_to_bus_named_mbus_widget_anonOut_a_bits_source; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_address = coupler_to_bus_named_mbus_widget_anonOut_a_bits_address; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_mask = coupler_to_bus_named_mbus_widget_anonOut_a_bits_mask; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_data = coupler_to_bus_named_mbus_widget_anonOut_a_bits_data; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_bits_corrupt = coupler_to_bus_named_mbus_widget_anonOut_a_bits_corrupt; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_ready = coupler_to_bus_named_mbus_widget_anonOut_d_ready; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_anonIn_d_valid = coupler_to_bus_named_mbus_widget_anonOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonIn_d_bits_opcode = coupler_to_bus_named_mbus_widget_anonOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonIn_d_bits_param = coupler_to_bus_named_mbus_widget_anonOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonIn_d_bits_size = coupler_to_bus_named_mbus_widget_anonOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonIn_d_bits_source = coupler_to_bus_named_mbus_widget_anonOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonIn_d_bits_sink = coupler_to_bus_named_mbus_widget_anonOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonIn_d_bits_denied = coupler_to_bus_named_mbus_widget_anonOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonIn_d_bits_data = coupler_to_bus_named_mbus_widget_anonOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonIn_d_bits_corrupt = coupler_to_bus_named_mbus_widget_anonOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_a_ready = coupler_to_bus_named_mbus_widget_anonIn_a_ready; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_anonOut_a_valid = coupler_to_bus_named_mbus_widget_anonIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonOut_a_bits_opcode = coupler_to_bus_named_mbus_widget_anonIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonOut_a_bits_param = coupler_to_bus_named_mbus_widget_anonIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonOut_a_bits_size = coupler_to_bus_named_mbus_widget_anonIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonOut_a_bits_source = coupler_to_bus_named_mbus_widget_anonIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonOut_a_bits_address = coupler_to_bus_named_mbus_widget_anonIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonOut_a_bits_mask = coupler_to_bus_named_mbus_widget_anonIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonOut_a_bits_data = coupler_to_bus_named_mbus_widget_anonIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonOut_a_bits_corrupt = coupler_to_bus_named_mbus_widget_anonIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_anonOut_d_ready = coupler_to_bus_named_mbus_widget_anonIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_d_valid = coupler_to_bus_named_mbus_widget_anonIn_d_valid; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_opcode = coupler_to_bus_named_mbus_widget_anonIn_d_bits_opcode; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_param = coupler_to_bus_named_mbus_widget_anonIn_d_bits_param; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_size = coupler_to_bus_named_mbus_widget_anonIn_d_bits_size; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_source = coupler_to_bus_named_mbus_widget_anonIn_d_bits_source; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_sink = coupler_to_bus_named_mbus_widget_anonIn_d_bits_sink; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_denied = coupler_to_bus_named_mbus_widget_anonIn_d_bits_denied; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_data = coupler_to_bus_named_mbus_widget_anonIn_d_bits_data; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_in_d_bits_corrupt = coupler_to_bus_named_mbus_widget_anonIn_d_bits_corrupt; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_bus_xingIn_a_ready = coupler_to_bus_named_mbus_bus_xingOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_a_valid = coupler_to_bus_named_mbus_bus_xingOut_a_valid; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_opcode = coupler_to_bus_named_mbus_bus_xingOut_a_bits_opcode; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_param = coupler_to_bus_named_mbus_bus_xingOut_a_bits_param; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_size = coupler_to_bus_named_mbus_bus_xingOut_a_bits_size; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_source = coupler_to_bus_named_mbus_bus_xingOut_a_bits_source; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_address = coupler_to_bus_named_mbus_bus_xingOut_a_bits_address; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_mask = coupler_to_bus_named_mbus_bus_xingOut_a_bits_mask; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_data = coupler_to_bus_named_mbus_bus_xingOut_a_bits_data; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_a_bits_corrupt = coupler_to_bus_named_mbus_bus_xingOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_auto_bus_xing_out_d_ready = coupler_to_bus_named_mbus_bus_xingOut_d_ready; // @[MixedNode.scala:542:17]
assign coupler_to_bus_named_mbus_bus_xingIn_d_valid = coupler_to_bus_named_mbus_bus_xingOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingIn_d_bits_opcode = coupler_to_bus_named_mbus_bus_xingOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingIn_d_bits_param = coupler_to_bus_named_mbus_bus_xingOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingIn_d_bits_size = coupler_to_bus_named_mbus_bus_xingOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingIn_d_bits_source = coupler_to_bus_named_mbus_bus_xingOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingIn_d_bits_sink = coupler_to_bus_named_mbus_bus_xingOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingIn_d_bits_denied = coupler_to_bus_named_mbus_bus_xingOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingIn_d_bits_data = coupler_to_bus_named_mbus_bus_xingOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingIn_d_bits_corrupt = coupler_to_bus_named_mbus_bus_xingOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_a_ready = coupler_to_bus_named_mbus_bus_xingIn_a_ready; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_bus_xingOut_a_valid = coupler_to_bus_named_mbus_bus_xingIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingOut_a_bits_opcode = coupler_to_bus_named_mbus_bus_xingIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingOut_a_bits_param = coupler_to_bus_named_mbus_bus_xingIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingOut_a_bits_size = coupler_to_bus_named_mbus_bus_xingIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingOut_a_bits_source = coupler_to_bus_named_mbus_bus_xingIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingOut_a_bits_address = coupler_to_bus_named_mbus_bus_xingIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingOut_a_bits_mask = coupler_to_bus_named_mbus_bus_xingIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingOut_a_bits_data = coupler_to_bus_named_mbus_bus_xingIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingOut_a_bits_corrupt = coupler_to_bus_named_mbus_bus_xingIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_bus_xingOut_d_ready = coupler_to_bus_named_mbus_bus_xingIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_valid = coupler_to_bus_named_mbus_bus_xingIn_d_valid; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_opcode = coupler_to_bus_named_mbus_bus_xingIn_d_bits_opcode; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_param = coupler_to_bus_named_mbus_bus_xingIn_d_bits_param; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_size = coupler_to_bus_named_mbus_bus_xingIn_d_bits_size; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_source = coupler_to_bus_named_mbus_bus_xingIn_d_bits_source; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_sink = coupler_to_bus_named_mbus_bus_xingIn_d_bits_sink; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_denied = coupler_to_bus_named_mbus_bus_xingIn_d_bits_denied; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_data = coupler_to_bus_named_mbus_bus_xingIn_d_bits_data; // @[WidthWidget.scala:27:9]
assign coupler_to_bus_named_mbus_widget_auto_anon_out_d_bits_corrupt = coupler_to_bus_named_mbus_bus_xingIn_d_bits_corrupt; // @[WidthWidget.scala:27:9]
assign childClock = clockSinkNodeIn_clock; // @[MixedNode.scala:551:17]
assign childReset = clockSinkNodeIn_reset; // @[MixedNode.scala:551:17]
InclusiveCache l2 ( // @[Configs.scala:93:24]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_ctrls_ctrl_in_a_ready (auto_l2_ctrls_ctrl_in_a_ready_0),
.auto_ctrls_ctrl_in_a_valid (auto_l2_ctrls_ctrl_in_a_valid_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_a_bits_opcode (auto_l2_ctrls_ctrl_in_a_bits_opcode_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_a_bits_param (auto_l2_ctrls_ctrl_in_a_bits_param_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_a_bits_size (auto_l2_ctrls_ctrl_in_a_bits_size_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_a_bits_source (auto_l2_ctrls_ctrl_in_a_bits_source_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_a_bits_address (auto_l2_ctrls_ctrl_in_a_bits_address_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_a_bits_mask (auto_l2_ctrls_ctrl_in_a_bits_mask_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_a_bits_data (auto_l2_ctrls_ctrl_in_a_bits_data_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_a_bits_corrupt (auto_l2_ctrls_ctrl_in_a_bits_corrupt_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_d_ready (auto_l2_ctrls_ctrl_in_d_ready_0), // @[ClockDomain.scala:14:9]
.auto_ctrls_ctrl_in_d_valid (auto_l2_ctrls_ctrl_in_d_valid_0),
.auto_ctrls_ctrl_in_d_bits_opcode (auto_l2_ctrls_ctrl_in_d_bits_opcode_0),
.auto_ctrls_ctrl_in_d_bits_size (auto_l2_ctrls_ctrl_in_d_bits_size_0),
.auto_ctrls_ctrl_in_d_bits_source (auto_l2_ctrls_ctrl_in_d_bits_source_0),
.auto_ctrls_ctrl_in_d_bits_data (auto_l2_ctrls_ctrl_in_d_bits_data_0),
.auto_in_a_ready (_l2_auto_in_a_ready),
.auto_in_a_valid (_InclusiveCache_inner_TLBuffer_auto_out_a_valid), // @[Parameters.scala:56:69]
.auto_in_a_bits_opcode (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_opcode), // @[Parameters.scala:56:69]
.auto_in_a_bits_param (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_param), // @[Parameters.scala:56:69]
.auto_in_a_bits_size (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_size), // @[Parameters.scala:56:69]
.auto_in_a_bits_source (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_source), // @[Parameters.scala:56:69]
.auto_in_a_bits_address (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_address), // @[Parameters.scala:56:69]
.auto_in_a_bits_mask (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_mask), // @[Parameters.scala:56:69]
.auto_in_a_bits_data (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_data), // @[Parameters.scala:56:69]
.auto_in_a_bits_corrupt (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_corrupt), // @[Parameters.scala:56:69]
.auto_in_d_ready (_InclusiveCache_inner_TLBuffer_auto_out_d_ready), // @[Parameters.scala:56:69]
.auto_in_d_valid (_l2_auto_in_d_valid),
.auto_in_d_bits_opcode (_l2_auto_in_d_bits_opcode),
.auto_in_d_bits_param (_l2_auto_in_d_bits_param),
.auto_in_d_bits_size (_l2_auto_in_d_bits_size),
.auto_in_d_bits_source (_l2_auto_in_d_bits_source),
.auto_in_d_bits_sink (_l2_auto_in_d_bits_sink),
.auto_in_d_bits_denied (_l2_auto_in_d_bits_denied),
.auto_in_d_bits_data (_l2_auto_in_d_bits_data),
.auto_in_d_bits_corrupt (_l2_auto_in_d_bits_corrupt),
.auto_out_a_ready (InclusiveCache_outer_TLBuffer_auto_in_a_ready), // @[Buffer.scala:40:9]
.auto_out_a_valid (InclusiveCache_outer_TLBuffer_auto_in_a_valid),
.auto_out_a_bits_opcode (InclusiveCache_outer_TLBuffer_auto_in_a_bits_opcode),
.auto_out_a_bits_param (InclusiveCache_outer_TLBuffer_auto_in_a_bits_param),
.auto_out_a_bits_size (InclusiveCache_outer_TLBuffer_auto_in_a_bits_size),
.auto_out_a_bits_source (InclusiveCache_outer_TLBuffer_auto_in_a_bits_source),
.auto_out_a_bits_address (InclusiveCache_outer_TLBuffer_auto_in_a_bits_address),
.auto_out_a_bits_mask (InclusiveCache_outer_TLBuffer_auto_in_a_bits_mask),
.auto_out_a_bits_data (InclusiveCache_outer_TLBuffer_auto_in_a_bits_data),
.auto_out_a_bits_corrupt (InclusiveCache_outer_TLBuffer_auto_in_a_bits_corrupt),
.auto_out_c_ready (InclusiveCache_outer_TLBuffer_auto_in_c_ready), // @[Buffer.scala:40:9]
.auto_out_c_valid (InclusiveCache_outer_TLBuffer_auto_in_c_valid),
.auto_out_c_bits_opcode (InclusiveCache_outer_TLBuffer_auto_in_c_bits_opcode),
.auto_out_c_bits_param (InclusiveCache_outer_TLBuffer_auto_in_c_bits_param),
.auto_out_c_bits_size (InclusiveCache_outer_TLBuffer_auto_in_c_bits_size),
.auto_out_c_bits_source (InclusiveCache_outer_TLBuffer_auto_in_c_bits_source),
.auto_out_c_bits_address (InclusiveCache_outer_TLBuffer_auto_in_c_bits_address),
.auto_out_c_bits_data (InclusiveCache_outer_TLBuffer_auto_in_c_bits_data),
.auto_out_c_bits_corrupt (InclusiveCache_outer_TLBuffer_auto_in_c_bits_corrupt),
.auto_out_d_ready (InclusiveCache_outer_TLBuffer_auto_in_d_ready),
.auto_out_d_valid (InclusiveCache_outer_TLBuffer_auto_in_d_valid), // @[Buffer.scala:40:9]
.auto_out_d_bits_opcode (InclusiveCache_outer_TLBuffer_auto_in_d_bits_opcode), // @[Buffer.scala:40:9]
.auto_out_d_bits_param (InclusiveCache_outer_TLBuffer_auto_in_d_bits_param), // @[Buffer.scala:40:9]
.auto_out_d_bits_size (InclusiveCache_outer_TLBuffer_auto_in_d_bits_size), // @[Buffer.scala:40:9]
.auto_out_d_bits_source (InclusiveCache_outer_TLBuffer_auto_in_d_bits_source), // @[Buffer.scala:40:9]
.auto_out_d_bits_sink (InclusiveCache_outer_TLBuffer_auto_in_d_bits_sink), // @[Buffer.scala:40:9]
.auto_out_d_bits_denied (InclusiveCache_outer_TLBuffer_auto_in_d_bits_denied), // @[Buffer.scala:40:9]
.auto_out_d_bits_data (InclusiveCache_outer_TLBuffer_auto_in_d_bits_data), // @[Buffer.scala:40:9]
.auto_out_d_bits_corrupt (InclusiveCache_outer_TLBuffer_auto_in_d_bits_corrupt), // @[Buffer.scala:40:9]
.auto_out_e_valid (InclusiveCache_outer_TLBuffer_auto_in_e_valid),
.auto_out_e_bits_sink (InclusiveCache_outer_TLBuffer_auto_in_e_bits_sink)
); // @[Configs.scala:93:24]
TLBuffer_a32d64s6k3z3u InclusiveCache_inner_TLBuffer ( // @[Parameters.scala:56:69]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_in_a_ready (filter_auto_anon_out_a_ready),
.auto_in_a_valid (filter_auto_anon_out_a_valid), // @[Filter.scala:60:9]
.auto_in_a_bits_opcode (filter_auto_anon_out_a_bits_opcode), // @[Filter.scala:60:9]
.auto_in_a_bits_param (filter_auto_anon_out_a_bits_param), // @[Filter.scala:60:9]
.auto_in_a_bits_size (filter_auto_anon_out_a_bits_size), // @[Filter.scala:60:9]
.auto_in_a_bits_source (filter_auto_anon_out_a_bits_source), // @[Filter.scala:60:9]
.auto_in_a_bits_address (filter_auto_anon_out_a_bits_address), // @[Filter.scala:60:9]
.auto_in_a_bits_mask (filter_auto_anon_out_a_bits_mask), // @[Filter.scala:60:9]
.auto_in_a_bits_data (filter_auto_anon_out_a_bits_data), // @[Filter.scala:60:9]
.auto_in_a_bits_corrupt (filter_auto_anon_out_a_bits_corrupt), // @[Filter.scala:60:9]
.auto_in_d_ready (filter_auto_anon_out_d_ready), // @[Filter.scala:60:9]
.auto_in_d_valid (filter_auto_anon_out_d_valid),
.auto_in_d_bits_opcode (filter_auto_anon_out_d_bits_opcode),
.auto_in_d_bits_param (filter_auto_anon_out_d_bits_param),
.auto_in_d_bits_size (filter_auto_anon_out_d_bits_size),
.auto_in_d_bits_source (filter_auto_anon_out_d_bits_source),
.auto_in_d_bits_sink (filter_auto_anon_out_d_bits_sink),
.auto_in_d_bits_denied (filter_auto_anon_out_d_bits_denied),
.auto_in_d_bits_data (filter_auto_anon_out_d_bits_data),
.auto_in_d_bits_corrupt (filter_auto_anon_out_d_bits_corrupt),
.auto_out_a_ready (_l2_auto_in_a_ready), // @[Configs.scala:93:24]
.auto_out_a_valid (_InclusiveCache_inner_TLBuffer_auto_out_a_valid),
.auto_out_a_bits_opcode (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_opcode),
.auto_out_a_bits_param (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_param),
.auto_out_a_bits_size (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_size),
.auto_out_a_bits_source (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_source),
.auto_out_a_bits_address (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_address),
.auto_out_a_bits_mask (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_mask),
.auto_out_a_bits_data (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_data),
.auto_out_a_bits_corrupt (_InclusiveCache_inner_TLBuffer_auto_out_a_bits_corrupt),
.auto_out_d_ready (_InclusiveCache_inner_TLBuffer_auto_out_d_ready),
.auto_out_d_valid (_l2_auto_in_d_valid), // @[Configs.scala:93:24]
.auto_out_d_bits_opcode (_l2_auto_in_d_bits_opcode), // @[Configs.scala:93:24]
.auto_out_d_bits_param (_l2_auto_in_d_bits_param), // @[Configs.scala:93:24]
.auto_out_d_bits_size (_l2_auto_in_d_bits_size), // @[Configs.scala:93:24]
.auto_out_d_bits_source (_l2_auto_in_d_bits_source), // @[Configs.scala:93:24]
.auto_out_d_bits_sink (_l2_auto_in_d_bits_sink), // @[Configs.scala:93:24]
.auto_out_d_bits_denied (_l2_auto_in_d_bits_denied), // @[Configs.scala:93:24]
.auto_out_d_bits_data (_l2_auto_in_d_bits_data), // @[Configs.scala:93:24]
.auto_out_d_bits_corrupt (_l2_auto_in_d_bits_corrupt) // @[Configs.scala:93:24]
); // @[Parameters.scala:56:69]
TLCacheCork cork ( // @[Configs.scala:120:26]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_in_a_ready (InclusiveCache_outer_TLBuffer_auto_out_a_ready),
.auto_in_a_valid (InclusiveCache_outer_TLBuffer_auto_out_a_valid), // @[Buffer.scala:40:9]
.auto_in_a_bits_opcode (InclusiveCache_outer_TLBuffer_auto_out_a_bits_opcode), // @[Buffer.scala:40:9]
.auto_in_a_bits_param (InclusiveCache_outer_TLBuffer_auto_out_a_bits_param), // @[Buffer.scala:40:9]
.auto_in_a_bits_size (InclusiveCache_outer_TLBuffer_auto_out_a_bits_size), // @[Buffer.scala:40:9]
.auto_in_a_bits_source (InclusiveCache_outer_TLBuffer_auto_out_a_bits_source), // @[Buffer.scala:40:9]
.auto_in_a_bits_address (InclusiveCache_outer_TLBuffer_auto_out_a_bits_address), // @[Buffer.scala:40:9]
.auto_in_a_bits_mask (InclusiveCache_outer_TLBuffer_auto_out_a_bits_mask), // @[Buffer.scala:40:9]
.auto_in_a_bits_data (InclusiveCache_outer_TLBuffer_auto_out_a_bits_data), // @[Buffer.scala:40:9]
.auto_in_a_bits_corrupt (InclusiveCache_outer_TLBuffer_auto_out_a_bits_corrupt), // @[Buffer.scala:40:9]
.auto_in_c_ready (InclusiveCache_outer_TLBuffer_auto_out_c_ready),
.auto_in_c_valid (InclusiveCache_outer_TLBuffer_auto_out_c_valid), // @[Buffer.scala:40:9]
.auto_in_c_bits_opcode (InclusiveCache_outer_TLBuffer_auto_out_c_bits_opcode), // @[Buffer.scala:40:9]
.auto_in_c_bits_param (InclusiveCache_outer_TLBuffer_auto_out_c_bits_param), // @[Buffer.scala:40:9]
.auto_in_c_bits_size (InclusiveCache_outer_TLBuffer_auto_out_c_bits_size), // @[Buffer.scala:40:9]
.auto_in_c_bits_source (InclusiveCache_outer_TLBuffer_auto_out_c_bits_source), // @[Buffer.scala:40:9]
.auto_in_c_bits_address (InclusiveCache_outer_TLBuffer_auto_out_c_bits_address), // @[Buffer.scala:40:9]
.auto_in_c_bits_data (InclusiveCache_outer_TLBuffer_auto_out_c_bits_data), // @[Buffer.scala:40:9]
.auto_in_c_bits_corrupt (InclusiveCache_outer_TLBuffer_auto_out_c_bits_corrupt), // @[Buffer.scala:40:9]
.auto_in_d_ready (InclusiveCache_outer_TLBuffer_auto_out_d_ready), // @[Buffer.scala:40:9]
.auto_in_d_valid (InclusiveCache_outer_TLBuffer_auto_out_d_valid),
.auto_in_d_bits_opcode (InclusiveCache_outer_TLBuffer_auto_out_d_bits_opcode),
.auto_in_d_bits_param (InclusiveCache_outer_TLBuffer_auto_out_d_bits_param),
.auto_in_d_bits_size (InclusiveCache_outer_TLBuffer_auto_out_d_bits_size),
.auto_in_d_bits_source (InclusiveCache_outer_TLBuffer_auto_out_d_bits_source),
.auto_in_d_bits_sink (InclusiveCache_outer_TLBuffer_auto_out_d_bits_sink),
.auto_in_d_bits_denied (InclusiveCache_outer_TLBuffer_auto_out_d_bits_denied),
.auto_in_d_bits_data (InclusiveCache_outer_TLBuffer_auto_out_d_bits_data),
.auto_in_d_bits_corrupt (InclusiveCache_outer_TLBuffer_auto_out_d_bits_corrupt),
.auto_in_e_valid (InclusiveCache_outer_TLBuffer_auto_out_e_valid), // @[Buffer.scala:40:9]
.auto_in_e_bits_sink (InclusiveCache_outer_TLBuffer_auto_out_e_bits_sink), // @[Buffer.scala:40:9]
.auto_out_a_ready (_binder_auto_in_a_ready), // @[BankBinder.scala:71:28]
.auto_out_a_valid (_cork_auto_out_a_valid),
.auto_out_a_bits_opcode (_cork_auto_out_a_bits_opcode),
.auto_out_a_bits_param (_cork_auto_out_a_bits_param),
.auto_out_a_bits_size (_cork_auto_out_a_bits_size),
.auto_out_a_bits_source (_cork_auto_out_a_bits_source),
.auto_out_a_bits_address (_cork_auto_out_a_bits_address),
.auto_out_a_bits_mask (_cork_auto_out_a_bits_mask),
.auto_out_a_bits_data (_cork_auto_out_a_bits_data),
.auto_out_a_bits_corrupt (_cork_auto_out_a_bits_corrupt),
.auto_out_d_ready (_cork_auto_out_d_ready),
.auto_out_d_valid (_binder_auto_in_d_valid), // @[BankBinder.scala:71:28]
.auto_out_d_bits_opcode (_binder_auto_in_d_bits_opcode), // @[BankBinder.scala:71:28]
.auto_out_d_bits_param (_binder_auto_in_d_bits_param), // @[BankBinder.scala:71:28]
.auto_out_d_bits_size (_binder_auto_in_d_bits_size), // @[BankBinder.scala:71:28]
.auto_out_d_bits_source (_binder_auto_in_d_bits_source), // @[BankBinder.scala:71:28]
.auto_out_d_bits_sink (_binder_auto_in_d_bits_sink), // @[BankBinder.scala:71:28]
.auto_out_d_bits_denied (_binder_auto_in_d_bits_denied), // @[BankBinder.scala:71:28]
.auto_out_d_bits_data (_binder_auto_in_d_bits_data), // @[BankBinder.scala:71:28]
.auto_out_d_bits_corrupt (_binder_auto_in_d_bits_corrupt) // @[BankBinder.scala:71:28]
); // @[Configs.scala:120:26]
BankBinder binder ( // @[BankBinder.scala:71:28]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_in_a_ready (_binder_auto_in_a_ready),
.auto_in_a_valid (_cork_auto_out_a_valid), // @[Configs.scala:120:26]
.auto_in_a_bits_opcode (_cork_auto_out_a_bits_opcode), // @[Configs.scala:120:26]
.auto_in_a_bits_param (_cork_auto_out_a_bits_param), // @[Configs.scala:120:26]
.auto_in_a_bits_size (_cork_auto_out_a_bits_size), // @[Configs.scala:120:26]
.auto_in_a_bits_source (_cork_auto_out_a_bits_source), // @[Configs.scala:120:26]
.auto_in_a_bits_address (_cork_auto_out_a_bits_address), // @[Configs.scala:120:26]
.auto_in_a_bits_mask (_cork_auto_out_a_bits_mask), // @[Configs.scala:120:26]
.auto_in_a_bits_data (_cork_auto_out_a_bits_data), // @[Configs.scala:120:26]
.auto_in_a_bits_corrupt (_cork_auto_out_a_bits_corrupt), // @[Configs.scala:120:26]
.auto_in_d_ready (_cork_auto_out_d_ready), // @[Configs.scala:120:26]
.auto_in_d_valid (_binder_auto_in_d_valid),
.auto_in_d_bits_opcode (_binder_auto_in_d_bits_opcode),
.auto_in_d_bits_param (_binder_auto_in_d_bits_param),
.auto_in_d_bits_size (_binder_auto_in_d_bits_size),
.auto_in_d_bits_source (_binder_auto_in_d_bits_source),
.auto_in_d_bits_sink (_binder_auto_in_d_bits_sink),
.auto_in_d_bits_denied (_binder_auto_in_d_bits_denied),
.auto_in_d_bits_data (_binder_auto_in_d_bits_data),
.auto_in_d_bits_corrupt (_binder_auto_in_d_bits_corrupt),
.auto_out_a_ready (coupler_to_bus_named_mbus_auto_widget_anon_in_a_ready), // @[LazyModuleImp.scala:138:7]
.auto_out_a_valid (coupler_to_bus_named_mbus_auto_widget_anon_in_a_valid),
.auto_out_a_bits_opcode (coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_opcode),
.auto_out_a_bits_param (coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_param),
.auto_out_a_bits_size (coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_size),
.auto_out_a_bits_source (coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_source),
.auto_out_a_bits_address (coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_address),
.auto_out_a_bits_mask (coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_mask),
.auto_out_a_bits_data (coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_data),
.auto_out_a_bits_corrupt (coupler_to_bus_named_mbus_auto_widget_anon_in_a_bits_corrupt),
.auto_out_d_ready (coupler_to_bus_named_mbus_auto_widget_anon_in_d_ready),
.auto_out_d_valid (coupler_to_bus_named_mbus_auto_widget_anon_in_d_valid), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_opcode (coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_opcode), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_param (coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_param), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_size (coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_size), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_source (coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_source), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_sink (coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_sink), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_denied (coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_denied), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_data (coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_data), // @[LazyModuleImp.scala:138:7]
.auto_out_d_bits_corrupt (coupler_to_bus_named_mbus_auto_widget_anon_in_d_bits_corrupt) // @[LazyModuleImp.scala:138:7]
); // @[BankBinder.scala:71:28]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_valid = auto_coupler_to_bus_named_mbus_bus_xing_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_opcode = auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_param = auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_size = auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_source = auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_address = auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_mask = auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_data = auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_corrupt = auto_coupler_to_bus_named_mbus_bus_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_bus_named_mbus_bus_xing_out_d_ready = auto_coupler_to_bus_named_mbus_bus_xing_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_a_ready = auto_coherent_jbar_anon_in_a_ready_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_d_valid = auto_coherent_jbar_anon_in_d_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_d_bits_opcode = auto_coherent_jbar_anon_in_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_d_bits_param = auto_coherent_jbar_anon_in_d_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_d_bits_size = auto_coherent_jbar_anon_in_d_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_d_bits_source = auto_coherent_jbar_anon_in_d_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_d_bits_sink = auto_coherent_jbar_anon_in_d_bits_sink_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_d_bits_denied = auto_coherent_jbar_anon_in_d_bits_denied_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_d_bits_data = auto_coherent_jbar_anon_in_d_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coherent_jbar_anon_in_d_bits_corrupt = auto_coherent_jbar_anon_in_d_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_l2_ctrls_ctrl_in_a_ready = auto_l2_ctrls_ctrl_in_a_ready_0; // @[ClockDomain.scala:14:9]
assign auto_l2_ctrls_ctrl_in_d_valid = auto_l2_ctrls_ctrl_in_d_valid_0; // @[ClockDomain.scala:14:9]
assign auto_l2_ctrls_ctrl_in_d_bits_opcode = auto_l2_ctrls_ctrl_in_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_l2_ctrls_ctrl_in_d_bits_size = auto_l2_ctrls_ctrl_in_d_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_l2_ctrls_ctrl_in_d_bits_source = auto_l2_ctrls_ctrl_in_d_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_l2_ctrls_ctrl_in_d_bits_data = auto_l2_ctrls_ctrl_in_d_bits_data_0; // @[ClockDomain.scala:14:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File IdIndexer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.amba.axi4
import chisel3._
import chisel3.util.{log2Ceil, Cat}
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.lazymodule.{LazyModule, LazyModuleImp}
import freechips.rocketchip.diplomacy.IdRange
import freechips.rocketchip.util.{ControlKey, SimpleBundleField}
case object AXI4ExtraId extends ControlKey[UInt]("extra_id")
case class AXI4ExtraIdField(width: Int) extends SimpleBundleField(AXI4ExtraId)(Output(UInt(width.W)), 0.U)
/** This adapter limits the set of FIFO domain ids used by outbound transactions.
*
* Extra AWID and ARID bits from upstream transactions are stored in a User Bits field called AXI4ExtraId,
* which values are expected to be echoed back to this adapter alongside any downstream response messages,
* and are then prepended to the RID and BID field to restore the original identifier.
*
* @param idBits is the desired number of A[W|R]ID bits to be used
*/
class AXI4IdIndexer(idBits: Int)(implicit p: Parameters) extends LazyModule
{
require (idBits >= 0, s"AXI4IdIndexer: idBits must be > 0, not $idBits")
val node = AXI4AdapterNode(
masterFn = { mp =>
// Create one new "master" per ID
val masters = Array.tabulate(1 << idBits) { i => AXI4MasterParameters(
name = "",
id = IdRange(i, i+1),
aligned = true,
maxFlight = Some(0))
}
// Accumulate the names of masters we squish
val names = Array.fill(1 << idBits) { new scala.collection.mutable.HashSet[String]() }
// Squash the information from original masters into new ID masters
mp.masters.foreach { m =>
for (i <- m.id.start until m.id.end) {
val j = i % (1 << idBits)
val accumulated = masters(j)
names(j) += m.name
masters(j) = accumulated.copy(
aligned = accumulated.aligned && m.aligned,
maxFlight = accumulated.maxFlight.flatMap { o => m.maxFlight.map { n => o+n } })
}
}
val finalNameStrings = names.map { n => if (n.isEmpty) "(unused)" else n.toList.mkString(", ") }
val bits = log2Ceil(mp.endId) - idBits
val field = if (bits > 0) Seq(AXI4ExtraIdField(bits)) else Nil
mp.copy(
echoFields = field ++ mp.echoFields,
masters = masters.zip(finalNameStrings).map { case (m, n) => m.copy(name = n) })
},
slaveFn = { sp => sp
})
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
// Leave everything mostly untouched
Connectable.waiveUnmatched(out.ar, in.ar) match {
case (lhs, rhs) => lhs.squeezeAll :<>= rhs.squeezeAll
}
Connectable.waiveUnmatched(out.aw, in.aw) match {
case (lhs, rhs) => lhs.squeezeAll :<>= rhs.squeezeAll
}
Connectable.waiveUnmatched(out.w, in.w) match {
case (lhs, rhs) => lhs.squeezeAll :<>= rhs.squeezeAll
}
Connectable.waiveUnmatched(in.b, out.b) match {
case (lhs, rhs) => lhs.squeezeAll :<>= rhs.squeezeAll
}
Connectable.waiveUnmatched(in.r, out.r) match {
case (lhs, rhs) => lhs.squeezeAll :<>= rhs.squeezeAll
}
val bits = log2Ceil(edgeIn.master.endId) - idBits
if (bits > 0) {
// (in.aX.bits.id >> idBits).width = bits > 0
out.ar.bits.echo(AXI4ExtraId) := in.ar.bits.id >> idBits
out.aw.bits.echo(AXI4ExtraId) := in.aw.bits.id >> idBits
// Special care is needed in case of 0 idBits, b/c .id has width 1 still
if (idBits == 0) {
out.ar.bits.id := 0.U
out.aw.bits.id := 0.U
in.r.bits.id := out.r.bits.echo(AXI4ExtraId)
in.b.bits.id := out.b.bits.echo(AXI4ExtraId)
} else {
in.r.bits.id := Cat(out.r.bits.echo(AXI4ExtraId), out.r.bits.id)
in.b.bits.id := Cat(out.b.bits.echo(AXI4ExtraId), out.b.bits.id)
}
}
}
}
}
object AXI4IdIndexer
{
def apply(idBits: Int)(implicit p: Parameters): AXI4Node =
{
val axi4index = LazyModule(new AXI4IdIndexer(idBits))
axi4index.node
}
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
| module AXI4IdIndexer_3( // @[IdIndexer.scala:63:9]
input clock, // @[IdIndexer.scala:63:9]
input reset, // @[IdIndexer.scala:63:9]
output auto_in_aw_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_aw_valid, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_aw_bits_id, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_aw_bits_addr, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_aw_bits_len, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_aw_bits_size, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_in_aw_bits_burst, // @[LazyModuleImp.scala:107:25]
input auto_in_aw_bits_lock, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_aw_bits_cache, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_aw_bits_prot, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_aw_bits_qos, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_aw_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_aw_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25]
output auto_in_w_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_w_valid, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_w_bits_data, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_w_bits_strb, // @[LazyModuleImp.scala:107:25]
input auto_in_w_bits_last, // @[LazyModuleImp.scala:107:25]
input auto_in_b_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_b_valid, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_in_b_bits_id, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_b_bits_resp, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_b_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_in_b_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25]
output auto_in_ar_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_ar_valid, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_ar_bits_id, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_ar_bits_addr, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_ar_bits_len, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_ar_bits_size, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_in_ar_bits_burst, // @[LazyModuleImp.scala:107:25]
input auto_in_ar_bits_lock, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_ar_bits_cache, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_ar_bits_prot, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_ar_bits_qos, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_in_ar_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_ar_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25]
input auto_in_r_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_r_valid, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_in_r_bits_id, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_in_r_bits_data, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_r_bits_resp, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_in_r_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_in_r_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25]
output auto_in_r_bits_last, // @[LazyModuleImp.scala:107:25]
input auto_out_aw_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_aw_valid, // @[LazyModuleImp.scala:107:25]
output [6:0] auto_out_aw_bits_id, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_aw_bits_addr, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_aw_bits_len, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_aw_bits_size, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_out_aw_bits_burst, // @[LazyModuleImp.scala:107:25]
output auto_out_aw_bits_lock, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_aw_bits_cache, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_aw_bits_prot, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_aw_bits_qos, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_aw_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_aw_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25]
output auto_out_aw_bits_echo_extra_id, // @[LazyModuleImp.scala:107:25]
input auto_out_w_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_w_valid, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_w_bits_data, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_w_bits_strb, // @[LazyModuleImp.scala:107:25]
output auto_out_w_bits_last, // @[LazyModuleImp.scala:107:25]
output auto_out_b_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_b_valid, // @[LazyModuleImp.scala:107:25]
input [6:0] auto_out_b_bits_id, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_b_bits_resp, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_b_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_out_b_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25]
input auto_out_b_bits_echo_extra_id, // @[LazyModuleImp.scala:107:25]
input auto_out_ar_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_ar_valid, // @[LazyModuleImp.scala:107:25]
output [6:0] auto_out_ar_bits_id, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_ar_bits_addr, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_ar_bits_len, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_ar_bits_size, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_out_ar_bits_burst, // @[LazyModuleImp.scala:107:25]
output auto_out_ar_bits_lock, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_ar_bits_cache, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_ar_bits_prot, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_ar_bits_qos, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_ar_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_ar_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25]
output auto_out_ar_bits_echo_extra_id, // @[LazyModuleImp.scala:107:25]
output auto_out_r_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_r_valid, // @[LazyModuleImp.scala:107:25]
input [6:0] auto_out_r_bits_id, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_r_bits_data, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_r_bits_resp, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_r_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_out_r_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25]
input auto_out_r_bits_echo_extra_id, // @[LazyModuleImp.scala:107:25]
input auto_out_r_bits_last // @[LazyModuleImp.scala:107:25]
);
wire auto_in_aw_valid_0 = auto_in_aw_valid; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_aw_bits_id_0 = auto_in_aw_bits_id; // @[IdIndexer.scala:63:9]
wire [31:0] auto_in_aw_bits_addr_0 = auto_in_aw_bits_addr; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_aw_bits_len_0 = auto_in_aw_bits_len; // @[IdIndexer.scala:63:9]
wire [2:0] auto_in_aw_bits_size_0 = auto_in_aw_bits_size; // @[IdIndexer.scala:63:9]
wire [1:0] auto_in_aw_bits_burst_0 = auto_in_aw_bits_burst; // @[IdIndexer.scala:63:9]
wire auto_in_aw_bits_lock_0 = auto_in_aw_bits_lock; // @[IdIndexer.scala:63:9]
wire [3:0] auto_in_aw_bits_cache_0 = auto_in_aw_bits_cache; // @[IdIndexer.scala:63:9]
wire [2:0] auto_in_aw_bits_prot_0 = auto_in_aw_bits_prot; // @[IdIndexer.scala:63:9]
wire [3:0] auto_in_aw_bits_qos_0 = auto_in_aw_bits_qos; // @[IdIndexer.scala:63:9]
wire [3:0] auto_in_aw_bits_echo_tl_state_size_0 = auto_in_aw_bits_echo_tl_state_size; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_aw_bits_echo_tl_state_source_0 = auto_in_aw_bits_echo_tl_state_source; // @[IdIndexer.scala:63:9]
wire auto_in_w_valid_0 = auto_in_w_valid; // @[IdIndexer.scala:63:9]
wire [63:0] auto_in_w_bits_data_0 = auto_in_w_bits_data; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_w_bits_strb_0 = auto_in_w_bits_strb; // @[IdIndexer.scala:63:9]
wire auto_in_w_bits_last_0 = auto_in_w_bits_last; // @[IdIndexer.scala:63:9]
wire auto_in_b_ready_0 = auto_in_b_ready; // @[IdIndexer.scala:63:9]
wire auto_in_ar_valid_0 = auto_in_ar_valid; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_ar_bits_id_0 = auto_in_ar_bits_id; // @[IdIndexer.scala:63:9]
wire [31:0] auto_in_ar_bits_addr_0 = auto_in_ar_bits_addr; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_ar_bits_len_0 = auto_in_ar_bits_len; // @[IdIndexer.scala:63:9]
wire [2:0] auto_in_ar_bits_size_0 = auto_in_ar_bits_size; // @[IdIndexer.scala:63:9]
wire [1:0] auto_in_ar_bits_burst_0 = auto_in_ar_bits_burst; // @[IdIndexer.scala:63:9]
wire auto_in_ar_bits_lock_0 = auto_in_ar_bits_lock; // @[IdIndexer.scala:63:9]
wire [3:0] auto_in_ar_bits_cache_0 = auto_in_ar_bits_cache; // @[IdIndexer.scala:63:9]
wire [2:0] auto_in_ar_bits_prot_0 = auto_in_ar_bits_prot; // @[IdIndexer.scala:63:9]
wire [3:0] auto_in_ar_bits_qos_0 = auto_in_ar_bits_qos; // @[IdIndexer.scala:63:9]
wire [3:0] auto_in_ar_bits_echo_tl_state_size_0 = auto_in_ar_bits_echo_tl_state_size; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_ar_bits_echo_tl_state_source_0 = auto_in_ar_bits_echo_tl_state_source; // @[IdIndexer.scala:63:9]
wire auto_in_r_ready_0 = auto_in_r_ready; // @[IdIndexer.scala:63:9]
wire auto_out_aw_ready_0 = auto_out_aw_ready; // @[IdIndexer.scala:63:9]
wire auto_out_w_ready_0 = auto_out_w_ready; // @[IdIndexer.scala:63:9]
wire auto_out_b_valid_0 = auto_out_b_valid; // @[IdIndexer.scala:63:9]
wire [6:0] auto_out_b_bits_id_0 = auto_out_b_bits_id; // @[IdIndexer.scala:63:9]
wire [1:0] auto_out_b_bits_resp_0 = auto_out_b_bits_resp; // @[IdIndexer.scala:63:9]
wire [3:0] auto_out_b_bits_echo_tl_state_size_0 = auto_out_b_bits_echo_tl_state_size; // @[IdIndexer.scala:63:9]
wire [7:0] auto_out_b_bits_echo_tl_state_source_0 = auto_out_b_bits_echo_tl_state_source; // @[IdIndexer.scala:63:9]
wire auto_out_b_bits_echo_extra_id_0 = auto_out_b_bits_echo_extra_id; // @[IdIndexer.scala:63:9]
wire auto_out_ar_ready_0 = auto_out_ar_ready; // @[IdIndexer.scala:63:9]
wire auto_out_r_valid_0 = auto_out_r_valid; // @[IdIndexer.scala:63:9]
wire [6:0] auto_out_r_bits_id_0 = auto_out_r_bits_id; // @[IdIndexer.scala:63:9]
wire [63:0] auto_out_r_bits_data_0 = auto_out_r_bits_data; // @[IdIndexer.scala:63:9]
wire [1:0] auto_out_r_bits_resp_0 = auto_out_r_bits_resp; // @[IdIndexer.scala:63:9]
wire [3:0] auto_out_r_bits_echo_tl_state_size_0 = auto_out_r_bits_echo_tl_state_size; // @[IdIndexer.scala:63:9]
wire [7:0] auto_out_r_bits_echo_tl_state_source_0 = auto_out_r_bits_echo_tl_state_source; // @[IdIndexer.scala:63:9]
wire auto_out_r_bits_echo_extra_id_0 = auto_out_r_bits_echo_extra_id; // @[IdIndexer.scala:63:9]
wire auto_out_r_bits_last_0 = auto_out_r_bits_last; // @[IdIndexer.scala:63:9]
wire nodeIn_aw_ready; // @[MixedNode.scala:551:17]
wire nodeIn_aw_valid = auto_in_aw_valid_0; // @[IdIndexer.scala:63:9]
wire [7:0] nodeIn_aw_bits_id = auto_in_aw_bits_id_0; // @[IdIndexer.scala:63:9]
wire [31:0] nodeIn_aw_bits_addr = auto_in_aw_bits_addr_0; // @[IdIndexer.scala:63:9]
wire [7:0] nodeIn_aw_bits_len = auto_in_aw_bits_len_0; // @[IdIndexer.scala:63:9]
wire [2:0] nodeIn_aw_bits_size = auto_in_aw_bits_size_0; // @[IdIndexer.scala:63:9]
wire [1:0] nodeIn_aw_bits_burst = auto_in_aw_bits_burst_0; // @[IdIndexer.scala:63:9]
wire nodeIn_aw_bits_lock = auto_in_aw_bits_lock_0; // @[IdIndexer.scala:63:9]
wire [3:0] nodeIn_aw_bits_cache = auto_in_aw_bits_cache_0; // @[IdIndexer.scala:63:9]
wire [2:0] nodeIn_aw_bits_prot = auto_in_aw_bits_prot_0; // @[IdIndexer.scala:63:9]
wire [3:0] nodeIn_aw_bits_qos = auto_in_aw_bits_qos_0; // @[IdIndexer.scala:63:9]
wire [3:0] nodeIn_aw_bits_echo_tl_state_size = auto_in_aw_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
wire [7:0] nodeIn_aw_bits_echo_tl_state_source = auto_in_aw_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
wire nodeIn_w_ready; // @[MixedNode.scala:551:17]
wire nodeIn_w_valid = auto_in_w_valid_0; // @[IdIndexer.scala:63:9]
wire [63:0] nodeIn_w_bits_data = auto_in_w_bits_data_0; // @[IdIndexer.scala:63:9]
wire [7:0] nodeIn_w_bits_strb = auto_in_w_bits_strb_0; // @[IdIndexer.scala:63:9]
wire nodeIn_w_bits_last = auto_in_w_bits_last_0; // @[IdIndexer.scala:63:9]
wire nodeIn_b_ready = auto_in_b_ready_0; // @[IdIndexer.scala:63:9]
wire nodeIn_b_valid; // @[MixedNode.scala:551:17]
wire [7:0] nodeIn_b_bits_id; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_b_bits_resp; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_b_bits_echo_tl_state_size; // @[MixedNode.scala:551:17]
wire [7:0] nodeIn_b_bits_echo_tl_state_source; // @[MixedNode.scala:551:17]
wire nodeIn_ar_ready; // @[MixedNode.scala:551:17]
wire nodeIn_ar_valid = auto_in_ar_valid_0; // @[IdIndexer.scala:63:9]
wire [7:0] nodeIn_ar_bits_id = auto_in_ar_bits_id_0; // @[IdIndexer.scala:63:9]
wire [31:0] nodeIn_ar_bits_addr = auto_in_ar_bits_addr_0; // @[IdIndexer.scala:63:9]
wire [7:0] nodeIn_ar_bits_len = auto_in_ar_bits_len_0; // @[IdIndexer.scala:63:9]
wire [2:0] nodeIn_ar_bits_size = auto_in_ar_bits_size_0; // @[IdIndexer.scala:63:9]
wire [1:0] nodeIn_ar_bits_burst = auto_in_ar_bits_burst_0; // @[IdIndexer.scala:63:9]
wire nodeIn_ar_bits_lock = auto_in_ar_bits_lock_0; // @[IdIndexer.scala:63:9]
wire [3:0] nodeIn_ar_bits_cache = auto_in_ar_bits_cache_0; // @[IdIndexer.scala:63:9]
wire [2:0] nodeIn_ar_bits_prot = auto_in_ar_bits_prot_0; // @[IdIndexer.scala:63:9]
wire [3:0] nodeIn_ar_bits_qos = auto_in_ar_bits_qos_0; // @[IdIndexer.scala:63:9]
wire [3:0] nodeIn_ar_bits_echo_tl_state_size = auto_in_ar_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
wire [7:0] nodeIn_ar_bits_echo_tl_state_source = auto_in_ar_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
wire nodeIn_r_ready = auto_in_r_ready_0; // @[IdIndexer.scala:63:9]
wire nodeIn_r_valid; // @[MixedNode.scala:551:17]
wire [7:0] nodeIn_r_bits_id; // @[MixedNode.scala:551:17]
wire [63:0] nodeIn_r_bits_data; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_r_bits_resp; // @[MixedNode.scala:551:17]
wire [3:0] nodeIn_r_bits_echo_tl_state_size; // @[MixedNode.scala:551:17]
wire [7:0] nodeIn_r_bits_echo_tl_state_source; // @[MixedNode.scala:551:17]
wire nodeIn_r_bits_last; // @[MixedNode.scala:551:17]
wire nodeOut_aw_ready = auto_out_aw_ready_0; // @[IdIndexer.scala:63:9]
wire nodeOut_aw_valid; // @[MixedNode.scala:542:17]
wire [6:0] nodeOut_aw_bits_id; // @[MixedNode.scala:542:17]
wire [31:0] nodeOut_aw_bits_addr; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_aw_bits_len; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_aw_bits_size; // @[MixedNode.scala:542:17]
wire [1:0] nodeOut_aw_bits_burst; // @[MixedNode.scala:542:17]
wire nodeOut_aw_bits_lock; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_aw_bits_cache; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_aw_bits_prot; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_aw_bits_qos; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_aw_bits_echo_tl_state_size; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_aw_bits_echo_tl_state_source; // @[MixedNode.scala:542:17]
wire nodeOut_aw_bits_echo_extra_id; // @[MixedNode.scala:542:17]
wire nodeOut_w_ready = auto_out_w_ready_0; // @[IdIndexer.scala:63:9]
wire nodeOut_w_valid; // @[MixedNode.scala:542:17]
wire [63:0] nodeOut_w_bits_data; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_w_bits_strb; // @[MixedNode.scala:542:17]
wire nodeOut_w_bits_last; // @[MixedNode.scala:542:17]
wire nodeOut_b_ready; // @[MixedNode.scala:542:17]
wire nodeOut_b_valid = auto_out_b_valid_0; // @[IdIndexer.scala:63:9]
wire [6:0] nodeOut_b_bits_id = auto_out_b_bits_id_0; // @[IdIndexer.scala:63:9]
wire [1:0] nodeOut_b_bits_resp = auto_out_b_bits_resp_0; // @[IdIndexer.scala:63:9]
wire [3:0] nodeOut_b_bits_echo_tl_state_size = auto_out_b_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
wire [7:0] nodeOut_b_bits_echo_tl_state_source = auto_out_b_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
wire nodeOut_b_bits_echo_extra_id = auto_out_b_bits_echo_extra_id_0; // @[IdIndexer.scala:63:9]
wire nodeOut_ar_ready = auto_out_ar_ready_0; // @[IdIndexer.scala:63:9]
wire nodeOut_ar_valid; // @[MixedNode.scala:542:17]
wire [6:0] nodeOut_ar_bits_id; // @[MixedNode.scala:542:17]
wire [31:0] nodeOut_ar_bits_addr; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_ar_bits_len; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_ar_bits_size; // @[MixedNode.scala:542:17]
wire [1:0] nodeOut_ar_bits_burst; // @[MixedNode.scala:542:17]
wire nodeOut_ar_bits_lock; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_ar_bits_cache; // @[MixedNode.scala:542:17]
wire [2:0] nodeOut_ar_bits_prot; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_ar_bits_qos; // @[MixedNode.scala:542:17]
wire [3:0] nodeOut_ar_bits_echo_tl_state_size; // @[MixedNode.scala:542:17]
wire [7:0] nodeOut_ar_bits_echo_tl_state_source; // @[MixedNode.scala:542:17]
wire nodeOut_ar_bits_echo_extra_id; // @[MixedNode.scala:542:17]
wire nodeOut_r_ready; // @[MixedNode.scala:542:17]
wire nodeOut_r_valid = auto_out_r_valid_0; // @[IdIndexer.scala:63:9]
wire [6:0] nodeOut_r_bits_id = auto_out_r_bits_id_0; // @[IdIndexer.scala:63:9]
wire [63:0] nodeOut_r_bits_data = auto_out_r_bits_data_0; // @[IdIndexer.scala:63:9]
wire [1:0] nodeOut_r_bits_resp = auto_out_r_bits_resp_0; // @[IdIndexer.scala:63:9]
wire [3:0] nodeOut_r_bits_echo_tl_state_size = auto_out_r_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
wire [7:0] nodeOut_r_bits_echo_tl_state_source = auto_out_r_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
wire nodeOut_r_bits_echo_extra_id = auto_out_r_bits_echo_extra_id_0; // @[IdIndexer.scala:63:9]
wire nodeOut_r_bits_last = auto_out_r_bits_last_0; // @[IdIndexer.scala:63:9]
wire auto_in_aw_ready_0; // @[IdIndexer.scala:63:9]
wire auto_in_w_ready_0; // @[IdIndexer.scala:63:9]
wire [3:0] auto_in_b_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_b_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_b_bits_id_0; // @[IdIndexer.scala:63:9]
wire [1:0] auto_in_b_bits_resp_0; // @[IdIndexer.scala:63:9]
wire auto_in_b_valid_0; // @[IdIndexer.scala:63:9]
wire auto_in_ar_ready_0; // @[IdIndexer.scala:63:9]
wire [3:0] auto_in_r_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_r_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
wire [7:0] auto_in_r_bits_id_0; // @[IdIndexer.scala:63:9]
wire [63:0] auto_in_r_bits_data_0; // @[IdIndexer.scala:63:9]
wire [1:0] auto_in_r_bits_resp_0; // @[IdIndexer.scala:63:9]
wire auto_in_r_bits_last_0; // @[IdIndexer.scala:63:9]
wire auto_in_r_valid_0; // @[IdIndexer.scala:63:9]
wire [3:0] auto_out_aw_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
wire [7:0] auto_out_aw_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
wire auto_out_aw_bits_echo_extra_id_0; // @[IdIndexer.scala:63:9]
wire [6:0] auto_out_aw_bits_id_0; // @[IdIndexer.scala:63:9]
wire [31:0] auto_out_aw_bits_addr_0; // @[IdIndexer.scala:63:9]
wire [7:0] auto_out_aw_bits_len_0; // @[IdIndexer.scala:63:9]
wire [2:0] auto_out_aw_bits_size_0; // @[IdIndexer.scala:63:9]
wire [1:0] auto_out_aw_bits_burst_0; // @[IdIndexer.scala:63:9]
wire auto_out_aw_bits_lock_0; // @[IdIndexer.scala:63:9]
wire [3:0] auto_out_aw_bits_cache_0; // @[IdIndexer.scala:63:9]
wire [2:0] auto_out_aw_bits_prot_0; // @[IdIndexer.scala:63:9]
wire [3:0] auto_out_aw_bits_qos_0; // @[IdIndexer.scala:63:9]
wire auto_out_aw_valid_0; // @[IdIndexer.scala:63:9]
wire [63:0] auto_out_w_bits_data_0; // @[IdIndexer.scala:63:9]
wire [7:0] auto_out_w_bits_strb_0; // @[IdIndexer.scala:63:9]
wire auto_out_w_bits_last_0; // @[IdIndexer.scala:63:9]
wire auto_out_w_valid_0; // @[IdIndexer.scala:63:9]
wire auto_out_b_ready_0; // @[IdIndexer.scala:63:9]
wire [3:0] auto_out_ar_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
wire [7:0] auto_out_ar_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
wire auto_out_ar_bits_echo_extra_id_0; // @[IdIndexer.scala:63:9]
wire [6:0] auto_out_ar_bits_id_0; // @[IdIndexer.scala:63:9]
wire [31:0] auto_out_ar_bits_addr_0; // @[IdIndexer.scala:63:9]
wire [7:0] auto_out_ar_bits_len_0; // @[IdIndexer.scala:63:9]
wire [2:0] auto_out_ar_bits_size_0; // @[IdIndexer.scala:63:9]
wire [1:0] auto_out_ar_bits_burst_0; // @[IdIndexer.scala:63:9]
wire auto_out_ar_bits_lock_0; // @[IdIndexer.scala:63:9]
wire [3:0] auto_out_ar_bits_cache_0; // @[IdIndexer.scala:63:9]
wire [2:0] auto_out_ar_bits_prot_0; // @[IdIndexer.scala:63:9]
wire [3:0] auto_out_ar_bits_qos_0; // @[IdIndexer.scala:63:9]
wire auto_out_ar_valid_0; // @[IdIndexer.scala:63:9]
wire auto_out_r_ready_0; // @[IdIndexer.scala:63:9]
assign auto_in_aw_ready_0 = nodeIn_aw_ready; // @[IdIndexer.scala:63:9]
assign nodeOut_aw_valid = nodeIn_aw_valid; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_addr = nodeIn_aw_bits_addr; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_len = nodeIn_aw_bits_len; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_size = nodeIn_aw_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_burst = nodeIn_aw_bits_burst; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_lock = nodeIn_aw_bits_lock; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_cache = nodeIn_aw_bits_cache; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_prot = nodeIn_aw_bits_prot; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_qos = nodeIn_aw_bits_qos; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_echo_tl_state_size = nodeIn_aw_bits_echo_tl_state_size; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_aw_bits_echo_tl_state_source = nodeIn_aw_bits_echo_tl_state_source; // @[MixedNode.scala:542:17, :551:17]
assign auto_in_w_ready_0 = nodeIn_w_ready; // @[IdIndexer.scala:63:9]
assign nodeOut_w_valid = nodeIn_w_valid; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_w_bits_data = nodeIn_w_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_w_bits_strb = nodeIn_w_bits_strb; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_w_bits_last = nodeIn_w_bits_last; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_b_ready = nodeIn_b_ready; // @[MixedNode.scala:542:17, :551:17]
assign auto_in_b_valid_0 = nodeIn_b_valid; // @[IdIndexer.scala:63:9]
wire [7:0] _nodeIn_b_bits_id_T; // @[IdIndexer.scala:97:30]
assign auto_in_b_bits_id_0 = nodeIn_b_bits_id; // @[IdIndexer.scala:63:9]
assign auto_in_b_bits_resp_0 = nodeIn_b_bits_resp; // @[IdIndexer.scala:63:9]
assign auto_in_b_bits_echo_tl_state_size_0 = nodeIn_b_bits_echo_tl_state_size; // @[IdIndexer.scala:63:9]
assign auto_in_b_bits_echo_tl_state_source_0 = nodeIn_b_bits_echo_tl_state_source; // @[IdIndexer.scala:63:9]
assign auto_in_ar_ready_0 = nodeIn_ar_ready; // @[IdIndexer.scala:63:9]
assign nodeOut_ar_valid = nodeIn_ar_valid; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_addr = nodeIn_ar_bits_addr; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_len = nodeIn_ar_bits_len; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_size = nodeIn_ar_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_burst = nodeIn_ar_bits_burst; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_lock = nodeIn_ar_bits_lock; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_cache = nodeIn_ar_bits_cache; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_prot = nodeIn_ar_bits_prot; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_qos = nodeIn_ar_bits_qos; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_echo_tl_state_size = nodeIn_ar_bits_echo_tl_state_size; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_echo_tl_state_source = nodeIn_ar_bits_echo_tl_state_source; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_r_ready = nodeIn_r_ready; // @[MixedNode.scala:542:17, :551:17]
assign auto_in_r_valid_0 = nodeIn_r_valid; // @[IdIndexer.scala:63:9]
wire [7:0] _nodeIn_r_bits_id_T; // @[IdIndexer.scala:96:30]
assign auto_in_r_bits_id_0 = nodeIn_r_bits_id; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_data_0 = nodeIn_r_bits_data; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_resp_0 = nodeIn_r_bits_resp; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_echo_tl_state_size_0 = nodeIn_r_bits_echo_tl_state_size; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_echo_tl_state_source_0 = nodeIn_r_bits_echo_tl_state_source; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_last_0 = nodeIn_r_bits_last; // @[IdIndexer.scala:63:9]
assign nodeIn_aw_ready = nodeOut_aw_ready; // @[MixedNode.scala:542:17, :551:17]
assign auto_out_aw_valid_0 = nodeOut_aw_valid; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_id_0 = nodeOut_aw_bits_id; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_addr_0 = nodeOut_aw_bits_addr; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_len_0 = nodeOut_aw_bits_len; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_size_0 = nodeOut_aw_bits_size; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_burst_0 = nodeOut_aw_bits_burst; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_lock_0 = nodeOut_aw_bits_lock; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_cache_0 = nodeOut_aw_bits_cache; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_prot_0 = nodeOut_aw_bits_prot; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_qos_0 = nodeOut_aw_bits_qos; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_echo_tl_state_size_0 = nodeOut_aw_bits_echo_tl_state_size; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_echo_tl_state_source_0 = nodeOut_aw_bits_echo_tl_state_source; // @[IdIndexer.scala:63:9]
wire _nodeOut_aw_bits_echo_extra_id_T; // @[IdIndexer.scala:88:56]
assign auto_out_aw_bits_echo_extra_id_0 = nodeOut_aw_bits_echo_extra_id; // @[IdIndexer.scala:63:9]
assign nodeIn_w_ready = nodeOut_w_ready; // @[MixedNode.scala:542:17, :551:17]
assign auto_out_w_valid_0 = nodeOut_w_valid; // @[IdIndexer.scala:63:9]
assign auto_out_w_bits_data_0 = nodeOut_w_bits_data; // @[IdIndexer.scala:63:9]
assign auto_out_w_bits_strb_0 = nodeOut_w_bits_strb; // @[IdIndexer.scala:63:9]
assign auto_out_w_bits_last_0 = nodeOut_w_bits_last; // @[IdIndexer.scala:63:9]
assign auto_out_b_ready_0 = nodeOut_b_ready; // @[IdIndexer.scala:63:9]
assign nodeIn_b_valid = nodeOut_b_valid; // @[MixedNode.scala:542:17, :551:17]
assign nodeIn_b_bits_resp = nodeOut_b_bits_resp; // @[MixedNode.scala:542:17, :551:17]
assign nodeIn_b_bits_echo_tl_state_size = nodeOut_b_bits_echo_tl_state_size; // @[MixedNode.scala:542:17, :551:17]
assign nodeIn_b_bits_echo_tl_state_source = nodeOut_b_bits_echo_tl_state_source; // @[MixedNode.scala:542:17, :551:17]
assign nodeIn_ar_ready = nodeOut_ar_ready; // @[MixedNode.scala:542:17, :551:17]
assign auto_out_ar_valid_0 = nodeOut_ar_valid; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_id_0 = nodeOut_ar_bits_id; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_addr_0 = nodeOut_ar_bits_addr; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_len_0 = nodeOut_ar_bits_len; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_size_0 = nodeOut_ar_bits_size; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_burst_0 = nodeOut_ar_bits_burst; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_lock_0 = nodeOut_ar_bits_lock; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_cache_0 = nodeOut_ar_bits_cache; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_prot_0 = nodeOut_ar_bits_prot; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_qos_0 = nodeOut_ar_bits_qos; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_echo_tl_state_size_0 = nodeOut_ar_bits_echo_tl_state_size; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_echo_tl_state_source_0 = nodeOut_ar_bits_echo_tl_state_source; // @[IdIndexer.scala:63:9]
wire _nodeOut_ar_bits_echo_extra_id_T; // @[IdIndexer.scala:87:56]
assign auto_out_ar_bits_echo_extra_id_0 = nodeOut_ar_bits_echo_extra_id; // @[IdIndexer.scala:63:9]
assign auto_out_r_ready_0 = nodeOut_r_ready; // @[IdIndexer.scala:63:9]
assign nodeIn_r_valid = nodeOut_r_valid; // @[MixedNode.scala:542:17, :551:17]
assign nodeIn_r_bits_data = nodeOut_r_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign nodeIn_r_bits_resp = nodeOut_r_bits_resp; // @[MixedNode.scala:542:17, :551:17]
assign nodeIn_r_bits_echo_tl_state_size = nodeOut_r_bits_echo_tl_state_size; // @[MixedNode.scala:542:17, :551:17]
assign nodeIn_r_bits_echo_tl_state_source = nodeOut_r_bits_echo_tl_state_source; // @[MixedNode.scala:542:17, :551:17]
assign nodeIn_r_bits_last = nodeOut_r_bits_last; // @[MixedNode.scala:542:17, :551:17]
assign nodeOut_ar_bits_id = nodeIn_ar_bits_id[6:0]; // @[IdIndexer.scala:69:43]
assign nodeOut_aw_bits_id = nodeIn_aw_bits_id[6:0]; // @[IdIndexer.scala:72:43]
assign _nodeOut_ar_bits_echo_extra_id_T = nodeIn_ar_bits_id[7]; // @[IdIndexer.scala:87:56]
assign nodeOut_ar_bits_echo_extra_id = _nodeOut_ar_bits_echo_extra_id_T; // @[IdIndexer.scala:87:56]
assign _nodeOut_aw_bits_echo_extra_id_T = nodeIn_aw_bits_id[7]; // @[IdIndexer.scala:88:56]
assign nodeOut_aw_bits_echo_extra_id = _nodeOut_aw_bits_echo_extra_id_T; // @[IdIndexer.scala:88:56]
assign _nodeIn_r_bits_id_T = {nodeOut_r_bits_echo_extra_id, nodeOut_r_bits_id}; // @[IdIndexer.scala:96:30]
assign nodeIn_r_bits_id = _nodeIn_r_bits_id_T; // @[IdIndexer.scala:96:30]
assign _nodeIn_b_bits_id_T = {nodeOut_b_bits_echo_extra_id, nodeOut_b_bits_id}; // @[IdIndexer.scala:97:30]
assign nodeIn_b_bits_id = _nodeIn_b_bits_id_T; // @[IdIndexer.scala:97:30]
assign auto_in_aw_ready = auto_in_aw_ready_0; // @[IdIndexer.scala:63:9]
assign auto_in_w_ready = auto_in_w_ready_0; // @[IdIndexer.scala:63:9]
assign auto_in_b_valid = auto_in_b_valid_0; // @[IdIndexer.scala:63:9]
assign auto_in_b_bits_id = auto_in_b_bits_id_0; // @[IdIndexer.scala:63:9]
assign auto_in_b_bits_resp = auto_in_b_bits_resp_0; // @[IdIndexer.scala:63:9]
assign auto_in_b_bits_echo_tl_state_size = auto_in_b_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
assign auto_in_b_bits_echo_tl_state_source = auto_in_b_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
assign auto_in_ar_ready = auto_in_ar_ready_0; // @[IdIndexer.scala:63:9]
assign auto_in_r_valid = auto_in_r_valid_0; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_id = auto_in_r_bits_id_0; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_data = auto_in_r_bits_data_0; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_resp = auto_in_r_bits_resp_0; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_echo_tl_state_size = auto_in_r_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_echo_tl_state_source = auto_in_r_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
assign auto_in_r_bits_last = auto_in_r_bits_last_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_valid = auto_out_aw_valid_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_id = auto_out_aw_bits_id_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_addr = auto_out_aw_bits_addr_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_len = auto_out_aw_bits_len_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_size = auto_out_aw_bits_size_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_burst = auto_out_aw_bits_burst_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_lock = auto_out_aw_bits_lock_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_cache = auto_out_aw_bits_cache_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_prot = auto_out_aw_bits_prot_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_qos = auto_out_aw_bits_qos_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_echo_tl_state_size = auto_out_aw_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_echo_tl_state_source = auto_out_aw_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
assign auto_out_aw_bits_echo_extra_id = auto_out_aw_bits_echo_extra_id_0; // @[IdIndexer.scala:63:9]
assign auto_out_w_valid = auto_out_w_valid_0; // @[IdIndexer.scala:63:9]
assign auto_out_w_bits_data = auto_out_w_bits_data_0; // @[IdIndexer.scala:63:9]
assign auto_out_w_bits_strb = auto_out_w_bits_strb_0; // @[IdIndexer.scala:63:9]
assign auto_out_w_bits_last = auto_out_w_bits_last_0; // @[IdIndexer.scala:63:9]
assign auto_out_b_ready = auto_out_b_ready_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_valid = auto_out_ar_valid_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_id = auto_out_ar_bits_id_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_addr = auto_out_ar_bits_addr_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_len = auto_out_ar_bits_len_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_size = auto_out_ar_bits_size_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_burst = auto_out_ar_bits_burst_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_lock = auto_out_ar_bits_lock_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_cache = auto_out_ar_bits_cache_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_prot = auto_out_ar_bits_prot_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_qos = auto_out_ar_bits_qos_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_echo_tl_state_size = auto_out_ar_bits_echo_tl_state_size_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_echo_tl_state_source = auto_out_ar_bits_echo_tl_state_source_0; // @[IdIndexer.scala:63:9]
assign auto_out_ar_bits_echo_extra_id = auto_out_ar_bits_echo_extra_id_0; // @[IdIndexer.scala:63:9]
assign auto_out_r_ready = auto_out_r_ready_0; // @[IdIndexer.scala:63:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File InputUnit.scala:
package constellation.router
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import constellation.channel._
import constellation.routing.{FlowRoutingBundle}
import constellation.noc.{HasNoCParams}
class AbstractInputUnitIO(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams],
)(implicit val p: Parameters) extends Bundle with HasRouterOutputParams {
val nodeId = cParam.destId
val router_req = Decoupled(new RouteComputerReq)
val router_resp = Input(new RouteComputerResp(outParams, egressParams))
val vcalloc_req = Decoupled(new VCAllocReq(cParam, outParams, egressParams))
val vcalloc_resp = Input(new VCAllocResp(outParams, egressParams))
val out_credit_available = Input(MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }))
val salloc_req = Vec(cParam.destSpeedup, Decoupled(new SwitchAllocReq(outParams, egressParams)))
val out = Vec(cParam.destSpeedup, Valid(new SwitchBundle(outParams, egressParams)))
val debug = Output(new Bundle {
val va_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
val sa_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
})
val block = Input(Bool())
}
abstract class AbstractInputUnit(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams]
)(implicit val p: Parameters) extends Module with HasRouterOutputParams with HasNoCParams {
val nodeId = cParam.destId
def io: AbstractInputUnitIO
}
class InputBuffer(cParam: ChannelParams)(implicit p: Parameters) extends Module {
val nVirtualChannels = cParam.nVirtualChannels
val io = IO(new Bundle {
val enq = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits))))
val deq = Vec(cParam.nVirtualChannels, Decoupled(new BaseFlit(cParam.payloadBits)))
})
val useOutputQueues = cParam.useOutputQueues
val delims = if (useOutputQueues) {
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize else 0).scanLeft(0)(_+_)
} else {
// If no queuing, have to add an additional slot since head == tail implies empty
// TODO this should be fixed, should use all slots available
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize + 1 else 0).scanLeft(0)(_+_)
}
val starts = delims.dropRight(1).zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val ends = delims.tail.zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val fullSize = delims.last
// Ugly case. Use multiple queues
if ((cParam.srcSpeedup > 1 || cParam.destSpeedup > 1 || fullSize <= 1) || !cParam.unifiedBuffer) {
require(useOutputQueues)
val qs = cParam.virtualChannelParams.map(v => Module(new Queue(new BaseFlit(cParam.payloadBits), v.bufferSize)))
qs.zipWithIndex.foreach { case (q,i) =>
val sel = io.enq.map(f => f.valid && f.bits.virt_channel_id === i.U)
q.io.enq.valid := sel.orR
q.io.enq.bits.head := Mux1H(sel, io.enq.map(_.bits.head))
q.io.enq.bits.tail := Mux1H(sel, io.enq.map(_.bits.tail))
q.io.enq.bits.payload := Mux1H(sel, io.enq.map(_.bits.payload))
io.deq(i) <> q.io.deq
}
} else {
val mem = Mem(fullSize, new BaseFlit(cParam.payloadBits))
val heads = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val tails = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val empty = (heads zip tails).map(t => t._1 === t._2)
val qs = Seq.fill(nVirtualChannels) { Module(new Queue(new BaseFlit(cParam.payloadBits), 1, pipe=true)) }
qs.foreach(_.io.enq.valid := false.B)
qs.foreach(_.io.enq.bits := DontCare)
val vc_sel = UIntToOH(io.enq(0).bits.virt_channel_id)
val flit = Wire(new BaseFlit(cParam.payloadBits))
val direct_to_q = (Mux1H(vc_sel, qs.map(_.io.enq.ready)) && Mux1H(vc_sel, empty)) && useOutputQueues.B
flit.head := io.enq(0).bits.head
flit.tail := io.enq(0).bits.tail
flit.payload := io.enq(0).bits.payload
when (io.enq(0).valid && !direct_to_q) {
val tail = tails(io.enq(0).bits.virt_channel_id)
mem.write(tail, flit)
tails(io.enq(0).bits.virt_channel_id) := Mux(
tail === Mux1H(vc_sel, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(vc_sel, starts.map(_.U)),
tail + 1.U)
} .elsewhen (io.enq(0).valid && direct_to_q) {
for (i <- 0 until nVirtualChannels) {
when (io.enq(0).bits.virt_channel_id === i.U) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := flit
}
}
}
if (useOutputQueues) {
val can_to_q = (0 until nVirtualChannels).map { i => !empty(i) && qs(i).io.enq.ready }
val to_q_oh = PriorityEncoderOH(can_to_q)
val to_q = OHToUInt(to_q_oh)
when (can_to_q.orR) {
val head = Mux1H(to_q_oh, heads)
heads(to_q) := Mux(
head === Mux1H(to_q_oh, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(to_q_oh, starts.map(_.U)),
head + 1.U)
for (i <- 0 until nVirtualChannels) {
when (to_q_oh(i)) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := mem.read(head)
}
}
}
for (i <- 0 until nVirtualChannels) {
io.deq(i) <> qs(i).io.deq
}
} else {
qs.map(_.io.deq.ready := false.B)
val ready_sel = io.deq.map(_.ready)
val fire = io.deq.map(_.fire)
assert(PopCount(fire) <= 1.U)
val head = Mux1H(fire, heads)
when (fire.orR) {
val fire_idx = OHToUInt(fire)
heads(fire_idx) := Mux(
head === Mux1H(fire, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(fire, starts.map(_.U)),
head + 1.U)
}
val read_flit = mem.read(head)
for (i <- 0 until nVirtualChannels) {
io.deq(i).valid := !empty(i)
io.deq(i).bits := read_flit
}
}
}
}
class InputUnit(cParam: ChannelParams, outParams: Seq[ChannelParams],
egressParams: Seq[EgressChannelParams],
combineRCVA: Boolean, combineSAST: Boolean
)
(implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) {
val nVirtualChannels = cParam.nVirtualChannels
val virtualChannelParams = cParam.virtualChannelParams
class InputUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) {
val in = Flipped(new Channel(cParam.asInstanceOf[ChannelParams]))
}
val io = IO(new InputUnitIO)
val g_i :: g_r :: g_v :: g_a :: g_c :: Nil = Enum(5)
class InputState extends Bundle {
val g = UInt(3.W)
val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })
val flow = new FlowRoutingBundle
val fifo_deps = UInt(nVirtualChannels.W)
}
val input_buffer = Module(new InputBuffer(cParam))
for (i <- 0 until cParam.srcSpeedup) {
input_buffer.io.enq(i) := io.in.flit(i)
}
input_buffer.io.deq.foreach(_.ready := false.B)
val route_arbiter = Module(new Arbiter(
new RouteComputerReq, nVirtualChannels
))
io.router_req <> route_arbiter.io.out
val states = Reg(Vec(nVirtualChannels, new InputState))
val anyFifo = cParam.possibleFlows.map(_.fifo).reduce(_||_)
val allFifo = cParam.possibleFlows.map(_.fifo).reduce(_&&_)
if (anyFifo) {
val idle_mask = VecInit(states.map(_.g === g_i)).asUInt
for (s <- states)
for (i <- 0 until nVirtualChannels)
s.fifo_deps := s.fifo_deps & ~idle_mask
}
for (i <- 0 until cParam.srcSpeedup) {
when (io.in.flit(i).fire && io.in.flit(i).bits.head) {
val id = io.in.flit(i).bits.virt_channel_id
assert(id < nVirtualChannels.U)
assert(states(id).g === g_i)
val at_dest = io.in.flit(i).bits.flow.egress_node === nodeId.U
states(id).g := Mux(at_dest, g_v, g_r)
states(id).vc_sel.foreach(_.foreach(_ := false.B))
for (o <- 0 until nEgress) {
when (o.U === io.in.flit(i).bits.flow.egress_node_id) {
states(id).vc_sel(o+nOutputs)(0) := true.B
}
}
states(id).flow := io.in.flit(i).bits.flow
if (anyFifo) {
val fifo = cParam.possibleFlows.filter(_.fifo).map(_.isFlow(io.in.flit(i).bits.flow)).toSeq.orR
states(id).fifo_deps := VecInit(states.zipWithIndex.map { case (s, j) =>
s.g =/= g_i && s.flow.asUInt === io.in.flit(i).bits.flow.asUInt && j.U =/= id
}).asUInt
}
}
}
(route_arbiter.io.in zip states).zipWithIndex.map { case ((i,s),idx) =>
if (virtualChannelParams(idx).traversable) {
i.valid := s.g === g_r
i.bits.flow := s.flow
i.bits.src_virt_id := idx.U
when (i.fire) { s.g := g_v }
} else {
i.valid := false.B
i.bits := DontCare
}
}
when (io.router_req.fire) {
val id = io.router_req.bits.src_virt_id
assert(states(id).g === g_r)
states(id).g := g_v
for (i <- 0 until nVirtualChannels) {
when (i.U === id) {
states(i).vc_sel := io.router_resp.vc_sel
}
}
}
val mask = RegInit(0.U(nVirtualChannels.W))
val vcalloc_reqs = Wire(Vec(nVirtualChannels, new VCAllocReq(cParam, outParams, egressParams)))
val vcalloc_vals = Wire(Vec(nVirtualChannels, Bool()))
val vcalloc_filter = PriorityEncoderOH(Cat(vcalloc_vals.asUInt, vcalloc_vals.asUInt & ~mask))
val vcalloc_sel = vcalloc_filter(nVirtualChannels-1,0) | (vcalloc_filter >> nVirtualChannels)
// Prioritize incoming packetes
when (io.router_req.fire) {
mask := (1.U << io.router_req.bits.src_virt_id) - 1.U
} .elsewhen (vcalloc_vals.orR) {
mask := Mux1H(vcalloc_sel, (0 until nVirtualChannels).map { w => ~(0.U((w+1).W)) })
}
io.vcalloc_req.valid := vcalloc_vals.orR
io.vcalloc_req.bits := Mux1H(vcalloc_sel, vcalloc_reqs)
states.zipWithIndex.map { case (s,idx) =>
if (virtualChannelParams(idx).traversable) {
vcalloc_vals(idx) := s.g === g_v && s.fifo_deps === 0.U
vcalloc_reqs(idx).in_vc := idx.U
vcalloc_reqs(idx).vc_sel := s.vc_sel
vcalloc_reqs(idx).flow := s.flow
when (vcalloc_vals(idx) && vcalloc_sel(idx) && io.vcalloc_req.ready) { s.g := g_a }
if (combineRCVA) {
when (route_arbiter.io.in(idx).fire) {
vcalloc_vals(idx) := true.B
vcalloc_reqs(idx).vc_sel := io.router_resp.vc_sel
}
}
} else {
vcalloc_vals(idx) := false.B
vcalloc_reqs(idx) := DontCare
}
}
io.debug.va_stall := PopCount(vcalloc_vals) - io.vcalloc_req.ready
when (io.vcalloc_req.fire) {
for (i <- 0 until nVirtualChannels) {
when (vcalloc_sel(i)) {
states(i).vc_sel := io.vcalloc_resp.vc_sel
states(i).g := g_a
if (!combineRCVA) {
assert(states(i).g === g_v)
}
}
}
}
val salloc_arb = Module(new SwitchArbiter(
nVirtualChannels,
cParam.destSpeedup,
outParams, egressParams
))
(states zip salloc_arb.io.in).zipWithIndex.map { case ((s,r),i) =>
if (virtualChannelParams(i).traversable) {
val credit_available = (s.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U
r.valid := s.g === g_a && credit_available && input_buffer.io.deq(i).valid
r.bits.vc_sel := s.vc_sel
val deq_tail = input_buffer.io.deq(i).bits.tail
r.bits.tail := deq_tail
when (r.fire && deq_tail) {
s.g := g_i
}
input_buffer.io.deq(i).ready := r.ready
} else {
r.valid := false.B
r.bits := DontCare
}
}
io.debug.sa_stall := PopCount(salloc_arb.io.in.map(r => r.valid && !r.ready))
io.salloc_req <> salloc_arb.io.out
when (io.block) {
salloc_arb.io.out.foreach(_.ready := false.B)
io.salloc_req.foreach(_.valid := false.B)
}
class OutBundle extends Bundle {
val valid = Bool()
val vid = UInt(virtualChannelBits.W)
val out_vid = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W)
val flit = new Flit(cParam.payloadBits)
}
val salloc_outs = if (combineSAST) {
Wire(Vec(cParam.destSpeedup, new OutBundle))
} else {
Reg(Vec(cParam.destSpeedup, new OutBundle))
}
io.in.credit_return := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire, salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
io.in.vc_free := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire && Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)),
salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
for (i <- 0 until cParam.destSpeedup) {
val salloc_out = salloc_outs(i)
salloc_out.valid := salloc_arb.io.out(i).fire
salloc_out.vid := OHToUInt(salloc_arb.io.chosen_oh(i))
val vc_sel = Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.vc_sel))
val channel_oh = vc_sel.map(_.reduce(_||_)).toSeq
val virt_channel = Mux1H(channel_oh, vc_sel.map(v => OHToUInt(v)).toSeq)
when (salloc_arb.io.out(i).fire) {
salloc_out.out_vid := virt_channel
salloc_out.flit.payload := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.payload))
salloc_out.flit.head := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.head))
salloc_out.flit.tail := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail))
salloc_out.flit.flow := Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.flow))
} .otherwise {
salloc_out.out_vid := DontCare
salloc_out.flit := DontCare
}
salloc_out.flit.virt_channel_id := DontCare // this gets set in the switch
io.out(i).valid := salloc_out.valid
io.out(i).bits.flit := salloc_out.flit
io.out(i).bits.out_virt_channel := salloc_out.out_vid
}
def filterVCSel(sel: MixedVec[Vec[Bool]], srcV: Int) = {
if (virtualChannelParams(srcV).traversable) {
outParams.zipWithIndex.map { case (oP, oI) =>
(0 until oP.nVirtualChannels).map { oV =>
var allow = false
virtualChannelParams(srcV).possibleFlows.foreach { pI =>
allow = allow || routingRelation(
cParam.channelRoutingInfos(srcV),
oP.channelRoutingInfos(oV),
pI
)
}
if (!allow)
sel(oI)(oV) := false.B
}
}
}
}
(0 until nVirtualChannels).map { i =>
if (!virtualChannelParams(i).traversable) states(i) := DontCare
filterVCSel(states(i).vc_sel, i)
}
when (reset.asBool) {
states.foreach(_.g := g_i)
}
}
| module InputUnit_60( // @[InputUnit.scala:158:7]
input clock, // @[InputUnit.scala:158:7]
input reset, // @[InputUnit.scala:158:7]
output [2:0] io_router_req_bits_src_virt_id, // @[InputUnit.scala:170:14]
output [2:0] io_router_req_bits_flow_vnet_id, // @[InputUnit.scala:170:14]
output [4:0] io_router_req_bits_flow_ingress_node, // @[InputUnit.scala:170:14]
output [1:0] io_router_req_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14]
output [4:0] io_router_req_bits_flow_egress_node, // @[InputUnit.scala:170:14]
output [1:0] io_router_req_bits_flow_egress_node_id, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_3, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_4, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_5, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_6, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_3_7, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_3, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_4, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_5, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_6, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_7, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_3, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_4, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_5, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_6, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_7, // @[InputUnit.scala:170:14]
input io_vcalloc_req_ready, // @[InputUnit.scala:170:14]
output io_vcalloc_req_valid, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_3, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_4, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_5, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_6, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_7, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_3, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_4, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_5, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_6, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_7, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_3, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_4, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_5, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_6, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_7, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_2, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_3, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_4, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_5, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_6, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_7, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_0, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_1, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_2, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_3, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_4, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_5, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_6, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_7, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_1, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_2, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_3, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_4, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_5, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_6, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_0_7, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_3, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_4, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_5, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_6, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_7, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_3, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_4, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_5, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_6, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_7, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_3, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_4, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_5, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_6, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_7, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_3, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_4, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_5, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_6, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_7, // @[InputUnit.scala:170:14]
input io_salloc_req_0_ready, // @[InputUnit.scala:170:14]
output io_salloc_req_0_valid, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_3, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_4, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_5, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_6, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_7, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_3, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_4, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_5, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_6, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_7, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_3, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_4, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_5, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_6, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_7, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_3, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_4, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_5, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_6, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_7, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_tail, // @[InputUnit.scala:170:14]
output io_out_0_valid, // @[InputUnit.scala:170:14]
output io_out_0_bits_flit_head, // @[InputUnit.scala:170:14]
output io_out_0_bits_flit_tail, // @[InputUnit.scala:170:14]
output [72:0] io_out_0_bits_flit_payload, // @[InputUnit.scala:170:14]
output [2:0] io_out_0_bits_flit_flow_vnet_id, // @[InputUnit.scala:170:14]
output [4:0] io_out_0_bits_flit_flow_ingress_node, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_flit_flow_ingress_node_id, // @[InputUnit.scala:170:14]
output [4:0] io_out_0_bits_flit_flow_egress_node, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_flit_flow_egress_node_id, // @[InputUnit.scala:170:14]
output [2:0] io_out_0_bits_out_virt_channel, // @[InputUnit.scala:170:14]
output [2:0] io_debug_va_stall, // @[InputUnit.scala:170:14]
output [2:0] io_debug_sa_stall, // @[InputUnit.scala:170:14]
input io_in_flit_0_valid, // @[InputUnit.scala:170:14]
input io_in_flit_0_bits_head, // @[InputUnit.scala:170:14]
input io_in_flit_0_bits_tail, // @[InputUnit.scala:170:14]
input [72:0] io_in_flit_0_bits_payload, // @[InputUnit.scala:170:14]
input [2:0] io_in_flit_0_bits_flow_vnet_id, // @[InputUnit.scala:170:14]
input [4:0] io_in_flit_0_bits_flow_ingress_node, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14]
input [4:0] io_in_flit_0_bits_flow_egress_node, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[InputUnit.scala:170:14]
input [2:0] io_in_flit_0_bits_virt_channel_id, // @[InputUnit.scala:170:14]
output [7:0] io_in_credit_return, // @[InputUnit.scala:170:14]
output [7:0] io_in_vc_free // @[InputUnit.scala:170:14]
);
wire vcalloc_vals_7; // @[InputUnit.scala:266:32]
wire vcalloc_vals_6; // @[InputUnit.scala:266:32]
wire vcalloc_vals_5; // @[InputUnit.scala:266:32]
wire vcalloc_vals_4; // @[InputUnit.scala:266:32]
wire vcalloc_vals_3; // @[InputUnit.scala:266:32]
wire vcalloc_vals_2; // @[InputUnit.scala:266:32]
wire vcalloc_vals_1; // @[InputUnit.scala:266:32]
wire _salloc_arb_io_in_1_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_2_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_3_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_4_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_5_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_6_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_7_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_out_0_valid; // @[InputUnit.scala:296:26]
wire [7:0] _salloc_arb_io_chosen_oh_0; // @[InputUnit.scala:296:26]
wire _route_arbiter_io_in_1_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_2_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_3_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_4_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_5_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_6_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_7_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_out_valid; // @[InputUnit.scala:187:29]
wire [2:0] _route_arbiter_io_out_bits_src_virt_id; // @[InputUnit.scala:187:29]
wire _input_buffer_io_deq_0_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_0_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_0_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_1_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_2_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_3_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_3_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_3_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_3_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_4_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_4_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_4_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_4_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_5_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_5_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_5_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_5_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_6_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_6_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_6_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_6_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_7_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_7_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_7_bits_tail; // @[InputUnit.scala:181:28]
wire [72:0] _input_buffer_io_deq_7_bits_payload; // @[InputUnit.scala:181:28]
reg [2:0] states_1_g; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_2_0; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_2_1; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_2_2; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_2_3; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_2_4; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_2_5; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_2_6; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_2_7; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_1_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_1_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_1_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_1_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_1_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_2_g; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_2_0; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_2_1; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_2_2; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_2_3; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_2_4; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_2_5; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_2_6; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_2_7; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_2_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_2_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_2_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_2_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_2_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_3_g; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_2_0; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_2_1; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_2_2; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_2_3; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_2_4; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_2_5; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_2_6; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_2_7; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_3_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_3_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_3_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_3_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_3_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_3_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_4_g; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_2_0; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_2_1; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_2_2; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_2_3; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_2_4; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_2_5; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_2_6; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_2_7; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_4_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_4_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_4_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_4_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_4_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_4_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_5_g; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_2_0; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_2_1; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_2_2; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_2_3; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_2_4; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_2_5; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_2_6; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_2_7; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_5_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_5_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_5_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_5_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_5_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_5_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_6_g; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_2_0; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_2_1; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_2_2; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_2_3; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_2_4; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_2_5; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_2_6; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_2_7; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_6_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_6_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_6_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_6_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_6_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_6_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_7_g; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_2; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_3; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_4; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_5; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_6; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_3_7; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_2_0; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_2_1; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_2_2; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_2_3; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_2_4; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_2_5; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_2_6; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_2_7; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_1; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_2; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_3; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_4; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_5; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_6; // @[InputUnit.scala:192:19]
reg states_7_vc_sel_0_7; // @[InputUnit.scala:192:19]
reg [2:0] states_7_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [4:0] states_7_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_7_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [4:0] states_7_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_7_flow_egress_node_id; // @[InputUnit.scala:192:19]
wire _GEN = io_in_flit_0_valid & io_in_flit_0_bits_head; // @[InputUnit.scala:205:30]
wire route_arbiter_io_in_1_valid = states_1_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_2_valid = states_2_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_3_valid = states_3_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_4_valid = states_4_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_5_valid = states_5_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_6_valid = states_6_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_7_valid = states_7_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
reg [7:0] mask; // @[InputUnit.scala:250:21]
wire [7:0] _vcalloc_filter_T_3 = {vcalloc_vals_7, vcalloc_vals_6, vcalloc_vals_5, vcalloc_vals_4, vcalloc_vals_3, vcalloc_vals_2, vcalloc_vals_1, 1'h0} & ~mask; // @[InputUnit.scala:250:21, :253:{80,87,89}, :266:32]
wire [15:0] vcalloc_filter = _vcalloc_filter_T_3[0] ? 16'h1 : _vcalloc_filter_T_3[1] ? 16'h2 : _vcalloc_filter_T_3[2] ? 16'h4 : _vcalloc_filter_T_3[3] ? 16'h8 : _vcalloc_filter_T_3[4] ? 16'h10 : _vcalloc_filter_T_3[5] ? 16'h20 : _vcalloc_filter_T_3[6] ? 16'h40 : _vcalloc_filter_T_3[7] ? 16'h80 : vcalloc_vals_1 ? 16'h200 : vcalloc_vals_2 ? 16'h400 : vcalloc_vals_3 ? 16'h800 : vcalloc_vals_4 ? 16'h1000 : vcalloc_vals_5 ? 16'h2000 : vcalloc_vals_6 ? 16'h4000 : {vcalloc_vals_7, 15'h0}; // @[OneHot.scala:85:71]
wire [7:0] vcalloc_sel = vcalloc_filter[7:0] | vcalloc_filter[15:8]; // @[Mux.scala:50:70]
wire io_vcalloc_req_valid_0 = vcalloc_vals_1 | vcalloc_vals_2 | vcalloc_vals_3 | vcalloc_vals_4 | vcalloc_vals_5 | vcalloc_vals_6 | vcalloc_vals_7; // @[package.scala:81:59]
assign vcalloc_vals_1 = states_1_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_2 = states_2_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_3 = states_3_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_4 = states_4_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_5 = states_5_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_6 = states_6_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
assign vcalloc_vals_7 = states_7_g == 3'h2; // @[InputUnit.scala:192:19, :266:32]
wire _GEN_0 = io_vcalloc_req_ready & io_vcalloc_req_valid_0; // @[Decoupled.scala:51:35]
wire _GEN_1 = _GEN_0 & vcalloc_sel[1]; // @[Mux.scala:32:36]
wire _GEN_2 = _GEN_0 & vcalloc_sel[2]; // @[Mux.scala:32:36]
wire _GEN_3 = _GEN_0 & vcalloc_sel[3]; // @[Mux.scala:32:36]
wire _GEN_4 = _GEN_0 & vcalloc_sel[4]; // @[Mux.scala:32:36]
wire _GEN_5 = _GEN_0 & vcalloc_sel[5]; // @[Mux.scala:32:36]
wire _GEN_6 = _GEN_0 & vcalloc_sel[6]; // @[Mux.scala:32:36]
wire _GEN_7 = _GEN_0 & vcalloc_sel[7]; // @[Mux.scala:32:36] |
Generate the Verilog code corresponding to the following Chisel files.
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File Xbar.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.interrupts
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
class IntXbar()(implicit p: Parameters) extends LazyModule
{
val intnode = new IntNexusNode(
sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) },
sourceFn = { seq =>
IntSourcePortParameters((seq zip seq.map(_.num).scanLeft(0)(_+_).init).map {
case (s, o) => s.sources.map(z => z.copy(range = z.range.offset(o)))
}.flatten)
})
{
override def circuitIdentity = outputs == 1 && inputs == 1
}
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
override def desiredName = s"IntXbar_i${intnode.in.size}_o${intnode.out.size}"
val cat = intnode.in.map { case (i, e) => i.take(e.source.num) }.flatten
intnode.out.foreach { case (o, _) => o := cat }
}
}
class IntSyncXbar()(implicit p: Parameters) extends LazyModule
{
val intnode = new IntSyncNexusNode(
sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) },
sourceFn = { seq =>
IntSourcePortParameters((seq zip seq.map(_.num).scanLeft(0)(_+_).init).map {
case (s, o) => s.sources.map(z => z.copy(range = z.range.offset(o)))
}.flatten)
})
{
override def circuitIdentity = outputs == 1 && inputs == 1
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = s"IntSyncXbar_i${intnode.in.size}_o${intnode.out.size}"
val cat = intnode.in.map { case (i, e) => i.sync.take(e.source.num) }.flatten
intnode.out.foreach { case (o, _) => o.sync := cat }
}
}
object IntXbar {
def apply()(implicit p: Parameters): IntNode = {
val xbar = LazyModule(new IntXbar)
xbar.intnode
}
}
object IntSyncXbar {
def apply()(implicit p: Parameters): IntSyncNode = {
val xbar = LazyModule(new IntSyncXbar)
xbar.intnode
}
}
| module IntXbar_i2_o1_2(); // @[Xbar.scala:22:9]
wire auto_anon_in_1_0 = 1'h0; // @[Xbar.scala:22:9]
wire auto_anon_in_0_0 = 1'h0; // @[Xbar.scala:22:9]
wire auto_anon_out_0 = 1'h0; // @[Xbar.scala:22:9]
wire auto_anon_out_1 = 1'h0; // @[Xbar.scala:22:9]
wire childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire _childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire anonIn_0 = 1'h0; // @[MixedNode.scala:551:17]
wire anonIn_1_0 = 1'h0; // @[MixedNode.scala:551:17]
wire anonOut_0 = 1'h0; // @[MixedNode.scala:542:17]
wire anonOut_1 = 1'h0; // @[MixedNode.scala:542:17]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Tile.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
import Util._
/**
* A Tile is a purely combinational 2D array of passThrough PEs.
* a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs
* @param width The data width of each PE in bits
* @param rows Number of PEs on each row
* @param columns Number of PEs on each column
*/
class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module {
val io = IO(new Bundle {
val in_a = Input(Vec(rows, inputType))
val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it
val in_d = Input(Vec(columns, outputType))
val in_control = Input(Vec(columns, new PEControl(accType)))
val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val in_last = Input(Vec(columns, Bool()))
val out_a = Output(Vec(rows, inputType))
val out_c = Output(Vec(columns, outputType))
val out_b = Output(Vec(columns, outputType))
val out_control = Output(Vec(columns, new PEControl(accType)))
val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val out_last = Output(Vec(columns, Bool()))
val in_valid = Input(Vec(columns, Bool()))
val out_valid = Output(Vec(columns, Bool()))
val bad_dataflow = Output(Bool())
})
import ev._
val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls)))
val tileT = tile.transpose
// TODO: abstract hori/vert broadcast, all these connections look the same
// Broadcast 'a' horizontally across the Tile
for (r <- 0 until rows) {
tile(r).foldLeft(io.in_a(r)) {
case (in_a, pe) =>
pe.io.in_a := in_a
pe.io.out_a
}
}
// Broadcast 'b' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_b(c)) {
case (in_b, pe) =>
pe.io.in_b := (if (tree_reduction) in_b.zero else in_b)
pe.io.out_b
}
}
// Broadcast 'd' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_d(c)) {
case (in_d, pe) =>
pe.io.in_d := in_d
pe.io.out_c
}
}
// Broadcast 'control' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_control(c)) {
case (in_ctrl, pe) =>
pe.io.in_control := in_ctrl
pe.io.out_control
}
}
// Broadcast 'garbage' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_valid(c)) {
case (v, pe) =>
pe.io.in_valid := v
pe.io.out_valid
}
}
// Broadcast 'id' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_id(c)) {
case (id, pe) =>
pe.io.in_id := id
pe.io.out_id
}
}
// Broadcast 'last' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_last(c)) {
case (last, pe) =>
pe.io.in_last := last
pe.io.out_last
}
}
// Drive the Tile's bottom IO
for (c <- 0 until columns) {
io.out_c(c) := tile(rows-1)(c).io.out_c
io.out_control(c) := tile(rows-1)(c).io.out_control
io.out_id(c) := tile(rows-1)(c).io.out_id
io.out_last(c) := tile(rows-1)(c).io.out_last
io.out_valid(c) := tile(rows-1)(c).io.out_valid
io.out_b(c) := {
if (tree_reduction) {
val prods = tileT(c).map(_.io.out_b)
accumulateTree(prods :+ io.in_b(c))
} else {
tile(rows - 1)(c).io.out_b
}
}
}
io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_)
// Drive the Tile's right IO
for (r <- 0 until rows) {
io.out_a(r) := tile(r)(columns-1).io.out_a
}
}
| module Tile_189( // @[Tile.scala:16:7]
input clock, // @[Tile.scala:16:7]
input reset, // @[Tile.scala:16:7]
input [7:0] io_in_a_0, // @[Tile.scala:17:14]
input [19:0] io_in_b_0, // @[Tile.scala:17:14]
input [19:0] io_in_d_0, // @[Tile.scala:17:14]
input io_in_control_0_dataflow, // @[Tile.scala:17:14]
input io_in_control_0_propagate, // @[Tile.scala:17:14]
input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14]
input [2:0] io_in_id_0, // @[Tile.scala:17:14]
input io_in_last_0, // @[Tile.scala:17:14]
output [7:0] io_out_a_0, // @[Tile.scala:17:14]
output [19:0] io_out_c_0, // @[Tile.scala:17:14]
output [19:0] io_out_b_0, // @[Tile.scala:17:14]
output io_out_control_0_dataflow, // @[Tile.scala:17:14]
output io_out_control_0_propagate, // @[Tile.scala:17:14]
output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14]
output [2:0] io_out_id_0, // @[Tile.scala:17:14]
output io_out_last_0, // @[Tile.scala:17:14]
input io_in_valid_0, // @[Tile.scala:17:14]
output io_out_valid_0 // @[Tile.scala:17:14]
);
wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7]
wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7]
wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7]
wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7]
wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7]
wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7]
wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7]
wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7]
wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7]
wire io_bad_dataflow = 1'h0; // @[Tile.scala:16:7, :17:14, :42:44]
wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7]
wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
wire io_out_control_0_propagate_0; // @[Tile.scala:16:7]
wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7]
wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7]
wire io_out_last_0_0; // @[Tile.scala:16:7]
wire io_out_valid_0_0; // @[Tile.scala:16:7]
PE_445 tile_0_0 ( // @[Tile.scala:42:44]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0_0), // @[Tile.scala:16:7]
.io_in_b (io_in_b_0_0), // @[Tile.scala:16:7]
.io_in_d (io_in_d_0_0), // @[Tile.scala:16:7]
.io_out_a (io_out_a_0_0),
.io_out_b (io_out_b_0_0),
.io_out_c (io_out_c_0_0),
.io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7]
.io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7]
.io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7]
.io_out_control_dataflow (io_out_control_0_dataflow_0),
.io_out_control_propagate (io_out_control_0_propagate_0),
.io_out_control_shift (io_out_control_0_shift_0),
.io_in_id (io_in_id_0_0), // @[Tile.scala:16:7]
.io_out_id (io_out_id_0_0),
.io_in_last (io_in_last_0_0), // @[Tile.scala:16:7]
.io_out_last (io_out_last_0_0),
.io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7]
.io_out_valid (io_out_valid_0_0)
); // @[Tile.scala:42:44]
assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7]
assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7]
assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7]
assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7]
assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7]
assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7]
assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7]
assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File InputUnit.scala:
package constellation.router
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import constellation.channel._
import constellation.routing.{FlowRoutingBundle}
import constellation.noc.{HasNoCParams}
class AbstractInputUnitIO(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams],
)(implicit val p: Parameters) extends Bundle with HasRouterOutputParams {
val nodeId = cParam.destId
val router_req = Decoupled(new RouteComputerReq)
val router_resp = Input(new RouteComputerResp(outParams, egressParams))
val vcalloc_req = Decoupled(new VCAllocReq(cParam, outParams, egressParams))
val vcalloc_resp = Input(new VCAllocResp(outParams, egressParams))
val out_credit_available = Input(MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }))
val salloc_req = Vec(cParam.destSpeedup, Decoupled(new SwitchAllocReq(outParams, egressParams)))
val out = Vec(cParam.destSpeedup, Valid(new SwitchBundle(outParams, egressParams)))
val debug = Output(new Bundle {
val va_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
val sa_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
})
val block = Input(Bool())
}
abstract class AbstractInputUnit(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams]
)(implicit val p: Parameters) extends Module with HasRouterOutputParams with HasNoCParams {
val nodeId = cParam.destId
def io: AbstractInputUnitIO
}
class InputBuffer(cParam: ChannelParams)(implicit p: Parameters) extends Module {
val nVirtualChannels = cParam.nVirtualChannels
val io = IO(new Bundle {
val enq = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits))))
val deq = Vec(cParam.nVirtualChannels, Decoupled(new BaseFlit(cParam.payloadBits)))
})
val useOutputQueues = cParam.useOutputQueues
val delims = if (useOutputQueues) {
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize else 0).scanLeft(0)(_+_)
} else {
// If no queuing, have to add an additional slot since head == tail implies empty
// TODO this should be fixed, should use all slots available
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize + 1 else 0).scanLeft(0)(_+_)
}
val starts = delims.dropRight(1).zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val ends = delims.tail.zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val fullSize = delims.last
// Ugly case. Use multiple queues
if ((cParam.srcSpeedup > 1 || cParam.destSpeedup > 1 || fullSize <= 1) || !cParam.unifiedBuffer) {
require(useOutputQueues)
val qs = cParam.virtualChannelParams.map(v => Module(new Queue(new BaseFlit(cParam.payloadBits), v.bufferSize)))
qs.zipWithIndex.foreach { case (q,i) =>
val sel = io.enq.map(f => f.valid && f.bits.virt_channel_id === i.U)
q.io.enq.valid := sel.orR
q.io.enq.bits.head := Mux1H(sel, io.enq.map(_.bits.head))
q.io.enq.bits.tail := Mux1H(sel, io.enq.map(_.bits.tail))
q.io.enq.bits.payload := Mux1H(sel, io.enq.map(_.bits.payload))
io.deq(i) <> q.io.deq
}
} else {
val mem = Mem(fullSize, new BaseFlit(cParam.payloadBits))
val heads = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val tails = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val empty = (heads zip tails).map(t => t._1 === t._2)
val qs = Seq.fill(nVirtualChannels) { Module(new Queue(new BaseFlit(cParam.payloadBits), 1, pipe=true)) }
qs.foreach(_.io.enq.valid := false.B)
qs.foreach(_.io.enq.bits := DontCare)
val vc_sel = UIntToOH(io.enq(0).bits.virt_channel_id)
val flit = Wire(new BaseFlit(cParam.payloadBits))
val direct_to_q = (Mux1H(vc_sel, qs.map(_.io.enq.ready)) && Mux1H(vc_sel, empty)) && useOutputQueues.B
flit.head := io.enq(0).bits.head
flit.tail := io.enq(0).bits.tail
flit.payload := io.enq(0).bits.payload
when (io.enq(0).valid && !direct_to_q) {
val tail = tails(io.enq(0).bits.virt_channel_id)
mem.write(tail, flit)
tails(io.enq(0).bits.virt_channel_id) := Mux(
tail === Mux1H(vc_sel, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(vc_sel, starts.map(_.U)),
tail + 1.U)
} .elsewhen (io.enq(0).valid && direct_to_q) {
for (i <- 0 until nVirtualChannels) {
when (io.enq(0).bits.virt_channel_id === i.U) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := flit
}
}
}
if (useOutputQueues) {
val can_to_q = (0 until nVirtualChannels).map { i => !empty(i) && qs(i).io.enq.ready }
val to_q_oh = PriorityEncoderOH(can_to_q)
val to_q = OHToUInt(to_q_oh)
when (can_to_q.orR) {
val head = Mux1H(to_q_oh, heads)
heads(to_q) := Mux(
head === Mux1H(to_q_oh, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(to_q_oh, starts.map(_.U)),
head + 1.U)
for (i <- 0 until nVirtualChannels) {
when (to_q_oh(i)) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := mem.read(head)
}
}
}
for (i <- 0 until nVirtualChannels) {
io.deq(i) <> qs(i).io.deq
}
} else {
qs.map(_.io.deq.ready := false.B)
val ready_sel = io.deq.map(_.ready)
val fire = io.deq.map(_.fire)
assert(PopCount(fire) <= 1.U)
val head = Mux1H(fire, heads)
when (fire.orR) {
val fire_idx = OHToUInt(fire)
heads(fire_idx) := Mux(
head === Mux1H(fire, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(fire, starts.map(_.U)),
head + 1.U)
}
val read_flit = mem.read(head)
for (i <- 0 until nVirtualChannels) {
io.deq(i).valid := !empty(i)
io.deq(i).bits := read_flit
}
}
}
}
class InputUnit(cParam: ChannelParams, outParams: Seq[ChannelParams],
egressParams: Seq[EgressChannelParams],
combineRCVA: Boolean, combineSAST: Boolean
)
(implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) {
val nVirtualChannels = cParam.nVirtualChannels
val virtualChannelParams = cParam.virtualChannelParams
class InputUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) {
val in = Flipped(new Channel(cParam.asInstanceOf[ChannelParams]))
}
val io = IO(new InputUnitIO)
val g_i :: g_r :: g_v :: g_a :: g_c :: Nil = Enum(5)
class InputState extends Bundle {
val g = UInt(3.W)
val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })
val flow = new FlowRoutingBundle
val fifo_deps = UInt(nVirtualChannels.W)
}
val input_buffer = Module(new InputBuffer(cParam))
for (i <- 0 until cParam.srcSpeedup) {
input_buffer.io.enq(i) := io.in.flit(i)
}
input_buffer.io.deq.foreach(_.ready := false.B)
val route_arbiter = Module(new Arbiter(
new RouteComputerReq, nVirtualChannels
))
io.router_req <> route_arbiter.io.out
val states = Reg(Vec(nVirtualChannels, new InputState))
val anyFifo = cParam.possibleFlows.map(_.fifo).reduce(_||_)
val allFifo = cParam.possibleFlows.map(_.fifo).reduce(_&&_)
if (anyFifo) {
val idle_mask = VecInit(states.map(_.g === g_i)).asUInt
for (s <- states)
for (i <- 0 until nVirtualChannels)
s.fifo_deps := s.fifo_deps & ~idle_mask
}
for (i <- 0 until cParam.srcSpeedup) {
when (io.in.flit(i).fire && io.in.flit(i).bits.head) {
val id = io.in.flit(i).bits.virt_channel_id
assert(id < nVirtualChannels.U)
assert(states(id).g === g_i)
val at_dest = io.in.flit(i).bits.flow.egress_node === nodeId.U
states(id).g := Mux(at_dest, g_v, g_r)
states(id).vc_sel.foreach(_.foreach(_ := false.B))
for (o <- 0 until nEgress) {
when (o.U === io.in.flit(i).bits.flow.egress_node_id) {
states(id).vc_sel(o+nOutputs)(0) := true.B
}
}
states(id).flow := io.in.flit(i).bits.flow
if (anyFifo) {
val fifo = cParam.possibleFlows.filter(_.fifo).map(_.isFlow(io.in.flit(i).bits.flow)).toSeq.orR
states(id).fifo_deps := VecInit(states.zipWithIndex.map { case (s, j) =>
s.g =/= g_i && s.flow.asUInt === io.in.flit(i).bits.flow.asUInt && j.U =/= id
}).asUInt
}
}
}
(route_arbiter.io.in zip states).zipWithIndex.map { case ((i,s),idx) =>
if (virtualChannelParams(idx).traversable) {
i.valid := s.g === g_r
i.bits.flow := s.flow
i.bits.src_virt_id := idx.U
when (i.fire) { s.g := g_v }
} else {
i.valid := false.B
i.bits := DontCare
}
}
when (io.router_req.fire) {
val id = io.router_req.bits.src_virt_id
assert(states(id).g === g_r)
states(id).g := g_v
for (i <- 0 until nVirtualChannels) {
when (i.U === id) {
states(i).vc_sel := io.router_resp.vc_sel
}
}
}
val mask = RegInit(0.U(nVirtualChannels.W))
val vcalloc_reqs = Wire(Vec(nVirtualChannels, new VCAllocReq(cParam, outParams, egressParams)))
val vcalloc_vals = Wire(Vec(nVirtualChannels, Bool()))
val vcalloc_filter = PriorityEncoderOH(Cat(vcalloc_vals.asUInt, vcalloc_vals.asUInt & ~mask))
val vcalloc_sel = vcalloc_filter(nVirtualChannels-1,0) | (vcalloc_filter >> nVirtualChannels)
// Prioritize incoming packetes
when (io.router_req.fire) {
mask := (1.U << io.router_req.bits.src_virt_id) - 1.U
} .elsewhen (vcalloc_vals.orR) {
mask := Mux1H(vcalloc_sel, (0 until nVirtualChannels).map { w => ~(0.U((w+1).W)) })
}
io.vcalloc_req.valid := vcalloc_vals.orR
io.vcalloc_req.bits := Mux1H(vcalloc_sel, vcalloc_reqs)
states.zipWithIndex.map { case (s,idx) =>
if (virtualChannelParams(idx).traversable) {
vcalloc_vals(idx) := s.g === g_v && s.fifo_deps === 0.U
vcalloc_reqs(idx).in_vc := idx.U
vcalloc_reqs(idx).vc_sel := s.vc_sel
vcalloc_reqs(idx).flow := s.flow
when (vcalloc_vals(idx) && vcalloc_sel(idx) && io.vcalloc_req.ready) { s.g := g_a }
if (combineRCVA) {
when (route_arbiter.io.in(idx).fire) {
vcalloc_vals(idx) := true.B
vcalloc_reqs(idx).vc_sel := io.router_resp.vc_sel
}
}
} else {
vcalloc_vals(idx) := false.B
vcalloc_reqs(idx) := DontCare
}
}
io.debug.va_stall := PopCount(vcalloc_vals) - io.vcalloc_req.ready
when (io.vcalloc_req.fire) {
for (i <- 0 until nVirtualChannels) {
when (vcalloc_sel(i)) {
states(i).vc_sel := io.vcalloc_resp.vc_sel
states(i).g := g_a
if (!combineRCVA) {
assert(states(i).g === g_v)
}
}
}
}
val salloc_arb = Module(new SwitchArbiter(
nVirtualChannels,
cParam.destSpeedup,
outParams, egressParams
))
(states zip salloc_arb.io.in).zipWithIndex.map { case ((s,r),i) =>
if (virtualChannelParams(i).traversable) {
val credit_available = (s.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U
r.valid := s.g === g_a && credit_available && input_buffer.io.deq(i).valid
r.bits.vc_sel := s.vc_sel
val deq_tail = input_buffer.io.deq(i).bits.tail
r.bits.tail := deq_tail
when (r.fire && deq_tail) {
s.g := g_i
}
input_buffer.io.deq(i).ready := r.ready
} else {
r.valid := false.B
r.bits := DontCare
}
}
io.debug.sa_stall := PopCount(salloc_arb.io.in.map(r => r.valid && !r.ready))
io.salloc_req <> salloc_arb.io.out
when (io.block) {
salloc_arb.io.out.foreach(_.ready := false.B)
io.salloc_req.foreach(_.valid := false.B)
}
class OutBundle extends Bundle {
val valid = Bool()
val vid = UInt(virtualChannelBits.W)
val out_vid = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W)
val flit = new Flit(cParam.payloadBits)
}
val salloc_outs = if (combineSAST) {
Wire(Vec(cParam.destSpeedup, new OutBundle))
} else {
Reg(Vec(cParam.destSpeedup, new OutBundle))
}
io.in.credit_return := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire, salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
io.in.vc_free := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire && Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)),
salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
for (i <- 0 until cParam.destSpeedup) {
val salloc_out = salloc_outs(i)
salloc_out.valid := salloc_arb.io.out(i).fire
salloc_out.vid := OHToUInt(salloc_arb.io.chosen_oh(i))
val vc_sel = Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.vc_sel))
val channel_oh = vc_sel.map(_.reduce(_||_)).toSeq
val virt_channel = Mux1H(channel_oh, vc_sel.map(v => OHToUInt(v)).toSeq)
when (salloc_arb.io.out(i).fire) {
salloc_out.out_vid := virt_channel
salloc_out.flit.payload := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.payload))
salloc_out.flit.head := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.head))
salloc_out.flit.tail := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail))
salloc_out.flit.flow := Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.flow))
} .otherwise {
salloc_out.out_vid := DontCare
salloc_out.flit := DontCare
}
salloc_out.flit.virt_channel_id := DontCare // this gets set in the switch
io.out(i).valid := salloc_out.valid
io.out(i).bits.flit := salloc_out.flit
io.out(i).bits.out_virt_channel := salloc_out.out_vid
}
def filterVCSel(sel: MixedVec[Vec[Bool]], srcV: Int) = {
if (virtualChannelParams(srcV).traversable) {
outParams.zipWithIndex.map { case (oP, oI) =>
(0 until oP.nVirtualChannels).map { oV =>
var allow = false
virtualChannelParams(srcV).possibleFlows.foreach { pI =>
allow = allow || routingRelation(
cParam.channelRoutingInfos(srcV),
oP.channelRoutingInfos(oV),
pI
)
}
if (!allow)
sel(oI)(oV) := false.B
}
}
}
}
(0 until nVirtualChannels).map { i =>
if (!virtualChannelParams(i).traversable) states(i) := DontCare
filterVCSel(states(i).vc_sel, i)
}
when (reset.asBool) {
states.foreach(_.g := g_i)
}
}
| module InputUnit_2( // @[InputUnit.scala:158:7]
input clock, // @[InputUnit.scala:158:7]
input reset, // @[InputUnit.scala:158:7]
output [1:0] io_router_req_bits_src_virt_id, // @[InputUnit.scala:170:14]
output [1:0] io_router_req_bits_flow_vnet_id, // @[InputUnit.scala:170:14]
output [3:0] io_router_req_bits_flow_ingress_node, // @[InputUnit.scala:170:14]
output [2:0] io_router_req_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14]
output [3:0] io_router_req_bits_flow_egress_node, // @[InputUnit.scala:170:14]
output [1:0] io_router_req_bits_flow_egress_node_id, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_2_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_1_2, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_0, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_1, // @[InputUnit.scala:170:14]
input io_router_resp_vc_sel_0_2, // @[InputUnit.scala:170:14]
input io_vcalloc_req_ready, // @[InputUnit.scala:170:14]
output io_vcalloc_req_valid, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_3_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_2_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_1_2, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_0, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_1, // @[InputUnit.scala:170:14]
output io_vcalloc_req_bits_vc_sel_0_2, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_3_0, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_0, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_1, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_2_2, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_0, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_1, // @[InputUnit.scala:170:14]
input io_vcalloc_resp_vc_sel_1_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_3_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_2_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_0, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_1, // @[InputUnit.scala:170:14]
input io_out_credit_available_1_2, // @[InputUnit.scala:170:14]
input io_out_credit_available_0_2, // @[InputUnit.scala:170:14]
input io_salloc_req_0_ready, // @[InputUnit.scala:170:14]
output io_salloc_req_0_valid, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_3_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_2_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_1_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_0, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_1, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_vc_sel_0_2, // @[InputUnit.scala:170:14]
output io_salloc_req_0_bits_tail, // @[InputUnit.scala:170:14]
output io_out_0_valid, // @[InputUnit.scala:170:14]
output io_out_0_bits_flit_head, // @[InputUnit.scala:170:14]
output io_out_0_bits_flit_tail, // @[InputUnit.scala:170:14]
output [144:0] io_out_0_bits_flit_payload, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_flit_flow_vnet_id, // @[InputUnit.scala:170:14]
output [3:0] io_out_0_bits_flit_flow_ingress_node, // @[InputUnit.scala:170:14]
output [2:0] io_out_0_bits_flit_flow_ingress_node_id, // @[InputUnit.scala:170:14]
output [3:0] io_out_0_bits_flit_flow_egress_node, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_flit_flow_egress_node_id, // @[InputUnit.scala:170:14]
output [1:0] io_out_0_bits_out_virt_channel, // @[InputUnit.scala:170:14]
output [1:0] io_debug_va_stall, // @[InputUnit.scala:170:14]
output [1:0] io_debug_sa_stall, // @[InputUnit.scala:170:14]
input io_in_flit_0_valid, // @[InputUnit.scala:170:14]
input io_in_flit_0_bits_head, // @[InputUnit.scala:170:14]
input io_in_flit_0_bits_tail, // @[InputUnit.scala:170:14]
input [144:0] io_in_flit_0_bits_payload, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_flow_vnet_id, // @[InputUnit.scala:170:14]
input [3:0] io_in_flit_0_bits_flow_ingress_node, // @[InputUnit.scala:170:14]
input [2:0] io_in_flit_0_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14]
input [3:0] io_in_flit_0_bits_flow_egress_node, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[InputUnit.scala:170:14]
input [1:0] io_in_flit_0_bits_virt_channel_id, // @[InputUnit.scala:170:14]
output [2:0] io_in_credit_return, // @[InputUnit.scala:170:14]
output [2:0] io_in_vc_free // @[InputUnit.scala:170:14]
);
wire _GEN; // @[MixedVec.scala:116:9]
wire vcalloc_reqs_2_vc_sel_2_2; // @[MixedVec.scala:116:9]
wire vcalloc_reqs_2_vc_sel_1_2; // @[MixedVec.scala:116:9]
wire vcalloc_vals_2; // @[InputUnit.scala:266:25, :272:46, :273:29]
wire _GEN_0; // @[MixedVec.scala:116:9]
wire vcalloc_reqs_1_vc_sel_2_1; // @[MixedVec.scala:116:9]
wire vcalloc_reqs_1_vc_sel_1_1; // @[MixedVec.scala:116:9]
wire vcalloc_vals_1; // @[InputUnit.scala:266:25, :272:46, :273:29]
wire _GEN_1; // @[MixedVec.scala:116:9]
wire vcalloc_reqs_0_vc_sel_2_0; // @[MixedVec.scala:116:9]
wire vcalloc_reqs_0_vc_sel_1_0; // @[MixedVec.scala:116:9]
wire vcalloc_vals_0; // @[InputUnit.scala:266:25, :272:46, :273:29]
wire _salloc_arb_io_in_0_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_1_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_in_2_ready; // @[InputUnit.scala:296:26]
wire _salloc_arb_io_out_0_valid; // @[InputUnit.scala:296:26]
wire [2:0] _salloc_arb_io_chosen_oh_0; // @[InputUnit.scala:296:26]
wire _route_arbiter_io_in_1_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_in_2_ready; // @[InputUnit.scala:187:29]
wire _route_arbiter_io_out_valid; // @[InputUnit.scala:187:29]
wire [1:0] _route_arbiter_io_out_bits_src_virt_id; // @[InputUnit.scala:187:29]
wire _input_buffer_io_deq_0_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_0_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_0_bits_tail; // @[InputUnit.scala:181:28]
wire [144:0] _input_buffer_io_deq_0_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_1_bits_tail; // @[InputUnit.scala:181:28]
wire [144:0] _input_buffer_io_deq_1_bits_payload; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_valid; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_bits_head; // @[InputUnit.scala:181:28]
wire _input_buffer_io_deq_2_bits_tail; // @[InputUnit.scala:181:28]
wire [144:0] _input_buffer_io_deq_2_bits_payload; // @[InputUnit.scala:181:28]
reg [2:0] states_0_g; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_2_0; // @[InputUnit.scala:192:19]
reg states_0_vc_sel_1_0; // @[InputUnit.scala:192:19]
reg [1:0] states_0_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [3:0] states_0_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [2:0] states_0_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [3:0] states_0_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_0_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_1_g; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_2_1; // @[InputUnit.scala:192:19]
reg states_1_vc_sel_1_1; // @[InputUnit.scala:192:19]
reg [1:0] states_1_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [3:0] states_1_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [2:0] states_1_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [3:0] states_1_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_1_flow_egress_node_id; // @[InputUnit.scala:192:19]
reg [2:0] states_2_g; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_3_0; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_2_2; // @[InputUnit.scala:192:19]
reg states_2_vc_sel_1_2; // @[InputUnit.scala:192:19]
reg [1:0] states_2_flow_vnet_id; // @[InputUnit.scala:192:19]
reg [3:0] states_2_flow_ingress_node; // @[InputUnit.scala:192:19]
reg [2:0] states_2_flow_ingress_node_id; // @[InputUnit.scala:192:19]
reg [3:0] states_2_flow_egress_node; // @[InputUnit.scala:192:19]
reg [1:0] states_2_flow_egress_node_id; // @[InputUnit.scala:192:19]
wire _GEN_2 = io_in_flit_0_valid & io_in_flit_0_bits_head; // @[InputUnit.scala:205:30]
wire route_arbiter_io_in_0_valid = states_0_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire route_arbiter_io_in_1_valid = states_1_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire _GEN_3 = _route_arbiter_io_in_1_ready & route_arbiter_io_in_1_valid; // @[Decoupled.scala:51:35]
wire route_arbiter_io_in_2_valid = states_2_g == 3'h1; // @[InputUnit.scala:192:19, :229:22]
wire _GEN_4 = _route_arbiter_io_in_2_ready & route_arbiter_io_in_2_valid; // @[Decoupled.scala:51:35] |
Generate the Verilog code corresponding to the following Chisel files.
File MSHR.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import freechips.rocketchip.tilelink._
import TLPermissions._
import TLMessages._
import MetaData._
import chisel3.PrintableHelper
import chisel3.experimental.dataview._
class ScheduleRequest(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val a = Valid(new SourceARequest(params))
val b = Valid(new SourceBRequest(params))
val c = Valid(new SourceCRequest(params))
val d = Valid(new SourceDRequest(params))
val e = Valid(new SourceERequest(params))
val x = Valid(new SourceXRequest(params))
val dir = Valid(new DirectoryWrite(params))
val reload = Bool() // get next request via allocate (if any)
}
class MSHRStatus(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val way = UInt(params.wayBits.W)
val blockB = Bool()
val nestB = Bool()
val blockC = Bool()
val nestC = Bool()
}
class NestedWriteback(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val set = UInt(params.setBits.W)
val tag = UInt(params.tagBits.W)
val b_toN = Bool() // nested Probes may unhit us
val b_toB = Bool() // nested Probes may demote us
val b_clr_dirty = Bool() // nested Probes clear dirty
val c_set_dirty = Bool() // nested Releases MAY set dirty
}
sealed trait CacheState
{
val code = CacheState.index.U
CacheState.index = CacheState.index + 1
}
object CacheState
{
var index = 0
}
case object S_INVALID extends CacheState
case object S_BRANCH extends CacheState
case object S_BRANCH_C extends CacheState
case object S_TIP extends CacheState
case object S_TIP_C extends CacheState
case object S_TIP_CD extends CacheState
case object S_TIP_D extends CacheState
case object S_TRUNK_C extends CacheState
case object S_TRUNK_CD extends CacheState
class MSHR(params: InclusiveCacheParameters) extends Module
{
val io = IO(new Bundle {
val allocate = Flipped(Valid(new AllocateRequest(params))) // refills MSHR for next cycle
val directory = Flipped(Valid(new DirectoryResult(params))) // triggers schedule setup
val status = Valid(new MSHRStatus(params))
val schedule = Decoupled(new ScheduleRequest(params))
val sinkc = Flipped(Valid(new SinkCResponse(params)))
val sinkd = Flipped(Valid(new SinkDResponse(params)))
val sinke = Flipped(Valid(new SinkEResponse(params)))
val nestedwb = Flipped(new NestedWriteback(params))
})
val request_valid = RegInit(false.B)
val request = Reg(new FullRequest(params))
val meta_valid = RegInit(false.B)
val meta = Reg(new DirectoryResult(params))
// Define which states are valid
when (meta_valid) {
when (meta.state === INVALID) {
assert (!meta.clients.orR)
assert (!meta.dirty)
}
when (meta.state === BRANCH) {
assert (!meta.dirty)
}
when (meta.state === TRUNK) {
assert (meta.clients.orR)
assert ((meta.clients & (meta.clients - 1.U)) === 0.U) // at most one
}
when (meta.state === TIP) {
// noop
}
}
// Completed transitions (s_ = scheduled), (w_ = waiting)
val s_rprobe = RegInit(true.B) // B
val w_rprobeackfirst = RegInit(true.B)
val w_rprobeacklast = RegInit(true.B)
val s_release = RegInit(true.B) // CW w_rprobeackfirst
val w_releaseack = RegInit(true.B)
val s_pprobe = RegInit(true.B) // B
val s_acquire = RegInit(true.B) // A s_release, s_pprobe [1]
val s_flush = RegInit(true.B) // X w_releaseack
val w_grantfirst = RegInit(true.B)
val w_grantlast = RegInit(true.B)
val w_grant = RegInit(true.B) // first | last depending on wormhole
val w_pprobeackfirst = RegInit(true.B)
val w_pprobeacklast = RegInit(true.B)
val w_pprobeack = RegInit(true.B) // first | last depending on wormhole
val s_probeack = RegInit(true.B) // C w_pprobeackfirst (mutually exclusive with next two s_*)
val s_grantack = RegInit(true.B) // E w_grantfirst ... CAN require both outE&inD to service outD
val s_execute = RegInit(true.B) // D w_pprobeack, w_grant
val w_grantack = RegInit(true.B)
val s_writeback = RegInit(true.B) // W w_*
// [1]: We cannot issue outer Acquire while holding blockB (=> outA can stall)
// However, inB and outC are higher priority than outB, so s_release and s_pprobe
// may be safely issued while blockB. Thus we must NOT try to schedule the
// potentially stuck s_acquire with either of them (scheduler is all or none).
// Meta-data that we discover underway
val sink = Reg(UInt(params.outer.bundle.sinkBits.W))
val gotT = Reg(Bool())
val bad_grant = Reg(Bool())
val probes_done = Reg(UInt(params.clientBits.W))
val probes_toN = Reg(UInt(params.clientBits.W))
val probes_noT = Reg(Bool())
// When a nested transaction completes, update our meta data
when (meta_valid && meta.state =/= INVALID &&
io.nestedwb.set === request.set && io.nestedwb.tag === meta.tag) {
when (io.nestedwb.b_clr_dirty) { meta.dirty := false.B }
when (io.nestedwb.c_set_dirty) { meta.dirty := true.B }
when (io.nestedwb.b_toB) { meta.state := BRANCH }
when (io.nestedwb.b_toN) { meta.hit := false.B }
}
// Scheduler status
io.status.valid := request_valid
io.status.bits.set := request.set
io.status.bits.tag := request.tag
io.status.bits.way := meta.way
io.status.bits.blockB := !meta_valid || ((!w_releaseack || !w_rprobeacklast || !w_pprobeacklast) && !w_grantfirst)
io.status.bits.nestB := meta_valid && w_releaseack && w_rprobeacklast && w_pprobeacklast && !w_grantfirst
// The above rules ensure we will block and not nest an outer probe while still doing our
// own inner probes. Thus every probe wakes exactly one MSHR.
io.status.bits.blockC := !meta_valid
io.status.bits.nestC := meta_valid && (!w_rprobeackfirst || !w_pprobeackfirst || !w_grantfirst)
// The w_grantfirst in nestC is necessary to deal with:
// acquire waiting for grant, inner release gets queued, outer probe -> inner probe -> deadlock
// ... this is possible because the release+probe can be for same set, but different tag
// We can only demand: block, nest, or queue
assert (!io.status.bits.nestB || !io.status.bits.blockB)
assert (!io.status.bits.nestC || !io.status.bits.blockC)
// Scheduler requests
val no_wait = w_rprobeacklast && w_releaseack && w_grantlast && w_pprobeacklast && w_grantack
io.schedule.bits.a.valid := !s_acquire && s_release && s_pprobe
io.schedule.bits.b.valid := !s_rprobe || !s_pprobe
io.schedule.bits.c.valid := (!s_release && w_rprobeackfirst) || (!s_probeack && w_pprobeackfirst)
io.schedule.bits.d.valid := !s_execute && w_pprobeack && w_grant
io.schedule.bits.e.valid := !s_grantack && w_grantfirst
io.schedule.bits.x.valid := !s_flush && w_releaseack
io.schedule.bits.dir.valid := (!s_release && w_rprobeackfirst) || (!s_writeback && no_wait)
io.schedule.bits.reload := no_wait
io.schedule.valid := io.schedule.bits.a.valid || io.schedule.bits.b.valid || io.schedule.bits.c.valid ||
io.schedule.bits.d.valid || io.schedule.bits.e.valid || io.schedule.bits.x.valid ||
io.schedule.bits.dir.valid
// Schedule completions
when (io.schedule.ready) {
s_rprobe := true.B
when (w_rprobeackfirst) { s_release := true.B }
s_pprobe := true.B
when (s_release && s_pprobe) { s_acquire := true.B }
when (w_releaseack) { s_flush := true.B }
when (w_pprobeackfirst) { s_probeack := true.B }
when (w_grantfirst) { s_grantack := true.B }
when (w_pprobeack && w_grant) { s_execute := true.B }
when (no_wait) { s_writeback := true.B }
// Await the next operation
when (no_wait) {
request_valid := false.B
meta_valid := false.B
}
}
// Resulting meta-data
val final_meta_writeback = WireInit(meta)
val req_clientBit = params.clientBit(request.source)
val req_needT = needT(request.opcode, request.param)
val req_acquire = request.opcode === AcquireBlock || request.opcode === AcquirePerm
val meta_no_clients = !meta.clients.orR
val req_promoteT = req_acquire && Mux(meta.hit, meta_no_clients && meta.state === TIP, gotT)
when (request.prio(2) && (!params.firstLevel).B) { // always a hit
final_meta_writeback.dirty := meta.dirty || request.opcode(0)
final_meta_writeback.state := Mux(request.param =/= TtoT && meta.state === TRUNK, TIP, meta.state)
final_meta_writeback.clients := meta.clients & ~Mux(isToN(request.param), req_clientBit, 0.U)
final_meta_writeback.hit := true.B // chained requests are hits
} .elsewhen (request.control && params.control.B) { // request.prio(0)
when (meta.hit) {
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := meta.clients & ~probes_toN
}
final_meta_writeback.hit := false.B
} .otherwise {
final_meta_writeback.dirty := (meta.hit && meta.dirty) || !request.opcode(2)
final_meta_writeback.state := Mux(req_needT,
Mux(req_acquire, TRUNK, TIP),
Mux(!meta.hit, Mux(gotT, Mux(req_acquire, TRUNK, TIP), BRANCH),
MuxLookup(meta.state, 0.U(2.W))(Seq(
INVALID -> BRANCH,
BRANCH -> BRANCH,
TRUNK -> TIP,
TIP -> Mux(meta_no_clients && req_acquire, TRUNK, TIP)))))
final_meta_writeback.clients := Mux(meta.hit, meta.clients & ~probes_toN, 0.U) |
Mux(req_acquire, req_clientBit, 0.U)
final_meta_writeback.tag := request.tag
final_meta_writeback.hit := true.B
}
when (bad_grant) {
when (meta.hit) {
// upgrade failed (B -> T)
assert (!meta_valid || meta.state === BRANCH)
final_meta_writeback.hit := true.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := BRANCH
final_meta_writeback.clients := meta.clients & ~probes_toN
} .otherwise {
// failed N -> (T or B)
final_meta_writeback.hit := false.B
final_meta_writeback.dirty := false.B
final_meta_writeback.state := INVALID
final_meta_writeback.clients := 0.U
}
}
val invalid = Wire(new DirectoryEntry(params))
invalid.dirty := false.B
invalid.state := INVALID
invalid.clients := 0.U
invalid.tag := 0.U
// Just because a client says BtoT, by the time we process the request he may be N.
// Therefore, we must consult our own meta-data state to confirm he owns the line still.
val honour_BtoT = meta.hit && (meta.clients & req_clientBit).orR
// The client asking us to act is proof they don't have permissions.
val excluded_client = Mux(meta.hit && request.prio(0) && skipProbeN(request.opcode, params.cache.hintsSkipProbe), req_clientBit, 0.U)
io.schedule.bits.a.bits.tag := request.tag
io.schedule.bits.a.bits.set := request.set
io.schedule.bits.a.bits.param := Mux(req_needT, Mux(meta.hit, BtoT, NtoT), NtoB)
io.schedule.bits.a.bits.block := request.size =/= log2Ceil(params.cache.blockBytes).U ||
!(request.opcode === PutFullData || request.opcode === AcquirePerm)
io.schedule.bits.a.bits.source := 0.U
io.schedule.bits.b.bits.param := Mux(!s_rprobe, toN, Mux(request.prio(1), request.param, Mux(req_needT, toN, toB)))
io.schedule.bits.b.bits.tag := Mux(!s_rprobe, meta.tag, request.tag)
io.schedule.bits.b.bits.set := request.set
io.schedule.bits.b.bits.clients := meta.clients & ~excluded_client
io.schedule.bits.c.bits.opcode := Mux(meta.dirty, ReleaseData, Release)
io.schedule.bits.c.bits.param := Mux(meta.state === BRANCH, BtoN, TtoN)
io.schedule.bits.c.bits.source := 0.U
io.schedule.bits.c.bits.tag := meta.tag
io.schedule.bits.c.bits.set := request.set
io.schedule.bits.c.bits.way := meta.way
io.schedule.bits.c.bits.dirty := meta.dirty
io.schedule.bits.d.bits.viewAsSupertype(chiselTypeOf(request)) := request
io.schedule.bits.d.bits.param := Mux(!req_acquire, request.param,
MuxLookup(request.param, request.param)(Seq(
NtoB -> Mux(req_promoteT, NtoT, NtoB),
BtoT -> Mux(honour_BtoT, BtoT, NtoT),
NtoT -> NtoT)))
io.schedule.bits.d.bits.sink := 0.U
io.schedule.bits.d.bits.way := meta.way
io.schedule.bits.d.bits.bad := bad_grant
io.schedule.bits.e.bits.sink := sink
io.schedule.bits.x.bits.fail := false.B
io.schedule.bits.dir.bits.set := request.set
io.schedule.bits.dir.bits.way := meta.way
io.schedule.bits.dir.bits.data := Mux(!s_release, invalid, WireInit(new DirectoryEntry(params), init = final_meta_writeback))
// Coverage of state transitions
def cacheState(entry: DirectoryEntry, hit: Bool) = {
val out = WireDefault(0.U)
val c = entry.clients.orR
val d = entry.dirty
switch (entry.state) {
is (BRANCH) { out := Mux(c, S_BRANCH_C.code, S_BRANCH.code) }
is (TRUNK) { out := Mux(d, S_TRUNK_CD.code, S_TRUNK_C.code) }
is (TIP) { out := Mux(c, Mux(d, S_TIP_CD.code, S_TIP_C.code), Mux(d, S_TIP_D.code, S_TIP.code)) }
is (INVALID) { out := S_INVALID.code }
}
when (!hit) { out := S_INVALID.code }
out
}
val p = !params.lastLevel // can be probed
val c = !params.firstLevel // can be acquired
val m = params.inner.client.clients.exists(!_.supports.probe) // can be written (or read)
val r = params.outer.manager.managers.exists(!_.alwaysGrantsT) // read-only devices exist
val f = params.control // flush control register exists
val cfg = (p, c, m, r, f)
val b = r || p // can reach branch state (via probe downgrade or read-only device)
// The cache must be used for something or we would not be here
require(c || m)
val evict = cacheState(meta, !meta.hit)
val before = cacheState(meta, meta.hit)
val after = cacheState(final_meta_writeback, true.B)
def eviction(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(evict === from.code, s"MSHR_${from}_EVICT", s"State transition from ${from} to evicted ${cfg}")
} else {
assert(!(evict === from.code), cf"State transition from ${from} to evicted should be impossible ${cfg}")
}
if (cover && f) {
params.ccover(before === from.code, s"MSHR_${from}_FLUSH", s"State transition from ${from} to flushed ${cfg}")
} else {
assert(!(before === from.code), cf"State transition from ${from} to flushed should be impossible ${cfg}")
}
}
def transition(from: CacheState, to: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(before === from.code && after === to.code, s"MSHR_${from}_${to}", s"State transition from ${from} to ${to} ${cfg}")
} else {
assert(!(before === from.code && after === to.code), cf"State transition from ${from} to ${to} should be impossible ${cfg}")
}
}
when ((!s_release && w_rprobeackfirst) && io.schedule.ready) {
eviction(S_BRANCH, b) // MMIO read to read-only device
eviction(S_BRANCH_C, b && c) // you need children to become C
eviction(S_TIP, true) // MMIO read || clean release can lead to this state
eviction(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
eviction(S_TIP_D, true) // MMIO write || dirty release lead here
eviction(S_TRUNK_C, c) // acquire for write
eviction(S_TRUNK_CD, c) // dirty release then reacquire
}
when ((!s_writeback && no_wait) && io.schedule.ready) {
transition(S_INVALID, S_BRANCH, b && m) // only MMIO can bring us to BRANCH state
transition(S_INVALID, S_BRANCH_C, b && c) // C state is only possible if there are inner caches
transition(S_INVALID, S_TIP, m) // MMIO read
transition(S_INVALID, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_INVALID, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_INVALID, S_TIP_D, m) // MMIO write
transition(S_INVALID, S_TRUNK_C, c) // acquire
transition(S_INVALID, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_INVALID, b && p) // probe can do this (flushes run as evictions)
transition(S_BRANCH, S_BRANCH_C, b && c) // acquire
transition(S_BRANCH, S_TIP, b && m) // prefetch write
transition(S_BRANCH, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH, S_TIP_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH, S_TIP_D, b && m) // MMIO write
transition(S_BRANCH, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_BRANCH_C, S_INVALID, b && c && p)
transition(S_BRANCH_C, S_BRANCH, b && c) // clean release (optional)
transition(S_BRANCH_C, S_TIP, b && c && m) // prefetch write
transition(S_BRANCH_C, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_BRANCH_C, S_TIP_D, b && c && m) // MMIO write
transition(S_BRANCH_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_BRANCH_C, S_TRUNK_C, b && c) // acquire
transition(S_BRANCH_C, S_TRUNK_CD, false) // acquire does not cause dirty immediately
transition(S_TIP, S_INVALID, p)
transition(S_TIP, S_BRANCH, p) // losing TIP only possible via probe
transition(S_TIP, S_BRANCH_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP, S_TIP_D, m) // direct dirty only via MMIO write
transition(S_TIP, S_TIP_CD, false) // acquire does not make us dirty immediately
transition(S_TIP, S_TRUNK_C, c) // acquire
transition(S_TIP, S_TRUNK_CD, false) // acquire does not make us dirty immediately
transition(S_TIP_C, S_INVALID, c && p)
transition(S_TIP_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TIP_C, S_TIP, c) // probed while MMIO read || clean release (optional)
transition(S_TIP_C, S_TIP_D, c && m) // direct dirty only via MMIO write
transition(S_TIP_C, S_TIP_CD, false) // going dirty means we must shoot down clients
transition(S_TIP_C, S_TRUNK_C, c) // acquire
transition(S_TIP_C, S_TRUNK_CD, false) // acquire does not make us immediately dirty
transition(S_TIP_D, S_INVALID, p)
transition(S_TIP_D, S_BRANCH, p) // losing D is only possible via probe
transition(S_TIP_D, S_BRANCH_C, p && c) // probed while acquire shared
transition(S_TIP_D, S_TIP, p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_D, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_D, S_TIP_CD, false) // we would go S_TRUNK_CD instead
transition(S_TIP_D, S_TRUNK_C, p && c) // probed while acquired
transition(S_TIP_D, S_TRUNK_CD, c) // acquire
transition(S_TIP_CD, S_INVALID, c && p)
transition(S_TIP_CD, S_BRANCH, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_BRANCH_C, c && p) // losing D is only possible via probe
transition(S_TIP_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TIP_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TIP_CD, S_TIP_D, c) // MMIO write || clean release (optional)
transition(S_TIP_CD, S_TRUNK_C, c && p) // probed while acquire
transition(S_TIP_CD, S_TRUNK_CD, c) // acquire
transition(S_TRUNK_C, S_INVALID, c && p)
transition(S_TRUNK_C, S_BRANCH, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_BRANCH_C, c && p) // losing TIP only possible via probe
transition(S_TRUNK_C, S_TIP, c) // MMIO read || clean release (optional)
transition(S_TRUNK_C, S_TIP_C, c) // bounce shared
transition(S_TRUNK_C, S_TIP_D, c) // dirty release
transition(S_TRUNK_C, S_TIP_CD, c) // dirty bounce shared
transition(S_TRUNK_C, S_TRUNK_CD, c) // dirty bounce
transition(S_TRUNK_CD, S_INVALID, c && p)
transition(S_TRUNK_CD, S_BRANCH, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_BRANCH_C, c && p) // losing D only possible via probe
transition(S_TRUNK_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional)
transition(S_TRUNK_CD, S_TIP_C, false) // we would go S_TRUNK_C instead
transition(S_TRUNK_CD, S_TIP_D, c) // dirty release
transition(S_TRUNK_CD, S_TIP_CD, c) // bounce shared
transition(S_TRUNK_CD, S_TRUNK_C, c && p) // probed while acquire
}
// Handle response messages
val probe_bit = params.clientBit(io.sinkc.bits.source)
val last_probe = (probes_done | probe_bit) === (meta.clients & ~excluded_client)
val probe_toN = isToN(io.sinkc.bits.param)
if (!params.firstLevel) when (io.sinkc.valid) {
params.ccover( probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_FULL", "Client downgraded to N when asked only to do B")
params.ccover(!probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_HALF", "Client downgraded to B when asked only to do B")
// Caution: the probe matches us only in set.
// We would never allow an outer probe to nest until both w_[rp]probeack complete, so
// it is safe to just unguardedly update the probe FSM.
probes_done := probes_done | probe_bit
probes_toN := probes_toN | Mux(probe_toN, probe_bit, 0.U)
probes_noT := probes_noT || io.sinkc.bits.param =/= TtoT
w_rprobeackfirst := w_rprobeackfirst || last_probe
w_rprobeacklast := w_rprobeacklast || (last_probe && io.sinkc.bits.last)
w_pprobeackfirst := w_pprobeackfirst || last_probe
w_pprobeacklast := w_pprobeacklast || (last_probe && io.sinkc.bits.last)
// Allow wormhole routing from sinkC if the first request beat has offset 0
val set_pprobeack = last_probe && (io.sinkc.bits.last || request.offset === 0.U)
w_pprobeack := w_pprobeack || set_pprobeack
params.ccover(!set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_SERIAL", "Sequential routing of probe response data")
params.ccover( set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_WORMHOLE", "Wormhole routing of probe response data")
// However, meta-data updates need to be done more cautiously
when (meta.state =/= INVALID && io.sinkc.bits.tag === meta.tag && io.sinkc.bits.data) { meta.dirty := true.B } // !!!
}
when (io.sinkd.valid) {
when (io.sinkd.bits.opcode === Grant || io.sinkd.bits.opcode === GrantData) {
sink := io.sinkd.bits.sink
w_grantfirst := true.B
w_grantlast := io.sinkd.bits.last
// Record if we need to prevent taking ownership
bad_grant := io.sinkd.bits.denied
// Allow wormhole routing for requests whose first beat has offset 0
w_grant := request.offset === 0.U || io.sinkd.bits.last
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset === 0.U, "MSHR_GRANT_WORMHOLE", "Wormhole routing of grant response data")
params.ccover(io.sinkd.bits.opcode === GrantData && request.offset =/= 0.U, "MSHR_GRANT_SERIAL", "Sequential routing of grant response data")
gotT := io.sinkd.bits.param === toT
}
.elsewhen (io.sinkd.bits.opcode === ReleaseAck) {
w_releaseack := true.B
}
}
when (io.sinke.valid) {
w_grantack := true.B
}
// Bootstrap new requests
val allocate_as_full = WireInit(new FullRequest(params), init = io.allocate.bits)
val new_meta = Mux(io.allocate.valid && io.allocate.bits.repeat, final_meta_writeback, io.directory.bits)
val new_request = Mux(io.allocate.valid, allocate_as_full, request)
val new_needT = needT(new_request.opcode, new_request.param)
val new_clientBit = params.clientBit(new_request.source)
val new_skipProbe = Mux(skipProbeN(new_request.opcode, params.cache.hintsSkipProbe), new_clientBit, 0.U)
val prior = cacheState(final_meta_writeback, true.B)
def bypass(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) {
if (cover) {
params.ccover(prior === from.code, s"MSHR_${from}_BYPASS", s"State bypass transition from ${from} ${cfg}")
} else {
assert(!(prior === from.code), cf"State bypass from ${from} should be impossible ${cfg}")
}
}
when (io.allocate.valid && io.allocate.bits.repeat) {
bypass(S_INVALID, f || p) // Can lose permissions (probe/flush)
bypass(S_BRANCH, b) // MMIO read to read-only device
bypass(S_BRANCH_C, b && c) // you need children to become C
bypass(S_TIP, true) // MMIO read || clean release can lead to this state
bypass(S_TIP_C, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client
bypass(S_TIP_D, true) // MMIO write || dirty release lead here
bypass(S_TRUNK_C, c) // acquire for write
bypass(S_TRUNK_CD, c) // dirty release then reacquire
}
when (io.allocate.valid) {
assert (!request_valid || (no_wait && io.schedule.fire))
request_valid := true.B
request := io.allocate.bits
}
// Create execution plan
when (io.directory.valid || (io.allocate.valid && io.allocate.bits.repeat)) {
meta_valid := true.B
meta := new_meta
probes_done := 0.U
probes_toN := 0.U
probes_noT := false.B
gotT := false.B
bad_grant := false.B
// These should already be either true or turning true
// We clear them here explicitly to simplify the mux tree
s_rprobe := true.B
w_rprobeackfirst := true.B
w_rprobeacklast := true.B
s_release := true.B
w_releaseack := true.B
s_pprobe := true.B
s_acquire := true.B
s_flush := true.B
w_grantfirst := true.B
w_grantlast := true.B
w_grant := true.B
w_pprobeackfirst := true.B
w_pprobeacklast := true.B
w_pprobeack := true.B
s_probeack := true.B
s_grantack := true.B
s_execute := true.B
w_grantack := true.B
s_writeback := true.B
// For C channel requests (ie: Release[Data])
when (new_request.prio(2) && (!params.firstLevel).B) {
s_execute := false.B
// Do we need to go dirty?
when (new_request.opcode(0) && !new_meta.dirty) {
s_writeback := false.B
}
// Does our state change?
when (isToB(new_request.param) && new_meta.state === TRUNK) {
s_writeback := false.B
}
// Do our clients change?
when (isToN(new_request.param) && (new_meta.clients & new_clientBit) =/= 0.U) {
s_writeback := false.B
}
assert (new_meta.hit)
}
// For X channel requests (ie: flush)
.elsewhen (new_request.control && params.control.B) { // new_request.prio(0)
s_flush := false.B
// Do we need to actually do something?
when (new_meta.hit) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B && (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
}
// For A channel requests
.otherwise { // new_request.prio(0) && !new_request.control
s_execute := false.B
// Do we need an eviction?
when (!new_meta.hit && new_meta.state =/= INVALID) {
s_release := false.B
w_releaseack := false.B
// Do we need to shoot-down inner caches?
when ((!params.firstLevel).B & (new_meta.clients =/= 0.U)) {
s_rprobe := false.B
w_rprobeackfirst := false.B
w_rprobeacklast := false.B
}
}
// Do we need an acquire?
when (!new_meta.hit || (new_meta.state === BRANCH && new_needT)) {
s_acquire := false.B
w_grantfirst := false.B
w_grantlast := false.B
w_grant := false.B
s_grantack := false.B
s_writeback := false.B
}
// Do we need a probe?
when ((!params.firstLevel).B && (new_meta.hit &&
(new_needT || new_meta.state === TRUNK) &&
(new_meta.clients & ~new_skipProbe) =/= 0.U)) {
s_pprobe := false.B
w_pprobeackfirst := false.B
w_pprobeacklast := false.B
w_pprobeack := false.B
s_writeback := false.B
}
// Do we need a grantack?
when (new_request.opcode === AcquireBlock || new_request.opcode === AcquirePerm) {
w_grantack := false.B
s_writeback := false.B
}
// Becomes dirty?
when (!new_request.opcode(2) && new_meta.hit && !new_meta.dirty) {
s_writeback := false.B
}
}
}
}
File Parameters.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
import freechips.rocketchip.util.property.cover
import scala.math.{min,max}
case class CacheParameters(
level: Int,
ways: Int,
sets: Int,
blockBytes: Int,
beatBytes: Int, // inner
hintsSkipProbe: Boolean)
{
require (ways > 0)
require (sets > 0)
require (blockBytes > 0 && isPow2(blockBytes))
require (beatBytes > 0 && isPow2(beatBytes))
require (blockBytes >= beatBytes)
val blocks = ways * sets
val sizeBytes = blocks * blockBytes
val blockBeats = blockBytes/beatBytes
}
case class InclusiveCachePortParameters(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new TLBuffer(a, b, c, d, e))
}
object InclusiveCachePortParameters
{
val none = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.none)
val full = InclusiveCachePortParameters(
a = BufferParams.default,
b = BufferParams.default,
c = BufferParams.default,
d = BufferParams.default,
e = BufferParams.default)
// This removes feed-through paths from C=>A and A=>C
val fullC = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.default,
d = BufferParams.none,
e = BufferParams.none)
val flowAD = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.flow,
e = BufferParams.none)
val flowAE = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.flow)
// For innerBuf:
// SinkA: no restrictions, flows into scheduler+putbuffer
// SourceB: no restrictions, flows out of scheduler
// sinkC: no restrictions, flows into scheduler+putbuffer & buffered to bankedStore
// SourceD: no restrictions, flows out of bankedStore/regout
// SinkE: no restrictions, flows into scheduler
//
// ... so while none is possible, you probably want at least flowAC to cut ready
// from the scheduler delay and flowD to ease SourceD back-pressure
// For outerBufer:
// SourceA: must not be pipe, flows out of scheduler
// SinkB: no restrictions, flows into scheduler
// SourceC: pipe is useless, flows out of bankedStore/regout, parameter depth ignored
// SinkD: no restrictions, flows into scheduler & bankedStore
// SourceE: must not be pipe, flows out of scheduler
//
// ... AE take the channel ready into the scheduler, so you need at least flowAE
}
case class InclusiveCacheMicroParameters(
writeBytes: Int, // backing store update granularity
memCycles: Int = 40, // # of L2 clock cycles for a memory round-trip (50ns @ 800MHz)
portFactor: Int = 4, // numSubBanks = (widest TL port * portFactor) / writeBytes
dirReg: Boolean = false,
innerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.fullC, // or none
outerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.full) // or flowAE
{
require (writeBytes > 0 && isPow2(writeBytes))
require (memCycles > 0)
require (portFactor >= 2) // for inner RMW and concurrent outer Relase + Grant
}
case class InclusiveCacheControlParameters(
address: BigInt,
beatBytes: Int,
bankedControl: Boolean)
case class InclusiveCacheParameters(
cache: CacheParameters,
micro: InclusiveCacheMicroParameters,
control: Boolean,
inner: TLEdgeIn,
outer: TLEdgeOut)(implicit val p: Parameters)
{
require (cache.ways > 1)
require (cache.sets > 1 && isPow2(cache.sets))
require (micro.writeBytes <= inner.manager.beatBytes)
require (micro.writeBytes <= outer.manager.beatBytes)
require (inner.manager.beatBytes <= cache.blockBytes)
require (outer.manager.beatBytes <= cache.blockBytes)
// Require that all cached address ranges have contiguous blocks
outer.manager.managers.flatMap(_.address).foreach { a =>
require (a.alignment >= cache.blockBytes)
}
// If we are the first level cache, we do not need to support inner-BCE
val firstLevel = !inner.client.clients.exists(_.supports.probe)
// If we are the last level cache, we do not need to support outer-B
val lastLevel = !outer.manager.managers.exists(_.regionType > RegionType.UNCACHED)
require (lastLevel)
// Provision enough resources to achieve full throughput with missing single-beat accesses
val mshrs = InclusiveCacheParameters.all_mshrs(cache, micro)
val secondary = max(mshrs, micro.memCycles - mshrs)
val putLists = micro.memCycles // allow every request to be single beat
val putBeats = max(2*cache.blockBeats, micro.memCycles)
val relLists = 2
val relBeats = relLists*cache.blockBeats
val flatAddresses = AddressSet.unify(outer.manager.managers.flatMap(_.address))
val pickMask = AddressDecoder(flatAddresses.map(Seq(_)), flatAddresses.map(_.mask).reduce(_|_))
def bitOffsets(x: BigInt, offset: Int = 0, tail: List[Int] = List.empty[Int]): List[Int] =
if (x == 0) tail.reverse else bitOffsets(x >> 1, offset + 1, if ((x & 1) == 1) offset :: tail else tail)
val addressMapping = bitOffsets(pickMask)
val addressBits = addressMapping.size
// println(s"addresses: ${flatAddresses} => ${pickMask} => ${addressBits}")
val allClients = inner.client.clients.size
val clientBitsRaw = inner.client.clients.filter(_.supports.probe).size
val clientBits = max(1, clientBitsRaw)
val stateBits = 2
val wayBits = log2Ceil(cache.ways)
val setBits = log2Ceil(cache.sets)
val offsetBits = log2Ceil(cache.blockBytes)
val tagBits = addressBits - setBits - offsetBits
val putBits = log2Ceil(max(putLists, relLists))
require (tagBits > 0)
require (offsetBits > 0)
val innerBeatBits = (offsetBits - log2Ceil(inner.manager.beatBytes)) max 1
val outerBeatBits = (offsetBits - log2Ceil(outer.manager.beatBytes)) max 1
val innerMaskBits = inner.manager.beatBytes / micro.writeBytes
val outerMaskBits = outer.manager.beatBytes / micro.writeBytes
def clientBit(source: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Cat(inner.client.clients.filter(_.supports.probe).map(_.sourceId.contains(source)).reverse)
}
}
def clientSource(bit: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Mux1H(bit, inner.client.clients.filter(_.supports.probe).map(c => c.sourceId.start.U))
}
}
def parseAddress(x: UInt): (UInt, UInt, UInt) = {
val offset = Cat(addressMapping.map(o => x(o,o)).reverse)
val set = offset >> offsetBits
val tag = set >> setBits
(tag(tagBits-1, 0), set(setBits-1, 0), offset(offsetBits-1, 0))
}
def widen(x: UInt, width: Int): UInt = {
val y = x | 0.U(width.W)
assert (y >> width === 0.U)
y(width-1, 0)
}
def expandAddress(tag: UInt, set: UInt, offset: UInt): UInt = {
val base = Cat(widen(tag, tagBits), widen(set, setBits), widen(offset, offsetBits))
val bits = Array.fill(outer.bundle.addressBits) { 0.U(1.W) }
addressMapping.zipWithIndex.foreach { case (a, i) => bits(a) = base(i,i) }
Cat(bits.reverse)
}
def restoreAddress(expanded: UInt): UInt = {
val missingBits = flatAddresses
.map { a => (a.widen(pickMask).base, a.widen(~pickMask)) } // key is the bits to restore on match
.groupBy(_._1)
.view
.mapValues(_.map(_._2))
val muxMask = AddressDecoder(missingBits.values.toList)
val mux = missingBits.toList.map { case (bits, addrs) =>
val widen = addrs.map(_.widen(~muxMask))
val matches = AddressSet
.unify(widen.distinct)
.map(_.contains(expanded))
.reduce(_ || _)
(matches, bits.U)
}
expanded | Mux1H(mux)
}
def dirReg[T <: Data](x: T, en: Bool = true.B): T = {
if (micro.dirReg) RegEnable(x, en) else x
}
def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) =
cover(cond, "CCACHE_L" + cache.level + "_" + label, "MemorySystem;;" + desc)
}
object MetaData
{
val stateBits = 2
def INVALID: UInt = 0.U(stateBits.W) // way is empty
def BRANCH: UInt = 1.U(stateBits.W) // outer slave cache is trunk
def TRUNK: UInt = 2.U(stateBits.W) // unique inner master cache is trunk
def TIP: UInt = 3.U(stateBits.W) // we are trunk, inner masters are branch
// Does a request need trunk?
def needT(opcode: UInt, param: UInt): Bool = {
!opcode(2) ||
(opcode === TLMessages.Hint && param === TLHints.PREFETCH_WRITE) ||
((opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm) && param =/= TLPermissions.NtoB)
}
// Does a request prove the client need not be probed?
def skipProbeN(opcode: UInt, hintsSkipProbe: Boolean): Bool = {
// Acquire(toB) and Get => is N, so no probe
// Acquire(*toT) => is N or B, but need T, so no probe
// Hint => could be anything, so probe IS needed, if hintsSkipProbe is enabled, skip probe the same client
// Put* => is N or B, so probe IS needed
opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm || opcode === TLMessages.Get || (opcode === TLMessages.Hint && hintsSkipProbe.B)
}
def isToN(param: UInt): Bool = {
param === TLPermissions.TtoN || param === TLPermissions.BtoN || param === TLPermissions.NtoN
}
def isToB(param: UInt): Bool = {
param === TLPermissions.TtoB || param === TLPermissions.BtoB
}
}
object InclusiveCacheParameters
{
val lfsrBits = 10
val L2ControlAddress = 0x2010000
val L2ControlSize = 0x1000
def out_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = {
// We need 2-3 normal MSHRs to cover the Directory latency
// To fully exploit memory bandwidth-delay-product, we need memCyles/blockBeats MSHRs
max(if (micro.dirReg) 3 else 2, (micro.memCycles + cache.blockBeats - 1) / cache.blockBeats)
}
def all_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int =
// We need a dedicated MSHR for B+C each
2 + out_mshrs(cache, micro)
}
class InclusiveCacheBundle(params: InclusiveCacheParameters) extends Bundle
| module MSHR_28( // @[MSHR.scala:84:7]
input clock, // @[MSHR.scala:84:7]
input reset, // @[MSHR.scala:84:7]
input io_allocate_valid, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_0, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_1, // @[MSHR.scala:86:14]
input io_allocate_bits_prio_2, // @[MSHR.scala:86:14]
input io_allocate_bits_control, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_param, // @[MSHR.scala:86:14]
input [2:0] io_allocate_bits_size, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_source, // @[MSHR.scala:86:14]
input [8:0] io_allocate_bits_tag, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_offset, // @[MSHR.scala:86:14]
input [5:0] io_allocate_bits_put, // @[MSHR.scala:86:14]
input [10:0] io_allocate_bits_set, // @[MSHR.scala:86:14]
input io_allocate_bits_repeat, // @[MSHR.scala:86:14]
input io_directory_valid, // @[MSHR.scala:86:14]
input io_directory_bits_dirty, // @[MSHR.scala:86:14]
input [1:0] io_directory_bits_state, // @[MSHR.scala:86:14]
input io_directory_bits_clients, // @[MSHR.scala:86:14]
input [8:0] io_directory_bits_tag, // @[MSHR.scala:86:14]
input io_directory_bits_hit, // @[MSHR.scala:86:14]
input [3:0] io_directory_bits_way, // @[MSHR.scala:86:14]
output io_status_valid, // @[MSHR.scala:86:14]
output [10:0] io_status_bits_set, // @[MSHR.scala:86:14]
output [8:0] io_status_bits_tag, // @[MSHR.scala:86:14]
output [3:0] io_status_bits_way, // @[MSHR.scala:86:14]
output io_status_bits_blockB, // @[MSHR.scala:86:14]
output io_status_bits_nestB, // @[MSHR.scala:86:14]
output io_status_bits_blockC, // @[MSHR.scala:86:14]
output io_status_bits_nestC, // @[MSHR.scala:86:14]
input io_schedule_ready, // @[MSHR.scala:86:14]
output io_schedule_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_a_valid, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_a_bits_tag, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_a_bits_set, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_a_bits_param, // @[MSHR.scala:86:14]
output io_schedule_bits_a_bits_block, // @[MSHR.scala:86:14]
output io_schedule_bits_b_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_b_bits_param, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_b_bits_tag, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_b_bits_set, // @[MSHR.scala:86:14]
output io_schedule_bits_b_bits_clients, // @[MSHR.scala:86:14]
output io_schedule_bits_c_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_c_bits_param, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_c_bits_tag, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_c_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_c_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_c_bits_dirty, // @[MSHR.scala:86:14]
output io_schedule_bits_d_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_0, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_1, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_prio_2, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_control, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_opcode, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_param, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_d_bits_size, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_source, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_d_bits_tag, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_offset, // @[MSHR.scala:86:14]
output [5:0] io_schedule_bits_d_bits_put, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_d_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_d_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_d_bits_bad, // @[MSHR.scala:86:14]
output io_schedule_bits_e_valid, // @[MSHR.scala:86:14]
output [2:0] io_schedule_bits_e_bits_sink, // @[MSHR.scala:86:14]
output io_schedule_bits_x_valid, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_valid, // @[MSHR.scala:86:14]
output [10:0] io_schedule_bits_dir_bits_set, // @[MSHR.scala:86:14]
output [3:0] io_schedule_bits_dir_bits_way, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_bits_data_dirty, // @[MSHR.scala:86:14]
output [1:0] io_schedule_bits_dir_bits_data_state, // @[MSHR.scala:86:14]
output io_schedule_bits_dir_bits_data_clients, // @[MSHR.scala:86:14]
output [8:0] io_schedule_bits_dir_bits_data_tag, // @[MSHR.scala:86:14]
output io_schedule_bits_reload, // @[MSHR.scala:86:14]
input io_sinkc_valid, // @[MSHR.scala:86:14]
input io_sinkc_bits_last, // @[MSHR.scala:86:14]
input [10:0] io_sinkc_bits_set, // @[MSHR.scala:86:14]
input [8:0] io_sinkc_bits_tag, // @[MSHR.scala:86:14]
input [5:0] io_sinkc_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkc_bits_param, // @[MSHR.scala:86:14]
input io_sinkc_bits_data, // @[MSHR.scala:86:14]
input io_sinkd_valid, // @[MSHR.scala:86:14]
input io_sinkd_bits_last, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_opcode, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_param, // @[MSHR.scala:86:14]
input [3:0] io_sinkd_bits_source, // @[MSHR.scala:86:14]
input [2:0] io_sinkd_bits_sink, // @[MSHR.scala:86:14]
input io_sinkd_bits_denied, // @[MSHR.scala:86:14]
input io_sinke_valid, // @[MSHR.scala:86:14]
input [3:0] io_sinke_bits_sink, // @[MSHR.scala:86:14]
input [10:0] io_nestedwb_set, // @[MSHR.scala:86:14]
input [8:0] io_nestedwb_tag, // @[MSHR.scala:86:14]
input io_nestedwb_b_toN, // @[MSHR.scala:86:14]
input io_nestedwb_b_toB, // @[MSHR.scala:86:14]
input io_nestedwb_b_clr_dirty, // @[MSHR.scala:86:14]
input io_nestedwb_c_set_dirty // @[MSHR.scala:86:14]
);
wire [8:0] final_meta_writeback_tag; // @[MSHR.scala:215:38]
wire final_meta_writeback_clients; // @[MSHR.scala:215:38]
wire [1:0] final_meta_writeback_state; // @[MSHR.scala:215:38]
wire final_meta_writeback_dirty; // @[MSHR.scala:215:38]
wire io_allocate_valid_0 = io_allocate_valid; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_0_0 = io_allocate_bits_prio_0; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_1_0 = io_allocate_bits_prio_1; // @[MSHR.scala:84:7]
wire io_allocate_bits_prio_2_0 = io_allocate_bits_prio_2; // @[MSHR.scala:84:7]
wire io_allocate_bits_control_0 = io_allocate_bits_control; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_opcode_0 = io_allocate_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_param_0 = io_allocate_bits_param; // @[MSHR.scala:84:7]
wire [2:0] io_allocate_bits_size_0 = io_allocate_bits_size; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_source_0 = io_allocate_bits_source; // @[MSHR.scala:84:7]
wire [8:0] io_allocate_bits_tag_0 = io_allocate_bits_tag; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_offset_0 = io_allocate_bits_offset; // @[MSHR.scala:84:7]
wire [5:0] io_allocate_bits_put_0 = io_allocate_bits_put; // @[MSHR.scala:84:7]
wire [10:0] io_allocate_bits_set_0 = io_allocate_bits_set; // @[MSHR.scala:84:7]
wire io_allocate_bits_repeat_0 = io_allocate_bits_repeat; // @[MSHR.scala:84:7]
wire io_directory_valid_0 = io_directory_valid; // @[MSHR.scala:84:7]
wire io_directory_bits_dirty_0 = io_directory_bits_dirty; // @[MSHR.scala:84:7]
wire [1:0] io_directory_bits_state_0 = io_directory_bits_state; // @[MSHR.scala:84:7]
wire io_directory_bits_clients_0 = io_directory_bits_clients; // @[MSHR.scala:84:7]
wire [8:0] io_directory_bits_tag_0 = io_directory_bits_tag; // @[MSHR.scala:84:7]
wire io_directory_bits_hit_0 = io_directory_bits_hit; // @[MSHR.scala:84:7]
wire [3:0] io_directory_bits_way_0 = io_directory_bits_way; // @[MSHR.scala:84:7]
wire io_schedule_ready_0 = io_schedule_ready; // @[MSHR.scala:84:7]
wire io_sinkc_valid_0 = io_sinkc_valid; // @[MSHR.scala:84:7]
wire io_sinkc_bits_last_0 = io_sinkc_bits_last; // @[MSHR.scala:84:7]
wire [10:0] io_sinkc_bits_set_0 = io_sinkc_bits_set; // @[MSHR.scala:84:7]
wire [8:0] io_sinkc_bits_tag_0 = io_sinkc_bits_tag; // @[MSHR.scala:84:7]
wire [5:0] io_sinkc_bits_source_0 = io_sinkc_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkc_bits_param_0 = io_sinkc_bits_param; // @[MSHR.scala:84:7]
wire io_sinkc_bits_data_0 = io_sinkc_bits_data; // @[MSHR.scala:84:7]
wire io_sinkd_valid_0 = io_sinkd_valid; // @[MSHR.scala:84:7]
wire io_sinkd_bits_last_0 = io_sinkd_bits_last; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_opcode_0 = io_sinkd_bits_opcode; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_param_0 = io_sinkd_bits_param; // @[MSHR.scala:84:7]
wire [3:0] io_sinkd_bits_source_0 = io_sinkd_bits_source; // @[MSHR.scala:84:7]
wire [2:0] io_sinkd_bits_sink_0 = io_sinkd_bits_sink; // @[MSHR.scala:84:7]
wire io_sinkd_bits_denied_0 = io_sinkd_bits_denied; // @[MSHR.scala:84:7]
wire io_sinke_valid_0 = io_sinke_valid; // @[MSHR.scala:84:7]
wire [3:0] io_sinke_bits_sink_0 = io_sinke_bits_sink; // @[MSHR.scala:84:7]
wire [10:0] io_nestedwb_set_0 = io_nestedwb_set; // @[MSHR.scala:84:7]
wire [8:0] io_nestedwb_tag_0 = io_nestedwb_tag; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toN_0 = io_nestedwb_b_toN; // @[MSHR.scala:84:7]
wire io_nestedwb_b_toB_0 = io_nestedwb_b_toB; // @[MSHR.scala:84:7]
wire io_nestedwb_b_clr_dirty_0 = io_nestedwb_b_clr_dirty; // @[MSHR.scala:84:7]
wire io_nestedwb_c_set_dirty_0 = io_nestedwb_c_set_dirty; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_a_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_c_bits_source = 4'h0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_d_bits_sink = 4'h0; // @[MSHR.scala:84:7]
wire io_schedule_bits_x_bits_fail = 1'h0; // @[MSHR.scala:84:7]
wire _io_schedule_bits_c_valid_T_2 = 1'h0; // @[MSHR.scala:186:68]
wire _io_schedule_bits_c_valid_T_3 = 1'h0; // @[MSHR.scala:186:80]
wire invalid_dirty = 1'h0; // @[MSHR.scala:268:21]
wire invalid_clients = 1'h0; // @[MSHR.scala:268:21]
wire _excluded_client_T_7 = 1'h0; // @[Parameters.scala:279:137]
wire _after_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire _new_skipProbe_T_6 = 1'h0; // @[Parameters.scala:279:137]
wire _prior_T_4 = 1'h0; // @[MSHR.scala:323:11]
wire [8:0] invalid_tag = 9'h0; // @[MSHR.scala:268:21]
wire [1:0] invalid_state = 2'h0; // @[MSHR.scala:268:21]
wire [1:0] _final_meta_writeback_state_T_11 = 2'h1; // @[MSHR.scala:240:70]
wire allocate_as_full_prio_0 = io_allocate_bits_prio_0_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_1 = io_allocate_bits_prio_1_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_prio_2 = io_allocate_bits_prio_2_0; // @[MSHR.scala:84:7, :504:34]
wire allocate_as_full_control = io_allocate_bits_control_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_opcode = io_allocate_bits_opcode_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_param = io_allocate_bits_param_0; // @[MSHR.scala:84:7, :504:34]
wire [2:0] allocate_as_full_size = io_allocate_bits_size_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_source = io_allocate_bits_source_0; // @[MSHR.scala:84:7, :504:34]
wire [8:0] allocate_as_full_tag = io_allocate_bits_tag_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_offset = io_allocate_bits_offset_0; // @[MSHR.scala:84:7, :504:34]
wire [5:0] allocate_as_full_put = io_allocate_bits_put_0; // @[MSHR.scala:84:7, :504:34]
wire [10:0] allocate_as_full_set = io_allocate_bits_set_0; // @[MSHR.scala:84:7, :504:34]
wire _io_status_bits_blockB_T_8; // @[MSHR.scala:168:40]
wire _io_status_bits_nestB_T_4; // @[MSHR.scala:169:93]
wire _io_status_bits_blockC_T; // @[MSHR.scala:172:28]
wire _io_status_bits_nestC_T_5; // @[MSHR.scala:173:39]
wire _io_schedule_valid_T_5; // @[MSHR.scala:193:105]
wire _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:184:55]
wire _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:283:91]
wire _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:185:41]
wire [2:0] _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:286:41]
wire [8:0] _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:287:41]
wire _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:289:51]
wire _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:186:64]
wire [2:0] _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:290:41]
wire [2:0] _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:291:41]
wire _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:187:57]
wire [2:0] _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:298:41]
wire _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:188:43]
wire _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:189:40]
wire _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:190:66]
wire _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:310:41]
wire [1:0] _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:310:41]
wire _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:310:41]
wire [8:0] _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:310:41]
wire no_wait; // @[MSHR.scala:183:83]
wire [10:0] io_status_bits_set_0; // @[MSHR.scala:84:7]
wire [8:0] io_status_bits_tag_0; // @[MSHR.scala:84:7]
wire [3:0] io_status_bits_way_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockB_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestB_0; // @[MSHR.scala:84:7]
wire io_status_bits_blockC_0; // @[MSHR.scala:84:7]
wire io_status_bits_nestC_0; // @[MSHR.scala:84:7]
wire io_status_valid_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_a_bits_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_a_bits_set_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_a_bits_param_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_bits_block_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_a_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_b_bits_param_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_b_bits_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_b_bits_set_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_b_bits_clients_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_c_bits_param_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_c_bits_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_c_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_c_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_bits_dirty_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_0_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_1_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_prio_2_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_control_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_opcode_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_param_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_d_bits_size_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_source_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_d_bits_tag_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_offset_0; // @[MSHR.scala:84:7]
wire [5:0] io_schedule_bits_d_bits_put_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_d_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_d_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_bits_bad_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7]
wire [2:0] io_schedule_bits_e_bits_sink_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_bits_data_dirty_0; // @[MSHR.scala:84:7]
wire [1:0] io_schedule_bits_dir_bits_data_state_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_bits_data_clients_0; // @[MSHR.scala:84:7]
wire [8:0] io_schedule_bits_dir_bits_data_tag_0; // @[MSHR.scala:84:7]
wire [10:0] io_schedule_bits_dir_bits_set_0; // @[MSHR.scala:84:7]
wire [3:0] io_schedule_bits_dir_bits_way_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7]
wire io_schedule_bits_reload_0; // @[MSHR.scala:84:7]
wire io_schedule_valid_0; // @[MSHR.scala:84:7]
reg request_valid; // @[MSHR.scala:97:30]
assign io_status_valid_0 = request_valid; // @[MSHR.scala:84:7, :97:30]
reg request_prio_0; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_0_0 = request_prio_0; // @[MSHR.scala:84:7, :98:20]
reg request_prio_1; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_1_0 = request_prio_1; // @[MSHR.scala:84:7, :98:20]
reg request_prio_2; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_prio_2_0 = request_prio_2; // @[MSHR.scala:84:7, :98:20]
reg request_control; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_control_0 = request_control; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_opcode; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_opcode_0 = request_opcode; // @[MSHR.scala:84:7, :98:20]
reg [2:0] request_param; // @[MSHR.scala:98:20]
reg [2:0] request_size; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_size_0 = request_size; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_source; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_source_0 = request_source; // @[MSHR.scala:84:7, :98:20]
reg [8:0] request_tag; // @[MSHR.scala:98:20]
assign io_status_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_offset; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_offset_0 = request_offset; // @[MSHR.scala:84:7, :98:20]
reg [5:0] request_put; // @[MSHR.scala:98:20]
assign io_schedule_bits_d_bits_put_0 = request_put; // @[MSHR.scala:84:7, :98:20]
reg [10:0] request_set; // @[MSHR.scala:98:20]
assign io_status_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_a_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_b_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_c_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_d_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
assign io_schedule_bits_dir_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20]
reg meta_valid; // @[MSHR.scala:99:27]
reg meta_dirty; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_dirty_0 = meta_dirty; // @[MSHR.scala:84:7, :100:17]
reg [1:0] meta_state; // @[MSHR.scala:100:17]
reg meta_clients; // @[MSHR.scala:100:17]
wire _meta_no_clients_T = meta_clients; // @[MSHR.scala:100:17, :220:39]
wire evict_c = meta_clients; // @[MSHR.scala:100:17, :315:27]
wire before_c = meta_clients; // @[MSHR.scala:100:17, :315:27]
reg [8:0] meta_tag; // @[MSHR.scala:100:17]
assign io_schedule_bits_c_bits_tag_0 = meta_tag; // @[MSHR.scala:84:7, :100:17]
reg meta_hit; // @[MSHR.scala:100:17]
reg [3:0] meta_way; // @[MSHR.scala:100:17]
assign io_status_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_c_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_d_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
assign io_schedule_bits_dir_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17]
wire [3:0] final_meta_writeback_way = meta_way; // @[MSHR.scala:100:17, :215:38]
reg s_rprobe; // @[MSHR.scala:121:33]
reg w_rprobeackfirst; // @[MSHR.scala:122:33]
reg w_rprobeacklast; // @[MSHR.scala:123:33]
reg s_release; // @[MSHR.scala:124:33]
reg w_releaseack; // @[MSHR.scala:125:33]
reg s_pprobe; // @[MSHR.scala:126:33]
reg s_acquire; // @[MSHR.scala:127:33]
reg s_flush; // @[MSHR.scala:128:33]
reg w_grantfirst; // @[MSHR.scala:129:33]
reg w_grantlast; // @[MSHR.scala:130:33]
reg w_grant; // @[MSHR.scala:131:33]
reg w_pprobeackfirst; // @[MSHR.scala:132:33]
reg w_pprobeacklast; // @[MSHR.scala:133:33]
reg w_pprobeack; // @[MSHR.scala:134:33]
reg s_grantack; // @[MSHR.scala:136:33]
reg s_execute; // @[MSHR.scala:137:33]
reg w_grantack; // @[MSHR.scala:138:33]
reg s_writeback; // @[MSHR.scala:139:33]
reg [2:0] sink; // @[MSHR.scala:147:17]
assign io_schedule_bits_e_bits_sink_0 = sink; // @[MSHR.scala:84:7, :147:17]
reg gotT; // @[MSHR.scala:148:17]
reg bad_grant; // @[MSHR.scala:149:22]
assign io_schedule_bits_d_bits_bad_0 = bad_grant; // @[MSHR.scala:84:7, :149:22]
reg probes_done; // @[MSHR.scala:150:24]
reg probes_toN; // @[MSHR.scala:151:23]
reg probes_noT; // @[MSHR.scala:152:23]
wire _io_status_bits_blockB_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28]
wire _io_status_bits_blockB_T_1 = ~w_releaseack; // @[MSHR.scala:125:33, :168:45]
wire _io_status_bits_blockB_T_2 = ~w_rprobeacklast; // @[MSHR.scala:123:33, :168:62]
wire _io_status_bits_blockB_T_3 = _io_status_bits_blockB_T_1 | _io_status_bits_blockB_T_2; // @[MSHR.scala:168:{45,59,62}]
wire _io_status_bits_blockB_T_4 = ~w_pprobeacklast; // @[MSHR.scala:133:33, :168:82]
wire _io_status_bits_blockB_T_5 = _io_status_bits_blockB_T_3 | _io_status_bits_blockB_T_4; // @[MSHR.scala:168:{59,79,82}]
wire _io_status_bits_blockB_T_6 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103]
wire _io_status_bits_blockB_T_7 = _io_status_bits_blockB_T_5 & _io_status_bits_blockB_T_6; // @[MSHR.scala:168:{79,100,103}]
assign _io_status_bits_blockB_T_8 = _io_status_bits_blockB_T | _io_status_bits_blockB_T_7; // @[MSHR.scala:168:{28,40,100}]
assign io_status_bits_blockB_0 = _io_status_bits_blockB_T_8; // @[MSHR.scala:84:7, :168:40]
wire _io_status_bits_nestB_T = meta_valid & w_releaseack; // @[MSHR.scala:99:27, :125:33, :169:39]
wire _io_status_bits_nestB_T_1 = _io_status_bits_nestB_T & w_rprobeacklast; // @[MSHR.scala:123:33, :169:{39,55}]
wire _io_status_bits_nestB_T_2 = _io_status_bits_nestB_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :169:{55,74}]
wire _io_status_bits_nestB_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :169:96]
assign _io_status_bits_nestB_T_4 = _io_status_bits_nestB_T_2 & _io_status_bits_nestB_T_3; // @[MSHR.scala:169:{74,93,96}]
assign io_status_bits_nestB_0 = _io_status_bits_nestB_T_4; // @[MSHR.scala:84:7, :169:93]
assign _io_status_bits_blockC_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28, :172:28]
assign io_status_bits_blockC_0 = _io_status_bits_blockC_T; // @[MSHR.scala:84:7, :172:28]
wire _io_status_bits_nestC_T = ~w_rprobeackfirst; // @[MSHR.scala:122:33, :173:43]
wire _io_status_bits_nestC_T_1 = ~w_pprobeackfirst; // @[MSHR.scala:132:33, :173:64]
wire _io_status_bits_nestC_T_2 = _io_status_bits_nestC_T | _io_status_bits_nestC_T_1; // @[MSHR.scala:173:{43,61,64}]
wire _io_status_bits_nestC_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :173:85]
wire _io_status_bits_nestC_T_4 = _io_status_bits_nestC_T_2 | _io_status_bits_nestC_T_3; // @[MSHR.scala:173:{61,82,85}]
assign _io_status_bits_nestC_T_5 = meta_valid & _io_status_bits_nestC_T_4; // @[MSHR.scala:99:27, :173:{39,82}]
assign io_status_bits_nestC_0 = _io_status_bits_nestC_T_5; // @[MSHR.scala:84:7, :173:39]
wire _no_wait_T = w_rprobeacklast & w_releaseack; // @[MSHR.scala:123:33, :125:33, :183:33]
wire _no_wait_T_1 = _no_wait_T & w_grantlast; // @[MSHR.scala:130:33, :183:{33,49}]
wire _no_wait_T_2 = _no_wait_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :183:{49,64}]
assign no_wait = _no_wait_T_2 & w_grantack; // @[MSHR.scala:138:33, :183:{64,83}]
assign io_schedule_bits_reload_0 = no_wait; // @[MSHR.scala:84:7, :183:83]
wire _io_schedule_bits_a_valid_T = ~s_acquire; // @[MSHR.scala:127:33, :184:31]
wire _io_schedule_bits_a_valid_T_1 = _io_schedule_bits_a_valid_T & s_release; // @[MSHR.scala:124:33, :184:{31,42}]
assign _io_schedule_bits_a_valid_T_2 = _io_schedule_bits_a_valid_T_1 & s_pprobe; // @[MSHR.scala:126:33, :184:{42,55}]
assign io_schedule_bits_a_valid_0 = _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:84:7, :184:55]
wire _io_schedule_bits_b_valid_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31]
wire _io_schedule_bits_b_valid_T_1 = ~s_pprobe; // @[MSHR.scala:126:33, :185:44]
assign _io_schedule_bits_b_valid_T_2 = _io_schedule_bits_b_valid_T | _io_schedule_bits_b_valid_T_1; // @[MSHR.scala:185:{31,41,44}]
assign io_schedule_bits_b_valid_0 = _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:84:7, :185:41]
wire _io_schedule_bits_c_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32]
wire _io_schedule_bits_c_valid_T_1 = _io_schedule_bits_c_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :186:{32,43}]
assign _io_schedule_bits_c_valid_T_4 = _io_schedule_bits_c_valid_T_1; // @[MSHR.scala:186:{43,64}]
assign io_schedule_bits_c_valid_0 = _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:84:7, :186:64]
wire _io_schedule_bits_d_valid_T = ~s_execute; // @[MSHR.scala:137:33, :187:31]
wire _io_schedule_bits_d_valid_T_1 = _io_schedule_bits_d_valid_T & w_pprobeack; // @[MSHR.scala:134:33, :187:{31,42}]
assign _io_schedule_bits_d_valid_T_2 = _io_schedule_bits_d_valid_T_1 & w_grant; // @[MSHR.scala:131:33, :187:{42,57}]
assign io_schedule_bits_d_valid_0 = _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:84:7, :187:57]
wire _io_schedule_bits_e_valid_T = ~s_grantack; // @[MSHR.scala:136:33, :188:31]
assign _io_schedule_bits_e_valid_T_1 = _io_schedule_bits_e_valid_T & w_grantfirst; // @[MSHR.scala:129:33, :188:{31,43}]
assign io_schedule_bits_e_valid_0 = _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:84:7, :188:43]
wire _io_schedule_bits_x_valid_T = ~s_flush; // @[MSHR.scala:128:33, :189:31]
assign _io_schedule_bits_x_valid_T_1 = _io_schedule_bits_x_valid_T & w_releaseack; // @[MSHR.scala:125:33, :189:{31,40}]
assign io_schedule_bits_x_valid_0 = _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:84:7, :189:40]
wire _io_schedule_bits_dir_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :190:34]
wire _io_schedule_bits_dir_valid_T_1 = _io_schedule_bits_dir_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :190:{34,45}]
wire _io_schedule_bits_dir_valid_T_2 = ~s_writeback; // @[MSHR.scala:139:33, :190:70]
wire _io_schedule_bits_dir_valid_T_3 = _io_schedule_bits_dir_valid_T_2 & no_wait; // @[MSHR.scala:183:83, :190:{70,83}]
assign _io_schedule_bits_dir_valid_T_4 = _io_schedule_bits_dir_valid_T_1 | _io_schedule_bits_dir_valid_T_3; // @[MSHR.scala:190:{45,66,83}]
assign io_schedule_bits_dir_valid_0 = _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:84:7, :190:66]
wire _io_schedule_valid_T = io_schedule_bits_a_valid_0 | io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7, :192:49]
wire _io_schedule_valid_T_1 = _io_schedule_valid_T | io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7, :192:{49,77}]
wire _io_schedule_valid_T_2 = _io_schedule_valid_T_1 | io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7, :192:{77,105}]
wire _io_schedule_valid_T_3 = _io_schedule_valid_T_2 | io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7, :192:105, :193:49]
wire _io_schedule_valid_T_4 = _io_schedule_valid_T_3 | io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7, :193:{49,77}]
assign _io_schedule_valid_T_5 = _io_schedule_valid_T_4 | io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7, :193:{77,105}]
assign io_schedule_valid_0 = _io_schedule_valid_T_5; // @[MSHR.scala:84:7, :193:105]
wire _io_schedule_bits_dir_bits_data_WIRE_dirty = final_meta_writeback_dirty; // @[MSHR.scala:215:38, :310:71]
wire [1:0] _io_schedule_bits_dir_bits_data_WIRE_state = final_meta_writeback_state; // @[MSHR.scala:215:38, :310:71]
wire _io_schedule_bits_dir_bits_data_WIRE_clients = final_meta_writeback_clients; // @[MSHR.scala:215:38, :310:71]
wire after_c = final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire prior_c = final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27]
wire [8:0] _io_schedule_bits_dir_bits_data_WIRE_tag = final_meta_writeback_tag; // @[MSHR.scala:215:38, :310:71]
wire final_meta_writeback_hit; // @[MSHR.scala:215:38]
wire req_clientBit = request_source == 6'h28; // @[Parameters.scala:46:9]
wire _req_needT_T = request_opcode[2]; // @[Parameters.scala:269:12]
wire _final_meta_writeback_dirty_T_3 = request_opcode[2]; // @[Parameters.scala:269:12]
wire _req_needT_T_1 = ~_req_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN = request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _req_needT_T_2; // @[Parameters.scala:270:13]
assign _req_needT_T_2 = _GEN; // @[Parameters.scala:270:13]
wire _excluded_client_T_6; // @[Parameters.scala:279:117]
assign _excluded_client_T_6 = _GEN; // @[Parameters.scala:270:13, :279:117]
wire _GEN_0 = request_param == 3'h1; // @[Parameters.scala:270:42]
wire _req_needT_T_3; // @[Parameters.scala:270:42]
assign _req_needT_T_3 = _GEN_0; // @[Parameters.scala:270:42]
wire _final_meta_writeback_clients_T; // @[Parameters.scala:282:11]
assign _final_meta_writeback_clients_T = _GEN_0; // @[Parameters.scala:270:42, :282:11]
wire _io_schedule_bits_d_bits_param_T_7; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_7 = _GEN_0; // @[Parameters.scala:270:42]
wire _req_needT_T_4 = _req_needT_T_2 & _req_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _req_needT_T_5 = _req_needT_T_1 | _req_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _GEN_1 = request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _req_needT_T_6; // @[Parameters.scala:271:14]
assign _req_needT_T_6 = _GEN_1; // @[Parameters.scala:271:14]
wire _req_acquire_T; // @[MSHR.scala:219:36]
assign _req_acquire_T = _GEN_1; // @[Parameters.scala:271:14]
wire _excluded_client_T_1; // @[Parameters.scala:279:12]
assign _excluded_client_T_1 = _GEN_1; // @[Parameters.scala:271:14, :279:12]
wire _req_needT_T_7 = &request_opcode; // @[Parameters.scala:271:52]
wire _req_needT_T_8 = _req_needT_T_6 | _req_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _req_needT_T_9 = |request_param; // @[Parameters.scala:271:89]
wire _req_needT_T_10 = _req_needT_T_8 & _req_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire req_needT = _req_needT_T_5 | _req_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire _req_acquire_T_1 = &request_opcode; // @[Parameters.scala:271:52]
wire req_acquire = _req_acquire_T | _req_acquire_T_1; // @[MSHR.scala:219:{36,53,71}]
wire meta_no_clients = ~_meta_no_clients_T; // @[MSHR.scala:220:{25,39}]
wire _req_promoteT_T = &meta_state; // @[MSHR.scala:100:17, :221:81]
wire _req_promoteT_T_1 = meta_no_clients & _req_promoteT_T; // @[MSHR.scala:220:25, :221:{67,81}]
wire _req_promoteT_T_2 = meta_hit ? _req_promoteT_T_1 : gotT; // @[MSHR.scala:100:17, :148:17, :221:{40,67}]
wire req_promoteT = req_acquire & _req_promoteT_T_2; // @[MSHR.scala:219:53, :221:{34,40}]
wire _final_meta_writeback_dirty_T = request_opcode[0]; // @[MSHR.scala:98:20, :224:65]
wire _final_meta_writeback_dirty_T_1 = meta_dirty | _final_meta_writeback_dirty_T; // @[MSHR.scala:100:17, :224:{48,65}]
wire _final_meta_writeback_state_T = request_param != 3'h3; // @[MSHR.scala:98:20, :225:55]
wire _GEN_2 = meta_state == 2'h2; // @[MSHR.scala:100:17, :225:78]
wire _final_meta_writeback_state_T_1; // @[MSHR.scala:225:78]
assign _final_meta_writeback_state_T_1 = _GEN_2; // @[MSHR.scala:225:78]
wire _final_meta_writeback_state_T_12; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_12 = _GEN_2; // @[MSHR.scala:225:78, :240:70]
wire _evict_T_2; // @[MSHR.scala:317:26]
assign _evict_T_2 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _before_T_1; // @[MSHR.scala:317:26]
assign _before_T_1 = _GEN_2; // @[MSHR.scala:225:78, :317:26]
wire _final_meta_writeback_state_T_2 = _final_meta_writeback_state_T & _final_meta_writeback_state_T_1; // @[MSHR.scala:225:{55,64,78}]
wire [1:0] _final_meta_writeback_state_T_3 = _final_meta_writeback_state_T_2 ? 2'h3 : meta_state; // @[MSHR.scala:100:17, :225:{40,64}]
wire _GEN_3 = request_param == 3'h2; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:43]
assign _final_meta_writeback_clients_T_1 = _GEN_3; // @[Parameters.scala:282:43]
wire _io_schedule_bits_d_bits_param_T_5; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_5 = _GEN_3; // @[Parameters.scala:282:43]
wire _final_meta_writeback_clients_T_2 = _final_meta_writeback_clients_T | _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _final_meta_writeback_clients_T_3 = request_param == 3'h5; // @[Parameters.scala:282:75]
wire _final_meta_writeback_clients_T_4 = _final_meta_writeback_clients_T_2 | _final_meta_writeback_clients_T_3; // @[Parameters.scala:282:{34,66,75}]
wire _final_meta_writeback_clients_T_5 = _final_meta_writeback_clients_T_4 & req_clientBit; // @[Parameters.scala:46:9]
wire _final_meta_writeback_clients_T_6 = ~_final_meta_writeback_clients_T_5; // @[MSHR.scala:226:{52,56}]
wire _final_meta_writeback_clients_T_7 = meta_clients & _final_meta_writeback_clients_T_6; // @[MSHR.scala:100:17, :226:{50,52}]
wire _final_meta_writeback_clients_T_8 = ~probes_toN; // @[MSHR.scala:151:23, :232:54]
wire _final_meta_writeback_clients_T_9 = meta_clients & _final_meta_writeback_clients_T_8; // @[MSHR.scala:100:17, :232:{52,54}]
wire _final_meta_writeback_dirty_T_2 = meta_hit & meta_dirty; // @[MSHR.scala:100:17, :236:45]
wire _final_meta_writeback_dirty_T_4 = ~_final_meta_writeback_dirty_T_3; // @[MSHR.scala:236:{63,78}]
wire _final_meta_writeback_dirty_T_5 = _final_meta_writeback_dirty_T_2 | _final_meta_writeback_dirty_T_4; // @[MSHR.scala:236:{45,60,63}]
wire [1:0] _GEN_4 = {1'h1, ~req_acquire}; // @[MSHR.scala:219:53, :238:40]
wire [1:0] _final_meta_writeback_state_T_4; // @[MSHR.scala:238:40]
assign _final_meta_writeback_state_T_4 = _GEN_4; // @[MSHR.scala:238:40]
wire [1:0] _final_meta_writeback_state_T_6; // @[MSHR.scala:239:65]
assign _final_meta_writeback_state_T_6 = _GEN_4; // @[MSHR.scala:238:40, :239:65]
wire _final_meta_writeback_state_T_5 = ~meta_hit; // @[MSHR.scala:100:17, :239:41]
wire [1:0] _final_meta_writeback_state_T_7 = gotT ? _final_meta_writeback_state_T_6 : 2'h1; // @[MSHR.scala:148:17, :239:{55,65}]
wire _final_meta_writeback_state_T_8 = meta_no_clients & req_acquire; // @[MSHR.scala:219:53, :220:25, :244:72]
wire [1:0] _final_meta_writeback_state_T_9 = {1'h1, ~_final_meta_writeback_state_T_8}; // @[MSHR.scala:244:{55,72}]
wire _GEN_5 = meta_state == 2'h1; // @[MSHR.scala:100:17, :240:70]
wire _final_meta_writeback_state_T_10; // @[MSHR.scala:240:70]
assign _final_meta_writeback_state_T_10 = _GEN_5; // @[MSHR.scala:240:70]
wire _io_schedule_bits_c_bits_param_T; // @[MSHR.scala:291:53]
assign _io_schedule_bits_c_bits_param_T = _GEN_5; // @[MSHR.scala:240:70, :291:53]
wire _evict_T_1; // @[MSHR.scala:317:26]
assign _evict_T_1 = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire _before_T; // @[MSHR.scala:317:26]
assign _before_T = _GEN_5; // @[MSHR.scala:240:70, :317:26]
wire [1:0] _final_meta_writeback_state_T_13 = {_final_meta_writeback_state_T_12, 1'h1}; // @[MSHR.scala:240:70]
wire _final_meta_writeback_state_T_14 = &meta_state; // @[MSHR.scala:100:17, :221:81, :240:70]
wire [1:0] _final_meta_writeback_state_T_15 = _final_meta_writeback_state_T_14 ? _final_meta_writeback_state_T_9 : _final_meta_writeback_state_T_13; // @[MSHR.scala:240:70, :244:55]
wire [1:0] _final_meta_writeback_state_T_16 = _final_meta_writeback_state_T_5 ? _final_meta_writeback_state_T_7 : _final_meta_writeback_state_T_15; // @[MSHR.scala:239:{40,41,55}, :240:70]
wire [1:0] _final_meta_writeback_state_T_17 = req_needT ? _final_meta_writeback_state_T_4 : _final_meta_writeback_state_T_16; // @[Parameters.scala:270:70]
wire _final_meta_writeback_clients_T_10 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :245:66]
wire _final_meta_writeback_clients_T_11 = meta_clients & _final_meta_writeback_clients_T_10; // @[MSHR.scala:100:17, :245:{64,66}]
wire _final_meta_writeback_clients_T_12 = meta_hit & _final_meta_writeback_clients_T_11; // @[MSHR.scala:100:17, :245:{40,64}]
wire _final_meta_writeback_clients_T_13 = req_acquire & req_clientBit; // @[Parameters.scala:46:9]
wire _final_meta_writeback_clients_T_14 = _final_meta_writeback_clients_T_12 | _final_meta_writeback_clients_T_13; // @[MSHR.scala:245:{40,84}, :246:40]
assign final_meta_writeback_tag = request_prio_2 | request_control ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :215:38, :223:52, :228:53, :247:30]
wire _final_meta_writeback_clients_T_15 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :258:54]
wire _final_meta_writeback_clients_T_16 = meta_clients & _final_meta_writeback_clients_T_15; // @[MSHR.scala:100:17, :258:{52,54}]
assign final_meta_writeback_hit = bad_grant ? meta_hit : request_prio_2 | ~request_control; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :227:34, :228:53, :234:30, :248:30, :251:20, :252:21]
assign final_meta_writeback_dirty = ~bad_grant & (request_prio_2 ? _final_meta_writeback_dirty_T_1 : request_control ? ~meta_hit & meta_dirty : _final_meta_writeback_dirty_T_5); // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :224:{34,48}, :228:53, :229:21, :230:36, :236:{32,60}, :251:20, :252:21]
assign final_meta_writeback_state = bad_grant ? {1'h0, meta_hit} : request_prio_2 ? _final_meta_writeback_state_T_3 : request_control ? (meta_hit ? 2'h0 : meta_state) : _final_meta_writeback_state_T_17; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :225:{34,40}, :228:53, :229:21, :231:36, :237:{32,38}, :251:20, :252:21, :257:36, :263:36]
assign final_meta_writeback_clients = bad_grant ? meta_hit & _final_meta_writeback_clients_T_16 : request_prio_2 ? _final_meta_writeback_clients_T_7 : request_control ? (meta_hit ? _final_meta_writeback_clients_T_9 : meta_clients) : _final_meta_writeback_clients_T_14; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :226:{34,50}, :228:53, :229:21, :232:{36,52}, :245:{34,84}, :251:20, :252:21, :258:{36,52}, :264:36]
wire _honour_BtoT_T = meta_clients & req_clientBit; // @[Parameters.scala:46:9]
wire _honour_BtoT_T_1 = _honour_BtoT_T; // @[MSHR.scala:276:{47,64}]
wire honour_BtoT = meta_hit & _honour_BtoT_T_1; // @[MSHR.scala:100:17, :276:{30,64}]
wire _excluded_client_T = meta_hit & request_prio_0; // @[MSHR.scala:98:20, :100:17, :279:38]
wire _excluded_client_T_2 = &request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _excluded_client_T_3 = _excluded_client_T_1 | _excluded_client_T_2; // @[Parameters.scala:279:{12,40,50}]
wire _excluded_client_T_4 = request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _excluded_client_T_5 = _excluded_client_T_3 | _excluded_client_T_4; // @[Parameters.scala:279:{40,77,87}]
wire _excluded_client_T_8 = _excluded_client_T_5; // @[Parameters.scala:279:{77,106}]
wire _excluded_client_T_9 = _excluded_client_T & _excluded_client_T_8; // @[Parameters.scala:279:106]
wire excluded_client = _excluded_client_T_9 & req_clientBit; // @[Parameters.scala:46:9]
wire [1:0] _io_schedule_bits_a_bits_param_T = meta_hit ? 2'h2 : 2'h1; // @[MSHR.scala:100:17, :282:56]
wire [1:0] _io_schedule_bits_a_bits_param_T_1 = req_needT ? _io_schedule_bits_a_bits_param_T : 2'h0; // @[Parameters.scala:270:70]
assign io_schedule_bits_a_bits_param_0 = {1'h0, _io_schedule_bits_a_bits_param_T_1}; // @[MSHR.scala:84:7, :282:{35,41}]
wire _io_schedule_bits_a_bits_block_T = request_size != 3'h6; // @[MSHR.scala:98:20, :283:51]
wire _io_schedule_bits_a_bits_block_T_1 = request_opcode == 3'h0; // @[MSHR.scala:98:20, :284:55]
wire _io_schedule_bits_a_bits_block_T_2 = &request_opcode; // @[Parameters.scala:271:52]
wire _io_schedule_bits_a_bits_block_T_3 = _io_schedule_bits_a_bits_block_T_1 | _io_schedule_bits_a_bits_block_T_2; // @[MSHR.scala:284:{55,71,89}]
wire _io_schedule_bits_a_bits_block_T_4 = ~_io_schedule_bits_a_bits_block_T_3; // @[MSHR.scala:284:{38,71}]
assign _io_schedule_bits_a_bits_block_T_5 = _io_schedule_bits_a_bits_block_T | _io_schedule_bits_a_bits_block_T_4; // @[MSHR.scala:283:{51,91}, :284:38]
assign io_schedule_bits_a_bits_block_0 = _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:84:7, :283:91]
wire _io_schedule_bits_b_bits_param_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :286:42]
wire [1:0] _io_schedule_bits_b_bits_param_T_1 = req_needT ? 2'h2 : 2'h1; // @[Parameters.scala:270:70]
wire [2:0] _io_schedule_bits_b_bits_param_T_2 = request_prio_1 ? request_param : {1'h0, _io_schedule_bits_b_bits_param_T_1}; // @[MSHR.scala:98:20, :286:{61,97}]
assign _io_schedule_bits_b_bits_param_T_3 = _io_schedule_bits_b_bits_param_T ? 3'h2 : _io_schedule_bits_b_bits_param_T_2; // @[MSHR.scala:286:{41,42,61}]
assign io_schedule_bits_b_bits_param_0 = _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:84:7, :286:41]
wire _io_schedule_bits_b_bits_tag_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :287:42]
assign _io_schedule_bits_b_bits_tag_T_1 = _io_schedule_bits_b_bits_tag_T ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :287:{41,42}]
assign io_schedule_bits_b_bits_tag_0 = _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:84:7, :287:41]
wire _io_schedule_bits_b_bits_clients_T = ~excluded_client; // @[MSHR.scala:279:28, :289:53]
assign _io_schedule_bits_b_bits_clients_T_1 = meta_clients & _io_schedule_bits_b_bits_clients_T; // @[MSHR.scala:100:17, :289:{51,53}]
assign io_schedule_bits_b_bits_clients_0 = _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:84:7, :289:51]
assign _io_schedule_bits_c_bits_opcode_T = {2'h3, meta_dirty}; // @[MSHR.scala:100:17, :290:41]
assign io_schedule_bits_c_bits_opcode_0 = _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:84:7, :290:41]
assign _io_schedule_bits_c_bits_param_T_1 = _io_schedule_bits_c_bits_param_T ? 3'h2 : 3'h1; // @[MSHR.scala:291:{41,53}]
assign io_schedule_bits_c_bits_param_0 = _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:84:7, :291:41]
wire _io_schedule_bits_d_bits_param_T = ~req_acquire; // @[MSHR.scala:219:53, :298:42]
wire [1:0] _io_schedule_bits_d_bits_param_T_1 = {1'h0, req_promoteT}; // @[MSHR.scala:221:34, :300:53]
wire [1:0] _io_schedule_bits_d_bits_param_T_2 = honour_BtoT ? 2'h2 : 2'h1; // @[MSHR.scala:276:30, :301:53]
wire _io_schedule_bits_d_bits_param_T_3 = ~(|request_param); // @[Parameters.scala:271:89]
wire [2:0] _io_schedule_bits_d_bits_param_T_4 = _io_schedule_bits_d_bits_param_T_3 ? {1'h0, _io_schedule_bits_d_bits_param_T_1} : request_param; // @[MSHR.scala:98:20, :299:79, :300:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_6 = _io_schedule_bits_d_bits_param_T_5 ? {1'h0, _io_schedule_bits_d_bits_param_T_2} : _io_schedule_bits_d_bits_param_T_4; // @[MSHR.scala:299:79, :301:53]
wire [2:0] _io_schedule_bits_d_bits_param_T_8 = _io_schedule_bits_d_bits_param_T_7 ? 3'h1 : _io_schedule_bits_d_bits_param_T_6; // @[MSHR.scala:299:79]
assign _io_schedule_bits_d_bits_param_T_9 = _io_schedule_bits_d_bits_param_T ? request_param : _io_schedule_bits_d_bits_param_T_8; // @[MSHR.scala:98:20, :298:{41,42}, :299:79]
assign io_schedule_bits_d_bits_param_0 = _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:84:7, :298:41]
wire _io_schedule_bits_dir_bits_data_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :310:42]
assign _io_schedule_bits_dir_bits_data_T_1_dirty = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_dirty; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_state = _io_schedule_bits_dir_bits_data_T ? 2'h0 : _io_schedule_bits_dir_bits_data_WIRE_state; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_clients = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_clients; // @[MSHR.scala:310:{41,42,71}]
assign _io_schedule_bits_dir_bits_data_T_1_tag = _io_schedule_bits_dir_bits_data_T ? 9'h0 : _io_schedule_bits_dir_bits_data_WIRE_tag; // @[MSHR.scala:310:{41,42,71}]
assign io_schedule_bits_dir_bits_data_dirty_0 = _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_state_0 = _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_clients_0 = _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:84:7, :310:41]
assign io_schedule_bits_dir_bits_data_tag_0 = _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:84:7, :310:41]
wire _evict_T = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :338:32]
wire [3:0] evict; // @[MSHR.scala:314:26]
wire _evict_out_T = ~evict_c; // @[MSHR.scala:315:27, :318:32]
wire [1:0] _GEN_6 = {1'h1, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32]
wire [1:0] _evict_out_T_1; // @[MSHR.scala:319:32]
assign _evict_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire [1:0] _before_out_T_1; // @[MSHR.scala:319:32]
assign _before_out_T_1 = _GEN_6; // @[MSHR.scala:319:32]
wire _evict_T_3 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _GEN_7 = {2'h2, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:39]
wire [2:0] _evict_out_T_2; // @[MSHR.scala:320:39]
assign _evict_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _before_out_T_2; // @[MSHR.scala:320:39]
assign _before_out_T_2 = _GEN_7; // @[MSHR.scala:320:39]
wire [2:0] _GEN_8 = {2'h3, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:76]
wire [2:0] _evict_out_T_3; // @[MSHR.scala:320:76]
assign _evict_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _before_out_T_3; // @[MSHR.scala:320:76]
assign _before_out_T_3 = _GEN_8; // @[MSHR.scala:320:76]
wire [2:0] _evict_out_T_4 = evict_c ? _evict_out_T_2 : _evict_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _evict_T_4 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _evict_T_5 = ~_evict_T; // @[MSHR.scala:323:11, :338:32]
assign evict = _evict_T_5 ? 4'h8 : _evict_T_1 ? {3'h0, _evict_out_T} : _evict_T_2 ? {2'h0, _evict_out_T_1} : _evict_T_3 ? {1'h0, _evict_out_T_4} : {_evict_T_4, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] before_0; // @[MSHR.scala:314:26]
wire _before_out_T = ~before_c; // @[MSHR.scala:315:27, :318:32]
wire _before_T_2 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26]
wire [2:0] _before_out_T_4 = before_c ? _before_out_T_2 : _before_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _before_T_3 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26]
wire _before_T_4 = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :323:11]
assign before_0 = _before_T_4 ? 4'h8 : _before_T ? {3'h0, _before_out_T} : _before_T_1 ? {2'h0, _before_out_T_1} : _before_T_2 ? {1'h0, _before_out_T_4} : {_before_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}]
wire [3:0] after; // @[MSHR.scala:314:26]
wire _GEN_9 = final_meta_writeback_state == 2'h1; // @[MSHR.scala:215:38, :317:26]
wire _after_T; // @[MSHR.scala:317:26]
assign _after_T = _GEN_9; // @[MSHR.scala:317:26]
wire _prior_T; // @[MSHR.scala:317:26]
assign _prior_T = _GEN_9; // @[MSHR.scala:317:26]
wire _after_out_T = ~after_c; // @[MSHR.scala:315:27, :318:32]
wire _GEN_10 = final_meta_writeback_state == 2'h2; // @[MSHR.scala:215:38, :317:26]
wire _after_T_1; // @[MSHR.scala:317:26]
assign _after_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire _prior_T_1; // @[MSHR.scala:317:26]
assign _prior_T_1 = _GEN_10; // @[MSHR.scala:317:26]
wire [1:0] _GEN_11 = {1'h1, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32]
wire [1:0] _after_out_T_1; // @[MSHR.scala:319:32]
assign _after_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire [1:0] _prior_out_T_1; // @[MSHR.scala:319:32]
assign _prior_out_T_1 = _GEN_11; // @[MSHR.scala:319:32]
wire _after_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _GEN_12 = {2'h2, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:39]
wire [2:0] _after_out_T_2; // @[MSHR.scala:320:39]
assign _after_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _prior_out_T_2; // @[MSHR.scala:320:39]
assign _prior_out_T_2 = _GEN_12; // @[MSHR.scala:320:39]
wire [2:0] _GEN_13 = {2'h3, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:76]
wire [2:0] _after_out_T_3; // @[MSHR.scala:320:76]
assign _after_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _prior_out_T_3; // @[MSHR.scala:320:76]
assign _prior_out_T_3 = _GEN_13; // @[MSHR.scala:320:76]
wire [2:0] _after_out_T_4 = after_c ? _after_out_T_2 : _after_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
wire _GEN_14 = final_meta_writeback_state == 2'h0; // @[MSHR.scala:215:38, :317:26]
wire _after_T_3; // @[MSHR.scala:317:26]
assign _after_T_3 = _GEN_14; // @[MSHR.scala:317:26]
wire _prior_T_3; // @[MSHR.scala:317:26]
assign _prior_T_3 = _GEN_14; // @[MSHR.scala:317:26]
assign after = _after_T ? {3'h0, _after_out_T} : _after_T_1 ? {2'h0, _after_out_T_1} : _after_T_2 ? {1'h0, _after_out_T_4} : {_after_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire probe_bit = io_sinkc_bits_source_0 == 6'h28; // @[Parameters.scala:46:9]
wire _GEN_15 = probes_done | probe_bit; // @[Parameters.scala:46:9]
wire _last_probe_T; // @[MSHR.scala:459:33]
assign _last_probe_T = _GEN_15; // @[MSHR.scala:459:33]
wire _probes_done_T; // @[MSHR.scala:467:32]
assign _probes_done_T = _GEN_15; // @[MSHR.scala:459:33, :467:32]
wire _last_probe_T_1 = ~excluded_client; // @[MSHR.scala:279:28, :289:53, :459:66]
wire _last_probe_T_2 = meta_clients & _last_probe_T_1; // @[MSHR.scala:100:17, :459:{64,66}]
wire last_probe = _last_probe_T == _last_probe_T_2; // @[MSHR.scala:459:{33,46,64}]
wire _probe_toN_T = io_sinkc_bits_param_0 == 3'h1; // @[Parameters.scala:282:11]
wire _probe_toN_T_1 = io_sinkc_bits_param_0 == 3'h2; // @[Parameters.scala:282:43]
wire _probe_toN_T_2 = _probe_toN_T | _probe_toN_T_1; // @[Parameters.scala:282:{11,34,43}]
wire _probe_toN_T_3 = io_sinkc_bits_param_0 == 3'h5; // @[Parameters.scala:282:75]
wire probe_toN = _probe_toN_T_2 | _probe_toN_T_3; // @[Parameters.scala:282:{34,66,75}]
wire _probes_toN_T = probe_toN & probe_bit; // @[Parameters.scala:46:9]
wire _probes_toN_T_1 = probes_toN | _probes_toN_T; // @[MSHR.scala:151:23, :468:{30,35}]
wire _probes_noT_T = io_sinkc_bits_param_0 != 3'h3; // @[MSHR.scala:84:7, :469:53]
wire _probes_noT_T_1 = probes_noT | _probes_noT_T; // @[MSHR.scala:152:23, :469:{30,53}]
wire _w_rprobeackfirst_T = w_rprobeackfirst | last_probe; // @[MSHR.scala:122:33, :459:46, :470:42]
wire _GEN_16 = last_probe & io_sinkc_bits_last_0; // @[MSHR.scala:84:7, :459:46, :471:55]
wire _w_rprobeacklast_T; // @[MSHR.scala:471:55]
assign _w_rprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55]
wire _w_pprobeacklast_T; // @[MSHR.scala:473:55]
assign _w_pprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55, :473:55]
wire _w_rprobeacklast_T_1 = w_rprobeacklast | _w_rprobeacklast_T; // @[MSHR.scala:123:33, :471:{40,55}]
wire _w_pprobeackfirst_T = w_pprobeackfirst | last_probe; // @[MSHR.scala:132:33, :459:46, :472:42]
wire _w_pprobeacklast_T_1 = w_pprobeacklast | _w_pprobeacklast_T; // @[MSHR.scala:133:33, :473:{40,55}]
wire _set_pprobeack_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77]
wire _set_pprobeack_T_1 = io_sinkc_bits_last_0 | _set_pprobeack_T; // @[MSHR.scala:84:7, :475:{59,77}]
wire set_pprobeack = last_probe & _set_pprobeack_T_1; // @[MSHR.scala:459:46, :475:{36,59}]
wire _w_pprobeack_T = w_pprobeack | set_pprobeack; // @[MSHR.scala:134:33, :475:36, :476:32]
wire _w_grant_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77, :490:33]
wire _w_grant_T_1 = _w_grant_T | io_sinkd_bits_last_0; // @[MSHR.scala:84:7, :490:{33,41}]
wire _gotT_T = io_sinkd_bits_param_0 == 3'h0; // @[MSHR.scala:84:7, :493:35]
wire _new_meta_T = io_allocate_valid_0 & io_allocate_bits_repeat_0; // @[MSHR.scala:84:7, :505:40]
wire new_meta_dirty = _new_meta_T ? final_meta_writeback_dirty : io_directory_bits_dirty_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [1:0] new_meta_state = _new_meta_T ? final_meta_writeback_state : io_directory_bits_state_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_meta_clients = _new_meta_T ? final_meta_writeback_clients : io_directory_bits_clients_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [8:0] new_meta_tag = _new_meta_T ? final_meta_writeback_tag : io_directory_bits_tag_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_meta_hit = _new_meta_T ? final_meta_writeback_hit : io_directory_bits_hit_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire [3:0] new_meta_way = _new_meta_T ? final_meta_writeback_way : io_directory_bits_way_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}]
wire new_request_prio_0 = io_allocate_valid_0 ? allocate_as_full_prio_0 : request_prio_0; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_1 = io_allocate_valid_0 ? allocate_as_full_prio_1 : request_prio_1; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_prio_2 = io_allocate_valid_0 ? allocate_as_full_prio_2 : request_prio_2; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire new_request_control = io_allocate_valid_0 ? allocate_as_full_control : request_control; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_opcode = io_allocate_valid_0 ? allocate_as_full_opcode : request_opcode; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_param = io_allocate_valid_0 ? allocate_as_full_param : request_param; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [2:0] new_request_size = io_allocate_valid_0 ? allocate_as_full_size : request_size; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_source = io_allocate_valid_0 ? allocate_as_full_source : request_source; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [8:0] new_request_tag = io_allocate_valid_0 ? allocate_as_full_tag : request_tag; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_offset = io_allocate_valid_0 ? allocate_as_full_offset : request_offset; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [5:0] new_request_put = io_allocate_valid_0 ? allocate_as_full_put : request_put; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire [10:0] new_request_set = io_allocate_valid_0 ? allocate_as_full_set : request_set; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24]
wire _new_needT_T = new_request_opcode[2]; // @[Parameters.scala:269:12]
wire _new_needT_T_1 = ~_new_needT_T; // @[Parameters.scala:269:{5,12}]
wire _GEN_17 = new_request_opcode == 3'h5; // @[Parameters.scala:270:13]
wire _new_needT_T_2; // @[Parameters.scala:270:13]
assign _new_needT_T_2 = _GEN_17; // @[Parameters.scala:270:13]
wire _new_skipProbe_T_5; // @[Parameters.scala:279:117]
assign _new_skipProbe_T_5 = _GEN_17; // @[Parameters.scala:270:13, :279:117]
wire _new_needT_T_3 = new_request_param == 3'h1; // @[Parameters.scala:270:42]
wire _new_needT_T_4 = _new_needT_T_2 & _new_needT_T_3; // @[Parameters.scala:270:{13,33,42}]
wire _new_needT_T_5 = _new_needT_T_1 | _new_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33]
wire _T_615 = new_request_opcode == 3'h6; // @[Parameters.scala:271:14]
wire _new_needT_T_6; // @[Parameters.scala:271:14]
assign _new_needT_T_6 = _T_615; // @[Parameters.scala:271:14]
wire _new_skipProbe_T; // @[Parameters.scala:279:12]
assign _new_skipProbe_T = _T_615; // @[Parameters.scala:271:14, :279:12]
wire _new_needT_T_7 = &new_request_opcode; // @[Parameters.scala:271:52]
wire _new_needT_T_8 = _new_needT_T_6 | _new_needT_T_7; // @[Parameters.scala:271:{14,42,52}]
wire _new_needT_T_9 = |new_request_param; // @[Parameters.scala:271:89]
wire _new_needT_T_10 = _new_needT_T_8 & _new_needT_T_9; // @[Parameters.scala:271:{42,80,89}]
wire new_needT = _new_needT_T_5 | _new_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80]
wire new_clientBit = new_request_source == 6'h28; // @[Parameters.scala:46:9]
wire _new_skipProbe_T_1 = &new_request_opcode; // @[Parameters.scala:271:52, :279:50]
wire _new_skipProbe_T_2 = _new_skipProbe_T | _new_skipProbe_T_1; // @[Parameters.scala:279:{12,40,50}]
wire _new_skipProbe_T_3 = new_request_opcode == 3'h4; // @[Parameters.scala:279:87]
wire _new_skipProbe_T_4 = _new_skipProbe_T_2 | _new_skipProbe_T_3; // @[Parameters.scala:279:{40,77,87}]
wire _new_skipProbe_T_7 = _new_skipProbe_T_4; // @[Parameters.scala:279:{77,106}]
wire new_skipProbe = _new_skipProbe_T_7 & new_clientBit; // @[Parameters.scala:46:9]
wire [3:0] prior; // @[MSHR.scala:314:26]
wire _prior_out_T = ~prior_c; // @[MSHR.scala:315:27, :318:32]
wire _prior_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26]
wire [2:0] _prior_out_T_4 = prior_c ? _prior_out_T_2 : _prior_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}]
assign prior = _prior_T ? {3'h0, _prior_out_T} : _prior_T_1 ? {2'h0, _prior_out_T_1} : _prior_T_2 ? {1'h0, _prior_out_T_4} : {_prior_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26]
wire _T_574 = io_directory_valid_0 | _new_meta_T; // @[MSHR.scala:84:7, :505:40, :539:28] |
Generate the Verilog code corresponding to the following Chisel files.
File RecFNToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import consts._
class
RecFNToRecFN(
inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int)
extends chisel3.RawModule
{
val io = IO(new Bundle {
val in = Input(Bits((inExpWidth + inSigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((outExpWidth + outSigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val rawIn = rawFloatFromRecFN(inExpWidth, inSigWidth, io.in);
if ((inExpWidth == outExpWidth) && (inSigWidth <= outSigWidth)) {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
io.out := io.in<<(outSigWidth - inSigWidth)
io.exceptionFlags := isSigNaNRawFloat(rawIn) ## 0.U(4.W)
} else {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
inExpWidth,
inSigWidth,
outExpWidth,
outSigWidth,
flRoundOpt_sigMSBitAlwaysZero
))
roundAnyRawFNToRecFN.io.invalidExc := isSigNaNRawFloat(rawIn)
roundAnyRawFNToRecFN.io.infiniteExc := false.B
roundAnyRawFNToRecFN.io.in := rawIn
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
}
File rawFloatFromRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
/*----------------------------------------------------------------------------
| In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be
| set.
*----------------------------------------------------------------------------*/
object rawFloatFromRecFN
{
def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat =
{
val exp = in(expWidth + sigWidth - 1, sigWidth - 1)
val isZero = exp(expWidth, expWidth - 2) === 0.U
val isSpecial = exp(expWidth, expWidth - 1) === 3.U
val out = Wire(new RawFloat(expWidth, sigWidth))
out.isNaN := isSpecial && exp(expWidth - 2)
out.isInf := isSpecial && ! exp(expWidth - 2)
out.isZero := isZero
out.sign := in(expWidth + sigWidth)
out.sExp := exp.zext
out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0)
out
}
}
| module RecFNToRecFN_231( // @[RecFNToRecFN.scala:44:5]
input [32:0] io_in, // @[RecFNToRecFN.scala:48:16]
output [32:0] io_out // @[RecFNToRecFN.scala:48:16]
);
wire [32:0] io_in_0 = io_in; // @[RecFNToRecFN.scala:44:5]
wire io_detectTininess = 1'h1; // @[RecFNToRecFN.scala:44:5, :48:16]
wire [2:0] io_roundingMode = 3'h0; // @[RecFNToRecFN.scala:44:5, :48:16]
wire [32:0] _io_out_T = io_in_0; // @[RecFNToRecFN.scala:44:5, :64:35]
wire [4:0] _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:65:54]
wire [32:0] io_out_0; // @[RecFNToRecFN.scala:44:5]
wire [4:0] io_exceptionFlags; // @[RecFNToRecFN.scala:44:5]
wire [8:0] rawIn_exp = io_in_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _rawIn_isZero_T = rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire rawIn_isZero = _rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire rawIn_isZero_0 = rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _rawIn_isSpecial_T = rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire rawIn_isSpecial = &_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] rawIn_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _rawIn_out_isNaN_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _rawIn_out_isInf_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _rawIn_out_isNaN_T_1 = rawIn_isSpecial & _rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign rawIn_isNaN = _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _rawIn_out_isInf_T_1 = ~_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _rawIn_out_isInf_T_2 = rawIn_isSpecial & _rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign rawIn_isInf = _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _rawIn_out_sign_T = io_in_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign rawIn_sign = _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _rawIn_out_sExp_T = {1'h0, rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign rawIn_sExp = _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _rawIn_out_sig_T = ~rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _rawIn_out_sig_T_1 = {1'h0, _rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _rawIn_out_sig_T_2 = io_in_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _rawIn_out_sig_T_3 = {_rawIn_out_sig_T_1, _rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign rawIn_sig = _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
assign io_out_0 = _io_out_T; // @[RecFNToRecFN.scala:44:5, :64:35]
wire _io_exceptionFlags_T = rawIn_sig[22]; // @[rawFloatFromRecFN.scala:55:23]
wire _io_exceptionFlags_T_1 = ~_io_exceptionFlags_T; // @[common.scala:82:{49,56}]
wire _io_exceptionFlags_T_2 = rawIn_isNaN & _io_exceptionFlags_T_1; // @[rawFloatFromRecFN.scala:55:23]
assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, 4'h0}; // @[common.scala:82:46]
assign io_exceptionFlags = _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:44:5, :65:54]
assign io_out = io_out_0; // @[RecFNToRecFN.scala:44:5]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_112( // @[AsyncQueue.scala:58:7]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in = 1'h1; // @[ShiftReg.scala:45:23]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_129 io_out_source_valid_0 ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File FIFOFixer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.lazymodule._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.RegionType
import freechips.rocketchip.util.property
class TLFIFOFixer(policy: TLFIFOFixer.Policy = TLFIFOFixer.all)(implicit p: Parameters) extends LazyModule
{
private def fifoMap(seq: Seq[TLSlaveParameters]) = {
val (flatManagers, keepManagers) = seq.partition(policy)
// We need to be careful if one flatManager and one keepManager share an existing domain
// Erring on the side of caution, we will also flatten the keepManager in this case
val flatDomains = Set(flatManagers.flatMap(_.fifoId):_*) // => ID 0
val keepDomains = Set(keepManagers.flatMap(_.fifoId):_*) -- flatDomains // => IDs compacted
// Calculate what the FIFO domains look like after the fixer is applied
val flatMap = flatDomains.map { x => (x, 0) }.toMap
val keepMap = keepDomains.scanLeft((-1,0)) { case ((_,s),x) => (x, s+1) }.toMap
val map = flatMap ++ keepMap
val fixMap = seq.map { m => m.fifoId match {
case None => if (policy(m)) Some(0) else None
case Some(id) => Some(map(id)) // also flattens some who did not ask
} }
// Compress the FIFO domain space of those we are combining
val reMap = flatDomains.scanLeft((-1,-1)) { case ((_,s),x) => (x, s+1) }.toMap
val splatMap = seq.map { m => m.fifoId match {
case None => None
case Some(id) => reMap.lift(id)
} }
(fixMap, splatMap)
}
val node = new AdapterNode(TLImp)(
{ cp => cp },
{ mp =>
val (fixMap, _) = fifoMap(mp.managers)
mp.v1copy(managers = (fixMap zip mp.managers) map { case (id, m) => m.v1copy(fifoId = id) })
}) with TLFormatNode {
override def circuitIdentity = edges.in.map(_.client.clients.filter(c => c.requestFifo && c.sourceId.size > 1).size).sum == 0
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
val (fixMap, splatMap) = fifoMap(edgeOut.manager.managers)
// Do we need to serialize the request to this manager?
val a_notFIFO = edgeIn.manager.fastProperty(in.a.bits.address, _.fifoId != Some(0), (b:Boolean) => b.B)
// Compact the IDs of the cases we serialize
val compacted = ((fixMap zip splatMap) zip edgeOut.manager.managers) flatMap {
case ((f, s), m) => if (f == Some(0)) Some(m.v1copy(fifoId = s)) else None
}
val sinks = if (compacted.exists(_.supportsAcquireB)) edgeOut.manager.endSinkId else 0
val a_id = if (compacted.isEmpty) 0.U else
edgeOut.manager.v1copy(managers = compacted, endSinkId = sinks).findFifoIdFast(in.a.bits.address)
val a_noDomain = a_id === 0.U
if (false) {
println(s"FIFOFixer for: ${edgeIn.client.clients.map(_.name).mkString(", ")}")
println(s"make FIFO: ${edgeIn.manager.managers.filter(_.fifoId==Some(0)).map(_.name).mkString(", ")}")
println(s"not FIFO: ${edgeIn.manager.managers.filter(_.fifoId!=Some(0)).map(_.name).mkString(", ")}")
println(s"domains: ${compacted.groupBy(_.name).mapValues(_.map(_.fifoId))}")
println("")
}
// Count beats
val a_first = edgeIn.first(in.a)
val d_first = edgeOut.first(out.d) && out.d.bits.opcode =/= TLMessages.ReleaseAck
// Keep one bit for each source recording if there is an outstanding request that must be made FIFO
// Sources unused in the stall signal calculation should be pruned by DCE
val flight = RegInit(VecInit(Seq.fill(edgeIn.client.endSourceId) { false.B }))
when (a_first && in.a.fire) { flight(in.a.bits.source) := !a_notFIFO }
when (d_first && in.d.fire) { flight(in.d.bits.source) := false.B }
val stalls = edgeIn.client.clients.filter(c => c.requestFifo && c.sourceId.size > 1).map { c =>
val a_sel = c.sourceId.contains(in.a.bits.source)
val id = RegEnable(a_id, in.a.fire && a_sel && !a_notFIFO)
val track = flight.slice(c.sourceId.start, c.sourceId.end)
a_sel && a_first && track.reduce(_ || _) && (a_noDomain || id =/= a_id)
}
val stall = stalls.foldLeft(false.B)(_||_)
out.a <> in.a
in.d <> out.d
out.a.valid := in.a.valid && (a_notFIFO || !stall)
in.a.ready := out.a.ready && (a_notFIFO || !stall)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> out.b
out.c <> in .c
out.e <> in .e
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
//Functional cover properties
property.cover(in.a.valid && stall, "COVER FIFOFIXER STALL", "Cover: Stall occured for a valid transaction")
val SourceIdFIFOed = RegInit(0.U(edgeIn.client.endSourceId.W))
val SourceIdSet = WireDefault(0.U(edgeIn.client.endSourceId.W))
val SourceIdClear = WireDefault(0.U(edgeIn.client.endSourceId.W))
when (a_first && in.a.fire && !a_notFIFO) {
SourceIdSet := UIntToOH(in.a.bits.source)
}
when (d_first && in.d.fire) {
SourceIdClear := UIntToOH(in.d.bits.source)
}
SourceIdFIFOed := SourceIdFIFOed | SourceIdSet
val allIDs_FIFOed = SourceIdFIFOed===Fill(SourceIdFIFOed.getWidth, 1.U)
property.cover(allIDs_FIFOed, "COVER all sources", "Cover: FIFOFIXER covers all Source IDs")
//property.cover(flight.reduce(_ && _), "COVER full", "Cover: FIFO is full with all Source IDs")
property.cover(!(flight.reduce(_ || _)), "COVER empty", "Cover: FIFO is empty")
property.cover(SourceIdSet > 0.U, "COVER at least one push", "Cover: At least one Source ID is pushed")
property.cover(SourceIdClear > 0.U, "COVER at least one pop", "Cover: At least one Source ID is popped")
}
}
}
object TLFIFOFixer
{
// Which slaves should have their FIFOness combined?
// NOTE: this transformation is still only applied for masters with requestFifo
type Policy = TLSlaveParameters => Boolean
import RegionType._
val all: Policy = m => true
val allFIFO: Policy = m => m.fifoId.isDefined
val allVolatile: Policy = m => m.regionType <= VOLATILE
def apply(policy: Policy = all)(implicit p: Parameters): TLNode =
{
val fixer = LazyModule(new TLFIFOFixer(policy))
fixer.node
}
}
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File AtomicAutomata.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes}
import freechips.rocketchip.util.leftOR
import scala.math.{min,max}
// Ensures that all downstream RW managers support Atomic operations.
// If !passthrough, intercept all Atomics. Otherwise, only intercept those unsupported downstream.
class TLAtomicAutomata(logical: Boolean = true, arithmetic: Boolean = true, concurrency: Int = 1, passthrough: Boolean = true)(implicit p: Parameters) extends LazyModule
{
require (concurrency >= 1)
val node = TLAdapterNode(
managerFn = { case mp => mp.v1copy(managers = mp.managers.map { m =>
val ourSupport = TransferSizes(1, mp.beatBytes)
def widen(x: TransferSizes) = if (passthrough && x.min <= 2*mp.beatBytes) TransferSizes(1, max(mp.beatBytes, x.max)) else ourSupport
val canDoit = m.supportsPutFull.contains(ourSupport) && m.supportsGet.contains(ourSupport)
// Blow up if there are devices to which we cannot add Atomics, because their R|W are too inflexible
require (!m.supportsPutFull || !m.supportsGet || canDoit, s"${m.name} has $ourSupport, needed PutFull(${m.supportsPutFull}) or Get(${m.supportsGet})")
m.v1copy(
supportsArithmetic = if (!arithmetic || !canDoit) m.supportsArithmetic else widen(m.supportsArithmetic),
supportsLogical = if (!logical || !canDoit) m.supportsLogical else widen(m.supportsLogical),
mayDenyGet = m.mayDenyGet || m.mayDenyPut)
})})
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
val managers = edgeOut.manager.managers
val beatBytes = edgeOut.manager.beatBytes
// To which managers are we adding atomic support?
val ourSupport = TransferSizes(1, beatBytes)
val managersNeedingHelp = managers.filter { m =>
m.supportsPutFull.contains(ourSupport) &&
m.supportsGet.contains(ourSupport) &&
((logical && !m.supportsLogical .contains(ourSupport)) ||
(arithmetic && !m.supportsArithmetic.contains(ourSupport)) ||
!passthrough) // we will do atomics for everyone we can
}
// Managers that need help with atomics must necessarily have this node as the root of a tree in the node graph.
// (But they must also ensure no sideband operations can get between the read and write.)
val violations = managersNeedingHelp.flatMap(_.findTreeViolation()).map { node => (node.name, node.inputs.map(_._1.name)) }
require(violations.isEmpty,
s"AtomicAutomata can only help nodes for which it is at the root of a diplomatic node tree," +
"but the following violations were found:\n" +
violations.map(v => s"(${v._1} has parents ${v._2})").mkString("\n"))
// We cannot add atomics to a non-FIFO manager
managersNeedingHelp foreach { m => require (m.fifoId.isDefined) }
// We need to preserve FIFO semantics across FIFO domains, not managers
// Suppose you have Put(42) Atomic(+1) both inflight; valid results: 42 or 43
// If we allow Put(42) Get() Put(+1) concurrent; valid results: 42 43 OR undef
// Making non-FIFO work requires waiting for all Acks to come back (=> use FIFOFixer)
val domainsNeedingHelp = managersNeedingHelp.map(_.fifoId.get).distinct
// Don't overprovision the CAM
val camSize = min(domainsNeedingHelp.size, concurrency)
// Compact the fifoIds to only those we care about
def camFifoId(m: TLSlaveParameters) = m.fifoId.map(id => max(0, domainsNeedingHelp.indexOf(id))).getOrElse(0)
// CAM entry state machine
val FREE = 0.U // unused waiting on Atomic from A
val GET = 3.U // Get sent down A waiting on AccessDataAck from D
val AMO = 2.U // AccessDataAck sent up D waiting for A availability
val ACK = 1.U // Put sent down A waiting for PutAck from D
val params = TLAtomicAutomata.CAMParams(out.a.bits.params, domainsNeedingHelp.size)
// Do we need to do anything at all?
if (camSize > 0) {
val initval = Wire(new TLAtomicAutomata.CAM_S(params))
initval.state := FREE
val cam_s = RegInit(VecInit.fill(camSize)(initval))
val cam_a = Reg(Vec(camSize, new TLAtomicAutomata.CAM_A(params)))
val cam_d = Reg(Vec(camSize, new TLAtomicAutomata.CAM_D(params)))
val cam_free = cam_s.map(_.state === FREE)
val cam_amo = cam_s.map(_.state === AMO)
val cam_abusy = cam_s.map(e => e.state === GET || e.state === AMO) // A is blocked
val cam_dmatch = cam_s.map(e => e.state =/= FREE) // D should inspect these entries
// Can the manager already handle this message?
val a_address = edgeIn.address(in.a.bits)
val a_size = edgeIn.size(in.a.bits)
val a_canLogical = passthrough.B && edgeOut.manager.supportsLogicalFast (a_address, a_size)
val a_canArithmetic = passthrough.B && edgeOut.manager.supportsArithmeticFast(a_address, a_size)
val a_isLogical = in.a.bits.opcode === TLMessages.LogicalData
val a_isArithmetic = in.a.bits.opcode === TLMessages.ArithmeticData
val a_isSupported = Mux(a_isLogical, a_canLogical, Mux(a_isArithmetic, a_canArithmetic, true.B))
// Must we do a Put?
val a_cam_any_put = cam_amo.reduce(_ || _)
val a_cam_por_put = cam_amo.scanLeft(false.B)(_||_).init
val a_cam_sel_put = (cam_amo zip a_cam_por_put) map { case (a, b) => a && !b }
val a_cam_a = PriorityMux(cam_amo, cam_a)
val a_cam_d = PriorityMux(cam_amo, cam_d)
val a_a = a_cam_a.bits.data
val a_d = a_cam_d.data
// Does the A request conflict with an inflight AMO?
val a_fifoId = edgeOut.manager.fastProperty(a_address, camFifoId _, (i:Int) => i.U)
val a_cam_busy = (cam_abusy zip cam_a.map(_.fifoId === a_fifoId)) map { case (a,b) => a&&b } reduce (_||_)
// (Where) are we are allocating in the CAM?
val a_cam_any_free = cam_free.reduce(_ || _)
val a_cam_por_free = cam_free.scanLeft(false.B)(_||_).init
val a_cam_sel_free = (cam_free zip a_cam_por_free) map { case (a,b) => a && !b }
// Logical AMO
val indexes = Seq.tabulate(beatBytes*8) { i => Cat(a_a(i,i), a_d(i,i)) }
val logic_out = Cat(indexes.map(x => a_cam_a.lut(x).asUInt).reverse)
// Arithmetic AMO
val unsigned = a_cam_a.bits.param(1)
val take_max = a_cam_a.bits.param(0)
val adder = a_cam_a.bits.param(2)
val mask = a_cam_a.bits.mask
val signSel = ~(~mask | (mask >> 1))
val signbits_a = Cat(Seq.tabulate(beatBytes) { i => a_a(8*i+7,8*i+7) } .reverse)
val signbits_d = Cat(Seq.tabulate(beatBytes) { i => a_d(8*i+7,8*i+7) } .reverse)
// Move the selected sign bit into the first byte position it will extend
val signbit_a = ((signbits_a & signSel) << 1)(beatBytes-1, 0)
val signbit_d = ((signbits_d & signSel) << 1)(beatBytes-1, 0)
val signext_a = FillInterleaved(8, leftOR(signbit_a))
val signext_d = FillInterleaved(8, leftOR(signbit_d))
// NOTE: sign-extension does not change the relative ordering in EITHER unsigned or signed arithmetic
val wide_mask = FillInterleaved(8, mask)
val a_a_ext = (a_a & wide_mask) | signext_a
val a_d_ext = (a_d & wide_mask) | signext_d
val a_d_inv = Mux(adder, a_d_ext, ~a_d_ext)
val adder_out = a_a_ext + a_d_inv
val h = 8*beatBytes-1 // now sign-extended; use biggest bit
val a_bigger_uneq = unsigned === a_a_ext(h) // result if high bits are unequal
val a_bigger = Mux(a_a_ext(h) === a_d_ext(h), !adder_out(h), a_bigger_uneq)
val pick_a = take_max === a_bigger
val arith_out = Mux(adder, adder_out, Mux(pick_a, a_a, a_d))
// AMO result data
val amo_data =
if (!logical) arith_out else
if (!arithmetic) logic_out else
Mux(a_cam_a.bits.opcode(0), logic_out, arith_out)
// Potentially mutate the message from inner
val source_i = Wire(chiselTypeOf(in.a))
val a_allow = !a_cam_busy && (a_isSupported || a_cam_any_free)
in.a.ready := source_i.ready && a_allow
source_i.valid := in.a.valid && a_allow
source_i.bits := in.a.bits
when (!a_isSupported) { // minimal mux difference
source_i.bits.opcode := TLMessages.Get
source_i.bits.param := 0.U
}
// Potentially take the message from the CAM
val source_c = Wire(chiselTypeOf(in.a))
source_c.valid := a_cam_any_put
source_c.bits := edgeOut.Put(
fromSource = a_cam_a.bits.source,
toAddress = edgeIn.address(a_cam_a.bits),
lgSize = a_cam_a.bits.size,
data = amo_data,
corrupt = a_cam_a.bits.corrupt || a_cam_d.corrupt)._2
source_c.bits.user :<= a_cam_a.bits.user
source_c.bits.echo :<= a_cam_a.bits.echo
// Finishing an AMO from the CAM has highest priority
TLArbiter(TLArbiter.lowestIndexFirst)(out.a, (0.U, source_c), (edgeOut.numBeats1(in.a.bits), source_i))
// Capture the A state into the CAM
when (source_i.fire && !a_isSupported) {
(a_cam_sel_free zip cam_a) foreach { case (en, r) =>
when (en) {
r.fifoId := a_fifoId
r.bits := in.a.bits
r.lut := MuxLookup(in.a.bits.param(1, 0), 0.U(4.W))(Array(
TLAtomics.AND -> 0x8.U,
TLAtomics.OR -> 0xe.U,
TLAtomics.XOR -> 0x6.U,
TLAtomics.SWAP -> 0xc.U))
}
}
(a_cam_sel_free zip cam_s) foreach { case (en, r) =>
when (en) {
r.state := GET
}
}
}
// Advance the put state
when (source_c.fire) {
(a_cam_sel_put zip cam_s) foreach { case (en, r) =>
when (en) {
r.state := ACK
}
}
}
// We need to deal with a potential D response in the same cycle as the A request
val d_first = edgeOut.first(out.d)
val d_cam_sel_raw = cam_a.map(_.bits.source === in.d.bits.source)
val d_cam_sel_match = (d_cam_sel_raw zip cam_dmatch) map { case (a,b) => a&&b }
val d_cam_data = Mux1H(d_cam_sel_match, cam_d.map(_.data))
val d_cam_denied = Mux1H(d_cam_sel_match, cam_d.map(_.denied))
val d_cam_corrupt = Mux1H(d_cam_sel_match, cam_d.map(_.corrupt))
val d_cam_sel_bypass = if (edgeOut.manager.minLatency > 0) false.B else
out.d.bits.source === in.a.bits.source && in.a.valid && !a_isSupported
val d_cam_sel = (a_cam_sel_free zip d_cam_sel_match) map { case (a,d) => Mux(d_cam_sel_bypass, a, d) }
val d_cam_sel_any = d_cam_sel_bypass || d_cam_sel_match.reduce(_ || _)
val d_ackd = out.d.bits.opcode === TLMessages.AccessAckData
val d_ack = out.d.bits.opcode === TLMessages.AccessAck
when (out.d.fire && d_first) {
(d_cam_sel zip cam_d) foreach { case (en, r) =>
when (en && d_ackd) {
r.data := out.d.bits.data
r.denied := out.d.bits.denied
r.corrupt := out.d.bits.corrupt
}
}
(d_cam_sel zip cam_s) foreach { case (en, r) =>
when (en) {
// Note: it is important that this comes AFTER the := GET, so we can go FREE=>GET=>AMO in one cycle
r.state := Mux(d_ackd, AMO, FREE)
}
}
}
val d_drop = d_first && d_ackd && d_cam_sel_any
val d_replace = d_first && d_ack && d_cam_sel_match.reduce(_ || _)
in.d.valid := out.d.valid && !d_drop
out.d.ready := in.d.ready || d_drop
in.d.bits := out.d.bits
when (d_replace) { // minimal muxes
in.d.bits.opcode := TLMessages.AccessAckData
in.d.bits.data := d_cam_data
in.d.bits.corrupt := d_cam_corrupt || out.d.bits.denied
in.d.bits.denied := d_cam_denied || out.d.bits.denied
}
} else {
out.a.valid := in.a.valid
in.a.ready := out.a.ready
out.a.bits := in.a.bits
in.d.valid := out.d.valid
out.d.ready := in.d.ready
in.d.bits := out.d.bits
}
if (edgeOut.manager.anySupportAcquireB && edgeIn.client.anySupportProbe) {
in.b.valid := out.b.valid
out.b.ready := in.b.ready
in.b.bits := out.b.bits
out.c.valid := in.c.valid
in.c.ready := out.c.ready
out.c.bits := in.c.bits
out.e.valid := in.e.valid
in.e.ready := out.e.ready
out.e.bits := in.e.bits
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLAtomicAutomata
{
def apply(logical: Boolean = true, arithmetic: Boolean = true, concurrency: Int = 1, passthrough: Boolean = true, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode =
{
val atomics = LazyModule(new TLAtomicAutomata(logical, arithmetic, concurrency, passthrough) {
override lazy val desiredName = (Seq("TLAtomicAutomata") ++ nameSuffix).mkString("_")
})
atomics.node
}
case class CAMParams(a: TLBundleParameters, domainsNeedingHelp: Int)
class CAM_S(val params: CAMParams) extends Bundle {
val state = UInt(2.W)
}
class CAM_A(val params: CAMParams) extends Bundle {
val bits = new TLBundleA(params.a)
val fifoId = UInt(log2Up(params.domainsNeedingHelp).W)
val lut = UInt(4.W)
}
class CAM_D(val params: CAMParams) extends Bundle {
val data = UInt(params.a.dataBits.W)
val denied = Bool()
val corrupt = Bool()
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMAtomicAutomata(txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("AtomicAutomata"))
val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff)))
// Confirm that the AtomicAutomata combines read + write errors
import TLMessages._
val test = new RequestPattern({a: TLBundleA =>
val doesA = a.opcode === ArithmeticData || a.opcode === LogicalData
val doesR = a.opcode === Get || doesA
val doesW = a.opcode === PutFullData || a.opcode === PutPartialData || doesA
(doesR && RequestPattern.overlaps(Seq(AddressSet(0x08, ~0x08)))(a)) ||
(doesW && RequestPattern.overlaps(Seq(AddressSet(0x10, ~0x10)))(a))
})
(ram.node
:= TLErrorEvaluator(test)
:= TLFragmenter(4, 256)
:= TLDelayer(0.1)
:= TLAtomicAutomata()
:= TLDelayer(0.1)
:= TLErrorEvaluator(test, testOn=true, testOff=true)
:= model.node
:= fuzz.node)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMAtomicAutomataTest(txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMAtomicAutomata(txns)).module)
io.finished := dut.io.finished
dut.io.start := io.start
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File RegisterRouter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes}
import freechips.rocketchip.resources.{Device, Resource, ResourceBindings}
import freechips.rocketchip.prci.{NoCrossing}
import freechips.rocketchip.regmapper.{RegField, RegMapper, RegMapperParams, RegMapperInput, RegisterRouter}
import freechips.rocketchip.util.{BundleField, ControlKey, ElaborationArtefacts, GenRegDescsAnno}
import scala.math.min
class TLRegisterRouterExtraBundle(val sourceBits: Int, val sizeBits: Int) extends Bundle {
val source = UInt((sourceBits max 1).W)
val size = UInt((sizeBits max 1).W)
}
case object TLRegisterRouterExtra extends ControlKey[TLRegisterRouterExtraBundle]("tlrr_extra")
case class TLRegisterRouterExtraField(sourceBits: Int, sizeBits: Int) extends BundleField[TLRegisterRouterExtraBundle](TLRegisterRouterExtra, Output(new TLRegisterRouterExtraBundle(sourceBits, sizeBits)), x => {
x.size := 0.U
x.source := 0.U
})
/** TLRegisterNode is a specialized TL SinkNode that encapsulates MMIO registers.
* It provides functionality for describing and outputting metdata about the registers in several formats.
* It also provides a concrete implementation of a regmap function that will be used
* to wire a map of internal registers associated with this node to the node's interconnect port.
*/
case class TLRegisterNode(
address: Seq[AddressSet],
device: Device,
deviceKey: String = "reg/control",
concurrency: Int = 0,
beatBytes: Int = 4,
undefZero: Boolean = true,
executable: Boolean = false)(
implicit valName: ValName)
extends SinkNode(TLImp)(Seq(TLSlavePortParameters.v1(
Seq(TLSlaveParameters.v1(
address = address,
resources = Seq(Resource(device, deviceKey)),
executable = executable,
supportsGet = TransferSizes(1, beatBytes),
supportsPutPartial = TransferSizes(1, beatBytes),
supportsPutFull = TransferSizes(1, beatBytes),
fifoId = Some(0))), // requests are handled in order
beatBytes = beatBytes,
minLatency = min(concurrency, 1)))) with TLFormatNode // the Queue adds at most one cycle
{
val size = 1 << log2Ceil(1 + address.map(_.max).max - address.map(_.base).min)
require (size >= beatBytes)
address.foreach { case a =>
require (a.widen(size-1).base == address.head.widen(size-1).base,
s"TLRegisterNode addresses (${address}) must be aligned to its size ${size}")
}
// Calling this method causes the matching TL2 bundle to be
// configured to route all requests to the listed RegFields.
def regmap(mapping: RegField.Map*) = {
val (bundleIn, edge) = this.in(0)
val a = bundleIn.a
val d = bundleIn.d
val fields = TLRegisterRouterExtraField(edge.bundle.sourceBits, edge.bundle.sizeBits) +: a.bits.params.echoFields
val params = RegMapperParams(log2Up(size/beatBytes), beatBytes, fields)
val in = Wire(Decoupled(new RegMapperInput(params)))
in.bits.read := a.bits.opcode === TLMessages.Get
in.bits.index := edge.addr_hi(a.bits)
in.bits.data := a.bits.data
in.bits.mask := a.bits.mask
Connectable.waiveUnmatched(in.bits.extra, a.bits.echo) match {
case (lhs, rhs) => lhs :<= rhs
}
val a_extra = in.bits.extra(TLRegisterRouterExtra)
a_extra.source := a.bits.source
a_extra.size := a.bits.size
// Invoke the register map builder
val out = RegMapper(beatBytes, concurrency, undefZero, in, mapping:_*)
// No flow control needed
in.valid := a.valid
a.ready := in.ready
d.valid := out.valid
out.ready := d.ready
// We must restore the size to enable width adapters to work
val d_extra = out.bits.extra(TLRegisterRouterExtra)
d.bits := edge.AccessAck(toSource = d_extra.source, lgSize = d_extra.size)
// avoid a Mux on the data bus by manually overriding two fields
d.bits.data := out.bits.data
Connectable.waiveUnmatched(d.bits.echo, out.bits.extra) match {
case (lhs, rhs) => lhs :<= rhs
}
d.bits.opcode := Mux(out.bits.read, TLMessages.AccessAckData, TLMessages.AccessAck)
// Tie off unused channels
bundleIn.b.valid := false.B
bundleIn.c.ready := true.B
bundleIn.e.ready := true.B
genRegDescsJson(mapping:_*)
}
def genRegDescsJson(mapping: RegField.Map*): Unit = {
// Dump out the register map for documentation purposes.
val base = address.head.base
val baseHex = s"0x${base.toInt.toHexString}"
val name = s"${device.describe(ResourceBindings()).name}.At${baseHex}"
val json = GenRegDescsAnno.serialize(base, name, mapping:_*)
var suffix = 0
while( ElaborationArtefacts.contains(s"${baseHex}.${suffix}.regmap.json")) {
suffix = suffix + 1
}
ElaborationArtefacts.add(s"${baseHex}.${suffix}.regmap.json", json)
val module = Module.currentModule.get.asInstanceOf[RawModule]
GenRegDescsAnno.anno(
module,
base,
mapping:_*)
}
}
/** Mix HasTLControlRegMap into any subclass of RegisterRouter to gain helper functions for attaching a device control register map to TileLink.
* - The intended use case is that controlNode will diplomatically publish a SW-visible device's memory-mapped control registers.
* - Use the clock crossing helper controlXing to externally connect controlNode to a TileLink interconnect.
* - Use the mapping helper function regmap to internally fill out the space of device control registers.
*/
trait HasTLControlRegMap { this: RegisterRouter =>
protected val controlNode = TLRegisterNode(
address = address,
device = device,
deviceKey = "reg/control",
concurrency = concurrency,
beatBytes = beatBytes,
undefZero = undefZero,
executable = executable)
// Externally, this helper should be used to connect the register control port to a bus
val controlXing: TLInwardClockCrossingHelper = this.crossIn(controlNode)
// Backwards-compatibility default node accessor with no clock crossing
lazy val node: TLInwardNode = controlXing(NoCrossing)
// Internally, this function should be used to populate the control port with registers
protected def regmap(mapping: RegField.Map*): Unit = { controlNode.regmap(mapping:_*) }
}
File ClockDomain.scala:
package freechips.rocketchip.prci
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing
{
def clockBundle: ClockBundle
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
childClock := clockBundle.clock
childReset := clockBundle.reset
override def provideImplicitClockToLazyChildren = true
// these are just for backwards compatibility with external devices
// that were manually wiring themselves to the domain's clock/reset input:
val clock = IO(Output(chiselTypeOf(clockBundle.clock)))
val reset = IO(Output(chiselTypeOf(clockBundle.reset)))
clock := clockBundle.clock
reset := clockBundle.reset
}
}
abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing
class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain
{
def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name))
val clockNode = ClockSinkNode(Seq(clockSinkParams))
def clockBundle = clockNode.in.head._1
override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString
}
class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain
{
def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name))
val clockNode = ClockSourceNode(Seq(clockSourceParams))
def clockBundle = clockNode.out.head._1
override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString
}
abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing
File RegField.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.regmapper
import chisel3._
import chisel3.util.{DecoupledIO, ReadyValidIO}
import org.json4s.JsonDSL._
import org.json4s.JsonAST.JValue
import freechips.rocketchip.util.{SimpleRegIO}
case class RegReadFn private(combinational: Boolean, fn: (Bool, Bool) => (Bool, Bool, UInt))
object RegReadFn
{
// (ivalid: Bool, oready: Bool) => (iready: Bool, ovalid: Bool, data: UInt)
// iready may combinationally depend on oready
// all other combinational dependencies forbidden (e.g. ovalid <= ivalid)
// effects must become visible on the cycle after ovalid && oready
// data is only inspected when ovalid && oready
implicit def apply(x: (Bool, Bool) => (Bool, Bool, UInt)) =
new RegReadFn(false, x)
implicit def apply(x: RegisterReadIO[UInt]): RegReadFn =
RegReadFn((ivalid, oready) => {
x.request.valid := ivalid
x.response.ready := oready
(x.request.ready, x.response.valid, x.response.bits)
})
// (ready: Bool) => (valid: Bool, data: UInt)
// valid must not combinationally depend on ready
// effects must become visible on the cycle after valid && ready
implicit def apply(x: Bool => (Bool, UInt)) =
new RegReadFn(true, { case (_, oready) =>
val (ovalid, data) = x(oready)
(true.B, ovalid, data)
})
// read from a ReadyValidIO (only safe if there is a consistent source of data)
implicit def apply(x: ReadyValidIO[UInt]):RegReadFn = RegReadFn(ready => { x.ready := ready; (x.valid, x.bits) })
// read from a register
implicit def apply(x: UInt):RegReadFn = RegReadFn(ready => (true.B, x))
// noop
implicit def apply(x: Unit):RegReadFn = RegReadFn(0.U)
}
case class RegWriteFn private(combinational: Boolean, fn: (Bool, Bool, UInt) => (Bool, Bool))
object RegWriteFn
{
// (ivalid: Bool, oready: Bool, data: UInt) => (iready: Bool, ovalid: Bool)
// iready may combinationally depend on both oready and data
// all other combinational dependencies forbidden (e.g. ovalid <= ivalid)
// effects must become visible on the cycle after ovalid && oready
// data should only be used for an effect when ivalid && iready
implicit def apply(x: (Bool, Bool, UInt) => (Bool, Bool)) =
new RegWriteFn(false, x)
implicit def apply(x: RegisterWriteIO[UInt]): RegWriteFn =
RegWriteFn((ivalid, oready, data) => {
x.request.valid := ivalid
x.request.bits := data
x.response.ready := oready
(x.request.ready, x.response.valid)
})
// (valid: Bool, data: UInt) => (ready: Bool)
// ready may combinationally depend on data (but not valid)
// effects must become visible on the cycle after valid && ready
implicit def apply(x: (Bool, UInt) => Bool) =
// combinational => data valid on oready
new RegWriteFn(true, { case (_, oready, data) =>
(true.B, x(oready, data))
})
// write to a DecoupledIO (only safe if there is a consistent sink draining data)
// NOTE: this is not an IrrevocableIO (even on TL2) because other fields could cause a lowered valid
implicit def apply(x: DecoupledIO[UInt]): RegWriteFn = RegWriteFn((valid, data) => { x.valid := valid; x.bits := data; x.ready })
// updates a register (or adds a mux to a wire)
implicit def apply(x: UInt): RegWriteFn = RegWriteFn((valid, data) => { when (valid) { x := data }; true.B })
// noop
implicit def apply(x: Unit): RegWriteFn = RegWriteFn((valid, data) => { true.B })
}
case class RegField(width: Int, read: RegReadFn, write: RegWriteFn, desc: Option[RegFieldDesc])
{
require (width >= 0, s"RegField width must be >= 0, not $width")
def pipelined = !read.combinational || !write.combinational
def readOnly = this.copy(write = (), desc = this.desc.map(_.copy(access = RegFieldAccessType.R)))
def toJson(byteOffset: Int, bitOffset: Int): JValue = {
( ("byteOffset" -> s"0x${byteOffset.toHexString}") ~
("bitOffset" -> bitOffset) ~
("bitWidth" -> width) ~
("name" -> desc.map(_.name)) ~
("description" -> desc.map{ d=> if (d.desc == "") None else Some(d.desc)}) ~
("resetValue" -> desc.map{_.reset}) ~
("group" -> desc.map{_.group}) ~
("groupDesc" -> desc.map{_.groupDesc}) ~
("accessType" -> desc.map {d => d.access.toString}) ~
("writeType" -> desc.map {d => d.wrType.map(_.toString)}) ~
("readAction" -> desc.map {d => d.rdAction.map(_.toString)}) ~
("volatile" -> desc.map {d => if (d.volatile) Some(true) else None}) ~
("enumerations" -> desc.map {d =>
Option(d.enumerations.map { case (key, (name, edesc)) =>
(("value" -> key) ~ ("name" -> name) ~ ("description" -> edesc))
}).filter(_.nonEmpty)}) )
}
}
object RegField
{
// Byte address => sequence of bitfields, lowest index => lowest address
type Map = (Int, Seq[RegField])
def apply(n: Int) : RegField = apply(n, (), (), Some(RegFieldDesc.reserved))
def apply(n: Int, desc: RegFieldDesc) : RegField = apply(n, (), (), Some(desc))
def apply(n: Int, r: RegReadFn, w: RegWriteFn) : RegField = apply(n, r, w, None)
def apply(n: Int, r: RegReadFn, w: RegWriteFn, desc: RegFieldDesc) : RegField = apply(n, r, w, Some(desc))
def apply(n: Int, rw: UInt) : RegField = apply(n, rw, rw, None)
def apply(n: Int, rw: UInt, desc: RegFieldDesc) : RegField = apply(n, rw, rw, Some(desc))
def r(n: Int, r: RegReadFn) : RegField = apply(n, r, (), None)
def r(n: Int, r: RegReadFn, desc: RegFieldDesc) : RegField = apply(n, r, (), Some(desc.copy(access = RegFieldAccessType.R)))
def w(n: Int, w: RegWriteFn) : RegField = apply(n, (), w, None)
def w(n: Int, w: RegWriteFn, desc: RegFieldDesc) : RegField = apply(n, (), w, Some(desc.copy(access = RegFieldAccessType.W)))
// This RegField allows 'set' to set bits in 'reg'.
// and to clear bits when the bus writes bits of value 1.
// Setting takes priority over clearing.
def w1ToClear(n: Int, reg: UInt, set: UInt, desc: Option[RegFieldDesc] = None): RegField =
RegField(n, reg, RegWriteFn((valid, data) => { reg := (~((~reg) | Mux(valid, data, 0.U))) | set; true.B }),
desc.map{_.copy(access = RegFieldAccessType.RW, wrType=Some(RegFieldWrType.ONE_TO_CLEAR), volatile = true)})
// This RegField wraps an explicit register
// (e.g. Black-Boxed Register) to create a R/W register.
def rwReg(n: Int, bb: SimpleRegIO, desc: Option[RegFieldDesc] = None) : RegField =
RegField(n, bb.q, RegWriteFn((valid, data) => {
bb.en := valid
bb.d := data
true.B
}), desc)
// Create byte-sized read-write RegFields out of a large UInt register.
// It is updated when any of the (implemented) bytes are written, the non-written
// bytes are just copied over from their current value.
// Because the RegField are all byte-sized, this is also suitable when a register is larger
// than the intended bus width of the device (atomic updates are impossible).
def bytes(reg: UInt, numBytes: Int, desc: Option[RegFieldDesc]): Seq[RegField] = {
require(reg.getWidth * 8 >= numBytes, "Can't break a ${reg.getWidth}-bit-wide register into only ${numBytes} bytes.")
val numFullBytes = reg.getWidth/8
val numPartialBytes = if ((reg.getWidth % 8) > 0) 1 else 0
val numPadBytes = numBytes - numFullBytes - numPartialBytes
val pad = reg | 0.U((8*numBytes).W)
val oldBytes = VecInit.tabulate(numBytes) { i => pad(8*(i+1)-1, 8*i) }
val newBytes = WireDefault(oldBytes)
val valids = WireDefault(VecInit.fill(numBytes) { false.B })
when (valids.reduce(_ || _)) { reg := newBytes.asUInt }
def wrFn(i: Int): RegWriteFn = RegWriteFn((valid, data) => {
valids(i) := valid
when (valid) {newBytes(i) := data}
true.B
})
val fullBytes = Seq.tabulate(numFullBytes) { i =>
val newDesc = desc.map {d => d.copy(name = d.name + s"_$i")}
RegField(8, oldBytes(i), wrFn(i), newDesc)}
val partialBytes = if (numPartialBytes > 0) {
val newDesc = desc.map {d => d.copy(name = d.name + s"_$numFullBytes")}
Seq(RegField(reg.getWidth % 8, oldBytes(numFullBytes), wrFn(numFullBytes), newDesc),
RegField(8 - (reg.getWidth % 8)))
} else Nil
val padBytes = Seq.fill(numPadBytes){RegField(8)}
fullBytes ++ partialBytes ++ padBytes
}
def bytes(reg: UInt, desc: Option[RegFieldDesc]): Seq[RegField] = {
val width = reg.getWidth
require (width % 8 == 0, s"RegField.bytes must be called on byte-sized reg, not ${width} bits")
bytes(reg, width/8, desc)
}
def bytes(reg: UInt, numBytes: Int): Seq[RegField] = bytes(reg, numBytes, None)
def bytes(reg: UInt): Seq[RegField] = bytes(reg, None)
}
trait HasRegMap
{
def regmap(mapping: RegField.Map*): Unit
val interrupts: Vec[Bool]
}
// See Example.scala for an example of how to use regmap
File PeripheryBus.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.subsystem
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.devices.tilelink.{BuiltInZeroDeviceParams, BuiltInErrorDeviceParams, HasBuiltInDeviceParams, BuiltInDevices}
import freechips.rocketchip.diplomacy.BufferParams
import freechips.rocketchip.tilelink.{
RegionReplicator, ReplicatedRegion, HasTLBusParams, HasRegionReplicatorParams, TLBusWrapper,
TLBusWrapperInstantiationLike, TLFIFOFixer, TLNode, TLXbar, TLInwardNode, TLOutwardNode,
TLBuffer, TLWidthWidget, TLAtomicAutomata, TLEdge
}
import freechips.rocketchip.util.Location
case class BusAtomics(
arithmetic: Boolean = true,
buffer: BufferParams = BufferParams.default,
widenBytes: Option[Int] = None
)
case class PeripheryBusParams(
beatBytes: Int,
blockBytes: Int,
atomics: Option[BusAtomics] = Some(BusAtomics()),
dtsFrequency: Option[BigInt] = None,
zeroDevice: Option[BuiltInZeroDeviceParams] = None,
errorDevice: Option[BuiltInErrorDeviceParams] = None,
replication: Option[ReplicatedRegion] = None)
extends HasTLBusParams
with HasBuiltInDeviceParams
with HasRegionReplicatorParams
with TLBusWrapperInstantiationLike
{
def instantiate(context: HasTileLinkLocations, loc: Location[TLBusWrapper])(implicit p: Parameters): PeripheryBus = {
val pbus = LazyModule(new PeripheryBus(this, loc.name))
pbus.suggestName(loc.name)
context.tlBusWrapperLocationMap += (loc -> pbus)
pbus
}
}
class PeripheryBus(params: PeripheryBusParams, name: String)(implicit p: Parameters)
extends TLBusWrapper(params, name)
{
override lazy val desiredName = s"PeripheryBus_$name"
private val replicator = params.replication.map(r => LazyModule(new RegionReplicator(r)))
val prefixNode = replicator.map { r =>
r.prefix := addressPrefixNexusNode
addressPrefixNexusNode
}
private val fixer = LazyModule(new TLFIFOFixer(TLFIFOFixer.all))
private val node: TLNode = params.atomics.map { pa =>
val in_xbar = LazyModule(new TLXbar(nameSuffix = Some(s"${name}_in")))
val out_xbar = LazyModule(new TLXbar(nameSuffix = Some(s"${name}_out")))
val fixer_node = replicator.map(fixer.node :*= _.node).getOrElse(fixer.node)
(out_xbar.node
:*= fixer_node
:*= TLBuffer(pa.buffer)
:*= (pa.widenBytes.filter(_ > beatBytes).map { w =>
TLWidthWidget(w) :*= TLAtomicAutomata(arithmetic = pa.arithmetic, nameSuffix = Some(name))
} .getOrElse { TLAtomicAutomata(arithmetic = pa.arithmetic, nameSuffix = Some(name)) })
:*= in_xbar.node)
} .getOrElse { TLXbar() :*= fixer.node }
def inwardNode: TLInwardNode = node
def outwardNode: TLOutwardNode = node
def busView: TLEdge = fixer.node.edges.in.head
val builtInDevices: BuiltInDevices = BuiltInDevices.attach(params, outwardNode)
}
File BootAddrReg.scala:
package testchipip.boot
import chisel3._
import org.chipsalliance.cde.config.{Parameters, Field}
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.devices.tilelink._
import freechips.rocketchip.regmapper._
import freechips.rocketchip.subsystem._
case class BootAddrRegParams(
defaultBootAddress: BigInt = 0x80000000L, // This should be DRAM_BASE
bootRegAddress: BigInt = 0x1000,
slaveWhere: TLBusWrapperLocation = PBUS
)
case object BootAddrRegKey extends Field[Option[BootAddrRegParams]](None)
trait CanHavePeripheryBootAddrReg { this: BaseSubsystem =>
p(BootAddrRegKey).map { params =>
val tlbus = locateTLBusWrapper(params.slaveWhere)
val device = new SimpleDevice("boot-address-reg", Nil)
tlbus {
val node = TLRegisterNode(Seq(AddressSet(params.bootRegAddress, 4096-1)), device, "reg/control", beatBytes=tlbus.beatBytes)
tlbus.coupleTo("boot-address-reg") { node := TLFragmenter(tlbus, Some("BootAddrReg")) := _ }
InModuleBody {
val bootAddrReg = RegInit(params.defaultBootAddress.U(64.W))
node.regmap(0 -> RegField.bytes(bootAddrReg))
}
}
}
}
File ClockGroup.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.prci
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.resources.FixedClockResource
case class ClockGroupingNode(groupName: String)(implicit valName: ValName)
extends MixedNexusNode(ClockGroupImp, ClockImp)(
dFn = { _ => ClockSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq) })
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroup(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupingNode(groupName)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
require (node.in.size == 1)
require (in.member.size == out.size)
(in.member.data zip out) foreach { case (i, o) => o := i }
}
}
object ClockGroup
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroup(valName.name)).node
}
case class ClockGroupAggregateNode(groupName: String)(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq.flatMap(_.members))})
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroupAggregator(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupAggregateNode(groupName)
override lazy val desiredName = s"ClockGroupAggregator_$groupName"
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in.unzip
val (out, _) = node.out.unzip
val outputs = out.flatMap(_.member.data)
require (node.in.size == 1, s"Aggregator for groupName: ${groupName} had ${node.in.size} inward edges instead of 1")
require (in.head.member.size == outputs.size)
in.head.member.data.zip(outputs).foreach { case (i, o) => o := i }
}
}
object ClockGroupAggregator
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroupAggregator(valName.name)).node
}
class SimpleClockGroupSource(numSources: Int = 1)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupSourceNode(List.fill(numSources) { ClockGroupSourceParameters() })
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
val (out, _) = node.out.unzip
out.map { out: ClockGroupBundle =>
out.member.data.foreach { o =>
o.clock := clock; o.reset := reset }
}
}
}
object SimpleClockGroupSource
{
def apply(num: Int = 1)(implicit p: Parameters, valName: ValName) = LazyModule(new SimpleClockGroupSource(num)).node
}
case class FixedClockBroadcastNode(fixedClockOpt: Option[ClockParameters])(implicit valName: ValName)
extends NexusNode(ClockImp)(
dFn = { seq => fixedClockOpt.map(_ => ClockSourceParameters(give = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSourceParameters()) },
uFn = { seq => fixedClockOpt.map(_ => ClockSinkParameters(take = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSinkParameters()) },
inputRequiresOutput = false) {
def fixedClockResources(name: String, prefix: String = "soc/"): Seq[Option[FixedClockResource]] = Seq(fixedClockOpt.map(t => new FixedClockResource(name, t.freqMHz, prefix)))
}
class FixedClockBroadcast(fixedClockOpt: Option[ClockParameters])(implicit p: Parameters) extends LazyModule
{
val node = new FixedClockBroadcastNode(fixedClockOpt) {
override def circuitIdentity = outputs.size == 1
}
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
override def desiredName = s"FixedClockBroadcast_${out.size}"
require (node.in.size == 1, "FixedClockBroadcast can only broadcast a single clock")
out.foreach { _ := in }
}
}
object FixedClockBroadcast
{
def apply(fixedClockOpt: Option[ClockParameters] = None)(implicit p: Parameters, valName: ValName) = LazyModule(new FixedClockBroadcast(fixedClockOpt)).node
}
case class PRCIClockGroupNode()(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { _ => ClockGroupSinkParameters("prci", Nil) },
outputRequiresInput = false)
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File MuxLiteral.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.log2Ceil
import scala.reflect.ClassTag
/* MuxLiteral creates a lookup table from a key to a list of values.
* Unlike MuxLookup, the table keys must be exclusive literals.
*/
object MuxLiteral
{
def apply[T <: Data:ClassTag](index: UInt, default: T, first: (UInt, T), rest: (UInt, T)*): T =
apply(index, default, first :: rest.toList)
def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(UInt, T)]): T =
MuxTable(index, default, cases.map { case (k, v) => (k.litValue, v) })
}
object MuxSeq
{
def apply[T <: Data:ClassTag](index: UInt, default: T, first: T, rest: T*): T =
apply(index, default, first :: rest.toList)
def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[T]): T =
MuxTable(index, default, cases.zipWithIndex.map { case (v, i) => (BigInt(i), v) })
}
object MuxTable
{
def apply[T <: Data:ClassTag](index: UInt, default: T, first: (BigInt, T), rest: (BigInt, T)*): T =
apply(index, default, first :: rest.toList)
def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(BigInt, T)]): T = {
/* All keys must be >= 0 and distinct */
cases.foreach { case (k, _) => require (k >= 0) }
require (cases.map(_._1).distinct.size == cases.size)
/* Filter out any cases identical to the default */
val simple = cases.filter { case (k, v) => !default.isLit || !v.isLit || v.litValue != default.litValue }
val maxKey = (BigInt(0) +: simple.map(_._1)).max
val endIndex = BigInt(1) << log2Ceil(maxKey+1)
if (simple.isEmpty) {
default
} else if (endIndex <= 2*simple.size) {
/* The dense encoding case uses a Vec */
val table = Array.fill(endIndex.toInt) { default }
simple.foreach { case (k, v) => table(k.toInt) = v }
Mux(index >= endIndex.U, default, VecInit(table)(index))
} else {
/* The sparse encoding case uses switch */
val out = WireDefault(default)
simple.foldLeft(new chisel3.util.SwitchContext(index, None, Set.empty)) { case (acc, (k, v)) =>
acc.is (k.U) { out := v }
}
out
}
}
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
File LazyScope.scala:
package org.chipsalliance.diplomacy.lazymodule
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.ValName
/** Allows dynamic creation of [[Module]] hierarchy and "shoving" logic into a [[LazyModule]]. */
trait LazyScope {
this: LazyModule =>
override def toString: String = s"LazyScope named $name"
/** Evaluate `body` in the current [[LazyModule.scope]] */
def apply[T](body: => T): T = {
// Preserve the previous value of the [[LazyModule.scope]], because when calling [[apply]] function,
// [[LazyModule.scope]] will be altered.
val saved = LazyModule.scope
// [[LazyModule.scope]] stack push.
LazyModule.scope = Some(this)
// Evaluate [[body]] in the current `scope`, saving the result to [[out]].
val out = body
// Check that the `scope` after evaluating `body` is the same as when we started.
require(LazyModule.scope.isDefined, s"LazyScope $name tried to exit, but scope was empty!")
require(
LazyModule.scope.get eq this,
s"LazyScope $name exited before LazyModule ${LazyModule.scope.get.name} was closed"
)
// [[LazyModule.scope]] stack pop.
LazyModule.scope = saved
out
}
}
/** Used to automatically create a level of module hierarchy (a [[SimpleLazyModule]]) within which [[LazyModule]]s can
* be instantiated and connected.
*
* It will instantiate a [[SimpleLazyModule]] to manage evaluation of `body` and evaluate `body` code snippets in this
* scope.
*/
object LazyScope {
/** Create a [[LazyScope]] with an implicit instance name.
*
* @param body
* code executed within the generated [[SimpleLazyModule]].
* @param valName
* instance name of generated [[SimpleLazyModule]].
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def apply[T](
body: => T
)(
implicit valName: ValName,
p: Parameters
): T = {
apply(valName.value, "SimpleLazyModule", None)(body)(p)
}
/** Create a [[LazyScope]] with an explicitly defined instance name.
*
* @param name
* instance name of generated [[SimpleLazyModule]].
* @param body
* code executed within the generated `SimpleLazyModule`
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def apply[T](
name: String
)(body: => T
)(
implicit p: Parameters
): T = {
apply(name, "SimpleLazyModule", None)(body)(p)
}
/** Create a [[LazyScope]] with an explicit instance and class name, and control inlining.
*
* @param name
* instance name of generated [[SimpleLazyModule]].
* @param desiredModuleName
* class name of generated [[SimpleLazyModule]].
* @param overrideInlining
* tell FIRRTL that this [[SimpleLazyModule]]'s module should be inlined.
* @param body
* code executed within the generated `SimpleLazyModule`
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def apply[T](
name: String,
desiredModuleName: String,
overrideInlining: Option[Boolean] = None
)(body: => T
)(
implicit p: Parameters
): T = {
val scope = LazyModule(new SimpleLazyModule with LazyScope {
override lazy val desiredName = desiredModuleName
override def shouldBeInlined = overrideInlining.getOrElse(super.shouldBeInlined)
}).suggestName(name)
scope {
body
}
}
/** Create a [[LazyScope]] to temporarily group children for some reason, but tell Firrtl to inline it.
*
* For example, we might want to control a set of children's clocks but then not keep the parent wrapper.
*
* @param body
* code executed within the generated `SimpleLazyModule`
* @param p
* [[Parameters]] propagated to [[SimpleLazyModule]].
*/
def inline[T](
body: => T
)(
implicit p: Parameters
): T = {
apply("noname", "ShouldBeInlined", Some(false))(body)(p)
}
}
File Xbar.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressDecoder, AddressSet, RegionType, IdRange, TriStateValue}
import freechips.rocketchip.util.BundleField
// Trades off slave port proximity against routing resource cost
object ForceFanout
{
def apply[T](
a: TriStateValue = TriStateValue.unset,
b: TriStateValue = TriStateValue.unset,
c: TriStateValue = TriStateValue.unset,
d: TriStateValue = TriStateValue.unset,
e: TriStateValue = TriStateValue.unset)(body: Parameters => T)(implicit p: Parameters) =
{
body(p.alterPartial {
case ForceFanoutKey => p(ForceFanoutKey) match {
case ForceFanoutParams(pa, pb, pc, pd, pe) =>
ForceFanoutParams(a.update(pa), b.update(pb), c.update(pc), d.update(pd), e.update(pe))
}
})
}
}
private case class ForceFanoutParams(a: Boolean, b: Boolean, c: Boolean, d: Boolean, e: Boolean)
private case object ForceFanoutKey extends Field(ForceFanoutParams(false, false, false, false, false))
class TLXbar(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule
{
val node = new TLNexusNode(
clientFn = { seq =>
seq(0).v1copy(
echoFields = BundleField.union(seq.flatMap(_.echoFields)),
requestFields = BundleField.union(seq.flatMap(_.requestFields)),
responseKeys = seq.flatMap(_.responseKeys).distinct,
minLatency = seq.map(_.minLatency).min,
clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) =>
port.clients map { client => client.v1copy(
sourceId = client.sourceId.shift(range.start)
)}
}
)
},
managerFn = { seq =>
val fifoIdFactory = TLXbar.relabeler()
seq(0).v1copy(
responseFields = BundleField.union(seq.flatMap(_.responseFields)),
requestKeys = seq.flatMap(_.requestKeys).distinct,
minLatency = seq.map(_.minLatency).min,
endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max,
managers = seq.flatMap { port =>
require (port.beatBytes == seq(0).beatBytes,
s"Xbar ($name with parent $parent) data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B")
val fifoIdMapper = fifoIdFactory()
port.managers map { manager => manager.v1copy(
fifoId = manager.fifoId.map(fifoIdMapper(_))
)}
}
)
}
){
override def circuitIdentity = outputs.size == 1 && inputs.size == 1
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
if ((node.in.size * node.out.size) > (8*32)) {
println (s"!!! WARNING !!!")
println (s" Your TLXbar ($name with parent $parent) is very large, with ${node.in.size} Masters and ${node.out.size} Slaves.")
println (s"!!! WARNING !!!")
}
val wide_bundle = TLBundleParameters.union((node.in ++ node.out).map(_._2.bundle))
override def desiredName = (Seq("TLXbar") ++ nameSuffix ++ Seq(s"i${node.in.size}_o${node.out.size}_${wide_bundle.shortName}")).mkString("_")
TLXbar.circuit(policy, node.in, node.out)
}
}
object TLXbar
{
def mapInputIds(ports: Seq[TLMasterPortParameters]) = assignRanges(ports.map(_.endSourceId))
def mapOutputIds(ports: Seq[TLSlavePortParameters]) = assignRanges(ports.map(_.endSinkId))
def assignRanges(sizes: Seq[Int]) = {
val pow2Sizes = sizes.map { z => if (z == 0) 0 else 1 << log2Ceil(z) }
val tuples = pow2Sizes.zipWithIndex.sortBy(_._1) // record old index, then sort by increasing size
val starts = tuples.scanRight(0)(_._1 + _).tail // suffix-sum of the sizes = the start positions
val ranges = (tuples zip starts) map { case ((sz, i), st) =>
(if (sz == 0) IdRange(0, 0) else IdRange(st, st + sz), i)
}
ranges.sortBy(_._2).map(_._1) // Restore orignal order
}
def relabeler() = {
var idFactory = 0
() => {
val fifoMap = scala.collection.mutable.HashMap.empty[Int, Int]
(x: Int) => {
if (fifoMap.contains(x)) fifoMap(x) else {
val out = idFactory
idFactory = idFactory + 1
fifoMap += (x -> out)
out
}
}
}
}
def circuit(policy: TLArbiter.Policy, seqIn: Seq[(TLBundle, TLEdge)], seqOut: Seq[(TLBundle, TLEdge)]) {
val (io_in, edgesIn) = seqIn.unzip
val (io_out, edgesOut) = seqOut.unzip
// Not every master need connect to every slave on every channel; determine which connections are necessary
val reachableIO = edgesIn.map { cp => edgesOut.map { mp =>
cp.client.clients.exists { c => mp.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)}}}}
}.toVector}.toVector
val probeIO = (edgesIn zip reachableIO).map { case (cp, reachableO) =>
(edgesOut zip reachableO).map { case (mp, reachable) =>
reachable && cp.client.anySupportProbe && mp.manager.managers.exists(_.regionType >= RegionType.TRACKED)
}.toVector}.toVector
val releaseIO = (edgesIn zip reachableIO).map { case (cp, reachableO) =>
(edgesOut zip reachableO).map { case (mp, reachable) =>
reachable && cp.client.anySupportProbe && mp.manager.anySupportAcquireB
}.toVector}.toVector
val connectAIO = reachableIO
val connectBIO = probeIO
val connectCIO = releaseIO
val connectDIO = reachableIO
val connectEIO = releaseIO
def transpose[T](x: Seq[Seq[T]]) = if (x.isEmpty) Nil else Vector.tabulate(x(0).size) { i => Vector.tabulate(x.size) { j => x(j)(i) } }
val connectAOI = transpose(connectAIO)
val connectBOI = transpose(connectBIO)
val connectCOI = transpose(connectCIO)
val connectDOI = transpose(connectDIO)
val connectEOI = transpose(connectEIO)
// Grab the port ID mapping
val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client))
val outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager))
// We need an intermediate size of bundle with the widest possible identifiers
val wide_bundle = TLBundleParameters.union(io_in.map(_.params) ++ io_out.map(_.params))
// Handle size = 1 gracefully (Chisel3 empty range is broken)
def trim(id: UInt, size: Int): UInt = if (size <= 1) 0.U else id(log2Ceil(size)-1, 0)
// Transform input bundle sources (sinks use global namespace on both sides)
val in = Wire(Vec(io_in.size, TLBundle(wide_bundle)))
for (i <- 0 until in.size) {
val r = inputIdRanges(i)
if (connectAIO(i).exists(x=>x)) {
in(i).a.bits.user := DontCare
in(i).a.squeezeAll.waiveAll :<>= io_in(i).a.squeezeAll.waiveAll
in(i).a.bits.source := io_in(i).a.bits.source | r.start.U
} else {
in(i).a := DontCare
io_in(i).a := DontCare
in(i).a.valid := false.B
io_in(i).a.ready := true.B
}
if (connectBIO(i).exists(x=>x)) {
io_in(i).b.squeezeAll :<>= in(i).b.squeezeAll
io_in(i).b.bits.source := trim(in(i).b.bits.source, r.size)
} else {
in(i).b := DontCare
io_in(i).b := DontCare
in(i).b.ready := true.B
io_in(i).b.valid := false.B
}
if (connectCIO(i).exists(x=>x)) {
in(i).c.bits.user := DontCare
in(i).c.squeezeAll.waiveAll :<>= io_in(i).c.squeezeAll.waiveAll
in(i).c.bits.source := io_in(i).c.bits.source | r.start.U
} else {
in(i).c := DontCare
io_in(i).c := DontCare
in(i).c.valid := false.B
io_in(i).c.ready := true.B
}
if (connectDIO(i).exists(x=>x)) {
io_in(i).d.squeezeAll.waiveAll :<>= in(i).d.squeezeAll.waiveAll
io_in(i).d.bits.source := trim(in(i).d.bits.source, r.size)
} else {
in(i).d := DontCare
io_in(i).d := DontCare
in(i).d.ready := true.B
io_in(i).d.valid := false.B
}
if (connectEIO(i).exists(x=>x)) {
in(i).e.squeezeAll :<>= io_in(i).e.squeezeAll
} else {
in(i).e := DontCare
io_in(i).e := DontCare
in(i).e.valid := false.B
io_in(i).e.ready := true.B
}
}
// Transform output bundle sinks (sources use global namespace on both sides)
val out = Wire(Vec(io_out.size, TLBundle(wide_bundle)))
for (o <- 0 until out.size) {
val r = outputIdRanges(o)
if (connectAOI(o).exists(x=>x)) {
out(o).a.bits.user := DontCare
io_out(o).a.squeezeAll.waiveAll :<>= out(o).a.squeezeAll.waiveAll
} else {
out(o).a := DontCare
io_out(o).a := DontCare
out(o).a.ready := true.B
io_out(o).a.valid := false.B
}
if (connectBOI(o).exists(x=>x)) {
out(o).b.squeezeAll :<>= io_out(o).b.squeezeAll
} else {
out(o).b := DontCare
io_out(o).b := DontCare
out(o).b.valid := false.B
io_out(o).b.ready := true.B
}
if (connectCOI(o).exists(x=>x)) {
out(o).c.bits.user := DontCare
io_out(o).c.squeezeAll.waiveAll :<>= out(o).c.squeezeAll.waiveAll
} else {
out(o).c := DontCare
io_out(o).c := DontCare
out(o).c.ready := true.B
io_out(o).c.valid := false.B
}
if (connectDOI(o).exists(x=>x)) {
out(o).d.squeezeAll :<>= io_out(o).d.squeezeAll
out(o).d.bits.sink := io_out(o).d.bits.sink | r.start.U
} else {
out(o).d := DontCare
io_out(o).d := DontCare
out(o).d.valid := false.B
io_out(o).d.ready := true.B
}
if (connectEOI(o).exists(x=>x)) {
io_out(o).e.squeezeAll :<>= out(o).e.squeezeAll
io_out(o).e.bits.sink := trim(out(o).e.bits.sink, r.size)
} else {
out(o).e := DontCare
io_out(o).e := DontCare
out(o).e.ready := true.B
io_out(o).e.valid := false.B
}
}
// Filter a list to only those elements selected
def filter[T](data: Seq[T], mask: Seq[Boolean]) = (data zip mask).filter(_._2).map(_._1)
// Based on input=>output connectivity, create per-input minimal address decode circuits
val requiredAC = (connectAIO ++ connectCIO).distinct
val outputPortFns: Map[Vector[Boolean], Seq[UInt => Bool]] = requiredAC.map { connectO =>
val port_addrs = edgesOut.map(_.manager.managers.flatMap(_.address))
val routingMask = AddressDecoder(filter(port_addrs, connectO))
val route_addrs = port_addrs.map(seq => AddressSet.unify(seq.map(_.widen(~routingMask)).distinct))
// Print the address mapping
if (false) {
println("Xbar mapping:")
route_addrs.foreach { p =>
print(" ")
p.foreach { a => print(s" ${a}") }
println("")
}
println("--")
}
(connectO, route_addrs.map(seq => (addr: UInt) => seq.map(_.contains(addr)).reduce(_ || _)))
}.toMap
// Print the ID mapping
if (false) {
println(s"XBar mapping:")
(edgesIn zip inputIdRanges).zipWithIndex.foreach { case ((edge, id), i) =>
println(s"\t$i assigned ${id} for ${edge.client.clients.map(_.name).mkString(", ")}")
}
println("")
}
val addressA = (in zip edgesIn) map { case (i, e) => e.address(i.a.bits) }
val addressC = (in zip edgesIn) map { case (i, e) => e.address(i.c.bits) }
def unique(x: Vector[Boolean]): Bool = (x.filter(x=>x).size <= 1).B
val requestAIO = (connectAIO zip addressA) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } }
val requestCIO = (connectCIO zip addressC) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } }
val requestBOI = out.map { o => inputIdRanges.map { i => i.contains(o.b.bits.source) } }
val requestDOI = out.map { o => inputIdRanges.map { i => i.contains(o.d.bits.source) } }
val requestEIO = in.map { i => outputIdRanges.map { o => o.contains(i.e.bits.sink) } }
val beatsAI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.a.bits) }
val beatsBO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.b.bits) }
val beatsCI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.c.bits) }
val beatsDO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.d.bits) }
val beatsEI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.e.bits) }
// Fanout the input sources to the output sinks
val portsAOI = transpose((in zip requestAIO) map { case (i, r) => TLXbar.fanout(i.a, r, edgesOut.map(_.params(ForceFanoutKey).a)) })
val portsBIO = transpose((out zip requestBOI) map { case (o, r) => TLXbar.fanout(o.b, r, edgesIn .map(_.params(ForceFanoutKey).b)) })
val portsCOI = transpose((in zip requestCIO) map { case (i, r) => TLXbar.fanout(i.c, r, edgesOut.map(_.params(ForceFanoutKey).c)) })
val portsDIO = transpose((out zip requestDOI) map { case (o, r) => TLXbar.fanout(o.d, r, edgesIn .map(_.params(ForceFanoutKey).d)) })
val portsEOI = transpose((in zip requestEIO) map { case (i, r) => TLXbar.fanout(i.e, r, edgesOut.map(_.params(ForceFanoutKey).e)) })
// Arbitrate amongst the sources
for (o <- 0 until out.size) {
TLArbiter(policy)(out(o).a, filter(beatsAI zip portsAOI(o), connectAOI(o)):_*)
TLArbiter(policy)(out(o).c, filter(beatsCI zip portsCOI(o), connectCOI(o)):_*)
TLArbiter(policy)(out(o).e, filter(beatsEI zip portsEOI(o), connectEOI(o)):_*)
filter(portsAOI(o), connectAOI(o).map(!_)) foreach { r => r.ready := false.B }
filter(portsCOI(o), connectCOI(o).map(!_)) foreach { r => r.ready := false.B }
filter(portsEOI(o), connectEOI(o).map(!_)) foreach { r => r.ready := false.B }
}
for (i <- 0 until in.size) {
TLArbiter(policy)(in(i).b, filter(beatsBO zip portsBIO(i), connectBIO(i)):_*)
TLArbiter(policy)(in(i).d, filter(beatsDO zip portsDIO(i), connectDIO(i)):_*)
filter(portsBIO(i), connectBIO(i).map(!_)) foreach { r => r.ready := false.B }
filter(portsDIO(i), connectDIO(i).map(!_)) foreach { r => r.ready := false.B }
}
}
def apply(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode =
{
val xbar = LazyModule(new TLXbar(policy, nameSuffix))
xbar.node
}
// Replicate an input port to each output port
def fanout[T <: TLChannel](input: DecoupledIO[T], select: Seq[Bool], force: Seq[Boolean] = Nil): Seq[DecoupledIO[T]] = {
val filtered = Wire(Vec(select.size, chiselTypeOf(input)))
for (i <- 0 until select.size) {
filtered(i).bits := (if (force.lift(i).getOrElse(false)) IdentityModule(input.bits) else input.bits)
filtered(i).valid := input.valid && (select(i) || (select.size == 1).B)
}
input.ready := Mux1H(select, filtered.map(_.ready))
filtered
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMXbar(nManagers: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("Xbar"))
val xbar = LazyModule(new TLXbar)
xbar.node := TLDelayer(0.1) := model.node := fuzz.node
(0 until nManagers) foreach { n =>
val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff)))
ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMXbarTest(nManagers: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMXbar(nManagers,txns)).module)
dut.io.start := io.start
io.finished := dut.io.finished
}
class TLMulticlientXbar(nManagers: Int, nClients: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val xbar = LazyModule(new TLXbar)
val fuzzers = (0 until nClients) map { n =>
val fuzz = LazyModule(new TLFuzzer(txns))
xbar.node := TLDelayer(0.1) := fuzz.node
fuzz
}
(0 until nManagers) foreach { n =>
val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff)))
ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzzers.last.module.io.finished
}
}
class TLMulticlientXbarTest(nManagers: Int, nClients: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLMulticlientXbar(nManagers, nClients, txns)).module)
dut.io.start := io.start
io.finished := dut.io.finished
}
| module PeripheryBus_pbus( // @[ClockDomain.scala:14:9]
input auto_coupler_to_IceNIC_fragmenter_anon_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_IceNIC_fragmenter_anon_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [11:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [28:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_IceNIC_fragmenter_anon_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_IceNIC_fragmenter_anon_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [11:0] auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_device_named_uart_0_control_xing_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_device_named_uart_0_control_xing_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [11:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [28:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_coupler_to_device_named_uart_0_control_xing_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_coupler_to_device_named_uart_0_control_xing_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [11:0] auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_1_clock, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_1_reset, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_0_clock, // @[LazyModuleImp.scala:107:25]
output auto_fixedClockNode_anon_out_0_reset, // @[LazyModuleImp.scala:107:25]
input auto_pbus_clock_groups_in_member_pbus_0_clock, // @[LazyModuleImp.scala:107:25]
input auto_pbus_clock_groups_in_member_pbus_0_reset, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_bus_xing_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_bus_xing_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_bus_xing_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_bus_xing_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [28:0] auto_bus_xing_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_bus_xing_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_bus_xing_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_bus_xing_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_bus_xing_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_bus_xing_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_bus_xing_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_bus_xing_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_bus_xing_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_bus_xing_in_d_bits_corrupt // @[LazyModuleImp.scala:107:25]
);
wire out_front_valid; // @[RegisterRouter.scala:87:24]
wire out_front_ready; // @[RegisterRouter.scala:87:24]
wire out_bits_read; // @[RegisterRouter.scala:87:24]
wire [11:0] out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24]
wire [8:0] in_bits_index; // @[RegisterRouter.scala:73:18]
wire in_bits_read; // @[RegisterRouter.scala:73:18]
wire nodeIn_d_ready; // @[MixedNode.scala:551:17]
wire nodeIn_a_valid; // @[MixedNode.scala:551:17]
wire [63:0] nodeIn_a_bits_data; // @[MixedNode.scala:551:17]
wire [7:0] nodeIn_a_bits_mask; // @[MixedNode.scala:551:17]
wire [11:0] nodeIn_a_bits_source; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_a_bits_size; // @[MixedNode.scala:551:17]
wire bus_xingOut_d_valid; // @[MixedNode.scala:542:17]
wire bus_xingOut_d_bits_corrupt; // @[MixedNode.scala:542:17]
wire [63:0] bus_xingOut_d_bits_data; // @[MixedNode.scala:542:17]
wire bus_xingOut_d_bits_denied; // @[MixedNode.scala:542:17]
wire bus_xingOut_d_bits_sink; // @[MixedNode.scala:542:17]
wire [7:0] bus_xingOut_d_bits_source; // @[MixedNode.scala:542:17]
wire [2:0] bus_xingOut_d_bits_size; // @[MixedNode.scala:542:17]
wire [1:0] bus_xingOut_d_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] bus_xingOut_d_bits_opcode; // @[MixedNode.scala:542:17]
wire bus_xingOut_a_ready; // @[MixedNode.scala:542:17]
wire in_xbar_out_0_d_bits_sink; // @[Xbar.scala:216:19]
wire [7:0] in_xbar_in_0_d_bits_source; // @[Xbar.scala:159:18]
wire [7:0] in_xbar_in_0_a_bits_source; // @[Xbar.scala:159:18]
wire in_xbar_auto_anon_out_d_valid; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_out_d_bits_corrupt; // @[Xbar.scala:74:9]
wire [63:0] in_xbar_auto_anon_out_d_bits_data; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_out_d_bits_denied; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_out_d_bits_sink; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_auto_anon_out_d_bits_source; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_out_d_bits_size; // @[Xbar.scala:74:9]
wire [1:0] in_xbar_auto_anon_out_d_bits_param; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_out_d_bits_opcode; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_out_a_ready; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_in_d_ready; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_in_a_valid; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_in_a_bits_corrupt; // @[Xbar.scala:74:9]
wire [63:0] in_xbar_auto_anon_in_a_bits_data; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_auto_anon_in_a_bits_mask; // @[Xbar.scala:74:9]
wire [28:0] in_xbar_auto_anon_in_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_auto_anon_in_a_bits_source; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_in_a_bits_size; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_in_a_bits_param; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_in_a_bits_opcode; // @[Xbar.scala:74:9]
wire fixer_auto_anon_out_d_valid; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_auto_anon_out_d_bits_data; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_auto_anon_out_d_bits_source; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_out_d_bits_size; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_out_d_bits_opcode; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_a_ready; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_d_ready; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_a_valid; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_a_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_auto_anon_in_a_bits_data; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_auto_anon_in_a_bits_mask; // @[FIFOFixer.scala:50:9]
wire [28:0] fixer_auto_anon_in_a_bits_address; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_auto_anon_in_a_bits_source; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_in_a_bits_size; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_in_a_bits_param; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_in_a_bits_opcode; // @[FIFOFixer.scala:50:9]
wire pbus_clock_groups_auto_out_member_pbus_0_reset; // @[ClockGroup.scala:53:9]
wire pbus_clock_groups_auto_out_member_pbus_0_clock; // @[ClockGroup.scala:53:9]
wire _coupler_to_IceNIC_auto_tl_in_a_ready; // @[LazyScope.scala:98:27]
wire _coupler_to_IceNIC_auto_tl_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_IceNIC_auto_tl_in_d_bits_opcode; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_IceNIC_auto_tl_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [7:0] _coupler_to_IceNIC_auto_tl_in_d_bits_source; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_to_IceNIC_auto_tl_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _coupler_to_device_named_uart_0_auto_tl_in_a_ready; // @[LazyScope.scala:98:27]
wire _coupler_to_device_named_uart_0_auto_tl_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_device_named_uart_0_auto_tl_in_d_bits_opcode; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_device_named_uart_0_auto_tl_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [7:0] _coupler_to_device_named_uart_0_auto_tl_in_d_bits_source; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_to_device_named_uart_0_auto_tl_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _coupler_to_bootaddressreg_auto_tl_in_a_ready; // @[LazyScope.scala:98:27]
wire _coupler_to_bootaddressreg_auto_tl_in_d_valid; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_bootaddressreg_auto_tl_in_d_bits_opcode; // @[LazyScope.scala:98:27]
wire [2:0] _coupler_to_bootaddressreg_auto_tl_in_d_bits_size; // @[LazyScope.scala:98:27]
wire [7:0] _coupler_to_bootaddressreg_auto_tl_in_d_bits_source; // @[LazyScope.scala:98:27]
wire [63:0] _coupler_to_bootaddressreg_auto_tl_in_d_bits_data; // @[LazyScope.scala:98:27]
wire _atomics_auto_out_a_valid; // @[AtomicAutomata.scala:289:29]
wire [2:0] _atomics_auto_out_a_bits_opcode; // @[AtomicAutomata.scala:289:29]
wire [2:0] _atomics_auto_out_a_bits_param; // @[AtomicAutomata.scala:289:29]
wire [2:0] _atomics_auto_out_a_bits_size; // @[AtomicAutomata.scala:289:29]
wire [7:0] _atomics_auto_out_a_bits_source; // @[AtomicAutomata.scala:289:29]
wire [28:0] _atomics_auto_out_a_bits_address; // @[AtomicAutomata.scala:289:29]
wire [7:0] _atomics_auto_out_a_bits_mask; // @[AtomicAutomata.scala:289:29]
wire [63:0] _atomics_auto_out_a_bits_data; // @[AtomicAutomata.scala:289:29]
wire _atomics_auto_out_a_bits_corrupt; // @[AtomicAutomata.scala:289:29]
wire _atomics_auto_out_d_ready; // @[AtomicAutomata.scala:289:29]
wire _buffer_auto_in_a_ready; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_valid; // @[Buffer.scala:75:28]
wire [2:0] _buffer_auto_in_d_bits_opcode; // @[Buffer.scala:75:28]
wire [1:0] _buffer_auto_in_d_bits_param; // @[Buffer.scala:75:28]
wire [2:0] _buffer_auto_in_d_bits_size; // @[Buffer.scala:75:28]
wire [7:0] _buffer_auto_in_d_bits_source; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_sink; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_denied; // @[Buffer.scala:75:28]
wire [63:0] _buffer_auto_in_d_bits_data; // @[Buffer.scala:75:28]
wire _buffer_auto_in_d_bits_corrupt; // @[Buffer.scala:75:28]
wire _out_xbar_auto_anon_out_2_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_2_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_2_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_2_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_2_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [28:0] _out_xbar_auto_anon_out_2_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_2_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_2_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_2_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_2_d_ready; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_1_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_1_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_1_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_1_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_1_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [28:0] _out_xbar_auto_anon_out_1_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_1_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_1_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_1_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_1_d_ready; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_0_a_valid; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_0_a_bits_opcode; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_0_a_bits_param; // @[PeripheryBus.scala:57:30]
wire [2:0] _out_xbar_auto_anon_out_0_a_bits_size; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_0_a_bits_source; // @[PeripheryBus.scala:57:30]
wire [12:0] _out_xbar_auto_anon_out_0_a_bits_address; // @[PeripheryBus.scala:57:30]
wire [7:0] _out_xbar_auto_anon_out_0_a_bits_mask; // @[PeripheryBus.scala:57:30]
wire [63:0] _out_xbar_auto_anon_out_0_a_bits_data; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_0_a_bits_corrupt; // @[PeripheryBus.scala:57:30]
wire _out_xbar_auto_anon_out_0_d_ready; // @[PeripheryBus.scala:57:30]
wire auto_coupler_to_IceNIC_fragmenter_anon_out_a_ready_0 = auto_coupler_to_IceNIC_fragmenter_anon_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_IceNIC_fragmenter_anon_out_d_valid_0 = auto_coupler_to_IceNIC_fragmenter_anon_out_d_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_opcode_0 = auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_opcode; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_size_0 = auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [11:0] auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_source_0 = auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_data_0 = auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_device_named_uart_0_control_xing_out_a_ready_0 = auto_coupler_to_device_named_uart_0_control_xing_out_a_ready; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_device_named_uart_0_control_xing_out_d_valid_0 = auto_coupler_to_device_named_uart_0_control_xing_out_d_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_opcode_0 = auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_opcode; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_size_0 = auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_size; // @[ClockDomain.scala:14:9]
wire [11:0] auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_source_0 = auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_source; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_data_0 = auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_data; // @[ClockDomain.scala:14:9]
wire auto_pbus_clock_groups_in_member_pbus_0_clock_0 = auto_pbus_clock_groups_in_member_pbus_0_clock; // @[ClockDomain.scala:14:9]
wire auto_pbus_clock_groups_in_member_pbus_0_reset_0 = auto_pbus_clock_groups_in_member_pbus_0_reset; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_a_valid_0 = auto_bus_xing_in_a_valid; // @[ClockDomain.scala:14:9]
wire [2:0] auto_bus_xing_in_a_bits_opcode_0 = auto_bus_xing_in_a_bits_opcode; // @[ClockDomain.scala:14:9]
wire [2:0] auto_bus_xing_in_a_bits_param_0 = auto_bus_xing_in_a_bits_param; // @[ClockDomain.scala:14:9]
wire [2:0] auto_bus_xing_in_a_bits_size_0 = auto_bus_xing_in_a_bits_size; // @[ClockDomain.scala:14:9]
wire [7:0] auto_bus_xing_in_a_bits_source_0 = auto_bus_xing_in_a_bits_source; // @[ClockDomain.scala:14:9]
wire [28:0] auto_bus_xing_in_a_bits_address_0 = auto_bus_xing_in_a_bits_address; // @[ClockDomain.scala:14:9]
wire [7:0] auto_bus_xing_in_a_bits_mask_0 = auto_bus_xing_in_a_bits_mask; // @[ClockDomain.scala:14:9]
wire [63:0] auto_bus_xing_in_a_bits_data_0 = auto_bus_xing_in_a_bits_data; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_a_bits_corrupt_0 = auto_bus_xing_in_a_bits_corrupt; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_ready_0 = auto_bus_xing_in_d_ready; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_param = 2'h0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_param = 2'h0; // @[ClockDomain.scala:14:9]
wire [1:0] fixer_auto_anon_in_d_bits_param = 2'h0; // @[FIFOFixer.scala:50:9]
wire [1:0] fixer_auto_anon_out_d_bits_param = 2'h0; // @[FIFOFixer.scala:50:9]
wire [1:0] fixer_anonOut_d_bits_param = 2'h0; // @[MixedNode.scala:542:17]
wire [1:0] fixer_anonIn_d_bits_param = 2'h0; // @[MixedNode.scala:551:17]
wire [1:0] in_xbar__requestBOI_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] in_xbar__requestBOI_WIRE_1_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] in_xbar__beatsBO_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] in_xbar__beatsBO_WIRE_1_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] in_xbar__portsBIO_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] in_xbar__portsBIO_WIRE_1_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] in_xbar_portsBIO_filtered_0_bits_param = 2'h0; // @[Xbar.scala:352:24]
wire [1:0] nodeIn_d_bits_param = 2'h0; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_d_bits_d_param = 2'h0; // @[Edges.scala:792:17]
wire [63:0] in_xbar__addressC_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] in_xbar__addressC_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] in_xbar__requestBOI_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] in_xbar__requestBOI_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] in_xbar__beatsBO_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] in_xbar__beatsBO_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] in_xbar__beatsCI_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] in_xbar__beatsCI_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] in_xbar__portsBIO_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] in_xbar__portsBIO_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] in_xbar_portsBIO_filtered_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] in_xbar__portsCOI_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] in_xbar__portsCOI_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] in_xbar_portsCOI_filtered_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] nodeIn_d_bits_d_data = 64'h0; // @[Edges.scala:792:17]
wire [2:0] in_xbar__addressC_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] in_xbar__addressC_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] in_xbar__addressC_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] in_xbar__addressC_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] in_xbar__addressC_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] in_xbar__addressC_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] in_xbar__requestBOI_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] in_xbar__requestBOI_WIRE_bits_size = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] in_xbar__requestBOI_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] in_xbar__requestBOI_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] in_xbar__beatsBO_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] in_xbar__beatsBO_WIRE_bits_size = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] in_xbar__beatsBO_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] in_xbar__beatsBO_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] in_xbar_beatsBO_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] in_xbar_beatsBO_0 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] in_xbar__beatsCI_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] in_xbar__beatsCI_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] in_xbar__beatsCI_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] in_xbar__beatsCI_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] in_xbar__beatsCI_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] in_xbar__beatsCI_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] in_xbar_beatsCI_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] in_xbar_beatsCI_0 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] in_xbar__portsBIO_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] in_xbar__portsBIO_WIRE_bits_size = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] in_xbar__portsBIO_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] in_xbar__portsBIO_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] in_xbar_portsBIO_filtered_0_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] in_xbar_portsBIO_filtered_0_bits_size = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] in_xbar__portsCOI_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] in_xbar__portsCOI_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] in_xbar__portsCOI_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] in_xbar__portsCOI_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] in_xbar__portsCOI_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] in_xbar__portsCOI_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] in_xbar_portsCOI_filtered_0_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] in_xbar_portsCOI_filtered_0_bits_param = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] in_xbar_portsCOI_filtered_0_bits_size = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] nodeIn_d_bits_d_opcode = 3'h0; // @[Edges.scala:792:17]
wire fixer__a_notFIFO_T_4 = 1'h1; // @[Parameters.scala:137:59]
wire fixer__flight_T = 1'h1; // @[FIFOFixer.scala:80:65]
wire fixer__anonOut_a_valid_T = 1'h1; // @[FIFOFixer.scala:95:50]
wire fixer__anonOut_a_valid_T_1 = 1'h1; // @[FIFOFixer.scala:95:47]
wire fixer__anonIn_a_ready_T = 1'h1; // @[FIFOFixer.scala:96:50]
wire fixer__anonIn_a_ready_T_1 = 1'h1; // @[FIFOFixer.scala:96:47]
wire in_xbar__requestAIO_T_4 = 1'h1; // @[Parameters.scala:137:59]
wire in_xbar_requestAIO_0_0 = 1'h1; // @[Xbar.scala:307:107]
wire in_xbar__requestCIO_T_4 = 1'h1; // @[Parameters.scala:137:59]
wire in_xbar_requestCIO_0_0 = 1'h1; // @[Xbar.scala:308:107]
wire in_xbar__requestBOI_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire in_xbar__requestBOI_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire in_xbar__requestBOI_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire in_xbar__requestBOI_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire in_xbar_requestBOI_0_0 = 1'h1; // @[Parameters.scala:56:48]
wire in_xbar__requestDOI_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire in_xbar__requestDOI_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire in_xbar__requestDOI_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire in_xbar__requestDOI_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire in_xbar_requestDOI_0_0 = 1'h1; // @[Parameters.scala:56:48]
wire in_xbar_beatsBO_opdata = 1'h1; // @[Edges.scala:97:28]
wire in_xbar__portsAOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire in_xbar__portsBIO_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire in_xbar__portsCOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire in_xbar__portsDIO_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire in_xbar__portsEOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire out_frontSel_0 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_backSel_0 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_rifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_rifireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_wifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_wifireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_rofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_rofireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_wofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_wofireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_iready = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_oready = 1'h1; // @[RegisterRouter.scala:87:24]
wire [8:0] out_maskMatch = 9'h1FF; // @[RegisterRouter.scala:87:24]
wire [28:0] in_xbar__addressC_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] in_xbar__addressC_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] in_xbar__requestCIO_T = 29'h0; // @[Parameters.scala:137:31]
wire [28:0] in_xbar__requestBOI_WIRE_bits_address = 29'h0; // @[Bundles.scala:264:74]
wire [28:0] in_xbar__requestBOI_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:264:61]
wire [28:0] in_xbar__beatsBO_WIRE_bits_address = 29'h0; // @[Bundles.scala:264:74]
wire [28:0] in_xbar__beatsBO_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:264:61]
wire [28:0] in_xbar__beatsCI_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] in_xbar__beatsCI_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] in_xbar__portsBIO_WIRE_bits_address = 29'h0; // @[Bundles.scala:264:74]
wire [28:0] in_xbar__portsBIO_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:264:61]
wire [28:0] in_xbar_portsBIO_filtered_0_bits_address = 29'h0; // @[Xbar.scala:352:24]
wire [28:0] in_xbar__portsCOI_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] in_xbar__portsCOI_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] in_xbar_portsCOI_filtered_0_bits_address = 29'h0; // @[Xbar.scala:352:24]
wire [7:0] in_xbar__addressC_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] in_xbar__addressC_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] in_xbar__requestBOI_WIRE_bits_source = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] in_xbar__requestBOI_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] in_xbar__requestBOI_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] in_xbar__requestBOI_WIRE_1_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] in_xbar__requestBOI_uncommonBits_T = 8'h0; // @[Parameters.scala:52:29]
wire [7:0] in_xbar_requestBOI_uncommonBits = 8'h0; // @[Parameters.scala:52:56]
wire [7:0] in_xbar__beatsBO_WIRE_bits_source = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] in_xbar__beatsBO_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] in_xbar__beatsBO_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] in_xbar__beatsBO_WIRE_1_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] in_xbar__beatsCI_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] in_xbar__beatsCI_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] in_xbar__portsBIO_WIRE_bits_source = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] in_xbar__portsBIO_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] in_xbar__portsBIO_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] in_xbar__portsBIO_WIRE_1_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] in_xbar_portsBIO_filtered_0_bits_source = 8'h0; // @[Xbar.scala:352:24]
wire [7:0] in_xbar_portsBIO_filtered_0_bits_mask = 8'h0; // @[Xbar.scala:352:24]
wire [7:0] in_xbar__portsCOI_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] in_xbar__portsCOI_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] in_xbar_portsCOI_filtered_0_bits_source = 8'h0; // @[Xbar.scala:352:24]
wire [5:0] in_xbar__beatsBO_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] in_xbar__beatsCI_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] in_xbar__beatsBO_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [5:0] in_xbar__beatsCI_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] in_xbar__beatsBO_decode_T = 13'h3F; // @[package.scala:243:71]
wire [12:0] in_xbar__beatsCI_decode_T = 13'h3F; // @[package.scala:243:71]
wire [128:0] fixer__allIDs_FIFOed_T = 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; // @[FIFOFixer.scala:127:48]
wire auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_sink = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_denied = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_sink = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_denied = 1'h0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9]
wire _childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire pbus_clock_groups_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire pbus_clock_groups_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire pbus_clock_groups__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire clockGroup_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire clockGroup_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire clockGroup__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire broadcast_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire broadcast_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire broadcast__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire fixer_auto_anon_in_d_bits_sink = 1'h0; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_d_bits_denied = 1'h0; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_d_bits_corrupt = 1'h0; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_d_bits_sink = 1'h0; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_d_bits_denied = 1'h0; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_d_bits_corrupt = 1'h0; // @[FIFOFixer.scala:50:9]
wire fixer_anonOut_d_bits_sink = 1'h0; // @[MixedNode.scala:542:17]
wire fixer_anonOut_d_bits_denied = 1'h0; // @[MixedNode.scala:542:17]
wire fixer_anonOut_d_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17]
wire fixer_anonIn_d_bits_sink = 1'h0; // @[MixedNode.scala:551:17]
wire fixer_anonIn_d_bits_denied = 1'h0; // @[MixedNode.scala:551:17]
wire fixer_anonIn_d_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17]
wire fixer__flight_WIRE_0 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_1 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_2 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_3 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_4 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_5 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_6 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_7 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_8 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_9 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_10 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_11 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_12 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_13 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_14 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_15 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_16 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_17 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_18 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_19 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_20 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_21 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_22 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_23 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_24 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_25 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_26 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_27 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_28 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_29 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_30 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_31 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_32 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_33 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_34 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_35 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_36 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_37 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_38 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_39 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_40 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_41 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_42 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_43 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_44 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_45 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_46 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_47 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_48 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_49 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_50 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_51 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_52 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_53 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_54 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_55 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_56 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_57 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_58 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_59 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_60 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_61 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_62 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_63 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_64 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_65 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_66 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_67 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_68 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_69 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_70 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_71 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_72 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_73 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_74 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_75 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_76 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_77 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_78 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_79 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_80 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_81 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_82 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_83 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_84 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_85 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_86 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_87 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_88 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_89 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_90 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_91 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_92 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_93 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_94 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_95 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_96 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_97 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_98 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_99 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_100 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_101 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_102 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_103 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_104 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_105 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_106 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_107 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_108 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_109 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_110 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_111 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_112 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_113 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_114 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_115 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_116 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_117 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_118 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_119 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_120 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_121 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_122 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_123 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_124 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_125 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_126 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_127 = 1'h0; // @[FIFOFixer.scala:79:35]
wire fixer__flight_WIRE_128 = 1'h0; // @[FIFOFixer.scala:79:35]
wire in_xbar__addressC_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire in_xbar__addressC_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire in_xbar__addressC_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire in_xbar__addressC_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire in_xbar__addressC_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire in_xbar__addressC_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire in_xbar__requestBOI_WIRE_ready = 1'h0; // @[Bundles.scala:264:74]
wire in_xbar__requestBOI_WIRE_valid = 1'h0; // @[Bundles.scala:264:74]
wire in_xbar__requestBOI_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire in_xbar__requestBOI_WIRE_1_ready = 1'h0; // @[Bundles.scala:264:61]
wire in_xbar__requestBOI_WIRE_1_valid = 1'h0; // @[Bundles.scala:264:61]
wire in_xbar__requestBOI_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire in_xbar__requestBOI_T = 1'h0; // @[Parameters.scala:54:10]
wire in_xbar__requestDOI_T = 1'h0; // @[Parameters.scala:54:10]
wire in_xbar__requestEIO_WIRE_ready = 1'h0; // @[Bundles.scala:267:74]
wire in_xbar__requestEIO_WIRE_valid = 1'h0; // @[Bundles.scala:267:74]
wire in_xbar__requestEIO_WIRE_bits_sink = 1'h0; // @[Bundles.scala:267:74]
wire in_xbar__requestEIO_WIRE_1_ready = 1'h0; // @[Bundles.scala:267:61]
wire in_xbar__requestEIO_WIRE_1_valid = 1'h0; // @[Bundles.scala:267:61]
wire in_xbar__requestEIO_WIRE_1_bits_sink = 1'h0; // @[Bundles.scala:267:61]
wire in_xbar__beatsBO_WIRE_ready = 1'h0; // @[Bundles.scala:264:74]
wire in_xbar__beatsBO_WIRE_valid = 1'h0; // @[Bundles.scala:264:74]
wire in_xbar__beatsBO_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire in_xbar__beatsBO_WIRE_1_ready = 1'h0; // @[Bundles.scala:264:61]
wire in_xbar__beatsBO_WIRE_1_valid = 1'h0; // @[Bundles.scala:264:61]
wire in_xbar__beatsBO_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire in_xbar__beatsBO_opdata_T = 1'h0; // @[Edges.scala:97:37]
wire in_xbar__beatsCI_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire in_xbar__beatsCI_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire in_xbar__beatsCI_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire in_xbar__beatsCI_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire in_xbar__beatsCI_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire in_xbar__beatsCI_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire in_xbar_beatsCI_opdata = 1'h0; // @[Edges.scala:102:36]
wire in_xbar__beatsEI_WIRE_ready = 1'h0; // @[Bundles.scala:267:74]
wire in_xbar__beatsEI_WIRE_valid = 1'h0; // @[Bundles.scala:267:74]
wire in_xbar__beatsEI_WIRE_bits_sink = 1'h0; // @[Bundles.scala:267:74]
wire in_xbar__beatsEI_WIRE_1_ready = 1'h0; // @[Bundles.scala:267:61]
wire in_xbar__beatsEI_WIRE_1_valid = 1'h0; // @[Bundles.scala:267:61]
wire in_xbar__beatsEI_WIRE_1_bits_sink = 1'h0; // @[Bundles.scala:267:61]
wire in_xbar__portsBIO_WIRE_ready = 1'h0; // @[Bundles.scala:264:74]
wire in_xbar__portsBIO_WIRE_valid = 1'h0; // @[Bundles.scala:264:74]
wire in_xbar__portsBIO_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire in_xbar__portsBIO_WIRE_1_ready = 1'h0; // @[Bundles.scala:264:61]
wire in_xbar__portsBIO_WIRE_1_valid = 1'h0; // @[Bundles.scala:264:61]
wire in_xbar__portsBIO_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire in_xbar_portsBIO_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire in_xbar_portsBIO_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire in_xbar_portsBIO_filtered_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire in_xbar__portsBIO_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire in_xbar__portsCOI_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire in_xbar__portsCOI_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire in_xbar__portsCOI_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire in_xbar__portsCOI_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire in_xbar__portsCOI_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire in_xbar__portsCOI_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire in_xbar_portsCOI_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire in_xbar_portsCOI_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire in_xbar_portsCOI_filtered_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire in_xbar__portsCOI_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire in_xbar__portsEOI_WIRE_ready = 1'h0; // @[Bundles.scala:267:74]
wire in_xbar__portsEOI_WIRE_valid = 1'h0; // @[Bundles.scala:267:74]
wire in_xbar__portsEOI_WIRE_bits_sink = 1'h0; // @[Bundles.scala:267:74]
wire in_xbar__portsEOI_WIRE_1_ready = 1'h0; // @[Bundles.scala:267:61]
wire in_xbar__portsEOI_WIRE_1_valid = 1'h0; // @[Bundles.scala:267:61]
wire in_xbar__portsEOI_WIRE_1_bits_sink = 1'h0; // @[Bundles.scala:267:61]
wire in_xbar_portsEOI_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire in_xbar_portsEOI_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire in_xbar_portsEOI_filtered_0_bits_sink = 1'h0; // @[Xbar.scala:352:24]
wire in_xbar__portsEOI_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire nodeIn_d_bits_sink = 1'h0; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_denied = 1'h0; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17]
wire _valids_WIRE_0 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_2 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_3 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_4 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_5 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_6 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_7 = 1'h0; // @[RegField.scala:153:53]
wire out_frontSel_1 = 1'h0; // @[RegisterRouter.scala:87:24]
wire out_backSel_1 = 1'h0; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_6 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_wifireMux_T_7 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_rofireMux_T_6 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_wofireMux_T_7 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_out_bits_data_T = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_out_bits_data_T_2 = 1'h0; // @[MuxLiteral.scala:49:17]
wire nodeIn_d_bits_d_sink = 1'h0; // @[Edges.scala:792:17]
wire nodeIn_d_bits_d_denied = 1'h0; // @[Edges.scala:792:17]
wire nodeIn_d_bits_d_corrupt = 1'h0; // @[Edges.scala:792:17]
wire [1:0] _out_frontSel_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _out_backSel_T = 2'h1; // @[OneHot.scala:58:35]
wire [29:0] fixer__a_notFIFO_T_2 = 30'h0; // @[Parameters.scala:137:46]
wire [29:0] fixer__a_notFIFO_T_3 = 30'h0; // @[Parameters.scala:137:46]
wire [29:0] in_xbar__requestAIO_T_2 = 30'h0; // @[Parameters.scala:137:46]
wire [29:0] in_xbar__requestAIO_T_3 = 30'h0; // @[Parameters.scala:137:46]
wire [29:0] in_xbar__requestCIO_T_1 = 30'h0; // @[Parameters.scala:137:41]
wire [29:0] in_xbar__requestCIO_T_2 = 30'h0; // @[Parameters.scala:137:46]
wire [29:0] in_xbar__requestCIO_T_3 = 30'h0; // @[Parameters.scala:137:46]
wire pbus_clock_groups_auto_in_member_pbus_0_clock = auto_pbus_clock_groups_in_member_pbus_0_clock_0; // @[ClockGroup.scala:53:9]
wire pbus_clock_groups_auto_in_member_pbus_0_reset = auto_pbus_clock_groups_in_member_pbus_0_reset_0; // @[ClockGroup.scala:53:9]
wire bus_xingIn_a_ready; // @[MixedNode.scala:551:17]
wire bus_xingIn_a_valid = auto_bus_xing_in_a_valid_0; // @[ClockDomain.scala:14:9]
wire [2:0] bus_xingIn_a_bits_opcode = auto_bus_xing_in_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] bus_xingIn_a_bits_param = auto_bus_xing_in_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [2:0] bus_xingIn_a_bits_size = auto_bus_xing_in_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [7:0] bus_xingIn_a_bits_source = auto_bus_xing_in_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [28:0] bus_xingIn_a_bits_address = auto_bus_xing_in_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] bus_xingIn_a_bits_mask = auto_bus_xing_in_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] bus_xingIn_a_bits_data = auto_bus_xing_in_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire bus_xingIn_a_bits_corrupt = auto_bus_xing_in_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire bus_xingIn_d_ready = auto_bus_xing_in_d_ready_0; // @[ClockDomain.scala:14:9]
wire bus_xingIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] bus_xingIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] bus_xingIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] bus_xingIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [7:0] bus_xingIn_d_bits_source; // @[MixedNode.scala:551:17]
wire bus_xingIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire bus_xingIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] bus_xingIn_d_bits_data; // @[MixedNode.scala:551:17]
wire bus_xingIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire [2:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [11:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [28:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_IceNIC_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_IceNIC_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
wire [11:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
wire [28:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_device_named_uart_0_control_xing_out_a_valid_0; // @[ClockDomain.scala:14:9]
wire auto_coupler_to_device_named_uart_0_control_xing_out_d_ready_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_1_clock_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_1_reset_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_0_clock_0; // @[ClockDomain.scala:14:9]
wire auto_fixedClockNode_anon_out_0_reset_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_a_ready_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_bus_xing_in_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
wire [1:0] auto_bus_xing_in_d_bits_param_0; // @[ClockDomain.scala:14:9]
wire [2:0] auto_bus_xing_in_d_bits_size_0; // @[ClockDomain.scala:14:9]
wire [7:0] auto_bus_xing_in_d_bits_source_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_bits_sink_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_bits_denied_0; // @[ClockDomain.scala:14:9]
wire [63:0] auto_bus_xing_in_d_bits_data_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_bits_corrupt_0; // @[ClockDomain.scala:14:9]
wire auto_bus_xing_in_d_valid_0; // @[ClockDomain.scala:14:9]
wire clockSinkNodeIn_clock; // @[MixedNode.scala:551:17]
wire clockSinkNodeIn_reset; // @[MixedNode.scala:551:17]
wire childClock; // @[LazyModuleImp.scala:155:31]
wire childReset; // @[LazyModuleImp.scala:158:31]
wire pbus_clock_groups_nodeIn_member_pbus_0_clock = pbus_clock_groups_auto_in_member_pbus_0_clock; // @[ClockGroup.scala:53:9]
wire pbus_clock_groups_nodeOut_member_pbus_0_clock; // @[MixedNode.scala:542:17]
wire pbus_clock_groups_nodeIn_member_pbus_0_reset = pbus_clock_groups_auto_in_member_pbus_0_reset; // @[ClockGroup.scala:53:9]
wire pbus_clock_groups_nodeOut_member_pbus_0_reset; // @[MixedNode.scala:542:17]
wire clockGroup_auto_in_member_pbus_0_clock = pbus_clock_groups_auto_out_member_pbus_0_clock; // @[ClockGroup.scala:24:9, :53:9]
wire clockGroup_auto_in_member_pbus_0_reset = pbus_clock_groups_auto_out_member_pbus_0_reset; // @[ClockGroup.scala:24:9, :53:9]
assign pbus_clock_groups_auto_out_member_pbus_0_clock = pbus_clock_groups_nodeOut_member_pbus_0_clock; // @[ClockGroup.scala:53:9]
assign pbus_clock_groups_auto_out_member_pbus_0_reset = pbus_clock_groups_nodeOut_member_pbus_0_reset; // @[ClockGroup.scala:53:9]
assign pbus_clock_groups_nodeOut_member_pbus_0_clock = pbus_clock_groups_nodeIn_member_pbus_0_clock; // @[MixedNode.scala:542:17, :551:17]
assign pbus_clock_groups_nodeOut_member_pbus_0_reset = pbus_clock_groups_nodeIn_member_pbus_0_reset; // @[MixedNode.scala:542:17, :551:17]
wire clockGroup_nodeIn_member_pbus_0_clock = clockGroup_auto_in_member_pbus_0_clock; // @[ClockGroup.scala:24:9]
wire clockGroup_nodeOut_clock; // @[MixedNode.scala:542:17]
wire clockGroup_nodeIn_member_pbus_0_reset = clockGroup_auto_in_member_pbus_0_reset; // @[ClockGroup.scala:24:9]
wire clockGroup_nodeOut_reset; // @[MixedNode.scala:542:17]
wire clockGroup_auto_out_clock; // @[ClockGroup.scala:24:9]
wire clockGroup_auto_out_reset; // @[ClockGroup.scala:24:9]
assign clockGroup_auto_out_clock = clockGroup_nodeOut_clock; // @[ClockGroup.scala:24:9]
assign clockGroup_auto_out_reset = clockGroup_nodeOut_reset; // @[ClockGroup.scala:24:9]
assign clockGroup_nodeOut_clock = clockGroup_nodeIn_member_pbus_0_clock; // @[MixedNode.scala:542:17, :551:17]
assign clockGroup_nodeOut_reset = clockGroup_nodeIn_member_pbus_0_reset; // @[MixedNode.scala:542:17, :551:17]
wire fixer_anonIn_a_ready; // @[MixedNode.scala:551:17]
wire fixer_anonIn_a_valid = fixer_auto_anon_in_a_valid; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_anonIn_a_bits_opcode = fixer_auto_anon_in_a_bits_opcode; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_anonIn_a_bits_param = fixer_auto_anon_in_a_bits_param; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_anonIn_a_bits_size = fixer_auto_anon_in_a_bits_size; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_anonIn_a_bits_source = fixer_auto_anon_in_a_bits_source; // @[FIFOFixer.scala:50:9]
wire [28:0] fixer_anonIn_a_bits_address = fixer_auto_anon_in_a_bits_address; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_anonIn_a_bits_mask = fixer_auto_anon_in_a_bits_mask; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_anonIn_a_bits_data = fixer_auto_anon_in_a_bits_data; // @[FIFOFixer.scala:50:9]
wire fixer_anonIn_a_bits_corrupt = fixer_auto_anon_in_a_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire fixer_anonIn_d_ready = fixer_auto_anon_in_d_ready; // @[FIFOFixer.scala:50:9]
wire fixer_anonIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] fixer_anonIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [2:0] fixer_anonIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [7:0] fixer_anonIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [63:0] fixer_anonIn_d_bits_data; // @[MixedNode.scala:551:17]
wire fixer_anonOut_a_ready = fixer_auto_anon_out_a_ready; // @[FIFOFixer.scala:50:9]
wire fixer_anonOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] fixer_anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] fixer_anonOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] fixer_anonOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [7:0] fixer_anonOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [28:0] fixer_anonOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] fixer_anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] fixer_anonOut_a_bits_data; // @[MixedNode.scala:542:17]
wire fixer_anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire fixer_anonOut_d_ready; // @[MixedNode.scala:542:17]
wire fixer_anonOut_d_valid = fixer_auto_anon_out_d_valid; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_anonOut_d_bits_opcode = fixer_auto_anon_out_d_bits_opcode; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_anonOut_d_bits_size = fixer_auto_anon_out_d_bits_size; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_anonOut_d_bits_source = fixer_auto_anon_out_d_bits_source; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_anonOut_d_bits_data = fixer_auto_anon_out_d_bits_data; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_a_ready; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_in_d_bits_opcode; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_in_d_bits_size; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_auto_anon_in_d_bits_source; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_auto_anon_in_d_bits_data; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_in_d_valid; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_out_a_bits_opcode; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_out_a_bits_param; // @[FIFOFixer.scala:50:9]
wire [2:0] fixer_auto_anon_out_a_bits_size; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_auto_anon_out_a_bits_source; // @[FIFOFixer.scala:50:9]
wire [28:0] fixer_auto_anon_out_a_bits_address; // @[FIFOFixer.scala:50:9]
wire [7:0] fixer_auto_anon_out_a_bits_mask; // @[FIFOFixer.scala:50:9]
wire [63:0] fixer_auto_anon_out_a_bits_data; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_a_bits_corrupt; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_a_valid; // @[FIFOFixer.scala:50:9]
wire fixer_auto_anon_out_d_ready; // @[FIFOFixer.scala:50:9]
wire fixer__anonOut_a_valid_T_2; // @[FIFOFixer.scala:95:33]
wire fixer__anonIn_a_ready_T_2 = fixer_anonOut_a_ready; // @[FIFOFixer.scala:96:33]
assign fixer_auto_anon_out_a_valid = fixer_anonOut_a_valid; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_opcode = fixer_anonOut_a_bits_opcode; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_param = fixer_anonOut_a_bits_param; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_size = fixer_anonOut_a_bits_size; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_source = fixer_anonOut_a_bits_source; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_address = fixer_anonOut_a_bits_address; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_mask = fixer_anonOut_a_bits_mask; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_data = fixer_anonOut_a_bits_data; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_a_bits_corrupt = fixer_anonOut_a_bits_corrupt; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_out_d_ready = fixer_anonOut_d_ready; // @[FIFOFixer.scala:50:9]
assign fixer_anonIn_d_valid = fixer_anonOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_opcode = fixer_anonOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_size = fixer_anonOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_source = fixer_anonOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonIn_d_bits_data = fixer_anonOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign fixer_auto_anon_in_a_ready = fixer_anonIn_a_ready; // @[FIFOFixer.scala:50:9]
assign fixer__anonOut_a_valid_T_2 = fixer_anonIn_a_valid; // @[FIFOFixer.scala:95:33]
assign fixer_anonOut_a_bits_opcode = fixer_anonIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_param = fixer_anonIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_size = fixer_anonIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_source = fixer_anonIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_address = fixer_anonIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
wire [28:0] fixer__a_notFIFO_T = fixer_anonIn_a_bits_address; // @[Parameters.scala:137:31]
wire [28:0] fixer__a_id_T = fixer_anonIn_a_bits_address; // @[Parameters.scala:137:31]
assign fixer_anonOut_a_bits_mask = fixer_anonIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_data = fixer_anonIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_a_bits_corrupt = fixer_anonIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign fixer_anonOut_d_ready = fixer_anonIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign fixer_auto_anon_in_d_valid = fixer_anonIn_d_valid; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_opcode = fixer_anonIn_d_bits_opcode; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_size = fixer_anonIn_d_bits_size; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_source = fixer_anonIn_d_bits_source; // @[FIFOFixer.scala:50:9]
assign fixer_auto_anon_in_d_bits_data = fixer_anonIn_d_bits_data; // @[FIFOFixer.scala:50:9]
wire [29:0] fixer__a_notFIFO_T_1 = {1'h0, fixer__a_notFIFO_T}; // @[Parameters.scala:137:{31,41}]
wire [29:0] fixer__a_id_T_1 = {1'h0, fixer__a_id_T}; // @[Parameters.scala:137:{31,41}]
wire [29:0] fixer__a_id_T_2 = fixer__a_id_T_1 & 30'h10020000; // @[Parameters.scala:137:{41,46}]
wire [29:0] fixer__a_id_T_3 = fixer__a_id_T_2; // @[Parameters.scala:137:46]
wire fixer__a_id_T_4 = fixer__a_id_T_3 == 30'h0; // @[Parameters.scala:137:{46,59}]
wire fixer__a_id_T_15 = fixer__a_id_T_4; // @[Mux.scala:30:73]
wire [28:0] fixer__a_id_T_5 = fixer_anonIn_a_bits_address ^ 29'h10000000; // @[Parameters.scala:137:31]
wire [29:0] fixer__a_id_T_6 = {1'h0, fixer__a_id_T_5}; // @[Parameters.scala:137:{31,41}]
wire [29:0] fixer__a_id_T_7 = fixer__a_id_T_6 & 30'h10020000; // @[Parameters.scala:137:{41,46}]
wire [29:0] fixer__a_id_T_8 = fixer__a_id_T_7; // @[Parameters.scala:137:46]
wire fixer__a_id_T_9 = fixer__a_id_T_8 == 30'h0; // @[Parameters.scala:137:{46,59}]
wire [28:0] fixer__a_id_T_10 = fixer_anonIn_a_bits_address ^ 29'h10020000; // @[Parameters.scala:137:31]
wire [29:0] fixer__a_id_T_11 = {1'h0, fixer__a_id_T_10}; // @[Parameters.scala:137:{31,41}]
wire [29:0] fixer__a_id_T_12 = fixer__a_id_T_11 & 30'h10020000; // @[Parameters.scala:137:{41,46}]
wire [29:0] fixer__a_id_T_13 = fixer__a_id_T_12; // @[Parameters.scala:137:46]
wire fixer__a_id_T_14 = fixer__a_id_T_13 == 30'h0; // @[Parameters.scala:137:{46,59}]
wire [1:0] fixer__a_id_T_16 = {2{fixer__a_id_T_9}}; // @[Mux.scala:30:73]
wire [1:0] fixer__a_id_T_17 = {fixer__a_id_T_14, 1'h0}; // @[Mux.scala:30:73]
wire [1:0] fixer__a_id_T_18 = {1'h0, fixer__a_id_T_15} | fixer__a_id_T_16; // @[Mux.scala:30:73]
wire [1:0] fixer__a_id_T_19 = fixer__a_id_T_18 | fixer__a_id_T_17; // @[Mux.scala:30:73]
wire [1:0] fixer_a_id = fixer__a_id_T_19; // @[Mux.scala:30:73]
wire fixer_a_noDomain = fixer_a_id == 2'h0; // @[Mux.scala:30:73]
wire fixer__a_first_T = fixer_anonIn_a_ready & fixer_anonIn_a_valid; // @[Decoupled.scala:51:35]
wire [12:0] fixer__a_first_beats1_decode_T = 13'h3F << fixer_anonIn_a_bits_size; // @[package.scala:243:71]
wire [5:0] fixer__a_first_beats1_decode_T_1 = fixer__a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] fixer__a_first_beats1_decode_T_2 = ~fixer__a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] fixer_a_first_beats1_decode = fixer__a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire fixer__a_first_beats1_opdata_T = fixer_anonIn_a_bits_opcode[2]; // @[Edges.scala:92:37]
wire fixer_a_first_beats1_opdata = ~fixer__a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] fixer_a_first_beats1 = fixer_a_first_beats1_opdata ? fixer_a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] fixer_a_first_counter; // @[Edges.scala:229:27]
wire [3:0] fixer__a_first_counter1_T = {1'h0, fixer_a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] fixer_a_first_counter1 = fixer__a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire fixer_a_first = fixer_a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire fixer__a_first_last_T = fixer_a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire fixer__a_first_last_T_1 = fixer_a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire fixer_a_first_last = fixer__a_first_last_T | fixer__a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire fixer_a_first_done = fixer_a_first_last & fixer__a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] fixer__a_first_count_T = ~fixer_a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] fixer_a_first_count = fixer_a_first_beats1 & fixer__a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] fixer__a_first_counter_T = fixer_a_first ? fixer_a_first_beats1 : fixer_a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire fixer__d_first_T = fixer_anonOut_d_ready & fixer_anonOut_d_valid; // @[Decoupled.scala:51:35]
wire [12:0] fixer__d_first_beats1_decode_T = 13'h3F << fixer_anonOut_d_bits_size; // @[package.scala:243:71]
wire [5:0] fixer__d_first_beats1_decode_T_1 = fixer__d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] fixer__d_first_beats1_decode_T_2 = ~fixer__d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] fixer_d_first_beats1_decode = fixer__d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire fixer_d_first_beats1_opdata = fixer_anonOut_d_bits_opcode[0]; // @[Edges.scala:106:36]
wire [2:0] fixer_d_first_beats1 = fixer_d_first_beats1_opdata ? fixer_d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] fixer_d_first_counter; // @[Edges.scala:229:27]
wire [3:0] fixer__d_first_counter1_T = {1'h0, fixer_d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] fixer_d_first_counter1 = fixer__d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire fixer_d_first_first = fixer_d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire fixer__d_first_last_T = fixer_d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire fixer__d_first_last_T_1 = fixer_d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire fixer_d_first_last = fixer__d_first_last_T | fixer__d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire fixer_d_first_done = fixer_d_first_last & fixer__d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] fixer__d_first_count_T = ~fixer_d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] fixer_d_first_count = fixer_d_first_beats1 & fixer__d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] fixer__d_first_counter_T = fixer_d_first_first ? fixer_d_first_beats1 : fixer_d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire fixer__d_first_T_1 = fixer_anonOut_d_bits_opcode != 3'h6; // @[FIFOFixer.scala:75:63]
wire fixer_d_first = fixer_d_first_first & fixer__d_first_T_1; // @[FIFOFixer.scala:75:{42,63}]
reg fixer_flight_0; // @[FIFOFixer.scala:79:27]
reg fixer_flight_1; // @[FIFOFixer.scala:79:27]
reg fixer_flight_2; // @[FIFOFixer.scala:79:27]
reg fixer_flight_3; // @[FIFOFixer.scala:79:27]
reg fixer_flight_4; // @[FIFOFixer.scala:79:27]
reg fixer_flight_5; // @[FIFOFixer.scala:79:27]
reg fixer_flight_6; // @[FIFOFixer.scala:79:27]
reg fixer_flight_7; // @[FIFOFixer.scala:79:27]
reg fixer_flight_8; // @[FIFOFixer.scala:79:27]
reg fixer_flight_9; // @[FIFOFixer.scala:79:27]
reg fixer_flight_10; // @[FIFOFixer.scala:79:27]
reg fixer_flight_11; // @[FIFOFixer.scala:79:27]
reg fixer_flight_12; // @[FIFOFixer.scala:79:27]
reg fixer_flight_13; // @[FIFOFixer.scala:79:27]
reg fixer_flight_14; // @[FIFOFixer.scala:79:27]
reg fixer_flight_15; // @[FIFOFixer.scala:79:27]
reg fixer_flight_16; // @[FIFOFixer.scala:79:27]
reg fixer_flight_17; // @[FIFOFixer.scala:79:27]
reg fixer_flight_18; // @[FIFOFixer.scala:79:27]
reg fixer_flight_19; // @[FIFOFixer.scala:79:27]
reg fixer_flight_20; // @[FIFOFixer.scala:79:27]
reg fixer_flight_21; // @[FIFOFixer.scala:79:27]
reg fixer_flight_22; // @[FIFOFixer.scala:79:27]
reg fixer_flight_23; // @[FIFOFixer.scala:79:27]
reg fixer_flight_24; // @[FIFOFixer.scala:79:27]
reg fixer_flight_25; // @[FIFOFixer.scala:79:27]
reg fixer_flight_26; // @[FIFOFixer.scala:79:27]
reg fixer_flight_27; // @[FIFOFixer.scala:79:27]
reg fixer_flight_28; // @[FIFOFixer.scala:79:27]
reg fixer_flight_29; // @[FIFOFixer.scala:79:27]
reg fixer_flight_30; // @[FIFOFixer.scala:79:27]
reg fixer_flight_31; // @[FIFOFixer.scala:79:27]
reg fixer_flight_32; // @[FIFOFixer.scala:79:27]
reg fixer_flight_33; // @[FIFOFixer.scala:79:27]
reg fixer_flight_34; // @[FIFOFixer.scala:79:27]
reg fixer_flight_35; // @[FIFOFixer.scala:79:27]
reg fixer_flight_36; // @[FIFOFixer.scala:79:27]
reg fixer_flight_37; // @[FIFOFixer.scala:79:27]
reg fixer_flight_38; // @[FIFOFixer.scala:79:27]
reg fixer_flight_39; // @[FIFOFixer.scala:79:27]
reg fixer_flight_40; // @[FIFOFixer.scala:79:27]
reg fixer_flight_41; // @[FIFOFixer.scala:79:27]
reg fixer_flight_42; // @[FIFOFixer.scala:79:27]
reg fixer_flight_43; // @[FIFOFixer.scala:79:27]
reg fixer_flight_44; // @[FIFOFixer.scala:79:27]
reg fixer_flight_45; // @[FIFOFixer.scala:79:27]
reg fixer_flight_46; // @[FIFOFixer.scala:79:27]
reg fixer_flight_47; // @[FIFOFixer.scala:79:27]
reg fixer_flight_48; // @[FIFOFixer.scala:79:27]
reg fixer_flight_49; // @[FIFOFixer.scala:79:27]
reg fixer_flight_50; // @[FIFOFixer.scala:79:27]
reg fixer_flight_51; // @[FIFOFixer.scala:79:27]
reg fixer_flight_52; // @[FIFOFixer.scala:79:27]
reg fixer_flight_53; // @[FIFOFixer.scala:79:27]
reg fixer_flight_54; // @[FIFOFixer.scala:79:27]
reg fixer_flight_55; // @[FIFOFixer.scala:79:27]
reg fixer_flight_56; // @[FIFOFixer.scala:79:27]
reg fixer_flight_57; // @[FIFOFixer.scala:79:27]
reg fixer_flight_58; // @[FIFOFixer.scala:79:27]
reg fixer_flight_59; // @[FIFOFixer.scala:79:27]
reg fixer_flight_60; // @[FIFOFixer.scala:79:27]
reg fixer_flight_61; // @[FIFOFixer.scala:79:27]
reg fixer_flight_62; // @[FIFOFixer.scala:79:27]
reg fixer_flight_63; // @[FIFOFixer.scala:79:27]
reg fixer_flight_64; // @[FIFOFixer.scala:79:27]
reg fixer_flight_65; // @[FIFOFixer.scala:79:27]
reg fixer_flight_66; // @[FIFOFixer.scala:79:27]
reg fixer_flight_67; // @[FIFOFixer.scala:79:27]
reg fixer_flight_68; // @[FIFOFixer.scala:79:27]
reg fixer_flight_69; // @[FIFOFixer.scala:79:27]
reg fixer_flight_70; // @[FIFOFixer.scala:79:27]
reg fixer_flight_71; // @[FIFOFixer.scala:79:27]
reg fixer_flight_72; // @[FIFOFixer.scala:79:27]
reg fixer_flight_73; // @[FIFOFixer.scala:79:27]
reg fixer_flight_74; // @[FIFOFixer.scala:79:27]
reg fixer_flight_75; // @[FIFOFixer.scala:79:27]
reg fixer_flight_76; // @[FIFOFixer.scala:79:27]
reg fixer_flight_77; // @[FIFOFixer.scala:79:27]
reg fixer_flight_78; // @[FIFOFixer.scala:79:27]
reg fixer_flight_79; // @[FIFOFixer.scala:79:27]
reg fixer_flight_80; // @[FIFOFixer.scala:79:27]
reg fixer_flight_81; // @[FIFOFixer.scala:79:27]
reg fixer_flight_82; // @[FIFOFixer.scala:79:27]
reg fixer_flight_83; // @[FIFOFixer.scala:79:27]
reg fixer_flight_84; // @[FIFOFixer.scala:79:27]
reg fixer_flight_85; // @[FIFOFixer.scala:79:27]
reg fixer_flight_86; // @[FIFOFixer.scala:79:27]
reg fixer_flight_87; // @[FIFOFixer.scala:79:27]
reg fixer_flight_88; // @[FIFOFixer.scala:79:27]
reg fixer_flight_89; // @[FIFOFixer.scala:79:27]
reg fixer_flight_90; // @[FIFOFixer.scala:79:27]
reg fixer_flight_91; // @[FIFOFixer.scala:79:27]
reg fixer_flight_92; // @[FIFOFixer.scala:79:27]
reg fixer_flight_93; // @[FIFOFixer.scala:79:27]
reg fixer_flight_94; // @[FIFOFixer.scala:79:27]
reg fixer_flight_95; // @[FIFOFixer.scala:79:27]
reg fixer_flight_96; // @[FIFOFixer.scala:79:27]
reg fixer_flight_97; // @[FIFOFixer.scala:79:27]
reg fixer_flight_98; // @[FIFOFixer.scala:79:27]
reg fixer_flight_99; // @[FIFOFixer.scala:79:27]
reg fixer_flight_100; // @[FIFOFixer.scala:79:27]
reg fixer_flight_101; // @[FIFOFixer.scala:79:27]
reg fixer_flight_102; // @[FIFOFixer.scala:79:27]
reg fixer_flight_103; // @[FIFOFixer.scala:79:27]
reg fixer_flight_104; // @[FIFOFixer.scala:79:27]
reg fixer_flight_105; // @[FIFOFixer.scala:79:27]
reg fixer_flight_106; // @[FIFOFixer.scala:79:27]
reg fixer_flight_107; // @[FIFOFixer.scala:79:27]
reg fixer_flight_108; // @[FIFOFixer.scala:79:27]
reg fixer_flight_109; // @[FIFOFixer.scala:79:27]
reg fixer_flight_110; // @[FIFOFixer.scala:79:27]
reg fixer_flight_111; // @[FIFOFixer.scala:79:27]
reg fixer_flight_112; // @[FIFOFixer.scala:79:27]
reg fixer_flight_113; // @[FIFOFixer.scala:79:27]
reg fixer_flight_114; // @[FIFOFixer.scala:79:27]
reg fixer_flight_115; // @[FIFOFixer.scala:79:27]
reg fixer_flight_116; // @[FIFOFixer.scala:79:27]
reg fixer_flight_117; // @[FIFOFixer.scala:79:27]
reg fixer_flight_118; // @[FIFOFixer.scala:79:27]
reg fixer_flight_119; // @[FIFOFixer.scala:79:27]
reg fixer_flight_120; // @[FIFOFixer.scala:79:27]
reg fixer_flight_121; // @[FIFOFixer.scala:79:27]
reg fixer_flight_122; // @[FIFOFixer.scala:79:27]
reg fixer_flight_123; // @[FIFOFixer.scala:79:27]
reg fixer_flight_124; // @[FIFOFixer.scala:79:27]
reg fixer_flight_125; // @[FIFOFixer.scala:79:27]
reg fixer_flight_126; // @[FIFOFixer.scala:79:27]
reg fixer_flight_127; // @[FIFOFixer.scala:79:27]
reg fixer_flight_128; // @[FIFOFixer.scala:79:27]
wire fixer__T_2 = fixer_anonIn_d_ready & fixer_anonIn_d_valid; // @[Decoupled.scala:51:35]
assign fixer_anonOut_a_valid = fixer__anonOut_a_valid_T_2; // @[FIFOFixer.scala:95:33]
assign fixer_anonIn_a_ready = fixer__anonIn_a_ready_T_2; // @[FIFOFixer.scala:96:33]
reg [128:0] fixer_SourceIdFIFOed; // @[FIFOFixer.scala:115:35]
wire [128:0] fixer_SourceIdSet; // @[FIFOFixer.scala:116:36]
wire [128:0] fixer_SourceIdClear; // @[FIFOFixer.scala:117:38]
wire [255:0] fixer__SourceIdSet_T = 256'h1 << fixer_anonIn_a_bits_source; // @[OneHot.scala:58:35]
assign fixer_SourceIdSet = fixer_a_first & fixer__a_first_T ? fixer__SourceIdSet_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire [255:0] fixer__SourceIdClear_T = 256'h1 << fixer_anonIn_d_bits_source; // @[OneHot.scala:58:35]
assign fixer_SourceIdClear = fixer_d_first & fixer__T_2 ? fixer__SourceIdClear_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire [128:0] fixer__SourceIdFIFOed_T = fixer_SourceIdFIFOed | fixer_SourceIdSet; // @[FIFOFixer.scala:115:35, :116:36, :126:40]
wire fixer_allIDs_FIFOed = &fixer_SourceIdFIFOed; // @[FIFOFixer.scala:115:35, :127:41]
wire in_xbar_anonIn_a_ready; // @[MixedNode.scala:551:17]
wire in_xbar_anonIn_a_valid = in_xbar_auto_anon_in_a_valid; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_anonIn_a_bits_opcode = in_xbar_auto_anon_in_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_anonIn_a_bits_param = in_xbar_auto_anon_in_a_bits_param; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_anonIn_a_bits_size = in_xbar_auto_anon_in_a_bits_size; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_anonIn_a_bits_source = in_xbar_auto_anon_in_a_bits_source; // @[Xbar.scala:74:9]
wire [28:0] in_xbar_anonIn_a_bits_address = in_xbar_auto_anon_in_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_anonIn_a_bits_mask = in_xbar_auto_anon_in_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] in_xbar_anonIn_a_bits_data = in_xbar_auto_anon_in_a_bits_data; // @[Xbar.scala:74:9]
wire in_xbar_anonIn_a_bits_corrupt = in_xbar_auto_anon_in_a_bits_corrupt; // @[Xbar.scala:74:9]
wire in_xbar_anonIn_d_ready = in_xbar_auto_anon_in_d_ready; // @[Xbar.scala:74:9]
wire in_xbar_anonIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] in_xbar_anonIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] in_xbar_anonIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [2:0] in_xbar_anonIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [7:0] in_xbar_anonIn_d_bits_source; // @[MixedNode.scala:551:17]
wire in_xbar_anonIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire in_xbar_anonIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] in_xbar_anonIn_d_bits_data; // @[MixedNode.scala:551:17]
wire in_xbar_anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire in_xbar_anonOut_a_ready = in_xbar_auto_anon_out_a_ready; // @[Xbar.scala:74:9]
wire in_xbar_anonOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] in_xbar_anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] in_xbar_anonOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] in_xbar_anonOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [7:0] in_xbar_anonOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [28:0] in_xbar_anonOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] in_xbar_anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] in_xbar_anonOut_a_bits_data; // @[MixedNode.scala:542:17]
wire in_xbar_anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire in_xbar_anonOut_d_ready; // @[MixedNode.scala:542:17]
wire in_xbar_anonOut_d_valid = in_xbar_auto_anon_out_d_valid; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_anonOut_d_bits_opcode = in_xbar_auto_anon_out_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] in_xbar_anonOut_d_bits_param = in_xbar_auto_anon_out_d_bits_param; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_anonOut_d_bits_size = in_xbar_auto_anon_out_d_bits_size; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_anonOut_d_bits_source = in_xbar_auto_anon_out_d_bits_source; // @[Xbar.scala:74:9]
wire in_xbar_anonOut_d_bits_sink = in_xbar_auto_anon_out_d_bits_sink; // @[Xbar.scala:74:9]
wire in_xbar_anonOut_d_bits_denied = in_xbar_auto_anon_out_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] in_xbar_anonOut_d_bits_data = in_xbar_auto_anon_out_d_bits_data; // @[Xbar.scala:74:9]
wire in_xbar_anonOut_d_bits_corrupt = in_xbar_auto_anon_out_d_bits_corrupt; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_in_a_ready; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_in_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] in_xbar_auto_anon_in_d_bits_param; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_in_d_bits_size; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_auto_anon_in_d_bits_source; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_in_d_bits_sink; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_in_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] in_xbar_auto_anon_in_d_bits_data; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_in_d_bits_corrupt; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_in_d_valid; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_out_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_out_a_bits_param; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_auto_anon_out_a_bits_size; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_auto_anon_out_a_bits_source; // @[Xbar.scala:74:9]
wire [28:0] in_xbar_auto_anon_out_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_auto_anon_out_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] in_xbar_auto_anon_out_a_bits_data; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_out_a_bits_corrupt; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_out_a_valid; // @[Xbar.scala:74:9]
wire in_xbar_auto_anon_out_d_ready; // @[Xbar.scala:74:9]
wire in_xbar_out_0_a_ready = in_xbar_anonOut_a_ready; // @[Xbar.scala:216:19]
wire in_xbar_out_0_a_valid; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_a_valid = in_xbar_anonOut_a_valid; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_out_0_a_bits_opcode; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_a_bits_opcode = in_xbar_anonOut_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_out_0_a_bits_param; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_a_bits_param = in_xbar_anonOut_a_bits_param; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_out_0_a_bits_size; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_a_bits_size = in_xbar_anonOut_a_bits_size; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_out_0_a_bits_source; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_a_bits_source = in_xbar_anonOut_a_bits_source; // @[Xbar.scala:74:9]
wire [28:0] in_xbar_out_0_a_bits_address; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_a_bits_address = in_xbar_anonOut_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] in_xbar_out_0_a_bits_mask; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_a_bits_mask = in_xbar_anonOut_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] in_xbar_out_0_a_bits_data; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_a_bits_data = in_xbar_anonOut_a_bits_data; // @[Xbar.scala:74:9]
wire in_xbar_out_0_a_bits_corrupt; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_a_bits_corrupt = in_xbar_anonOut_a_bits_corrupt; // @[Xbar.scala:74:9]
wire in_xbar_out_0_d_ready; // @[Xbar.scala:216:19]
assign in_xbar_auto_anon_out_d_ready = in_xbar_anonOut_d_ready; // @[Xbar.scala:74:9]
wire in_xbar_out_0_d_valid = in_xbar_anonOut_d_valid; // @[Xbar.scala:216:19]
wire [2:0] in_xbar_out_0_d_bits_opcode = in_xbar_anonOut_d_bits_opcode; // @[Xbar.scala:216:19]
wire [1:0] in_xbar_out_0_d_bits_param = in_xbar_anonOut_d_bits_param; // @[Xbar.scala:216:19]
wire [2:0] in_xbar_out_0_d_bits_size = in_xbar_anonOut_d_bits_size; // @[Xbar.scala:216:19]
wire [7:0] in_xbar_out_0_d_bits_source = in_xbar_anonOut_d_bits_source; // @[Xbar.scala:216:19]
wire in_xbar__out_0_d_bits_sink_T = in_xbar_anonOut_d_bits_sink; // @[Xbar.scala:251:53]
wire in_xbar_out_0_d_bits_denied = in_xbar_anonOut_d_bits_denied; // @[Xbar.scala:216:19]
wire [63:0] in_xbar_out_0_d_bits_data = in_xbar_anonOut_d_bits_data; // @[Xbar.scala:216:19]
wire in_xbar_out_0_d_bits_corrupt = in_xbar_anonOut_d_bits_corrupt; // @[Xbar.scala:216:19]
wire in_xbar_in_0_a_ready; // @[Xbar.scala:159:18]
assign in_xbar_auto_anon_in_a_ready = in_xbar_anonIn_a_ready; // @[Xbar.scala:74:9]
wire in_xbar_in_0_a_valid = in_xbar_anonIn_a_valid; // @[Xbar.scala:159:18]
wire [2:0] in_xbar_in_0_a_bits_opcode = in_xbar_anonIn_a_bits_opcode; // @[Xbar.scala:159:18]
wire [2:0] in_xbar_in_0_a_bits_param = in_xbar_anonIn_a_bits_param; // @[Xbar.scala:159:18]
wire [2:0] in_xbar_in_0_a_bits_size = in_xbar_anonIn_a_bits_size; // @[Xbar.scala:159:18]
wire [7:0] in_xbar__in_0_a_bits_source_T = in_xbar_anonIn_a_bits_source; // @[Xbar.scala:166:55]
wire [28:0] in_xbar_in_0_a_bits_address = in_xbar_anonIn_a_bits_address; // @[Xbar.scala:159:18]
wire [7:0] in_xbar_in_0_a_bits_mask = in_xbar_anonIn_a_bits_mask; // @[Xbar.scala:159:18]
wire [63:0] in_xbar_in_0_a_bits_data = in_xbar_anonIn_a_bits_data; // @[Xbar.scala:159:18]
wire in_xbar_in_0_a_bits_corrupt = in_xbar_anonIn_a_bits_corrupt; // @[Xbar.scala:159:18]
wire in_xbar_in_0_d_ready = in_xbar_anonIn_d_ready; // @[Xbar.scala:159:18]
wire in_xbar_in_0_d_valid; // @[Xbar.scala:159:18]
assign in_xbar_auto_anon_in_d_valid = in_xbar_anonIn_d_valid; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_in_0_d_bits_opcode; // @[Xbar.scala:159:18]
assign in_xbar_auto_anon_in_d_bits_opcode = in_xbar_anonIn_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] in_xbar_in_0_d_bits_param; // @[Xbar.scala:159:18]
assign in_xbar_auto_anon_in_d_bits_param = in_xbar_anonIn_d_bits_param; // @[Xbar.scala:74:9]
wire [2:0] in_xbar_in_0_d_bits_size; // @[Xbar.scala:159:18]
assign in_xbar_auto_anon_in_d_bits_size = in_xbar_anonIn_d_bits_size; // @[Xbar.scala:74:9]
wire [7:0] in_xbar__anonIn_d_bits_source_T; // @[Xbar.scala:156:69]
assign in_xbar_auto_anon_in_d_bits_source = in_xbar_anonIn_d_bits_source; // @[Xbar.scala:74:9]
wire in_xbar_in_0_d_bits_sink; // @[Xbar.scala:159:18]
assign in_xbar_auto_anon_in_d_bits_sink = in_xbar_anonIn_d_bits_sink; // @[Xbar.scala:74:9]
wire in_xbar_in_0_d_bits_denied; // @[Xbar.scala:159:18]
assign in_xbar_auto_anon_in_d_bits_denied = in_xbar_anonIn_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] in_xbar_in_0_d_bits_data; // @[Xbar.scala:159:18]
assign in_xbar_auto_anon_in_d_bits_data = in_xbar_anonIn_d_bits_data; // @[Xbar.scala:74:9]
wire in_xbar_in_0_d_bits_corrupt; // @[Xbar.scala:159:18]
assign in_xbar_auto_anon_in_d_bits_corrupt = in_xbar_anonIn_d_bits_corrupt; // @[Xbar.scala:74:9]
wire in_xbar_portsAOI_filtered_0_ready; // @[Xbar.scala:352:24]
assign in_xbar_anonIn_a_ready = in_xbar_in_0_a_ready; // @[Xbar.scala:159:18]
wire in_xbar__portsAOI_filtered_0_valid_T_1 = in_xbar_in_0_a_valid; // @[Xbar.scala:159:18, :355:40]
wire [2:0] in_xbar_portsAOI_filtered_0_bits_opcode = in_xbar_in_0_a_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] in_xbar_portsAOI_filtered_0_bits_param = in_xbar_in_0_a_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [2:0] in_xbar_portsAOI_filtered_0_bits_size = in_xbar_in_0_a_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [7:0] in_xbar_portsAOI_filtered_0_bits_source = in_xbar_in_0_a_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [28:0] in_xbar__requestAIO_T = in_xbar_in_0_a_bits_address; // @[Xbar.scala:159:18]
wire [28:0] in_xbar_portsAOI_filtered_0_bits_address = in_xbar_in_0_a_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [7:0] in_xbar_portsAOI_filtered_0_bits_mask = in_xbar_in_0_a_bits_mask; // @[Xbar.scala:159:18, :352:24]
wire [63:0] in_xbar_portsAOI_filtered_0_bits_data = in_xbar_in_0_a_bits_data; // @[Xbar.scala:159:18, :352:24]
wire in_xbar_portsAOI_filtered_0_bits_corrupt = in_xbar_in_0_a_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire in_xbar_portsDIO_filtered_0_ready = in_xbar_in_0_d_ready; // @[Xbar.scala:159:18, :352:24]
wire in_xbar_portsDIO_filtered_0_valid; // @[Xbar.scala:352:24]
assign in_xbar_anonIn_d_valid = in_xbar_in_0_d_valid; // @[Xbar.scala:159:18]
wire [2:0] in_xbar_portsDIO_filtered_0_bits_opcode; // @[Xbar.scala:352:24]
assign in_xbar_anonIn_d_bits_opcode = in_xbar_in_0_d_bits_opcode; // @[Xbar.scala:159:18]
wire [1:0] in_xbar_portsDIO_filtered_0_bits_param; // @[Xbar.scala:352:24]
assign in_xbar_anonIn_d_bits_param = in_xbar_in_0_d_bits_param; // @[Xbar.scala:159:18]
wire [2:0] in_xbar_portsDIO_filtered_0_bits_size; // @[Xbar.scala:352:24]
assign in_xbar_anonIn_d_bits_size = in_xbar_in_0_d_bits_size; // @[Xbar.scala:159:18]
wire [7:0] in_xbar_portsDIO_filtered_0_bits_source; // @[Xbar.scala:352:24]
assign in_xbar__anonIn_d_bits_source_T = in_xbar_in_0_d_bits_source; // @[Xbar.scala:156:69, :159:18]
wire in_xbar_portsDIO_filtered_0_bits_sink; // @[Xbar.scala:352:24]
assign in_xbar_anonIn_d_bits_sink = in_xbar_in_0_d_bits_sink; // @[Xbar.scala:159:18]
wire in_xbar_portsDIO_filtered_0_bits_denied; // @[Xbar.scala:352:24]
assign in_xbar_anonIn_d_bits_denied = in_xbar_in_0_d_bits_denied; // @[Xbar.scala:159:18]
wire [63:0] in_xbar_portsDIO_filtered_0_bits_data; // @[Xbar.scala:352:24]
assign in_xbar_anonIn_d_bits_data = in_xbar_in_0_d_bits_data; // @[Xbar.scala:159:18]
wire in_xbar_portsDIO_filtered_0_bits_corrupt; // @[Xbar.scala:352:24]
assign in_xbar_anonIn_d_bits_corrupt = in_xbar_in_0_d_bits_corrupt; // @[Xbar.scala:159:18]
assign in_xbar_in_0_a_bits_source = in_xbar__in_0_a_bits_source_T; // @[Xbar.scala:159:18, :166:55]
assign in_xbar_anonIn_d_bits_source = in_xbar__anonIn_d_bits_source_T; // @[Xbar.scala:156:69]
assign in_xbar_portsAOI_filtered_0_ready = in_xbar_out_0_a_ready; // @[Xbar.scala:216:19, :352:24]
wire in_xbar_portsAOI_filtered_0_valid; // @[Xbar.scala:352:24]
assign in_xbar_anonOut_a_valid = in_xbar_out_0_a_valid; // @[Xbar.scala:216:19]
assign in_xbar_anonOut_a_bits_opcode = in_xbar_out_0_a_bits_opcode; // @[Xbar.scala:216:19]
assign in_xbar_anonOut_a_bits_param = in_xbar_out_0_a_bits_param; // @[Xbar.scala:216:19]
assign in_xbar_anonOut_a_bits_size = in_xbar_out_0_a_bits_size; // @[Xbar.scala:216:19]
assign in_xbar_anonOut_a_bits_source = in_xbar_out_0_a_bits_source; // @[Xbar.scala:216:19]
assign in_xbar_anonOut_a_bits_address = in_xbar_out_0_a_bits_address; // @[Xbar.scala:216:19]
assign in_xbar_anonOut_a_bits_mask = in_xbar_out_0_a_bits_mask; // @[Xbar.scala:216:19]
assign in_xbar_anonOut_a_bits_data = in_xbar_out_0_a_bits_data; // @[Xbar.scala:216:19]
assign in_xbar_anonOut_a_bits_corrupt = in_xbar_out_0_a_bits_corrupt; // @[Xbar.scala:216:19]
assign in_xbar_anonOut_d_ready = in_xbar_out_0_d_ready; // @[Xbar.scala:216:19]
wire in_xbar__portsDIO_filtered_0_valid_T_1 = in_xbar_out_0_d_valid; // @[Xbar.scala:216:19, :355:40]
assign in_xbar_portsDIO_filtered_0_bits_opcode = in_xbar_out_0_d_bits_opcode; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_portsDIO_filtered_0_bits_param = in_xbar_out_0_d_bits_param; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_portsDIO_filtered_0_bits_size = in_xbar_out_0_d_bits_size; // @[Xbar.scala:216:19, :352:24]
wire [7:0] in_xbar__requestDOI_uncommonBits_T = in_xbar_out_0_d_bits_source; // @[Xbar.scala:216:19]
assign in_xbar_portsDIO_filtered_0_bits_source = in_xbar_out_0_d_bits_source; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_portsDIO_filtered_0_bits_sink = in_xbar_out_0_d_bits_sink; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_portsDIO_filtered_0_bits_denied = in_xbar_out_0_d_bits_denied; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_portsDIO_filtered_0_bits_data = in_xbar_out_0_d_bits_data; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_portsDIO_filtered_0_bits_corrupt = in_xbar_out_0_d_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_out_0_d_bits_sink = in_xbar__out_0_d_bits_sink_T; // @[Xbar.scala:216:19, :251:53]
wire [29:0] in_xbar__requestAIO_T_1 = {1'h0, in_xbar__requestAIO_T}; // @[Parameters.scala:137:{31,41}]
wire [7:0] in_xbar_requestDOI_uncommonBits = in_xbar__requestDOI_uncommonBits_T; // @[Parameters.scala:52:{29,56}]
wire [12:0] in_xbar__beatsAI_decode_T = 13'h3F << in_xbar_in_0_a_bits_size; // @[package.scala:243:71]
wire [5:0] in_xbar__beatsAI_decode_T_1 = in_xbar__beatsAI_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] in_xbar__beatsAI_decode_T_2 = ~in_xbar__beatsAI_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] in_xbar_beatsAI_decode = in_xbar__beatsAI_decode_T_2[5:3]; // @[package.scala:243:46]
wire in_xbar__beatsAI_opdata_T = in_xbar_in_0_a_bits_opcode[2]; // @[Xbar.scala:159:18]
wire in_xbar_beatsAI_opdata = ~in_xbar__beatsAI_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] in_xbar_beatsAI_0 = in_xbar_beatsAI_opdata ? in_xbar_beatsAI_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
wire [12:0] in_xbar__beatsDO_decode_T = 13'h3F << in_xbar_out_0_d_bits_size; // @[package.scala:243:71]
wire [5:0] in_xbar__beatsDO_decode_T_1 = in_xbar__beatsDO_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] in_xbar__beatsDO_decode_T_2 = ~in_xbar__beatsDO_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] in_xbar_beatsDO_decode = in_xbar__beatsDO_decode_T_2[5:3]; // @[package.scala:243:46]
wire in_xbar_beatsDO_opdata = in_xbar_out_0_d_bits_opcode[0]; // @[Xbar.scala:216:19]
wire [2:0] in_xbar_beatsDO_0 = in_xbar_beatsDO_opdata ? in_xbar_beatsDO_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
assign in_xbar_in_0_a_ready = in_xbar_portsAOI_filtered_0_ready; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_out_0_a_valid = in_xbar_portsAOI_filtered_0_valid; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_out_0_a_bits_opcode = in_xbar_portsAOI_filtered_0_bits_opcode; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_out_0_a_bits_param = in_xbar_portsAOI_filtered_0_bits_param; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_out_0_a_bits_size = in_xbar_portsAOI_filtered_0_bits_size; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_out_0_a_bits_source = in_xbar_portsAOI_filtered_0_bits_source; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_out_0_a_bits_address = in_xbar_portsAOI_filtered_0_bits_address; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_out_0_a_bits_mask = in_xbar_portsAOI_filtered_0_bits_mask; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_out_0_a_bits_data = in_xbar_portsAOI_filtered_0_bits_data; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_out_0_a_bits_corrupt = in_xbar_portsAOI_filtered_0_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_portsAOI_filtered_0_valid = in_xbar__portsAOI_filtered_0_valid_T_1; // @[Xbar.scala:352:24, :355:40]
assign in_xbar_out_0_d_ready = in_xbar_portsDIO_filtered_0_ready; // @[Xbar.scala:216:19, :352:24]
assign in_xbar_in_0_d_valid = in_xbar_portsDIO_filtered_0_valid; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_in_0_d_bits_opcode = in_xbar_portsDIO_filtered_0_bits_opcode; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_in_0_d_bits_param = in_xbar_portsDIO_filtered_0_bits_param; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_in_0_d_bits_size = in_xbar_portsDIO_filtered_0_bits_size; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_in_0_d_bits_source = in_xbar_portsDIO_filtered_0_bits_source; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_in_0_d_bits_sink = in_xbar_portsDIO_filtered_0_bits_sink; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_in_0_d_bits_denied = in_xbar_portsDIO_filtered_0_bits_denied; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_in_0_d_bits_data = in_xbar_portsDIO_filtered_0_bits_data; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_in_0_d_bits_corrupt = in_xbar_portsDIO_filtered_0_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
assign in_xbar_portsDIO_filtered_0_valid = in_xbar__portsDIO_filtered_0_valid_T_1; // @[Xbar.scala:352:24, :355:40]
assign childClock = clockSinkNodeIn_clock; // @[MixedNode.scala:551:17]
assign childReset = clockSinkNodeIn_reset; // @[MixedNode.scala:551:17]
assign bus_xingIn_a_ready = bus_xingOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_valid = bus_xingOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_opcode = bus_xingOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_param = bus_xingOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_size = bus_xingOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_source = bus_xingOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_sink = bus_xingOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_denied = bus_xingOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingIn_d_bits_data = bus_xingOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
wire [2:0] bus_xingOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] bus_xingOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] bus_xingOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [7:0] bus_xingOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [28:0] bus_xingOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] bus_xingOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] bus_xingOut_a_bits_data; // @[MixedNode.scala:542:17]
wire bus_xingOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
assign bus_xingIn_d_bits_corrupt = bus_xingOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
wire bus_xingOut_a_valid; // @[MixedNode.scala:542:17]
wire bus_xingOut_d_ready; // @[MixedNode.scala:542:17]
assign auto_bus_xing_in_a_ready_0 = bus_xingIn_a_ready; // @[ClockDomain.scala:14:9]
assign bus_xingOut_a_valid = bus_xingIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_opcode = bus_xingIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_param = bus_xingIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_size = bus_xingIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_source = bus_xingIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_address = bus_xingIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_mask = bus_xingIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_data = bus_xingIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_a_bits_corrupt = bus_xingIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign bus_xingOut_d_ready = bus_xingIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign auto_bus_xing_in_d_valid_0 = bus_xingIn_d_valid; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_opcode_0 = bus_xingIn_d_bits_opcode; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_param_0 = bus_xingIn_d_bits_param; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_size_0 = bus_xingIn_d_bits_size; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_source_0 = bus_xingIn_d_bits_source; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_sink_0 = bus_xingIn_d_bits_sink; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_denied_0 = bus_xingIn_d_bits_denied; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_data_0 = bus_xingIn_d_bits_data; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_corrupt_0 = bus_xingIn_d_bits_corrupt; // @[ClockDomain.scala:14:9]
wire in_ready; // @[RegisterRouter.scala:73:18]
wire in_valid = nodeIn_a_valid; // @[RegisterRouter.scala:73:18]
wire [1:0] in_bits_extra_tlrr_extra_size = nodeIn_a_bits_size; // @[RegisterRouter.scala:73:18]
wire [11:0] in_bits_extra_tlrr_extra_source = nodeIn_a_bits_source; // @[RegisterRouter.scala:73:18]
wire [7:0] in_bits_mask = nodeIn_a_bits_mask; // @[RegisterRouter.scala:73:18]
wire [63:0] in_bits_data = nodeIn_a_bits_data; // @[RegisterRouter.scala:73:18]
wire out_ready = nodeIn_d_ready; // @[RegisterRouter.scala:87:24]
wire out_valid; // @[RegisterRouter.scala:87:24]
wire [1:0] nodeIn_d_bits_d_size; // @[Edges.scala:792:17]
wire [11:0] nodeIn_d_bits_d_source; // @[Edges.scala:792:17]
wire [63:0] out_bits_data; // @[RegisterRouter.scala:87:24]
wire [2:0] nodeIn_a_bits_opcode; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_a_bits_param; // @[MixedNode.scala:551:17]
wire [12:0] nodeIn_a_bits_address; // @[MixedNode.scala:551:17]
wire nodeIn_a_bits_corrupt; // @[MixedNode.scala:551:17]
wire nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [11:0] nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire nodeIn_d_valid; // @[MixedNode.scala:551:17]
reg [63:0] bootAddrReg; // @[BootAddrReg.scala:27:34]
wire [63:0] pad = bootAddrReg; // @[BootAddrReg.scala:27:34]
wire [7:0] _oldBytes_T = pad[7:0]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_0 = _oldBytes_T; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_1 = pad[15:8]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1 = _oldBytes_T_1; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_2 = pad[23:16]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_2 = _oldBytes_T_2; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_3 = pad[31:24]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_3 = _oldBytes_T_3; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_4 = pad[39:32]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_4 = _oldBytes_T_4; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_5 = pad[47:40]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_5 = _oldBytes_T_5; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_6 = pad[55:48]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_6 = _oldBytes_T_6; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_7 = pad[63:56]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_7 = _oldBytes_T_7; // @[RegField.scala:151:{47,57}]
wire [7:0] _out_T_7 = oldBytes_0; // @[RegisterRouter.scala:87:24]
wire [7:0] newBytes_0; // @[RegField.scala:152:31]
wire [7:0] newBytes_1; // @[RegField.scala:152:31]
wire [7:0] newBytes_2; // @[RegField.scala:152:31]
wire [7:0] newBytes_3; // @[RegField.scala:152:31]
wire [7:0] newBytes_4; // @[RegField.scala:152:31]
wire [7:0] newBytes_5; // @[RegField.scala:152:31]
wire [7:0] newBytes_6; // @[RegField.scala:152:31]
wire [7:0] newBytes_7; // @[RegField.scala:152:31]
wire out_f_woready; // @[RegisterRouter.scala:87:24]
wire out_f_woready_1; // @[RegisterRouter.scala:87:24]
wire out_f_woready_2; // @[RegisterRouter.scala:87:24]
wire out_f_woready_3; // @[RegisterRouter.scala:87:24]
wire out_f_woready_4; // @[RegisterRouter.scala:87:24]
wire out_f_woready_5; // @[RegisterRouter.scala:87:24]
wire out_f_woready_6; // @[RegisterRouter.scala:87:24]
wire out_f_woready_7; // @[RegisterRouter.scala:87:24]
wire valids_0; // @[RegField.scala:153:29]
wire valids_1; // @[RegField.scala:153:29]
wire valids_2; // @[RegField.scala:153:29]
wire valids_3; // @[RegField.scala:153:29]
wire valids_4; // @[RegField.scala:153:29]
wire valids_5; // @[RegField.scala:153:29]
wire valids_6; // @[RegField.scala:153:29]
wire valids_7; // @[RegField.scala:153:29]
wire [15:0] bootAddrReg_lo_lo = {newBytes_1, newBytes_0}; // @[RegField.scala:152:31, :154:52]
wire [15:0] bootAddrReg_lo_hi = {newBytes_3, newBytes_2}; // @[RegField.scala:152:31, :154:52]
wire [31:0] bootAddrReg_lo = {bootAddrReg_lo_hi, bootAddrReg_lo_lo}; // @[RegField.scala:154:52]
wire [15:0] bootAddrReg_hi_lo = {newBytes_5, newBytes_4}; // @[RegField.scala:152:31, :154:52]
wire [15:0] bootAddrReg_hi_hi = {newBytes_7, newBytes_6}; // @[RegField.scala:152:31, :154:52]
wire [31:0] bootAddrReg_hi = {bootAddrReg_hi_hi, bootAddrReg_hi_lo}; // @[RegField.scala:154:52]
wire [63:0] _bootAddrReg_T = {bootAddrReg_hi, bootAddrReg_lo}; // @[RegField.scala:154:52]
wire _out_in_ready_T; // @[RegisterRouter.scala:87:24]
assign nodeIn_a_ready = in_ready; // @[RegisterRouter.scala:73:18]
wire _in_bits_read_T; // @[RegisterRouter.scala:74:36]
wire _out_front_valid_T = in_valid; // @[RegisterRouter.scala:73:18, :87:24]
wire out_front_bits_read = in_bits_read; // @[RegisterRouter.scala:73:18, :87:24]
wire [8:0] out_front_bits_index = in_bits_index; // @[RegisterRouter.scala:73:18, :87:24]
wire [63:0] out_front_bits_data = in_bits_data; // @[RegisterRouter.scala:73:18, :87:24]
wire [7:0] out_front_bits_mask = in_bits_mask; // @[RegisterRouter.scala:73:18, :87:24]
wire [11:0] out_front_bits_extra_tlrr_extra_source = in_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:73:18, :87:24]
wire [1:0] out_front_bits_extra_tlrr_extra_size = in_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:73:18, :87:24]
assign _in_bits_read_T = nodeIn_a_bits_opcode == 3'h4; // @[RegisterRouter.scala:74:36]
assign in_bits_read = _in_bits_read_T; // @[RegisterRouter.scala:73:18, :74:36]
wire [9:0] _in_bits_index_T = nodeIn_a_bits_address[12:3]; // @[Edges.scala:192:34]
assign in_bits_index = _in_bits_index_T[8:0]; // @[RegisterRouter.scala:73:18, :75:19]
wire _out_front_ready_T = out_ready; // @[RegisterRouter.scala:87:24]
wire _out_out_valid_T; // @[RegisterRouter.scala:87:24]
assign nodeIn_d_valid = out_valid; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_out_bits_data_T_4; // @[RegisterRouter.scala:87:24]
wire _nodeIn_d_bits_opcode_T = out_bits_read; // @[RegisterRouter.scala:87:24, :105:25]
assign nodeIn_d_bits_data = out_bits_data; // @[RegisterRouter.scala:87:24]
assign nodeIn_d_bits_d_source = out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24]
wire [1:0] out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24]
assign nodeIn_d_bits_d_size = out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24]
assign _out_in_ready_T = out_front_ready; // @[RegisterRouter.scala:87:24]
assign _out_out_valid_T = out_front_valid; // @[RegisterRouter.scala:87:24]
assign out_bits_read = out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire [8:0] out_findex = out_front_bits_index; // @[RegisterRouter.scala:87:24]
wire [8:0] out_bindex = out_front_bits_index; // @[RegisterRouter.scala:87:24]
assign out_bits_extra_tlrr_extra_source = out_front_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24]
assign out_bits_extra_tlrr_extra_size = out_front_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24]
wire _out_T = out_findex == 9'h0; // @[RegisterRouter.scala:87:24]
wire _out_T_1 = out_bindex == 9'h0; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_out_bits_data_WIRE_0 = _out_T_1; // @[MuxLiteral.scala:49:48]
wire out_rivalid_0; // @[RegisterRouter.scala:87:24]
wire out_rivalid_1; // @[RegisterRouter.scala:87:24]
wire out_rivalid_2; // @[RegisterRouter.scala:87:24]
wire out_rivalid_3; // @[RegisterRouter.scala:87:24]
wire out_rivalid_4; // @[RegisterRouter.scala:87:24]
wire out_rivalid_5; // @[RegisterRouter.scala:87:24]
wire out_rivalid_6; // @[RegisterRouter.scala:87:24]
wire out_rivalid_7; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
wire out_wivalid_0; // @[RegisterRouter.scala:87:24]
wire out_wivalid_1; // @[RegisterRouter.scala:87:24]
wire out_wivalid_2; // @[RegisterRouter.scala:87:24]
wire out_wivalid_3; // @[RegisterRouter.scala:87:24]
wire out_wivalid_4; // @[RegisterRouter.scala:87:24]
wire out_wivalid_5; // @[RegisterRouter.scala:87:24]
wire out_wivalid_6; // @[RegisterRouter.scala:87:24]
wire out_wivalid_7; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
wire out_roready_0; // @[RegisterRouter.scala:87:24]
wire out_roready_1; // @[RegisterRouter.scala:87:24]
wire out_roready_2; // @[RegisterRouter.scala:87:24]
wire out_roready_3; // @[RegisterRouter.scala:87:24]
wire out_roready_4; // @[RegisterRouter.scala:87:24]
wire out_roready_5; // @[RegisterRouter.scala:87:24]
wire out_roready_6; // @[RegisterRouter.scala:87:24]
wire out_roready_7; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
wire out_woready_0; // @[RegisterRouter.scala:87:24]
wire out_woready_1; // @[RegisterRouter.scala:87:24]
wire out_woready_2; // @[RegisterRouter.scala:87:24]
wire out_woready_3; // @[RegisterRouter.scala:87:24]
wire out_woready_4; // @[RegisterRouter.scala:87:24]
wire out_woready_5; // @[RegisterRouter.scala:87:24]
wire out_woready_6; // @[RegisterRouter.scala:87:24]
wire out_woready_7; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T = out_front_bits_mask[0]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T = out_front_bits_mask[0]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_1 = out_front_bits_mask[1]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_1 = out_front_bits_mask[1]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_2 = out_front_bits_mask[2]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_2 = out_front_bits_mask[2]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_3 = out_front_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_3 = out_front_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_4 = out_front_bits_mask[4]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_4 = out_front_bits_mask[4]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_5 = out_front_bits_mask[5]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_5 = out_front_bits_mask[5]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_6 = out_front_bits_mask[6]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_6 = out_front_bits_mask[6]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_7 = out_front_bits_mask[7]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_7 = out_front_bits_mask[7]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_8 = {8{_out_frontMask_T}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_9 = {8{_out_frontMask_T_1}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_10 = {8{_out_frontMask_T_2}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_11 = {8{_out_frontMask_T_3}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_12 = {8{_out_frontMask_T_4}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_13 = {8{_out_frontMask_T_5}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_14 = {8{_out_frontMask_T_6}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_15 = {8{_out_frontMask_T_7}}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_lo_lo = {_out_frontMask_T_9, _out_frontMask_T_8}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_lo_hi = {_out_frontMask_T_11, _out_frontMask_T_10}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_frontMask_lo = {out_frontMask_lo_hi, out_frontMask_lo_lo}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_hi_lo = {_out_frontMask_T_13, _out_frontMask_T_12}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_hi_hi = {_out_frontMask_T_15, _out_frontMask_T_14}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_frontMask_hi = {out_frontMask_hi_hi, out_frontMask_hi_lo}; // @[RegisterRouter.scala:87:24]
wire [63:0] out_frontMask = {out_frontMask_hi, out_frontMask_lo}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_8 = {8{_out_backMask_T}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_9 = {8{_out_backMask_T_1}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_10 = {8{_out_backMask_T_2}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_11 = {8{_out_backMask_T_3}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_12 = {8{_out_backMask_T_4}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_13 = {8{_out_backMask_T_5}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_14 = {8{_out_backMask_T_6}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_15 = {8{_out_backMask_T_7}}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_lo_lo = {_out_backMask_T_9, _out_backMask_T_8}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_lo_hi = {_out_backMask_T_11, _out_backMask_T_10}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_backMask_lo = {out_backMask_lo_hi, out_backMask_lo_lo}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_hi_lo = {_out_backMask_T_13, _out_backMask_T_12}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_hi_hi = {_out_backMask_T_15, _out_backMask_T_14}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_backMask_hi = {out_backMask_hi_hi, out_backMask_hi_lo}; // @[RegisterRouter.scala:87:24]
wire [63:0] out_backMask = {out_backMask_hi, out_backMask_lo}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24]
wire out_rimask = |_out_rimask_T; // @[RegisterRouter.scala:87:24]
wire out_wimask = &_out_wimask_T; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T = out_backMask[7:0]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T = out_backMask[7:0]; // @[RegisterRouter.scala:87:24]
wire out_romask = |_out_romask_T; // @[RegisterRouter.scala:87:24]
wire out_womask = &_out_womask_T; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid = out_rivalid_0 & out_rimask; // @[RegisterRouter.scala:87:24]
wire out_f_roready = out_roready_0 & out_romask; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid = out_wivalid_0 & out_wimask; // @[RegisterRouter.scala:87:24]
assign out_f_woready = out_woready_0 & out_womask; // @[RegisterRouter.scala:87:24]
assign valids_0 = out_f_woready; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_2 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24]
assign newBytes_0 = out_f_woready ? _out_T_2 : oldBytes_0; // @[RegisterRouter.scala:87:24]
wire _out_T_3 = ~out_rimask; // @[RegisterRouter.scala:87:24]
wire _out_T_4 = ~out_wimask; // @[RegisterRouter.scala:87:24]
wire _out_T_5 = ~out_romask; // @[RegisterRouter.scala:87:24]
wire _out_T_6 = ~out_womask; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_8 = _out_T_7; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_prepend_T = _out_T_8; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_1 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_1 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24]
wire out_rimask_1 = |_out_rimask_T_1; // @[RegisterRouter.scala:87:24]
wire out_wimask_1 = &_out_wimask_T_1; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_1 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_1 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24]
wire out_romask_1 = |_out_romask_T_1; // @[RegisterRouter.scala:87:24]
wire out_womask_1 = &_out_womask_T_1; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_1 = out_rivalid_1 & out_rimask_1; // @[RegisterRouter.scala:87:24]
wire out_f_roready_1 = out_roready_1 & out_romask_1; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_1 = out_wivalid_1 & out_wimask_1; // @[RegisterRouter.scala:87:24]
assign out_f_woready_1 = out_woready_1 & out_womask_1; // @[RegisterRouter.scala:87:24]
assign valids_1 = out_f_woready_1; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_9 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24]
assign newBytes_1 = out_f_woready_1 ? _out_T_9 : oldBytes_1; // @[RegisterRouter.scala:87:24]
wire _out_T_10 = ~out_rimask_1; // @[RegisterRouter.scala:87:24]
wire _out_T_11 = ~out_wimask_1; // @[RegisterRouter.scala:87:24]
wire _out_T_12 = ~out_romask_1; // @[RegisterRouter.scala:87:24]
wire _out_T_13 = ~out_womask_1; // @[RegisterRouter.scala:87:24]
wire [15:0] out_prepend = {oldBytes_1, _out_prepend_T}; // @[RegisterRouter.scala:87:24]
wire [15:0] _out_T_14 = out_prepend; // @[RegisterRouter.scala:87:24]
wire [15:0] _out_T_15 = _out_T_14; // @[RegisterRouter.scala:87:24]
wire [15:0] _out_prepend_T_1 = _out_T_15; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_2 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_2 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24]
wire out_rimask_2 = |_out_rimask_T_2; // @[RegisterRouter.scala:87:24]
wire out_wimask_2 = &_out_wimask_T_2; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_2 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_2 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24]
wire out_romask_2 = |_out_romask_T_2; // @[RegisterRouter.scala:87:24]
wire out_womask_2 = &_out_womask_T_2; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_2 = out_rivalid_2 & out_rimask_2; // @[RegisterRouter.scala:87:24]
wire out_f_roready_2 = out_roready_2 & out_romask_2; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_2 = out_wivalid_2 & out_wimask_2; // @[RegisterRouter.scala:87:24]
assign out_f_woready_2 = out_woready_2 & out_womask_2; // @[RegisterRouter.scala:87:24]
assign valids_2 = out_f_woready_2; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_16 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24]
assign newBytes_2 = out_f_woready_2 ? _out_T_16 : oldBytes_2; // @[RegisterRouter.scala:87:24]
wire _out_T_17 = ~out_rimask_2; // @[RegisterRouter.scala:87:24]
wire _out_T_18 = ~out_wimask_2; // @[RegisterRouter.scala:87:24]
wire _out_T_19 = ~out_romask_2; // @[RegisterRouter.scala:87:24]
wire _out_T_20 = ~out_womask_2; // @[RegisterRouter.scala:87:24]
wire [23:0] out_prepend_1 = {oldBytes_2, _out_prepend_T_1}; // @[RegisterRouter.scala:87:24]
wire [23:0] _out_T_21 = out_prepend_1; // @[RegisterRouter.scala:87:24]
wire [23:0] _out_T_22 = _out_T_21; // @[RegisterRouter.scala:87:24]
wire [23:0] _out_prepend_T_2 = _out_T_22; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_3 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_3 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24]
wire out_rimask_3 = |_out_rimask_T_3; // @[RegisterRouter.scala:87:24]
wire out_wimask_3 = &_out_wimask_T_3; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_3 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_3 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24]
wire out_romask_3 = |_out_romask_T_3; // @[RegisterRouter.scala:87:24]
wire out_womask_3 = &_out_womask_T_3; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_3 = out_rivalid_3 & out_rimask_3; // @[RegisterRouter.scala:87:24]
wire out_f_roready_3 = out_roready_3 & out_romask_3; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_3 = out_wivalid_3 & out_wimask_3; // @[RegisterRouter.scala:87:24]
assign out_f_woready_3 = out_woready_3 & out_womask_3; // @[RegisterRouter.scala:87:24]
assign valids_3 = out_f_woready_3; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_23 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24]
assign newBytes_3 = out_f_woready_3 ? _out_T_23 : oldBytes_3; // @[RegisterRouter.scala:87:24]
wire _out_T_24 = ~out_rimask_3; // @[RegisterRouter.scala:87:24]
wire _out_T_25 = ~out_wimask_3; // @[RegisterRouter.scala:87:24]
wire _out_T_26 = ~out_romask_3; // @[RegisterRouter.scala:87:24]
wire _out_T_27 = ~out_womask_3; // @[RegisterRouter.scala:87:24]
wire [31:0] out_prepend_2 = {oldBytes_3, _out_prepend_T_2}; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_T_28 = out_prepend_2; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_T_29 = _out_T_28; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_prepend_T_3 = _out_T_29; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_4 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_4 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24]
wire out_rimask_4 = |_out_rimask_T_4; // @[RegisterRouter.scala:87:24]
wire out_wimask_4 = &_out_wimask_T_4; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_4 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_4 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24]
wire out_romask_4 = |_out_romask_T_4; // @[RegisterRouter.scala:87:24]
wire out_womask_4 = &_out_womask_T_4; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_4 = out_rivalid_4 & out_rimask_4; // @[RegisterRouter.scala:87:24]
wire out_f_roready_4 = out_roready_4 & out_romask_4; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_4 = out_wivalid_4 & out_wimask_4; // @[RegisterRouter.scala:87:24]
assign out_f_woready_4 = out_woready_4 & out_womask_4; // @[RegisterRouter.scala:87:24]
assign valids_4 = out_f_woready_4; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_30 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24]
assign newBytes_4 = out_f_woready_4 ? _out_T_30 : oldBytes_4; // @[RegisterRouter.scala:87:24]
wire _out_T_31 = ~out_rimask_4; // @[RegisterRouter.scala:87:24]
wire _out_T_32 = ~out_wimask_4; // @[RegisterRouter.scala:87:24]
wire _out_T_33 = ~out_romask_4; // @[RegisterRouter.scala:87:24]
wire _out_T_34 = ~out_womask_4; // @[RegisterRouter.scala:87:24]
wire [39:0] out_prepend_3 = {oldBytes_4, _out_prepend_T_3}; // @[RegisterRouter.scala:87:24]
wire [39:0] _out_T_35 = out_prepend_3; // @[RegisterRouter.scala:87:24]
wire [39:0] _out_T_36 = _out_T_35; // @[RegisterRouter.scala:87:24]
wire [39:0] _out_prepend_T_4 = _out_T_36; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_5 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_5 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24]
wire out_rimask_5 = |_out_rimask_T_5; // @[RegisterRouter.scala:87:24]
wire out_wimask_5 = &_out_wimask_T_5; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_5 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_5 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24]
wire out_romask_5 = |_out_romask_T_5; // @[RegisterRouter.scala:87:24]
wire out_womask_5 = &_out_womask_T_5; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_5 = out_rivalid_5 & out_rimask_5; // @[RegisterRouter.scala:87:24]
wire out_f_roready_5 = out_roready_5 & out_romask_5; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_5 = out_wivalid_5 & out_wimask_5; // @[RegisterRouter.scala:87:24]
assign out_f_woready_5 = out_woready_5 & out_womask_5; // @[RegisterRouter.scala:87:24]
assign valids_5 = out_f_woready_5; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_37 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24]
assign newBytes_5 = out_f_woready_5 ? _out_T_37 : oldBytes_5; // @[RegisterRouter.scala:87:24]
wire _out_T_38 = ~out_rimask_5; // @[RegisterRouter.scala:87:24]
wire _out_T_39 = ~out_wimask_5; // @[RegisterRouter.scala:87:24]
wire _out_T_40 = ~out_romask_5; // @[RegisterRouter.scala:87:24]
wire _out_T_41 = ~out_womask_5; // @[RegisterRouter.scala:87:24]
wire [47:0] out_prepend_4 = {oldBytes_5, _out_prepend_T_4}; // @[RegisterRouter.scala:87:24]
wire [47:0] _out_T_42 = out_prepend_4; // @[RegisterRouter.scala:87:24]
wire [47:0] _out_T_43 = _out_T_42; // @[RegisterRouter.scala:87:24]
wire [47:0] _out_prepend_T_5 = _out_T_43; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_6 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_6 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24]
wire out_rimask_6 = |_out_rimask_T_6; // @[RegisterRouter.scala:87:24]
wire out_wimask_6 = &_out_wimask_T_6; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_6 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_6 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24]
wire out_romask_6 = |_out_romask_T_6; // @[RegisterRouter.scala:87:24]
wire out_womask_6 = &_out_womask_T_6; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_6 = out_rivalid_6 & out_rimask_6; // @[RegisterRouter.scala:87:24]
wire out_f_roready_6 = out_roready_6 & out_romask_6; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_6 = out_wivalid_6 & out_wimask_6; // @[RegisterRouter.scala:87:24]
assign out_f_woready_6 = out_woready_6 & out_womask_6; // @[RegisterRouter.scala:87:24]
assign valids_6 = out_f_woready_6; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_44 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24]
assign newBytes_6 = out_f_woready_6 ? _out_T_44 : oldBytes_6; // @[RegisterRouter.scala:87:24]
wire _out_T_45 = ~out_rimask_6; // @[RegisterRouter.scala:87:24]
wire _out_T_46 = ~out_wimask_6; // @[RegisterRouter.scala:87:24]
wire _out_T_47 = ~out_romask_6; // @[RegisterRouter.scala:87:24]
wire _out_T_48 = ~out_womask_6; // @[RegisterRouter.scala:87:24]
wire [55:0] out_prepend_5 = {oldBytes_6, _out_prepend_T_5}; // @[RegisterRouter.scala:87:24]
wire [55:0] _out_T_49 = out_prepend_5; // @[RegisterRouter.scala:87:24]
wire [55:0] _out_T_50 = _out_T_49; // @[RegisterRouter.scala:87:24]
wire [55:0] _out_prepend_T_6 = _out_T_50; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_7 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_7 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24]
wire out_rimask_7 = |_out_rimask_T_7; // @[RegisterRouter.scala:87:24]
wire out_wimask_7 = &_out_wimask_T_7; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_7 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_7 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24]
wire out_romask_7 = |_out_romask_T_7; // @[RegisterRouter.scala:87:24]
wire out_womask_7 = &_out_womask_T_7; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_7 = out_rivalid_7 & out_rimask_7; // @[RegisterRouter.scala:87:24]
wire out_f_roready_7 = out_roready_7 & out_romask_7; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_7 = out_wivalid_7 & out_wimask_7; // @[RegisterRouter.scala:87:24]
assign out_f_woready_7 = out_woready_7 & out_womask_7; // @[RegisterRouter.scala:87:24]
assign valids_7 = out_f_woready_7; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_51 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24]
assign newBytes_7 = out_f_woready_7 ? _out_T_51 : oldBytes_7; // @[RegisterRouter.scala:87:24]
wire _out_T_52 = ~out_rimask_7; // @[RegisterRouter.scala:87:24]
wire _out_T_53 = ~out_wimask_7; // @[RegisterRouter.scala:87:24]
wire _out_T_54 = ~out_romask_7; // @[RegisterRouter.scala:87:24]
wire _out_T_55 = ~out_womask_7; // @[RegisterRouter.scala:87:24]
wire [63:0] out_prepend_6 = {oldBytes_7, _out_prepend_T_6}; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_T_56 = out_prepend_6; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_T_57 = _out_T_56; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_out_bits_data_WIRE_1_0 = _out_T_57; // @[MuxLiteral.scala:49:48]
wire _GEN = in_valid & out_front_ready; // @[RegisterRouter.scala:73:18, :87:24]
wire _out_rifireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_rifireMux_T = _GEN; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_wifireMux_T = _GEN; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_1 = _out_rifireMux_T & out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_2 = _out_rifireMux_T_1; // @[RegisterRouter.scala:87:24]
assign _out_rifireMux_T_3 = _out_rifireMux_T_2 & _out_T; // @[RegisterRouter.scala:87:24]
assign out_rivalid_0 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_rivalid_1 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_rivalid_2 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_rivalid_3 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_rivalid_4 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_rivalid_5 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_rivalid_6 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_rivalid_7 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_4 = ~_out_T; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_1 = ~out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_2 = _out_wifireMux_T & _out_wifireMux_T_1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_3 = _out_wifireMux_T_2; // @[RegisterRouter.scala:87:24]
assign _out_wifireMux_T_4 = _out_wifireMux_T_3 & _out_T; // @[RegisterRouter.scala:87:24]
assign out_wivalid_0 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_wivalid_1 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_wivalid_2 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_wivalid_3 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_wivalid_4 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_wivalid_5 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_wivalid_6 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_wivalid_7 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_5 = ~_out_T; // @[RegisterRouter.scala:87:24]
wire _GEN_0 = out_front_valid & out_ready; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_rofireMux_T = _GEN_0; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_wofireMux_T = _GEN_0; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_1 = _out_rofireMux_T & out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_2 = _out_rofireMux_T_1; // @[RegisterRouter.scala:87:24]
assign _out_rofireMux_T_3 = _out_rofireMux_T_2 & _out_T_1; // @[RegisterRouter.scala:87:24]
assign out_roready_0 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_roready_1 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_roready_2 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_roready_3 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_roready_4 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_roready_5 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_roready_6 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_roready_7 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_4 = ~_out_T_1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_1 = ~out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_2 = _out_wofireMux_T & _out_wofireMux_T_1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_3 = _out_wofireMux_T_2; // @[RegisterRouter.scala:87:24]
assign _out_wofireMux_T_4 = _out_wofireMux_T_3 & _out_T_1; // @[RegisterRouter.scala:87:24]
assign out_woready_0 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_woready_1 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_woready_2 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_woready_3 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_woready_4 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_woready_5 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_woready_6 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_woready_7 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_5 = ~_out_T_1; // @[RegisterRouter.scala:87:24]
assign in_ready = _out_in_ready_T; // @[RegisterRouter.scala:73:18, :87:24]
assign out_front_valid = _out_front_valid_T; // @[RegisterRouter.scala:87:24]
assign out_front_ready = _out_front_ready_T; // @[RegisterRouter.scala:87:24]
assign out_valid = _out_out_valid_T; // @[RegisterRouter.scala:87:24]
wire _out_out_bits_data_T_1 = _out_out_bits_data_WIRE_0; // @[MuxLiteral.scala:49:{10,48}]
wire [63:0] _out_out_bits_data_T_3 = _out_out_bits_data_WIRE_1_0; // @[MuxLiteral.scala:49:{10,48}]
assign _out_out_bits_data_T_4 = _out_out_bits_data_T_1 ? _out_out_bits_data_T_3 : 64'h0; // @[MuxLiteral.scala:49:10]
assign out_bits_data = _out_out_bits_data_T_4; // @[RegisterRouter.scala:87:24]
assign nodeIn_d_bits_size = nodeIn_d_bits_d_size; // @[Edges.scala:792:17]
assign nodeIn_d_bits_source = nodeIn_d_bits_d_source; // @[Edges.scala:792:17]
assign nodeIn_d_bits_opcode = {2'h0, _nodeIn_d_bits_opcode_T}; // @[RegisterRouter.scala:105:{19,25}]
wire fixer__T_1 = fixer_a_first & fixer__a_first_T; // @[Decoupled.scala:51:35]
wire fixer__T_3 = fixer_d_first & fixer__T_2; // @[Decoupled.scala:51:35]
always @(posedge childClock) begin // @[LazyModuleImp.scala:155:31]
if (childReset) begin // @[LazyModuleImp.scala:155:31, :158:31]
fixer_a_first_counter <= 3'h0; // @[Edges.scala:229:27]
fixer_d_first_counter <= 3'h0; // @[Edges.scala:229:27]
fixer_flight_0 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_1 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_2 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_3 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_4 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_5 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_6 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_7 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_8 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_9 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_10 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_11 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_12 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_13 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_14 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_15 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_16 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_17 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_18 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_19 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_20 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_21 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_22 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_23 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_24 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_25 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_26 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_27 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_28 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_29 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_30 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_31 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_32 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_33 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_34 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_35 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_36 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_37 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_38 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_39 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_40 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_41 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_42 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_43 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_44 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_45 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_46 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_47 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_48 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_49 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_50 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_51 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_52 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_53 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_54 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_55 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_56 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_57 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_58 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_59 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_60 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_61 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_62 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_63 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_64 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_65 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_66 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_67 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_68 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_69 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_70 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_71 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_72 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_73 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_74 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_75 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_76 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_77 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_78 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_79 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_80 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_81 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_82 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_83 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_84 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_85 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_86 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_87 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_88 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_89 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_90 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_91 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_92 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_93 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_94 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_95 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_96 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_97 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_98 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_99 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_100 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_101 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_102 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_103 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_104 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_105 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_106 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_107 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_108 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_109 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_110 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_111 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_112 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_113 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_114 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_115 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_116 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_117 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_118 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_119 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_120 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_121 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_122 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_123 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_124 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_125 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_126 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_127 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_flight_128 <= 1'h0; // @[FIFOFixer.scala:79:27]
fixer_SourceIdFIFOed <= 129'h0; // @[FIFOFixer.scala:115:35]
bootAddrReg <= 64'h80000000; // @[BootAddrReg.scala:27:34]
end
else begin // @[LazyModuleImp.scala:155:31]
if (fixer__a_first_T) // @[Decoupled.scala:51:35]
fixer_a_first_counter <= fixer__a_first_counter_T; // @[Edges.scala:229:27, :236:21]
if (fixer__d_first_T) // @[Decoupled.scala:51:35]
fixer_d_first_counter <= fixer__d_first_counter_T; // @[Edges.scala:229:27, :236:21]
fixer_flight_0 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h0) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h0 | fixer_flight_0); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_1 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h1) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h1 | fixer_flight_1); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_2 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h2) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h2 | fixer_flight_2); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_3 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h3) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h3 | fixer_flight_3); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_4 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h4) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h4 | fixer_flight_4); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_5 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h5) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h5 | fixer_flight_5); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_6 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h6) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h6 | fixer_flight_6); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_7 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h7) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h7 | fixer_flight_7); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_8 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h8) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h8 | fixer_flight_8); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_9 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h9) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h9 | fixer_flight_9); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_10 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'hA) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'hA | fixer_flight_10); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_11 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'hB) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'hB | fixer_flight_11); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_12 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'hC) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'hC | fixer_flight_12); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_13 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'hD) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'hD | fixer_flight_13); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_14 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'hE) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'hE | fixer_flight_14); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_15 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'hF) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'hF | fixer_flight_15); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_16 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h10) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h10 | fixer_flight_16); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_17 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h11) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h11 | fixer_flight_17); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_18 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h12) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h12 | fixer_flight_18); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_19 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h13) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h13 | fixer_flight_19); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_20 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h14) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h14 | fixer_flight_20); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_21 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h15) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h15 | fixer_flight_21); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_22 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h16) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h16 | fixer_flight_22); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_23 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h17) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h17 | fixer_flight_23); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_24 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h18) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h18 | fixer_flight_24); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_25 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h19) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h19 | fixer_flight_25); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_26 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h1A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h1A | fixer_flight_26); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_27 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h1B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h1B | fixer_flight_27); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_28 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h1C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h1C | fixer_flight_28); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_29 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h1D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h1D | fixer_flight_29); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_30 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h1E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h1E | fixer_flight_30); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_31 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h1F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h1F | fixer_flight_31); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_32 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h20) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h20 | fixer_flight_32); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_33 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h21) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h21 | fixer_flight_33); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_34 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h22) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h22 | fixer_flight_34); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_35 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h23) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h23 | fixer_flight_35); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_36 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h24) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h24 | fixer_flight_36); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_37 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h25) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h25 | fixer_flight_37); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_38 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h26) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h26 | fixer_flight_38); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_39 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h27) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h27 | fixer_flight_39); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_40 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h28) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h28 | fixer_flight_40); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_41 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h29) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h29 | fixer_flight_41); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_42 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h2A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h2A | fixer_flight_42); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_43 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h2B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h2B | fixer_flight_43); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_44 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h2C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h2C | fixer_flight_44); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_45 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h2D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h2D | fixer_flight_45); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_46 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h2E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h2E | fixer_flight_46); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_47 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h2F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h2F | fixer_flight_47); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_48 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h30) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h30 | fixer_flight_48); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_49 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h31) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h31 | fixer_flight_49); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_50 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h32) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h32 | fixer_flight_50); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_51 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h33) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h33 | fixer_flight_51); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_52 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h34) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h34 | fixer_flight_52); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_53 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h35) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h35 | fixer_flight_53); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_54 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h36) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h36 | fixer_flight_54); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_55 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h37) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h37 | fixer_flight_55); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_56 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h38) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h38 | fixer_flight_56); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_57 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h39) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h39 | fixer_flight_57); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_58 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h3A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h3A | fixer_flight_58); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_59 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h3B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h3B | fixer_flight_59); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_60 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h3C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h3C | fixer_flight_60); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_61 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h3D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h3D | fixer_flight_61); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_62 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h3E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h3E | fixer_flight_62); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_63 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h3F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h3F | fixer_flight_63); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_64 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h40) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h40 | fixer_flight_64); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_65 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h41) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h41 | fixer_flight_65); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_66 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h42) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h42 | fixer_flight_66); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_67 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h43) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h43 | fixer_flight_67); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_68 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h44) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h44 | fixer_flight_68); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_69 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h45) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h45 | fixer_flight_69); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_70 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h46) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h46 | fixer_flight_70); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_71 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h47) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h47 | fixer_flight_71); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_72 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h48) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h48 | fixer_flight_72); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_73 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h49) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h49 | fixer_flight_73); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_74 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h4A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h4A | fixer_flight_74); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_75 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h4B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h4B | fixer_flight_75); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_76 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h4C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h4C | fixer_flight_76); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_77 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h4D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h4D | fixer_flight_77); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_78 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h4E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h4E | fixer_flight_78); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_79 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h4F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h4F | fixer_flight_79); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_80 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h50) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h50 | fixer_flight_80); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_81 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h51) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h51 | fixer_flight_81); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_82 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h52) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h52 | fixer_flight_82); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_83 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h53) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h53 | fixer_flight_83); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_84 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h54) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h54 | fixer_flight_84); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_85 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h55) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h55 | fixer_flight_85); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_86 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h56) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h56 | fixer_flight_86); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_87 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h57) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h57 | fixer_flight_87); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_88 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h58) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h58 | fixer_flight_88); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_89 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h59) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h59 | fixer_flight_89); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_90 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h5A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h5A | fixer_flight_90); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_91 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h5B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h5B | fixer_flight_91); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_92 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h5C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h5C | fixer_flight_92); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_93 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h5D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h5D | fixer_flight_93); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_94 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h5E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h5E | fixer_flight_94); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_95 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h5F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h5F | fixer_flight_95); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_96 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h60) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h60 | fixer_flight_96); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_97 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h61) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h61 | fixer_flight_97); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_98 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h62) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h62 | fixer_flight_98); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_99 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h63) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h63 | fixer_flight_99); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_100 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h64) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h64 | fixer_flight_100); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_101 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h65) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h65 | fixer_flight_101); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_102 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h66) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h66 | fixer_flight_102); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_103 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h67) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h67 | fixer_flight_103); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_104 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h68) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h68 | fixer_flight_104); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_105 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h69) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h69 | fixer_flight_105); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_106 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h6A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h6A | fixer_flight_106); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_107 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h6B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h6B | fixer_flight_107); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_108 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h6C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h6C | fixer_flight_108); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_109 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h6D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h6D | fixer_flight_109); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_110 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h6E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h6E | fixer_flight_110); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_111 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h6F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h6F | fixer_flight_111); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_112 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h70) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h70 | fixer_flight_112); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_113 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h71) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h71 | fixer_flight_113); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_114 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h72) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h72 | fixer_flight_114); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_115 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h73) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h73 | fixer_flight_115); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_116 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h74) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h74 | fixer_flight_116); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_117 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h75) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h75 | fixer_flight_117); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_118 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h76) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h76 | fixer_flight_118); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_119 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h77) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h77 | fixer_flight_119); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_120 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h78) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h78 | fixer_flight_120); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_121 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h79) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h79 | fixer_flight_121); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_122 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h7A) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h7A | fixer_flight_122); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_123 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h7B) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h7B | fixer_flight_123); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_124 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h7C) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h7C | fixer_flight_124); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_125 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h7D) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h7D | fixer_flight_125); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_126 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h7E) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h7E | fixer_flight_126); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_127 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h7F) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h7F | fixer_flight_127); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_flight_128 <= ~(fixer__T_3 & fixer_anonIn_d_bits_source == 8'h80) & (fixer__T_1 & fixer_anonIn_a_bits_source == 8'h80 | fixer_flight_128); // @[FIFOFixer.scala:79:27, :80:{21,35,62}, :81:{21,35,62}]
fixer_SourceIdFIFOed <= fixer__SourceIdFIFOed_T; // @[FIFOFixer.scala:115:35, :126:40]
if (valids_0 | valids_1 | valids_2 | valids_3 | valids_4 | valids_5 | valids_6 | valids_7) // @[RegField.scala:153:29, :154:27]
bootAddrReg <= _bootAddrReg_T; // @[BootAddrReg.scala:27:34]
end
always @(posedge)
FixedClockBroadcast_3 fixedClockNode ( // @[ClockGroup.scala:115:114]
.auto_anon_in_clock (clockGroup_auto_out_clock), // @[ClockGroup.scala:24:9]
.auto_anon_in_reset (clockGroup_auto_out_reset), // @[ClockGroup.scala:24:9]
.auto_anon_out_2_clock (auto_fixedClockNode_anon_out_1_clock_0),
.auto_anon_out_2_reset (auto_fixedClockNode_anon_out_1_reset_0),
.auto_anon_out_1_clock (auto_fixedClockNode_anon_out_0_clock_0),
.auto_anon_out_1_reset (auto_fixedClockNode_anon_out_0_reset_0),
.auto_anon_out_0_clock (clockSinkNodeIn_clock),
.auto_anon_out_0_reset (clockSinkNodeIn_reset)
); // @[ClockGroup.scala:115:114]
TLXbar_pbus_out_i1_o3_a29d64s8k1z3u out_xbar ( // @[PeripheryBus.scala:57:30]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_anon_in_a_ready (fixer_auto_anon_out_a_ready),
.auto_anon_in_a_valid (fixer_auto_anon_out_a_valid), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_opcode (fixer_auto_anon_out_a_bits_opcode), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_param (fixer_auto_anon_out_a_bits_param), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_size (fixer_auto_anon_out_a_bits_size), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_source (fixer_auto_anon_out_a_bits_source), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_address (fixer_auto_anon_out_a_bits_address), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_mask (fixer_auto_anon_out_a_bits_mask), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_data (fixer_auto_anon_out_a_bits_data), // @[FIFOFixer.scala:50:9]
.auto_anon_in_a_bits_corrupt (fixer_auto_anon_out_a_bits_corrupt), // @[FIFOFixer.scala:50:9]
.auto_anon_in_d_ready (fixer_auto_anon_out_d_ready), // @[FIFOFixer.scala:50:9]
.auto_anon_in_d_valid (fixer_auto_anon_out_d_valid),
.auto_anon_in_d_bits_opcode (fixer_auto_anon_out_d_bits_opcode),
.auto_anon_in_d_bits_size (fixer_auto_anon_out_d_bits_size),
.auto_anon_in_d_bits_source (fixer_auto_anon_out_d_bits_source),
.auto_anon_in_d_bits_data (fixer_auto_anon_out_d_bits_data),
.auto_anon_out_2_a_ready (_coupler_to_IceNIC_auto_tl_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_2_a_valid (_out_xbar_auto_anon_out_2_a_valid),
.auto_anon_out_2_a_bits_opcode (_out_xbar_auto_anon_out_2_a_bits_opcode),
.auto_anon_out_2_a_bits_param (_out_xbar_auto_anon_out_2_a_bits_param),
.auto_anon_out_2_a_bits_size (_out_xbar_auto_anon_out_2_a_bits_size),
.auto_anon_out_2_a_bits_source (_out_xbar_auto_anon_out_2_a_bits_source),
.auto_anon_out_2_a_bits_address (_out_xbar_auto_anon_out_2_a_bits_address),
.auto_anon_out_2_a_bits_mask (_out_xbar_auto_anon_out_2_a_bits_mask),
.auto_anon_out_2_a_bits_data (_out_xbar_auto_anon_out_2_a_bits_data),
.auto_anon_out_2_a_bits_corrupt (_out_xbar_auto_anon_out_2_a_bits_corrupt),
.auto_anon_out_2_d_ready (_out_xbar_auto_anon_out_2_d_ready),
.auto_anon_out_2_d_valid (_coupler_to_IceNIC_auto_tl_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_2_d_bits_opcode (_coupler_to_IceNIC_auto_tl_in_d_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_out_2_d_bits_size (_coupler_to_IceNIC_auto_tl_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_2_d_bits_source (_coupler_to_IceNIC_auto_tl_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_2_d_bits_data (_coupler_to_IceNIC_auto_tl_in_d_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_out_1_a_ready (_coupler_to_device_named_uart_0_auto_tl_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_1_a_valid (_out_xbar_auto_anon_out_1_a_valid),
.auto_anon_out_1_a_bits_opcode (_out_xbar_auto_anon_out_1_a_bits_opcode),
.auto_anon_out_1_a_bits_param (_out_xbar_auto_anon_out_1_a_bits_param),
.auto_anon_out_1_a_bits_size (_out_xbar_auto_anon_out_1_a_bits_size),
.auto_anon_out_1_a_bits_source (_out_xbar_auto_anon_out_1_a_bits_source),
.auto_anon_out_1_a_bits_address (_out_xbar_auto_anon_out_1_a_bits_address),
.auto_anon_out_1_a_bits_mask (_out_xbar_auto_anon_out_1_a_bits_mask),
.auto_anon_out_1_a_bits_data (_out_xbar_auto_anon_out_1_a_bits_data),
.auto_anon_out_1_a_bits_corrupt (_out_xbar_auto_anon_out_1_a_bits_corrupt),
.auto_anon_out_1_d_ready (_out_xbar_auto_anon_out_1_d_ready),
.auto_anon_out_1_d_valid (_coupler_to_device_named_uart_0_auto_tl_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_1_d_bits_opcode (_coupler_to_device_named_uart_0_auto_tl_in_d_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_out_1_d_bits_size (_coupler_to_device_named_uart_0_auto_tl_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_1_d_bits_source (_coupler_to_device_named_uart_0_auto_tl_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_1_d_bits_data (_coupler_to_device_named_uart_0_auto_tl_in_d_bits_data), // @[LazyScope.scala:98:27]
.auto_anon_out_0_a_ready (_coupler_to_bootaddressreg_auto_tl_in_a_ready), // @[LazyScope.scala:98:27]
.auto_anon_out_0_a_valid (_out_xbar_auto_anon_out_0_a_valid),
.auto_anon_out_0_a_bits_opcode (_out_xbar_auto_anon_out_0_a_bits_opcode),
.auto_anon_out_0_a_bits_param (_out_xbar_auto_anon_out_0_a_bits_param),
.auto_anon_out_0_a_bits_size (_out_xbar_auto_anon_out_0_a_bits_size),
.auto_anon_out_0_a_bits_source (_out_xbar_auto_anon_out_0_a_bits_source),
.auto_anon_out_0_a_bits_address (_out_xbar_auto_anon_out_0_a_bits_address),
.auto_anon_out_0_a_bits_mask (_out_xbar_auto_anon_out_0_a_bits_mask),
.auto_anon_out_0_a_bits_data (_out_xbar_auto_anon_out_0_a_bits_data),
.auto_anon_out_0_a_bits_corrupt (_out_xbar_auto_anon_out_0_a_bits_corrupt),
.auto_anon_out_0_d_ready (_out_xbar_auto_anon_out_0_d_ready),
.auto_anon_out_0_d_valid (_coupler_to_bootaddressreg_auto_tl_in_d_valid), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_opcode (_coupler_to_bootaddressreg_auto_tl_in_d_bits_opcode), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_size (_coupler_to_bootaddressreg_auto_tl_in_d_bits_size), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_source (_coupler_to_bootaddressreg_auto_tl_in_d_bits_source), // @[LazyScope.scala:98:27]
.auto_anon_out_0_d_bits_data (_coupler_to_bootaddressreg_auto_tl_in_d_bits_data) // @[LazyScope.scala:98:27]
); // @[PeripheryBus.scala:57:30]
TLBuffer_a29d64s8k1z3u buffer ( // @[Buffer.scala:75:28]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_in_a_ready (_buffer_auto_in_a_ready),
.auto_in_a_valid (_atomics_auto_out_a_valid), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_opcode (_atomics_auto_out_a_bits_opcode), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_param (_atomics_auto_out_a_bits_param), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_size (_atomics_auto_out_a_bits_size), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_source (_atomics_auto_out_a_bits_source), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_address (_atomics_auto_out_a_bits_address), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_mask (_atomics_auto_out_a_bits_mask), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_data (_atomics_auto_out_a_bits_data), // @[AtomicAutomata.scala:289:29]
.auto_in_a_bits_corrupt (_atomics_auto_out_a_bits_corrupt), // @[AtomicAutomata.scala:289:29]
.auto_in_d_ready (_atomics_auto_out_d_ready), // @[AtomicAutomata.scala:289:29]
.auto_in_d_valid (_buffer_auto_in_d_valid),
.auto_in_d_bits_opcode (_buffer_auto_in_d_bits_opcode),
.auto_in_d_bits_param (_buffer_auto_in_d_bits_param),
.auto_in_d_bits_size (_buffer_auto_in_d_bits_size),
.auto_in_d_bits_source (_buffer_auto_in_d_bits_source),
.auto_in_d_bits_sink (_buffer_auto_in_d_bits_sink),
.auto_in_d_bits_denied (_buffer_auto_in_d_bits_denied),
.auto_in_d_bits_data (_buffer_auto_in_d_bits_data),
.auto_in_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt),
.auto_out_a_ready (fixer_auto_anon_in_a_ready), // @[FIFOFixer.scala:50:9]
.auto_out_a_valid (fixer_auto_anon_in_a_valid),
.auto_out_a_bits_opcode (fixer_auto_anon_in_a_bits_opcode),
.auto_out_a_bits_param (fixer_auto_anon_in_a_bits_param),
.auto_out_a_bits_size (fixer_auto_anon_in_a_bits_size),
.auto_out_a_bits_source (fixer_auto_anon_in_a_bits_source),
.auto_out_a_bits_address (fixer_auto_anon_in_a_bits_address),
.auto_out_a_bits_mask (fixer_auto_anon_in_a_bits_mask),
.auto_out_a_bits_data (fixer_auto_anon_in_a_bits_data),
.auto_out_a_bits_corrupt (fixer_auto_anon_in_a_bits_corrupt),
.auto_out_d_ready (fixer_auto_anon_in_d_ready),
.auto_out_d_valid (fixer_auto_anon_in_d_valid), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_opcode (fixer_auto_anon_in_d_bits_opcode), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_size (fixer_auto_anon_in_d_bits_size), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_source (fixer_auto_anon_in_d_bits_source), // @[FIFOFixer.scala:50:9]
.auto_out_d_bits_data (fixer_auto_anon_in_d_bits_data) // @[FIFOFixer.scala:50:9]
); // @[Buffer.scala:75:28]
TLAtomicAutomata_pbus atomics ( // @[AtomicAutomata.scala:289:29]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_in_a_ready (in_xbar_auto_anon_out_a_ready),
.auto_in_a_valid (in_xbar_auto_anon_out_a_valid), // @[Xbar.scala:74:9]
.auto_in_a_bits_opcode (in_xbar_auto_anon_out_a_bits_opcode), // @[Xbar.scala:74:9]
.auto_in_a_bits_param (in_xbar_auto_anon_out_a_bits_param), // @[Xbar.scala:74:9]
.auto_in_a_bits_size (in_xbar_auto_anon_out_a_bits_size), // @[Xbar.scala:74:9]
.auto_in_a_bits_source (in_xbar_auto_anon_out_a_bits_source), // @[Xbar.scala:74:9]
.auto_in_a_bits_address (in_xbar_auto_anon_out_a_bits_address), // @[Xbar.scala:74:9]
.auto_in_a_bits_mask (in_xbar_auto_anon_out_a_bits_mask), // @[Xbar.scala:74:9]
.auto_in_a_bits_data (in_xbar_auto_anon_out_a_bits_data), // @[Xbar.scala:74:9]
.auto_in_a_bits_corrupt (in_xbar_auto_anon_out_a_bits_corrupt), // @[Xbar.scala:74:9]
.auto_in_d_ready (in_xbar_auto_anon_out_d_ready), // @[Xbar.scala:74:9]
.auto_in_d_valid (in_xbar_auto_anon_out_d_valid),
.auto_in_d_bits_opcode (in_xbar_auto_anon_out_d_bits_opcode),
.auto_in_d_bits_param (in_xbar_auto_anon_out_d_bits_param),
.auto_in_d_bits_size (in_xbar_auto_anon_out_d_bits_size),
.auto_in_d_bits_source (in_xbar_auto_anon_out_d_bits_source),
.auto_in_d_bits_sink (in_xbar_auto_anon_out_d_bits_sink),
.auto_in_d_bits_denied (in_xbar_auto_anon_out_d_bits_denied),
.auto_in_d_bits_data (in_xbar_auto_anon_out_d_bits_data),
.auto_in_d_bits_corrupt (in_xbar_auto_anon_out_d_bits_corrupt),
.auto_out_a_ready (_buffer_auto_in_a_ready), // @[Buffer.scala:75:28]
.auto_out_a_valid (_atomics_auto_out_a_valid),
.auto_out_a_bits_opcode (_atomics_auto_out_a_bits_opcode),
.auto_out_a_bits_param (_atomics_auto_out_a_bits_param),
.auto_out_a_bits_size (_atomics_auto_out_a_bits_size),
.auto_out_a_bits_source (_atomics_auto_out_a_bits_source),
.auto_out_a_bits_address (_atomics_auto_out_a_bits_address),
.auto_out_a_bits_mask (_atomics_auto_out_a_bits_mask),
.auto_out_a_bits_data (_atomics_auto_out_a_bits_data),
.auto_out_a_bits_corrupt (_atomics_auto_out_a_bits_corrupt),
.auto_out_d_ready (_atomics_auto_out_d_ready),
.auto_out_d_valid (_buffer_auto_in_d_valid), // @[Buffer.scala:75:28]
.auto_out_d_bits_opcode (_buffer_auto_in_d_bits_opcode), // @[Buffer.scala:75:28]
.auto_out_d_bits_param (_buffer_auto_in_d_bits_param), // @[Buffer.scala:75:28]
.auto_out_d_bits_size (_buffer_auto_in_d_bits_size), // @[Buffer.scala:75:28]
.auto_out_d_bits_source (_buffer_auto_in_d_bits_source), // @[Buffer.scala:75:28]
.auto_out_d_bits_sink (_buffer_auto_in_d_bits_sink), // @[Buffer.scala:75:28]
.auto_out_d_bits_denied (_buffer_auto_in_d_bits_denied), // @[Buffer.scala:75:28]
.auto_out_d_bits_data (_buffer_auto_in_d_bits_data), // @[Buffer.scala:75:28]
.auto_out_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt) // @[Buffer.scala:75:28]
); // @[AtomicAutomata.scala:289:29]
TLBuffer_a29d64s8k1z3u_1 buffer_1 ( // @[Buffer.scala:75:28]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_in_a_ready (bus_xingOut_a_ready),
.auto_in_a_valid (bus_xingOut_a_valid), // @[MixedNode.scala:542:17]
.auto_in_a_bits_opcode (bus_xingOut_a_bits_opcode), // @[MixedNode.scala:542:17]
.auto_in_a_bits_param (bus_xingOut_a_bits_param), // @[MixedNode.scala:542:17]
.auto_in_a_bits_size (bus_xingOut_a_bits_size), // @[MixedNode.scala:542:17]
.auto_in_a_bits_source (bus_xingOut_a_bits_source), // @[MixedNode.scala:542:17]
.auto_in_a_bits_address (bus_xingOut_a_bits_address), // @[MixedNode.scala:542:17]
.auto_in_a_bits_mask (bus_xingOut_a_bits_mask), // @[MixedNode.scala:542:17]
.auto_in_a_bits_data (bus_xingOut_a_bits_data), // @[MixedNode.scala:542:17]
.auto_in_a_bits_corrupt (bus_xingOut_a_bits_corrupt), // @[MixedNode.scala:542:17]
.auto_in_d_ready (bus_xingOut_d_ready), // @[MixedNode.scala:542:17]
.auto_in_d_valid (bus_xingOut_d_valid),
.auto_in_d_bits_opcode (bus_xingOut_d_bits_opcode),
.auto_in_d_bits_param (bus_xingOut_d_bits_param),
.auto_in_d_bits_size (bus_xingOut_d_bits_size),
.auto_in_d_bits_source (bus_xingOut_d_bits_source),
.auto_in_d_bits_sink (bus_xingOut_d_bits_sink),
.auto_in_d_bits_denied (bus_xingOut_d_bits_denied),
.auto_in_d_bits_data (bus_xingOut_d_bits_data),
.auto_in_d_bits_corrupt (bus_xingOut_d_bits_corrupt),
.auto_out_a_ready (in_xbar_auto_anon_in_a_ready), // @[Xbar.scala:74:9]
.auto_out_a_valid (in_xbar_auto_anon_in_a_valid),
.auto_out_a_bits_opcode (in_xbar_auto_anon_in_a_bits_opcode),
.auto_out_a_bits_param (in_xbar_auto_anon_in_a_bits_param),
.auto_out_a_bits_size (in_xbar_auto_anon_in_a_bits_size),
.auto_out_a_bits_source (in_xbar_auto_anon_in_a_bits_source),
.auto_out_a_bits_address (in_xbar_auto_anon_in_a_bits_address),
.auto_out_a_bits_mask (in_xbar_auto_anon_in_a_bits_mask),
.auto_out_a_bits_data (in_xbar_auto_anon_in_a_bits_data),
.auto_out_a_bits_corrupt (in_xbar_auto_anon_in_a_bits_corrupt),
.auto_out_d_ready (in_xbar_auto_anon_in_d_ready),
.auto_out_d_valid (in_xbar_auto_anon_in_d_valid), // @[Xbar.scala:74:9]
.auto_out_d_bits_opcode (in_xbar_auto_anon_in_d_bits_opcode), // @[Xbar.scala:74:9]
.auto_out_d_bits_param (in_xbar_auto_anon_in_d_bits_param), // @[Xbar.scala:74:9]
.auto_out_d_bits_size (in_xbar_auto_anon_in_d_bits_size), // @[Xbar.scala:74:9]
.auto_out_d_bits_source (in_xbar_auto_anon_in_d_bits_source), // @[Xbar.scala:74:9]
.auto_out_d_bits_sink (in_xbar_auto_anon_in_d_bits_sink), // @[Xbar.scala:74:9]
.auto_out_d_bits_denied (in_xbar_auto_anon_in_d_bits_denied), // @[Xbar.scala:74:9]
.auto_out_d_bits_data (in_xbar_auto_anon_in_d_bits_data), // @[Xbar.scala:74:9]
.auto_out_d_bits_corrupt (in_xbar_auto_anon_in_d_bits_corrupt) // @[Xbar.scala:74:9]
); // @[Buffer.scala:75:28]
TLInterconnectCoupler_pbus_to_bootaddressreg coupler_to_bootaddressreg ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_fragmenter_anon_out_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17]
.auto_fragmenter_anon_out_a_valid (nodeIn_a_valid),
.auto_fragmenter_anon_out_a_bits_opcode (nodeIn_a_bits_opcode),
.auto_fragmenter_anon_out_a_bits_param (nodeIn_a_bits_param),
.auto_fragmenter_anon_out_a_bits_size (nodeIn_a_bits_size),
.auto_fragmenter_anon_out_a_bits_source (nodeIn_a_bits_source),
.auto_fragmenter_anon_out_a_bits_address (nodeIn_a_bits_address),
.auto_fragmenter_anon_out_a_bits_mask (nodeIn_a_bits_mask),
.auto_fragmenter_anon_out_a_bits_data (nodeIn_a_bits_data),
.auto_fragmenter_anon_out_a_bits_corrupt (nodeIn_a_bits_corrupt),
.auto_fragmenter_anon_out_d_ready (nodeIn_d_ready),
.auto_fragmenter_anon_out_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17]
.auto_fragmenter_anon_out_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17]
.auto_fragmenter_anon_out_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17]
.auto_fragmenter_anon_out_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17]
.auto_fragmenter_anon_out_d_bits_data (nodeIn_d_bits_data), // @[MixedNode.scala:551:17]
.auto_tl_in_a_ready (_coupler_to_bootaddressreg_auto_tl_in_a_ready),
.auto_tl_in_a_valid (_out_xbar_auto_anon_out_0_a_valid), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_opcode (_out_xbar_auto_anon_out_0_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_param (_out_xbar_auto_anon_out_0_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_size (_out_xbar_auto_anon_out_0_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_source (_out_xbar_auto_anon_out_0_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_address (_out_xbar_auto_anon_out_0_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_mask (_out_xbar_auto_anon_out_0_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_data (_out_xbar_auto_anon_out_0_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_corrupt (_out_xbar_auto_anon_out_0_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_ready (_out_xbar_auto_anon_out_0_d_ready), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_valid (_coupler_to_bootaddressreg_auto_tl_in_d_valid),
.auto_tl_in_d_bits_opcode (_coupler_to_bootaddressreg_auto_tl_in_d_bits_opcode),
.auto_tl_in_d_bits_size (_coupler_to_bootaddressreg_auto_tl_in_d_bits_size),
.auto_tl_in_d_bits_source (_coupler_to_bootaddressreg_auto_tl_in_d_bits_source),
.auto_tl_in_d_bits_data (_coupler_to_bootaddressreg_auto_tl_in_d_bits_data)
); // @[LazyScope.scala:98:27]
TLInterconnectCoupler_pbus_to_device_named_uart_0 coupler_to_device_named_uart_0 ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_control_xing_out_a_ready (auto_coupler_to_device_named_uart_0_control_xing_out_a_ready_0), // @[ClockDomain.scala:14:9]
.auto_control_xing_out_a_valid (auto_coupler_to_device_named_uart_0_control_xing_out_a_valid_0),
.auto_control_xing_out_a_bits_opcode (auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_opcode_0),
.auto_control_xing_out_a_bits_param (auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_param_0),
.auto_control_xing_out_a_bits_size (auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_size_0),
.auto_control_xing_out_a_bits_source (auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_source_0),
.auto_control_xing_out_a_bits_address (auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_address_0),
.auto_control_xing_out_a_bits_mask (auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_mask_0),
.auto_control_xing_out_a_bits_data (auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_data_0),
.auto_control_xing_out_a_bits_corrupt (auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_corrupt_0),
.auto_control_xing_out_d_ready (auto_coupler_to_device_named_uart_0_control_xing_out_d_ready_0),
.auto_control_xing_out_d_valid (auto_coupler_to_device_named_uart_0_control_xing_out_d_valid_0), // @[ClockDomain.scala:14:9]
.auto_control_xing_out_d_bits_opcode (auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_opcode_0), // @[ClockDomain.scala:14:9]
.auto_control_xing_out_d_bits_size (auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_size_0), // @[ClockDomain.scala:14:9]
.auto_control_xing_out_d_bits_source (auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_source_0), // @[ClockDomain.scala:14:9]
.auto_control_xing_out_d_bits_data (auto_coupler_to_device_named_uart_0_control_xing_out_d_bits_data_0), // @[ClockDomain.scala:14:9]
.auto_tl_in_a_ready (_coupler_to_device_named_uart_0_auto_tl_in_a_ready),
.auto_tl_in_a_valid (_out_xbar_auto_anon_out_1_a_valid), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_opcode (_out_xbar_auto_anon_out_1_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_param (_out_xbar_auto_anon_out_1_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_size (_out_xbar_auto_anon_out_1_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_source (_out_xbar_auto_anon_out_1_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_address (_out_xbar_auto_anon_out_1_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_mask (_out_xbar_auto_anon_out_1_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_data (_out_xbar_auto_anon_out_1_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_corrupt (_out_xbar_auto_anon_out_1_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_ready (_out_xbar_auto_anon_out_1_d_ready), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_valid (_coupler_to_device_named_uart_0_auto_tl_in_d_valid),
.auto_tl_in_d_bits_opcode (_coupler_to_device_named_uart_0_auto_tl_in_d_bits_opcode),
.auto_tl_in_d_bits_size (_coupler_to_device_named_uart_0_auto_tl_in_d_bits_size),
.auto_tl_in_d_bits_source (_coupler_to_device_named_uart_0_auto_tl_in_d_bits_source),
.auto_tl_in_d_bits_data (_coupler_to_device_named_uart_0_auto_tl_in_d_bits_data)
); // @[LazyScope.scala:98:27]
TLInterconnectCoupler_pbus_to_IceNIC coupler_to_IceNIC ( // @[LazyScope.scala:98:27]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.auto_fragmenter_anon_out_a_ready (auto_coupler_to_IceNIC_fragmenter_anon_out_a_ready_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_a_valid (auto_coupler_to_IceNIC_fragmenter_anon_out_a_valid_0),
.auto_fragmenter_anon_out_a_bits_opcode (auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_opcode_0),
.auto_fragmenter_anon_out_a_bits_param (auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_param_0),
.auto_fragmenter_anon_out_a_bits_size (auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_size_0),
.auto_fragmenter_anon_out_a_bits_source (auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_source_0),
.auto_fragmenter_anon_out_a_bits_address (auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_address_0),
.auto_fragmenter_anon_out_a_bits_mask (auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_mask_0),
.auto_fragmenter_anon_out_a_bits_data (auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_data_0),
.auto_fragmenter_anon_out_a_bits_corrupt (auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_corrupt_0),
.auto_fragmenter_anon_out_d_ready (auto_coupler_to_IceNIC_fragmenter_anon_out_d_ready_0),
.auto_fragmenter_anon_out_d_valid (auto_coupler_to_IceNIC_fragmenter_anon_out_d_valid_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_opcode (auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_opcode_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_size (auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_size_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_source (auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_source_0), // @[ClockDomain.scala:14:9]
.auto_fragmenter_anon_out_d_bits_data (auto_coupler_to_IceNIC_fragmenter_anon_out_d_bits_data_0), // @[ClockDomain.scala:14:9]
.auto_tl_in_a_ready (_coupler_to_IceNIC_auto_tl_in_a_ready),
.auto_tl_in_a_valid (_out_xbar_auto_anon_out_2_a_valid), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_opcode (_out_xbar_auto_anon_out_2_a_bits_opcode), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_param (_out_xbar_auto_anon_out_2_a_bits_param), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_size (_out_xbar_auto_anon_out_2_a_bits_size), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_source (_out_xbar_auto_anon_out_2_a_bits_source), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_address (_out_xbar_auto_anon_out_2_a_bits_address), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_mask (_out_xbar_auto_anon_out_2_a_bits_mask), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_data (_out_xbar_auto_anon_out_2_a_bits_data), // @[PeripheryBus.scala:57:30]
.auto_tl_in_a_bits_corrupt (_out_xbar_auto_anon_out_2_a_bits_corrupt), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_ready (_out_xbar_auto_anon_out_2_d_ready), // @[PeripheryBus.scala:57:30]
.auto_tl_in_d_valid (_coupler_to_IceNIC_auto_tl_in_d_valid),
.auto_tl_in_d_bits_opcode (_coupler_to_IceNIC_auto_tl_in_d_bits_opcode),
.auto_tl_in_d_bits_size (_coupler_to_IceNIC_auto_tl_in_d_bits_size),
.auto_tl_in_d_bits_source (_coupler_to_IceNIC_auto_tl_in_d_bits_source),
.auto_tl_in_d_bits_data (_coupler_to_IceNIC_auto_tl_in_d_bits_data)
); // @[LazyScope.scala:98:27]
TLMonitor_11 monitor ( // @[Nodes.scala:27:25]
.clock (childClock), // @[LazyModuleImp.scala:155:31]
.reset (childReset), // @[LazyModuleImp.scala:158:31]
.io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_d_bits_data) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_a_valid = auto_coupler_to_IceNIC_fragmenter_anon_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_opcode = auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_param = auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_size = auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_source = auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_address = auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_mask = auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_data = auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_corrupt = auto_coupler_to_IceNIC_fragmenter_anon_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_IceNIC_fragmenter_anon_out_d_ready = auto_coupler_to_IceNIC_fragmenter_anon_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_a_valid = auto_coupler_to_device_named_uart_0_control_xing_out_a_valid_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_opcode = auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_param = auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_size = auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_source = auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_address = auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_mask = auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_data = auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_corrupt = auto_coupler_to_device_named_uart_0_control_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9]
assign auto_coupler_to_device_named_uart_0_control_xing_out_d_ready = auto_coupler_to_device_named_uart_0_control_xing_out_d_ready_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_1_clock = auto_fixedClockNode_anon_out_1_clock_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_1_reset = auto_fixedClockNode_anon_out_1_reset_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_0_clock = auto_fixedClockNode_anon_out_0_clock_0; // @[ClockDomain.scala:14:9]
assign auto_fixedClockNode_anon_out_0_reset = auto_fixedClockNode_anon_out_0_reset_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_a_ready = auto_bus_xing_in_a_ready_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_valid = auto_bus_xing_in_d_valid_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_opcode = auto_bus_xing_in_d_bits_opcode_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_param = auto_bus_xing_in_d_bits_param_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_size = auto_bus_xing_in_d_bits_size_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_source = auto_bus_xing_in_d_bits_source_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_sink = auto_bus_xing_in_d_bits_sink_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_denied = auto_bus_xing_in_d_bits_denied_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_data = auto_bus_xing_in_d_bits_data_0; // @[ClockDomain.scala:14:9]
assign auto_bus_xing_in_d_bits_corrupt = auto_bus_xing_in_d_bits_corrupt_0; // @[ClockDomain.scala:14:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File PE.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle {
val dataflow = UInt(1.W) // TODO make this an Enum
val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)?
val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats
}
class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module {
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(inputType)
val in_c = Input(cType)
val out_d = Output(dType)
})
io.out_d := io.in_c.mac(io.in_a, io.in_b)
}
// TODO update documentation
/**
* A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh.
* @param width Data width of operands
*/
class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int)
(implicit ev: Arithmetic[T]) extends Module { // Debugging variables
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(outputType)
val in_d = Input(outputType)
val out_a = Output(inputType)
val out_b = Output(outputType)
val out_c = Output(outputType)
val in_control = Input(new PEControl(accType))
val out_control = Output(new PEControl(accType))
val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W))
val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W))
val in_last = Input(Bool())
val out_last = Output(Bool())
val in_valid = Input(Bool())
val out_valid = Output(Bool())
val bad_dataflow = Output(Bool())
})
val cType = if (df == Dataflow.WS) inputType else accType
// When creating PEs that support multiple dataflows, the
// elaboration/synthesis tools often fail to consolidate and de-duplicate
// MAC units. To force mac circuitry to be re-used, we create a "mac_unit"
// module here which just performs a single MAC operation
val mac_unit = Module(new MacUnit(inputType,
if (df == Dataflow.WS) outputType else accType, outputType))
val a = io.in_a
val b = io.in_b
val d = io.in_d
val c1 = Reg(cType)
val c2 = Reg(cType)
val dataflow = io.in_control.dataflow
val prop = io.in_control.propagate
val shift = io.in_control.shift
val id = io.in_id
val last = io.in_last
val valid = io.in_valid
io.out_a := a
io.out_control.dataflow := dataflow
io.out_control.propagate := prop
io.out_control.shift := shift
io.out_id := id
io.out_last := last
io.out_valid := valid
mac_unit.io.in_a := a
val last_s = RegEnable(prop, valid)
val flip = last_s =/= prop
val shift_offset = Mux(flip, shift, 0.U)
// Which dataflow are we using?
val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W)
val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W)
// Is c1 being computed on, or propagated forward (in the output-stationary dataflow)?
val COMPUTE = 0.U(1.W)
val PROPAGATE = 1.U(1.W)
io.bad_dataflow := false.B
when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
c2 := mac_unit.io.out_d
c1 := d.withWidthOf(cType)
}.otherwise {
io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c1
c1 := mac_unit.io.out_d
c2 := d.withWidthOf(cType)
}
}.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := c1
mac_unit.io.in_b := c2.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c1 := d
}.otherwise {
io.out_c := c2
mac_unit.io.in_b := c1.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c2 := d
}
}.otherwise {
io.bad_dataflow := true.B
//assert(false.B, "unknown dataflow")
io.out_c := DontCare
io.out_b := DontCare
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
}
when (!valid) {
c1 := c1
c2 := c2
mac_unit.io.in_b := DontCare
mac_unit.io.in_c := DontCare
}
}
File Arithmetic.scala:
// A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own:
// implicit MyTypeArithmetic extends Arithmetic[MyType] { ... }
package gemmini
import chisel3._
import chisel3.util._
import hardfloat._
// Bundles that represent the raw bits of custom datatypes
case class Float(expWidth: Int, sigWidth: Int) extends Bundle {
val bits = UInt((expWidth + sigWidth).W)
val bias: Int = (1 << (expWidth-1)) - 1
}
case class DummySInt(w: Int) extends Bundle {
val bits = UInt(w.W)
def dontCare: DummySInt = {
val o = Wire(new DummySInt(w))
o.bits := 0.U
o
}
}
// The Arithmetic typeclass which implements various arithmetic operations on custom datatypes
abstract class Arithmetic[T <: Data] {
implicit def cast(t: T): ArithmeticOps[T]
}
abstract class ArithmeticOps[T <: Data](self: T) {
def *(t: T): T
def mac(m1: T, m2: T): T // Returns (m1 * m2 + self)
def +(t: T): T
def -(t: T): T
def >>(u: UInt): T // This is a rounding shift! Rounds away from 0
def >(t: T): Bool
def identity: T
def withWidthOf(t: T): T
def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates
def relu: T
def zero: T
def minimum: T
// Optional parameters, which only need to be defined if you want to enable various optimizations for transformers
def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None
def mult_with_reciprocal[U <: Data](reciprocal: U) = self
}
object Arithmetic {
implicit object UIntArithmetic extends Arithmetic[UInt] {
override implicit def cast(self: UInt) = new ArithmeticOps(self) {
override def *(t: UInt) = self * t
override def mac(m1: UInt, m2: UInt) = m1 * m2 + self
override def +(t: UInt) = self + t
override def -(t: UInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = point_five & (zeros | ones_digit)
(self >> u).asUInt + r
}
override def >(t: UInt): Bool = self > t
override def withWidthOf(t: UInt) = self.asTypeOf(t)
override def clippedToWidthOf(t: UInt) = {
val sat = ((1 << (t.getWidth-1))-1).U
Mux(self > sat, sat, self)(t.getWidth-1, 0)
}
override def relu: UInt = self
override def zero: UInt = 0.U
override def identity: UInt = 1.U
override def minimum: UInt = 0.U
}
}
implicit object SIntArithmetic extends Arithmetic[SInt] {
override implicit def cast(self: SInt) = new ArithmeticOps(self) {
override def *(t: SInt) = self * t
override def mac(m1: SInt, m2: SInt) = m1 * m2 + self
override def +(t: SInt) = self + t
override def -(t: SInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = (point_five & (zeros | ones_digit)).asBool
(self >> u).asSInt + Mux(r, 1.S, 0.S)
}
override def >(t: SInt): Bool = self > t
override def withWidthOf(t: SInt) = {
if (self.getWidth >= t.getWidth)
self(t.getWidth-1, 0).asSInt
else {
val sign_bits = t.getWidth - self.getWidth
val sign = self(self.getWidth-1)
Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t)
}
}
override def clippedToWidthOf(t: SInt): SInt = {
val maxsat = ((1 << (t.getWidth-1))-1).S
val minsat = (-(1 << (t.getWidth-1))).S
MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt
}
override def relu: SInt = Mux(self >= 0.S, self, 0.S)
override def zero: SInt = 0.S
override def identity: SInt = 1.S
override def minimum: SInt = (-(1 << (self.getWidth-1))).S
override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(denom_t.cloneType))
val output = Wire(Decoupled(self.cloneType))
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def sin_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def uin_to_float(x: UInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := x
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = sin_to_float(self)
val denom_rec = uin_to_float(input.bits)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := self_rec
divider.io.b := denom_rec
divider.io.roundingMode := consts.round_minMag
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := float_to_in(divider.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(self.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
// Instantiate the hardloat sqrt
val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0))
input.ready := sqrter.io.inReady
sqrter.io.inValid := input.valid
sqrter.io.sqrtOp := true.B
sqrter.io.a := self_rec
sqrter.io.b := DontCare
sqrter.io.roundingMode := consts.round_minMag
sqrter.io.detectTininess := consts.tininess_afterRounding
output.valid := sqrter.io.outValid_sqrt
output.bits := float_to_in(sqrter.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match {
case Float(expWidth, sigWidth) =>
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(u.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
val self_rec = in_to_float(self)
val one_rec = in_to_float(1.S)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := one_rec
divider.io.b := self_rec
divider.io.roundingMode := consts.round_near_even
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u)
assert(!output.valid || output.ready)
Some((input, output))
case _ => None
}
override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match {
case recip @ Float(expWidth, sigWidth) =>
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits)
// Instantiate the hardloat divider
val muladder = Module(new MulRecFN(expWidth, sigWidth))
muladder.io.roundingMode := consts.round_near_even
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := reciprocal_rec
float_to_in(muladder.io.out)
case _ => self
}
}
}
implicit object FloatArithmetic extends Arithmetic[Float] {
// TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array
override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) {
override def *(t: Float): Float = {
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := t_rec_resized
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def mac(m1: Float, m2: Float): Float = {
// Recode all operands
val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits)
val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize m1 to self's width
val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth))
m1_resizer.io.in := m1_rec
m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m1_resizer.io.detectTininess := consts.tininess_afterRounding
val m1_rec_resized = m1_resizer.io.out
// Resize m2 to self's width
val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth))
m2_resizer.io.in := m2_rec
m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m2_resizer.io.detectTininess := consts.tininess_afterRounding
val m2_rec_resized = m2_resizer.io.out
// Perform multiply-add
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := m1_rec_resized
muladder.io.b := m2_rec_resized
muladder.io.c := self_rec
// Convert result to standard format // TODO remove these intermediate recodings
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def +(t: Float): Float = {
require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Generate 1 as a float
val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := 1.U
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
val one_rec = in_to_rec_fn.io.out
// Resize t
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
// Perform addition
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := t_rec_resized
muladder.io.b := one_rec
muladder.io.c := self_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def -(t: Float): Float = {
val t_sgn = t.bits(t.getWidth-1)
val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t)
self + neg_t
}
override def >>(u: UInt): Float = {
// Recode self
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Get 2^(-u) as a recoded float
val shift_exp = Wire(UInt(self.expWidth.W))
shift_exp := self.bias.U - u
val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W))
val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn)
assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported")
// Multiply self and 2^(-u)
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := shift_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def >(t: Float): Bool = {
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize t to self's width
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth))
comparator.io.a := self_rec
comparator.io.b := t_rec_resized
comparator.io.signaling := false.B
comparator.io.gt
}
override def withWidthOf(t: Float): Float = {
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def clippedToWidthOf(t: Float): Float = {
// TODO check for overflow. Right now, we just assume that overflow doesn't happen
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def relu: Float = {
val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits)
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits)
result
}
override def zero: Float = 0.U.asTypeOf(self)
override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
}
}
implicit object DummySIntArithmetic extends Arithmetic[DummySInt] {
override implicit def cast(self: DummySInt) = new ArithmeticOps(self) {
override def *(t: DummySInt) = self.dontCare
override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare
override def +(t: DummySInt) = self.dontCare
override def -(t: DummySInt) = self.dontCare
override def >>(t: UInt) = self.dontCare
override def >(t: DummySInt): Bool = false.B
override def identity = self.dontCare
override def withWidthOf(t: DummySInt) = self.dontCare
override def clippedToWidthOf(t: DummySInt) = self.dontCare
override def relu = self.dontCare
override def zero = self.dontCare
override def minimum: DummySInt = self.dontCare
}
}
}
| module PE_280( // @[PE.scala:31:7]
input clock, // @[PE.scala:31:7]
input reset, // @[PE.scala:31:7]
input [7:0] io_in_a, // @[PE.scala:35:14]
input [19:0] io_in_b, // @[PE.scala:35:14]
input [19:0] io_in_d, // @[PE.scala:35:14]
output [7:0] io_out_a, // @[PE.scala:35:14]
output [19:0] io_out_b, // @[PE.scala:35:14]
output [19:0] io_out_c, // @[PE.scala:35:14]
input io_in_control_dataflow, // @[PE.scala:35:14]
input io_in_control_propagate, // @[PE.scala:35:14]
input [4:0] io_in_control_shift, // @[PE.scala:35:14]
output io_out_control_dataflow, // @[PE.scala:35:14]
output io_out_control_propagate, // @[PE.scala:35:14]
output [4:0] io_out_control_shift, // @[PE.scala:35:14]
input [2:0] io_in_id, // @[PE.scala:35:14]
output [2:0] io_out_id, // @[PE.scala:35:14]
input io_in_last, // @[PE.scala:35:14]
output io_out_last, // @[PE.scala:35:14]
input io_in_valid, // @[PE.scala:35:14]
output io_out_valid, // @[PE.scala:35:14]
output io_bad_dataflow // @[PE.scala:35:14]
);
wire [19:0] _mac_unit_io_out_d; // @[PE.scala:64:24]
wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7]
wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7]
wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7]
wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7]
wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7]
wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7]
wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7]
wire io_in_last_0 = io_in_last; // @[PE.scala:31:7]
wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7]
wire io_bad_dataflow_0 = 1'h0; // @[PE.scala:31:7]
wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7]
wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37]
wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37]
wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35]
wire [19:0] c1_lo_1 = io_in_d_0; // @[PE.scala:31:7]
wire [19:0] c2_lo_1 = io_in_d_0; // @[PE.scala:31:7]
wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7]
wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7]
wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7]
wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7]
wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7]
wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7]
wire [19:0] io_out_b_0; // @[PE.scala:31:7]
wire [19:0] io_out_c_0; // @[PE.scala:31:7]
reg [31:0] c1; // @[PE.scala:70:15]
wire [31:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15]
wire [31:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38]
reg [31:0] c2; // @[PE.scala:71:15]
wire [31:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15]
wire [31:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38]
reg last_s; // @[PE.scala:89:25]
wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21]
wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25]
wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25]
wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32]
wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32]
wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25]
wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53]
wire [31:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15]
wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}]
wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25]
wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27]
wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27]
wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_7 = _io_out_c_zeros_T_1 & _io_out_c_zeros_T_6; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}]
wire [31:0] _GEN_2 = {27'h0, shift_offset}; // @[PE.scala:91:25]
wire [31:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15]
wire [31:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30]
wire [31:0] _io_out_c_T; // @[Arithmetic.scala:107:15]
assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33]
wire [32:0] _io_out_c_T_2 = {_io_out_c_T[31], _io_out_c_T} + {{31{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}]
wire [31:0] _io_out_c_T_3 = _io_out_c_T_2[31:0]; // @[Arithmetic.scala:107:28]
wire [31:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28]
wire _io_out_c_T_5 = $signed(_io_out_c_T_4) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33]
wire _io_out_c_T_6 = $signed(_io_out_c_T_4) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60]
wire [31:0] _io_out_c_T_7 = _io_out_c_T_6 ? 32'hFFF80000 : _io_out_c_T_4; // @[Mux.scala:126:16]
wire [31:0] _io_out_c_T_8 = _io_out_c_T_5 ? 32'h7FFFF : _io_out_c_T_7; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_9 = _io_out_c_T_8[19:0]; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37]
wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37]
wire c1_sign = io_in_d_0[19]; // @[PE.scala:31:7]
wire c2_sign = io_in_d_0[19]; // @[PE.scala:31:7]
wire [1:0] _GEN_4 = {2{c1_sign}}; // @[Arithmetic.scala:117:26, :118:18]
wire [1:0] c1_lo_lo_hi; // @[Arithmetic.scala:118:18]
assign c1_lo_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [1:0] c1_lo_hi_hi; // @[Arithmetic.scala:118:18]
assign c1_lo_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [1:0] c1_hi_lo_hi; // @[Arithmetic.scala:118:18]
assign c1_hi_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [1:0] c1_hi_hi_hi; // @[Arithmetic.scala:118:18]
assign c1_hi_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [2:0] c1_lo_lo = {c1_lo_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c1_lo_hi = {c1_lo_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c1_lo = {c1_lo_hi, c1_lo_lo}; // @[Arithmetic.scala:118:18]
wire [2:0] c1_hi_lo = {c1_hi_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c1_hi_hi = {c1_hi_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c1_hi = {c1_hi_hi, c1_hi_lo}; // @[Arithmetic.scala:118:18]
wire [11:0] _c1_T = {c1_hi, c1_lo}; // @[Arithmetic.scala:118:18]
wire [31:0] _c1_T_1 = {_c1_T, c1_lo_1}; // @[Arithmetic.scala:118:{14,18}]
wire [31:0] _c1_T_2 = _c1_T_1; // @[Arithmetic.scala:118:{14,61}]
wire [31:0] _c1_WIRE = _c1_T_2; // @[Arithmetic.scala:118:61]
wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53]
wire [31:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15]
wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}]
wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_16 = _io_out_c_zeros_T_10 & _io_out_c_zeros_T_15; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}]
wire [31:0] _GEN_5 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15]
wire [31:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T_1 = _GEN_5; // @[Arithmetic.scala:103:30]
wire [31:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15]
assign _io_out_c_T_11 = _GEN_5; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33]
wire [32:0] _io_out_c_T_13 = {_io_out_c_T_11[31], _io_out_c_T_11} + {{31{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}]
wire [31:0] _io_out_c_T_14 = _io_out_c_T_13[31:0]; // @[Arithmetic.scala:107:28]
wire [31:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28]
wire _io_out_c_T_16 = $signed(_io_out_c_T_15) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33]
wire _io_out_c_T_17 = $signed(_io_out_c_T_15) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60]
wire [31:0] _io_out_c_T_18 = _io_out_c_T_17 ? 32'hFFF80000 : _io_out_c_T_15; // @[Mux.scala:126:16]
wire [31:0] _io_out_c_T_19 = _io_out_c_T_16 ? 32'h7FFFF : _io_out_c_T_18; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_20 = _io_out_c_T_19[19:0]; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37]
wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37]
wire [1:0] _GEN_6 = {2{c2_sign}}; // @[Arithmetic.scala:117:26, :118:18]
wire [1:0] c2_lo_lo_hi; // @[Arithmetic.scala:118:18]
assign c2_lo_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [1:0] c2_lo_hi_hi; // @[Arithmetic.scala:118:18]
assign c2_lo_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [1:0] c2_hi_lo_hi; // @[Arithmetic.scala:118:18]
assign c2_hi_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [1:0] c2_hi_hi_hi; // @[Arithmetic.scala:118:18]
assign c2_hi_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [2:0] c2_lo_lo = {c2_lo_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c2_lo_hi = {c2_lo_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c2_lo = {c2_lo_hi, c2_lo_lo}; // @[Arithmetic.scala:118:18]
wire [2:0] c2_hi_lo = {c2_hi_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c2_hi_hi = {c2_hi_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c2_hi = {c2_hi_hi, c2_hi_lo}; // @[Arithmetic.scala:118:18]
wire [11:0] _c2_T = {c2_hi, c2_lo}; // @[Arithmetic.scala:118:18]
wire [31:0] _c2_T_1 = {_c2_T, c2_lo_1}; // @[Arithmetic.scala:118:{14,18}]
wire [31:0] _c2_T_2 = _c2_T_1; // @[Arithmetic.scala:118:{14,61}]
wire [31:0] _c2_WIRE = _c2_T_2; // @[Arithmetic.scala:118:61]
wire [31:0] _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38]
wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5[7:0]; // @[PE.scala:121:38]
wire [31:0] _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38]
wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7[7:0]; // @[PE.scala:127:38]
assign io_out_c_0 = io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? c1[19:0] : c2[19:0]) : io_in_control_propagate_0 ? _io_out_c_T_10 : _io_out_c_T_21; // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :104:16, :111:16, :118:101, :119:30, :120:16, :126:16]
assign io_out_b_0 = io_in_control_dataflow_0 ? _mac_unit_io_out_d : io_in_b_0; // @[PE.scala:31:7, :64:24, :102:95, :103:30, :118:101]
wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35]
wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35]
wire [31:0] _GEN_7 = {{12{io_in_d_0[19]}}, io_in_d_0}; // @[PE.scala:31:7, :124:10]
wire [31:0] _GEN_8 = {{12{_mac_unit_io_out_d[19]}}, _mac_unit_io_out_d}; // @[PE.scala:64:24, :108:10]
always @(posedge clock) begin // @[PE.scala:31:7]
if (io_in_valid_0) begin // @[PE.scala:31:7]
if (io_in_control_dataflow_0) begin // @[PE.scala:31:7]
if (io_in_control_dataflow_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :70:15, :118:101, :119:30, :124:10]
c1 <= _GEN_7; // @[PE.scala:70:15, :124:10]
if (~io_in_control_dataflow_0 | io_in_control_propagate_0) begin // @[PE.scala:31:7, :71:15, :118:101, :119:30]
end
else // @[PE.scala:71:15, :118:101, :119:30]
c2 <= _GEN_7; // @[PE.scala:71:15, :124:10]
end
else begin // @[PE.scala:31:7]
c1 <= io_in_control_propagate_0 ? _c1_WIRE : _GEN_8; // @[PE.scala:31:7, :70:15, :103:30, :108:10, :109:10, :115:10]
c2 <= io_in_control_propagate_0 ? _GEN_8 : _c2_WIRE; // @[PE.scala:31:7, :71:15, :103:30, :108:10, :116:10]
end
last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25]
end
always @(posedge)
MacUnit_24 mac_unit ( // @[PE.scala:64:24]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0), // @[PE.scala:31:7]
.io_in_b (io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3) : io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE : _mac_unit_io_in_b_WIRE_1), // @[PE.scala:31:7, :102:95, :103:30, :106:{24,37}, :113:{24,37}, :118:101, :119:30, :121:{24,38}, :127:{24,38}]
.io_in_c (io_in_control_dataflow_0 ? {{12{io_in_b_0[19]}}, io_in_b_0} : io_in_control_propagate_0 ? c2 : c1), // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :107:24, :114:24, :118:101, :122:24]
.io_out_d (_mac_unit_io_out_d)
); // @[PE.scala:64:24]
assign io_out_a = io_out_a_0; // @[PE.scala:31:7]
assign io_out_b = io_out_b_0; // @[PE.scala:31:7]
assign io_out_c = io_out_c_0; // @[PE.scala:31:7]
assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7]
assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7]
assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7]
assign io_out_id = io_out_id_0; // @[PE.scala:31:7]
assign io_out_last = io_out_last_0; // @[PE.scala:31:7]
assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7]
assign io_bad_dataflow = io_bad_dataflow_0; // @[PE.scala:31:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ClockDomain.scala:
package freechips.rocketchip.prci
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing
{
def clockBundle: ClockBundle
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
childClock := clockBundle.clock
childReset := clockBundle.reset
override def provideImplicitClockToLazyChildren = true
// these are just for backwards compatibility with external devices
// that were manually wiring themselves to the domain's clock/reset input:
val clock = IO(Output(chiselTypeOf(clockBundle.clock)))
val reset = IO(Output(chiselTypeOf(clockBundle.reset)))
clock := clockBundle.clock
reset := clockBundle.reset
}
}
abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing
class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain
{
def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name))
val clockNode = ClockSinkNode(Seq(clockSinkParams))
def clockBundle = clockNode.in.head._1
override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString
}
class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain
{
def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name))
val clockNode = ClockSourceNode(Seq(clockSourceParams))
def clockBundle = clockNode.out.head._1
override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString
}
abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File NoC.scala:
package constellation.noc
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp, BundleBridgeSink, InModuleBody}
import freechips.rocketchip.util.ElaborationArtefacts
import freechips.rocketchip.prci._
import constellation.router._
import constellation.channel._
import constellation.routing.{RoutingRelation, ChannelRoutingInfo}
import constellation.topology.{PhysicalTopology, UnidirectionalLine}
class NoCTerminalIO(
val ingressParams: Seq[IngressChannelParams],
val egressParams: Seq[EgressChannelParams])(implicit val p: Parameters) extends Bundle {
val ingress = MixedVec(ingressParams.map { u => Flipped(new IngressChannel(u)) })
val egress = MixedVec(egressParams.map { u => new EgressChannel(u) })
}
class NoC(nocParams: NoCParams)(implicit p: Parameters) extends LazyModule {
override def shouldBeInlined = nocParams.inlineNoC
val internalParams = InternalNoCParams(nocParams)
val allChannelParams = internalParams.channelParams
val allIngressParams = internalParams.ingressParams
val allEgressParams = internalParams.egressParams
val allRouterParams = internalParams.routerParams
val iP = p.alterPartial({ case InternalNoCKey => internalParams })
val nNodes = nocParams.topology.nNodes
val nocName = nocParams.nocName
val skipValidationChecks = nocParams.skipValidationChecks
val clockSourceNodes = Seq.tabulate(nNodes) { i => ClockSourceNode(Seq(ClockSourceParameters())) }
val router_sink_domains = Seq.tabulate(nNodes) { i =>
val router_sink_domain = LazyModule(new ClockSinkDomain(ClockSinkParameters(
name = Some(s"${nocName}_router_$i")
)))
router_sink_domain.clockNode := clockSourceNodes(i)
router_sink_domain
}
val routers = Seq.tabulate(nNodes) { i => router_sink_domains(i) {
val inParams = allChannelParams.filter(_.destId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val outParams = allChannelParams.filter(_.srcId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val ingressParams = allIngressParams.filter(_.destId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val egressParams = allEgressParams.filter(_.srcId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val noIn = inParams.size + ingressParams.size == 0
val noOut = outParams.size + egressParams.size == 0
if (noIn || noOut) {
println(s"Constellation WARNING: $nocName router $i seems to be unused, it will not be generated")
None
} else {
Some(LazyModule(new Router(
routerParams = allRouterParams(i),
preDiplomaticInParams = inParams,
preDiplomaticIngressParams = ingressParams,
outDests = outParams.map(_.destId),
egressIds = egressParams.map(_.egressId)
)(iP)))
}
}}.flatten
val ingressNodes = allIngressParams.map { u => IngressChannelSourceNode(u.destId) }
val egressNodes = allEgressParams.map { u => EgressChannelDestNode(u) }
// Generate channels between routers diplomatically
Seq.tabulate(nNodes, nNodes) { case (i, j) => if (i != j) {
val routerI = routers.find(_.nodeId == i)
val routerJ = routers.find(_.nodeId == j)
if (routerI.isDefined && routerJ.isDefined) {
val sourceNodes: Seq[ChannelSourceNode] = routerI.get.sourceNodes.filter(_.destId == j)
val destNodes: Seq[ChannelDestNode] = routerJ.get.destNodes.filter(_.destParams.srcId == i)
require (sourceNodes.size == destNodes.size)
(sourceNodes zip destNodes).foreach { case (src, dst) =>
val channelParam = allChannelParams.find(c => c.srcId == i && c.destId == j).get
router_sink_domains(j) {
implicit val p: Parameters = iP
(dst
:= ChannelWidthWidget(routerJ.get.payloadBits, routerI.get.payloadBits)
:= channelParam.channelGen(p)(src)
)
}
}
}
}}
// Generate terminal channels diplomatically
routers.foreach { dst => router_sink_domains(dst.nodeId) {
implicit val p: Parameters = iP
dst.ingressNodes.foreach(n => {
val ingressId = n.destParams.ingressId
require(dst.payloadBits <= allIngressParams(ingressId).payloadBits)
(n
:= IngressWidthWidget(dst.payloadBits, allIngressParams(ingressId).payloadBits)
:= ingressNodes(ingressId)
)
})
dst.egressNodes.foreach(n => {
val egressId = n.egressId
require(dst.payloadBits <= allEgressParams(egressId).payloadBits)
(egressNodes(egressId)
:= EgressWidthWidget(allEgressParams(egressId).payloadBits, dst.payloadBits)
:= n
)
})
}}
val debugNodes = routers.map { r =>
val sink = BundleBridgeSink[DebugBundle]()
sink := r.debugNode
sink
}
val ctrlNodes = if (nocParams.hasCtrl) {
(0 until nNodes).map { i =>
routers.find(_.nodeId == i).map { r =>
val sink = BundleBridgeSink[RouterCtrlBundle]()
sink := r.ctrlNode.get
sink
}
}
} else {
Nil
}
println(s"Constellation: $nocName Finished parameter validation")
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
println(s"Constellation: $nocName Starting NoC RTL generation")
val io = IO(new NoCTerminalIO(allIngressParams, allEgressParams)(iP) {
val router_clocks = Vec(nNodes, Input(new ClockBundle(ClockBundleParameters())))
val router_ctrl = if (nocParams.hasCtrl) Vec(nNodes, new RouterCtrlBundle) else Nil
})
(io.ingress zip ingressNodes.map(_.out(0)._1)).foreach { case (l,r) => r <> l }
(io.egress zip egressNodes .map(_.in (0)._1)).foreach { case (l,r) => l <> r }
(io.router_clocks zip clockSourceNodes.map(_.out(0)._1)).foreach { case (l,r) => l <> r }
if (nocParams.hasCtrl) {
ctrlNodes.zipWithIndex.map { case (c,i) =>
if (c.isDefined) {
io.router_ctrl(i) <> c.get.in(0)._1
} else {
io.router_ctrl(i) <> DontCare
}
}
}
// TODO: These assume a single clock-domain across the entire noc
val debug_va_stall_ctr = RegInit(0.U(64.W))
val debug_sa_stall_ctr = RegInit(0.U(64.W))
val debug_any_stall_ctr = debug_va_stall_ctr + debug_sa_stall_ctr
debug_va_stall_ctr := debug_va_stall_ctr + debugNodes.map(_.in(0)._1.va_stall.reduce(_+_)).reduce(_+_)
debug_sa_stall_ctr := debug_sa_stall_ctr + debugNodes.map(_.in(0)._1.sa_stall.reduce(_+_)).reduce(_+_)
dontTouch(debug_va_stall_ctr)
dontTouch(debug_sa_stall_ctr)
dontTouch(debug_any_stall_ctr)
def prepend(s: String) = Seq(nocName, s).mkString(".")
ElaborationArtefacts.add(prepend("noc.graphml"), graphML)
val adjList = routers.map { r =>
val outs = r.outParams.map(o => s"${o.destId}").mkString(" ")
val egresses = r.egressParams.map(e => s"e${e.egressId}").mkString(" ")
val ingresses = r.ingressParams.map(i => s"i${i.ingressId} ${r.nodeId}")
(Seq(s"${r.nodeId} $outs $egresses") ++ ingresses).mkString("\n")
}.mkString("\n")
ElaborationArtefacts.add(prepend("noc.adjlist"), adjList)
val xys = routers.map(r => {
val n = r.nodeId
val ids = (Seq(r.nodeId.toString)
++ r.egressParams.map(e => s"e${e.egressId}")
++ r.ingressParams.map(i => s"i${i.ingressId}")
)
val plotter = nocParams.topology.plotter
val coords = (Seq(plotter.node(r.nodeId))
++ Seq.tabulate(r.egressParams.size ) { i => plotter. egress(i, r. egressParams.size, r.nodeId) }
++ Seq.tabulate(r.ingressParams.size) { i => plotter.ingress(i, r.ingressParams.size, r.nodeId) }
)
(ids zip coords).map { case (i, (x, y)) => s"$i $x $y" }.mkString("\n")
}).mkString("\n")
ElaborationArtefacts.add(prepend("noc.xy"), xys)
val edgeProps = routers.map { r =>
val outs = r.outParams.map { o =>
(Seq(s"${r.nodeId} ${o.destId}") ++ (if (o.possibleFlows.size == 0) Some("unused") else None))
.mkString(" ")
}
val egresses = r.egressParams.map { e =>
(Seq(s"${r.nodeId} e${e.egressId}") ++ (if (e.possibleFlows.size == 0) Some("unused") else None))
.mkString(" ")
}
val ingresses = r.ingressParams.map { i =>
(Seq(s"i${i.ingressId} ${r.nodeId}") ++ (if (i.possibleFlows.size == 0) Some("unused") else None))
.mkString(" ")
}
(outs ++ egresses ++ ingresses).mkString("\n")
}.mkString("\n")
ElaborationArtefacts.add(prepend("noc.edgeprops"), edgeProps)
println(s"Constellation: $nocName Finished NoC RTL generation")
}
}
| module test_router_3ClockSinkDomain( // @[ClockDomain.scala:14:9]
output [4:0] auto_routers_debug_out_va_stall_0, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_va_stall_2, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_sa_stall_0, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_sa_stall_2, // @[LazyModuleImp.scala:107:25]
input auto_routers_egress_nodes_out_2_flit_ready, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_2_flit_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_2_flit_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_2_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
input auto_routers_egress_nodes_out_1_flit_ready, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_1_flit_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_1_flit_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_1_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
input auto_routers_egress_nodes_out_0_flit_ready, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_0_flit_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_0_flit_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_0_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
output [72:0] auto_routers_egress_nodes_out_0_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
output auto_routers_ingress_nodes_in_1_flit_ready, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_1_flit_valid, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_1_flit_bits_head, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_1_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
input [72:0] auto_routers_ingress_nodes_in_1_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_routers_ingress_nodes_in_1_flit_bits_egress_id, // @[LazyModuleImp.scala:107:25]
output auto_routers_source_nodes_out_flit_0_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_source_nodes_out_flit_0_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_source_nodes_out_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25]
output [72:0] auto_routers_source_nodes_out_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_routers_source_nodes_out_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_routers_source_nodes_out_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_routers_source_nodes_out_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_source_nodes_out_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25]
input [21:0] auto_routers_source_nodes_out_credit_return, // @[LazyModuleImp.scala:107:25]
input [21:0] auto_routers_source_nodes_out_vc_free, // @[LazyModuleImp.scala:107:25]
input auto_routers_dest_nodes_in_flit_0_valid, // @[LazyModuleImp.scala:107:25]
input auto_routers_dest_nodes_in_flit_0_bits_head, // @[LazyModuleImp.scala:107:25]
input auto_routers_dest_nodes_in_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25]
input [72:0] auto_routers_dest_nodes_in_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_routers_dest_nodes_in_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_routers_dest_nodes_in_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25]
output [21:0] auto_routers_dest_nodes_in_credit_return, // @[LazyModuleImp.scala:107:25]
output [21:0] auto_routers_dest_nodes_in_vc_free, // @[LazyModuleImp.scala:107:25]
input auto_clock_in_clock, // @[LazyModuleImp.scala:107:25]
input auto_clock_in_reset // @[LazyModuleImp.scala:107:25]
);
Router_2 routers ( // @[NoC.scala:67:22]
.clock (auto_clock_in_clock),
.reset (auto_clock_in_reset),
.auto_debug_out_va_stall_0 (auto_routers_debug_out_va_stall_0),
.auto_debug_out_va_stall_2 (auto_routers_debug_out_va_stall_2),
.auto_debug_out_sa_stall_0 (auto_routers_debug_out_sa_stall_0),
.auto_debug_out_sa_stall_2 (auto_routers_debug_out_sa_stall_2),
.auto_egress_nodes_out_2_flit_ready (auto_routers_egress_nodes_out_2_flit_ready),
.auto_egress_nodes_out_2_flit_valid (auto_routers_egress_nodes_out_2_flit_valid),
.auto_egress_nodes_out_2_flit_bits_head (auto_routers_egress_nodes_out_2_flit_bits_head),
.auto_egress_nodes_out_2_flit_bits_tail (auto_routers_egress_nodes_out_2_flit_bits_tail),
.auto_egress_nodes_out_1_flit_ready (auto_routers_egress_nodes_out_1_flit_ready),
.auto_egress_nodes_out_1_flit_valid (auto_routers_egress_nodes_out_1_flit_valid),
.auto_egress_nodes_out_1_flit_bits_head (auto_routers_egress_nodes_out_1_flit_bits_head),
.auto_egress_nodes_out_1_flit_bits_tail (auto_routers_egress_nodes_out_1_flit_bits_tail),
.auto_egress_nodes_out_0_flit_ready (auto_routers_egress_nodes_out_0_flit_ready),
.auto_egress_nodes_out_0_flit_valid (auto_routers_egress_nodes_out_0_flit_valid),
.auto_egress_nodes_out_0_flit_bits_head (auto_routers_egress_nodes_out_0_flit_bits_head),
.auto_egress_nodes_out_0_flit_bits_tail (auto_routers_egress_nodes_out_0_flit_bits_tail),
.auto_egress_nodes_out_0_flit_bits_payload (auto_routers_egress_nodes_out_0_flit_bits_payload),
.auto_ingress_nodes_in_1_flit_ready (auto_routers_ingress_nodes_in_1_flit_ready),
.auto_ingress_nodes_in_1_flit_valid (auto_routers_ingress_nodes_in_1_flit_valid),
.auto_ingress_nodes_in_1_flit_bits_head (auto_routers_ingress_nodes_in_1_flit_bits_head),
.auto_ingress_nodes_in_1_flit_bits_tail (auto_routers_ingress_nodes_in_1_flit_bits_tail),
.auto_ingress_nodes_in_1_flit_bits_payload (auto_routers_ingress_nodes_in_1_flit_bits_payload),
.auto_ingress_nodes_in_1_flit_bits_egress_id (auto_routers_ingress_nodes_in_1_flit_bits_egress_id),
.auto_source_nodes_out_flit_0_valid (auto_routers_source_nodes_out_flit_0_valid),
.auto_source_nodes_out_flit_0_bits_head (auto_routers_source_nodes_out_flit_0_bits_head),
.auto_source_nodes_out_flit_0_bits_tail (auto_routers_source_nodes_out_flit_0_bits_tail),
.auto_source_nodes_out_flit_0_bits_payload (auto_routers_source_nodes_out_flit_0_bits_payload),
.auto_source_nodes_out_flit_0_bits_flow_vnet_id (auto_routers_source_nodes_out_flit_0_bits_flow_vnet_id),
.auto_source_nodes_out_flit_0_bits_flow_ingress_node (auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node),
.auto_source_nodes_out_flit_0_bits_flow_ingress_node_id (auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node_id),
.auto_source_nodes_out_flit_0_bits_flow_egress_node (auto_routers_source_nodes_out_flit_0_bits_flow_egress_node),
.auto_source_nodes_out_flit_0_bits_flow_egress_node_id (auto_routers_source_nodes_out_flit_0_bits_flow_egress_node_id),
.auto_source_nodes_out_flit_0_bits_virt_channel_id (auto_routers_source_nodes_out_flit_0_bits_virt_channel_id),
.auto_source_nodes_out_credit_return (auto_routers_source_nodes_out_credit_return),
.auto_source_nodes_out_vc_free (auto_routers_source_nodes_out_vc_free),
.auto_dest_nodes_in_flit_0_valid (auto_routers_dest_nodes_in_flit_0_valid),
.auto_dest_nodes_in_flit_0_bits_head (auto_routers_dest_nodes_in_flit_0_bits_head),
.auto_dest_nodes_in_flit_0_bits_tail (auto_routers_dest_nodes_in_flit_0_bits_tail),
.auto_dest_nodes_in_flit_0_bits_payload (auto_routers_dest_nodes_in_flit_0_bits_payload),
.auto_dest_nodes_in_flit_0_bits_flow_vnet_id (auto_routers_dest_nodes_in_flit_0_bits_flow_vnet_id),
.auto_dest_nodes_in_flit_0_bits_flow_ingress_node (auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node),
.auto_dest_nodes_in_flit_0_bits_flow_ingress_node_id (auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node_id),
.auto_dest_nodes_in_flit_0_bits_flow_egress_node (auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node),
.auto_dest_nodes_in_flit_0_bits_flow_egress_node_id (auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node_id),
.auto_dest_nodes_in_flit_0_bits_virt_channel_id (auto_routers_dest_nodes_in_flit_0_bits_virt_channel_id),
.auto_dest_nodes_in_credit_return (auto_routers_dest_nodes_in_credit_return),
.auto_dest_nodes_in_vc_free (auto_routers_dest_nodes_in_vc_free)
); // @[NoC.scala:67:22]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File tage.scala:
package boom.v4.ifu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import boom.v4.common._
import boom.v4.util.{BoomCoreStringPrefix, MaskLower, WrapInc}
import scala.math.min
class TageResp extends Bundle {
val ctr = UInt(3.W)
val u = UInt(2.W)
}
class TageTable(val nRows: Int, val tagSz: Int, val histLength: Int, val uBitPeriod: Int, val singlePorted: Boolean)
(implicit p: Parameters) extends BoomModule()(p)
with HasBoomFrontendParameters
{
require(histLength <= globalHistoryLength)
val nWrBypassEntries = 2
val io = IO( new Bundle {
val f1_req_valid = Input(Bool())
val f1_req_pc = Input(UInt(vaddrBitsExtended.W))
val f1_req_ghist = Input(UInt(globalHistoryLength.W))
val f2_resp = Output(Vec(bankWidth, Valid(new TageResp)))
val update_mask = Input(Vec(bankWidth, Bool()))
val update_taken = Input(Vec(bankWidth, Bool()))
val update_alloc = Input(Vec(bankWidth, Bool()))
val update_old_ctr = Input(Vec(bankWidth, UInt(3.W)))
val update_pc = Input(UInt())
val update_hist = Input(UInt())
val update_u_mask = Input(Vec(bankWidth, Bool()))
val update_u = Input(Vec(bankWidth, UInt(2.W)))
})
def compute_folded_hist(hist: UInt, l: Int) = {
val nChunks = (histLength + l - 1) / l
val hist_chunks = (0 until nChunks) map {i =>
hist(min((i+1)*l, histLength)-1, i*l)
}
hist_chunks.reduce(_^_)
}
def compute_tag_and_hash(unhashed_idx: UInt, hist: UInt) = {
val idx_history = compute_folded_hist(hist, log2Ceil(nRows))
val idx = (unhashed_idx ^ idx_history)(log2Ceil(nRows)-1,0)
val tag_history = compute_folded_hist(hist, tagSz)
val tag = ((unhashed_idx >> log2Ceil(nRows)) ^ tag_history)(tagSz-1,0)
(idx, tag)
}
def inc_ctr(ctr: UInt, taken: Bool): UInt = {
Mux(!taken, Mux(ctr === 0.U, 0.U, ctr - 1.U),
Mux(ctr === 7.U, 7.U, ctr + 1.U))
}
val doing_reset = RegInit(true.B)
val reset_idx = RegInit(0.U(log2Ceil(nRows).W))
reset_idx := reset_idx + doing_reset
when (reset_idx === (nRows-1).U) { doing_reset := false.B }
class TageEntry extends Bundle {
val valid = Bool() // TODO: Remove this valid bit
val tag = UInt(tagSz.W)
val ctr = UInt(3.W)
}
val tageEntrySz = 1 + tagSz + 3
val (s1_hashed_idx, s1_tag) = compute_tag_and_hash(fetchIdx(io.f1_req_pc), io.f1_req_ghist)
val us = SyncReadMem(nRows, Vec(bankWidth*2, Bool()))
val table = SyncReadMem(nRows, Vec(bankWidth, UInt(tageEntrySz.W)))
us.suggestName(s"tage_u_${histLength}")
table.suggestName(s"tage_table_${histLength}")
val mems = Seq((f"tage_l$histLength", nRows, bankWidth * tageEntrySz))
val s2_tag = RegNext(s1_tag)
val s2_req_rtage = Wire(Vec(bankWidth, new TageEntry))
val s2_req_rus = Wire(Vec(bankWidth*2, Bool()))
val s2_req_rhits = VecInit(s2_req_rtage.map(e => e.valid && e.tag === s2_tag && !doing_reset))
for (w <- 0 until bankWidth) {
// This bit indicates the TAGE table matched here
io.f2_resp(w).valid := s2_req_rhits(w)
io.f2_resp(w).bits.u := Cat(s2_req_rus(w*2+1), s2_req_rus(w*2))
io.f2_resp(w).bits.ctr := s2_req_rtage(w).ctr
}
val clear_u_ctr = RegInit(0.U((log2Ceil(uBitPeriod) + log2Ceil(nRows) + 1).W))
when (doing_reset) { clear_u_ctr := 1.U } .otherwise { clear_u_ctr := clear_u_ctr + 1.U }
val doing_clear_u = clear_u_ctr(log2Ceil(uBitPeriod)-1,0) === 0.U
val clear_u_hi = clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 1.U
val clear_u_lo = clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 0.U
val clear_u_idx = clear_u_ctr >> log2Ceil(uBitPeriod)
val clear_u_mask = VecInit((0 until bankWidth*2) map { i => if (i % 2 == 0) clear_u_lo else clear_u_hi }).asUInt
val (update_idx, update_tag) = compute_tag_and_hash(fetchIdx(io.update_pc), io.update_hist)
val update_wdata = Wire(Vec(bankWidth, new TageEntry))
val wen = WireInit(doing_reset || io.update_mask.reduce(_||_))
val rdata = if (singlePorted) table.read(s1_hashed_idx, !wen && io.f1_req_valid) else table.read(s1_hashed_idx, io.f1_req_valid)
when (RegNext(wen) && singlePorted.B) {
s2_req_rtage := 0.U.asTypeOf(Vec(bankWidth, new TageEntry))
} .otherwise {
s2_req_rtage := VecInit(rdata.map(_.asTypeOf(new TageEntry)))
}
when (wen) {
val widx = Mux(doing_reset, reset_idx, update_idx)
val wdata = Mux(doing_reset, VecInit(Seq.fill(bankWidth) { 0.U(tageEntrySz.W) }), VecInit(update_wdata.map(_.asUInt)))
val wmask = Mux(doing_reset, ~(0.U(bankWidth.W)), io.update_mask.asUInt)
table.write(widx, wdata, wmask.asBools)
}
val update_u_mask = VecInit((0 until bankWidth*2) map {i => io.update_u_mask(i / 2)})
val update_u_wen = WireInit(doing_reset || doing_clear_u || update_u_mask.reduce(_||_))
val u_rdata = if (singlePorted) {
us.read(s1_hashed_idx, !update_u_wen && io.f1_req_valid)
} else {
us.read(s1_hashed_idx, io.f1_req_valid)
}
s2_req_rus := u_rdata
when (update_u_wen) {
val widx = Mux(doing_reset, reset_idx, Mux(doing_clear_u, clear_u_idx, update_idx))
val wdata = Mux(doing_reset || doing_clear_u, VecInit(0.U((bankWidth*2).W).asBools), VecInit(io.update_u.asUInt.asBools))
val wmask = Mux(doing_reset, ~(0.U((bankWidth*2).W)), Mux(doing_clear_u, clear_u_mask, update_u_mask.asUInt))
us.write(widx, wdata, wmask.asBools)
}
val wrbypass_tags = Reg(Vec(nWrBypassEntries, UInt(tagSz.W)))
val wrbypass_idxs = Reg(Vec(nWrBypassEntries, UInt(log2Ceil(nRows).W)))
val wrbypass = Reg(Vec(nWrBypassEntries, Vec(bankWidth, UInt(3.W))))
val wrbypass_enq_idx = RegInit(0.U(log2Ceil(nWrBypassEntries).W))
val wrbypass_hits = VecInit((0 until nWrBypassEntries) map { i =>
!doing_reset &&
wrbypass_tags(i) === update_tag &&
wrbypass_idxs(i) === update_idx
})
val wrbypass_hit = wrbypass_hits.reduce(_||_)
val wrbypass_hit_idx = PriorityEncoder(wrbypass_hits)
for (w <- 0 until bankWidth) {
update_wdata(w).ctr := Mux(io.update_alloc(w),
Mux(io.update_taken(w), 4.U,
3.U
),
Mux(wrbypass_hit, inc_ctr(wrbypass(wrbypass_hit_idx)(w), io.update_taken(w)),
inc_ctr(io.update_old_ctr(w), io.update_taken(w))
)
)
update_wdata(w).valid := true.B
update_wdata(w).tag := update_tag
}
when (io.update_mask.reduce(_||_)) {
when (wrbypass_hits.reduce(_||_)) {
wrbypass(wrbypass_hit_idx) := VecInit(update_wdata.map(_.ctr))
} .otherwise {
wrbypass (wrbypass_enq_idx) := VecInit(update_wdata.map(_.ctr))
wrbypass_tags(wrbypass_enq_idx) := update_tag
wrbypass_idxs(wrbypass_enq_idx) := update_idx
wrbypass_enq_idx := WrapInc(wrbypass_enq_idx, nWrBypassEntries)
}
}
}
case class BoomTageParams(
// nSets, histLen, tagSz
tableInfo: Seq[Tuple3[Int, Int, Int]] = Seq(( 128, 2, 7),
( 128, 4, 7),
( 256, 8, 8),
( 256, 16, 8),
( 128, 32, 9),
( 128, 64, 9)),
uBitPeriod: Int = 2048,
singlePorted: Boolean = false
)
class TageBranchPredictorBank(params: BoomTageParams = BoomTageParams())(implicit p: Parameters) extends BranchPredictorBank()(p)
{
val tageUBitPeriod = params.uBitPeriod
val tageNTables = params.tableInfo.size
class TageMeta extends Bundle
{
val provider = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W)))
val alt_differs = Vec(bankWidth, Output(Bool()))
val provider_u = Vec(bankWidth, Output(UInt(2.W)))
val provider_ctr = Vec(bankWidth, Output(UInt(3.W)))
val allocate = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W)))
}
val f3_meta = Wire(new TageMeta)
override val metaSz = f3_meta.asUInt.getWidth
require(metaSz <= bpdMaxMetaLength)
def inc_u(u: UInt, alt_differs: Bool, mispredict: Bool): UInt = {
Mux(!alt_differs, u,
Mux(mispredict, Mux(u === 0.U, 0.U, u - 1.U),
Mux(u === 3.U, 3.U, u + 1.U)))
}
val tt = params.tableInfo map {
case (n, l, s) => {
val t = Module(new TageTable(n, s, l, params.uBitPeriod, params.singlePorted))
t.io.f1_req_valid := RegNext(io.f0_valid)
t.io.f1_req_pc := RegNext(bankAlign(io.f0_pc))
t.io.f1_req_ghist := io.f1_ghist
(t, t.mems)
}
}
val tables = tt.map(_._1)
val mems = tt.map(_._2).flatten
val f2_resps = VecInit(tables.map(_.io.f2_resp))
val f3_resps = RegNext(f2_resps)
val s1_update_meta = s1_update.bits.meta.asTypeOf(new TageMeta)
val s1_update_mispredict_mask = UIntToOH(s1_update.bits.cfi_idx.bits) &
Fill(bankWidth, s1_update.bits.cfi_mispredicted)
val s1_update_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, Bool()))))
val s1_update_u_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, UInt(1.W)))))
val s1_update_taken = Wire(Vec(tageNTables, Vec(bankWidth, Bool())))
val s1_update_old_ctr = Wire(Vec(tageNTables, Vec(bankWidth, UInt(3.W))))
val s1_update_alloc = Wire(Vec(tageNTables, Vec(bankWidth, Bool())))
val s1_update_u = Wire(Vec(tageNTables, Vec(bankWidth, UInt(2.W))))
s1_update_taken := DontCare
s1_update_old_ctr := DontCare
s1_update_alloc := DontCare
s1_update_u := DontCare
for (w <- 0 until bankWidth) {
var s2_provided = false.B
var s2_provider = 0.U
var s2_alt_provided = false.B
var s2_alt_provider = 0.U
for (i <- 0 until tageNTables) {
val hit = f2_resps(i)(w).valid
s2_alt_provided = s2_alt_provided || (s2_provided && hit)
s2_provided = s2_provided || hit
s2_alt_provider = Mux(hit, s2_provider, s2_alt_provider)
s2_provider = Mux(hit, i.U, s2_provider)
}
val s3_provided = RegNext(s2_provided)
val s3_provider = RegNext(s2_provider)
val s3_alt_provided = RegNext(s2_alt_provided)
val s3_alt_provider = RegNext(s2_alt_provider)
val prov = RegNext(f2_resps(s2_provider)(w).bits)
val alt = RegNext(f2_resps(s2_alt_provider)(w).bits)
io.resp.f3(w).taken := Mux(s3_provided,
Mux(prov.ctr === 3.U || prov.ctr === 4.U,
Mux(s3_alt_provided, alt.ctr(2), io.resp_in(0).f3(w).taken),
prov.ctr(2)),
io.resp_in(0).f3(w).taken
)
f3_meta.provider(w).valid := s3_provided
f3_meta.provider(w).bits := s3_provider
f3_meta.alt_differs(w) := s3_alt_provided && alt.ctr(2) =/= io.resp.f3(w).taken
f3_meta.provider_u(w) := prov.u
f3_meta.provider_ctr(w) := prov.ctr
// Create a mask of tables which did not hit our query, and also contain useless entries
// and also uses a longer history than the provider
val allocatable_slots = (
VecInit(f3_resps.map(r => !r(w).valid && r(w).bits.u === 0.U)).asUInt &
~(MaskLower(UIntToOH(f3_meta.provider(w).bits)) & Fill(tageNTables, f3_meta.provider(w).valid))
)
val alloc_lfsr = random.LFSR(tageNTables max 2)
val first_entry = PriorityEncoder(allocatable_slots)
val masked_entry = PriorityEncoder(allocatable_slots & alloc_lfsr)
val alloc_entry = Mux(allocatable_slots(masked_entry),
masked_entry,
first_entry)
f3_meta.allocate(w).valid := allocatable_slots =/= 0.U
f3_meta.allocate(w).bits := alloc_entry
val update_was_taken = (s1_update.bits.cfi_idx.valid &&
(s1_update.bits.cfi_idx.bits === w.U) &&
s1_update.bits.cfi_taken)
when (s1_update.bits.br_mask(w) && s1_update.valid && s1_update.bits.is_commit_update) {
when (s1_update_meta.provider(w).valid) {
val provider = s1_update_meta.provider(w).bits
s1_update_mask(provider)(w) := true.B
s1_update_u_mask(provider)(w) := true.B
val new_u = inc_u(s1_update_meta.provider_u(w),
s1_update_meta.alt_differs(w),
s1_update_mispredict_mask(w))
s1_update_u (provider)(w) := new_u
s1_update_taken (provider)(w) := update_was_taken
s1_update_old_ctr(provider)(w) := s1_update_meta.provider_ctr(w)
s1_update_alloc (provider)(w) := false.B
}
}
}
when (s1_update.valid && s1_update.bits.is_commit_update && s1_update.bits.cfi_mispredicted && s1_update.bits.cfi_idx.valid) {
val idx = s1_update.bits.cfi_idx.bits
val allocate = s1_update_meta.allocate(idx)
when (allocate.valid) {
s1_update_mask (allocate.bits)(idx) := true.B
s1_update_taken(allocate.bits)(idx) := s1_update.bits.cfi_taken
s1_update_alloc(allocate.bits)(idx) := true.B
s1_update_u_mask(allocate.bits)(idx) := true.B
s1_update_u (allocate.bits)(idx) := 0.U
} .otherwise {
val provider = s1_update_meta.provider(idx)
val decr_mask = Mux(provider.valid, ~MaskLower(UIntToOH(provider.bits)), 0.U)
for (i <- 0 until tageNTables) {
when (decr_mask(i)) {
s1_update_u_mask(i)(idx) := true.B
s1_update_u (i)(idx) := 0.U
}
}
}
}
for (i <- 0 until tageNTables) {
for (w <- 0 until bankWidth) {
tables(i).io.update_mask(w) := RegNext(s1_update_mask(i)(w))
tables(i).io.update_taken(w) := RegNext(s1_update_taken(i)(w))
tables(i).io.update_alloc(w) := RegNext(s1_update_alloc(i)(w))
tables(i).io.update_old_ctr(w) := RegNext(s1_update_old_ctr(i)(w))
tables(i).io.update_u_mask(w) := RegNext(s1_update_u_mask(i)(w))
tables(i).io.update_u(w) := RegNext(s1_update_u(i)(w))
}
tables(i).io.update_pc := RegNext(s1_update.bits.pc)
tables(i).io.update_hist := RegNext(s1_update.bits.ghist)
}
//io.f3_meta := Cat(f3_meta.asUInt, micro.io.f3_meta(micro.metaSz-1,0), base.io.f3_meta(base.metaSz-1, 0))
io.f3_meta := f3_meta.asUInt
}
| module tage_table_32( // @[tage.scala:90:27]
input [6:0] R0_addr,
input R0_en,
input R0_clk,
output [51:0] R0_data,
input [6:0] W0_addr,
input W0_en,
input W0_clk,
input [51:0] W0_data,
input [3:0] W0_mask
);
tage_table_32_ext tage_table_32_ext ( // @[tage.scala:90:27]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (W0_en),
.W0_clk (W0_clk),
.W0_data (W0_data),
.W0_mask (W0_mask)
); // @[tage.scala:90:27]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
| module OptimizationBarrier_TLBEntryData_35( // @[package.scala:267:30]
input clock, // @[package.scala:267:30]
input reset, // @[package.scala:267:30]
input [19:0] io_x_ppn, // @[package.scala:268:18]
input io_x_u, // @[package.scala:268:18]
input io_x_g, // @[package.scala:268:18]
input io_x_ae_ptw, // @[package.scala:268:18]
input io_x_ae_final, // @[package.scala:268:18]
input io_x_ae_stage2, // @[package.scala:268:18]
input io_x_pf, // @[package.scala:268:18]
input io_x_gf, // @[package.scala:268:18]
input io_x_sw, // @[package.scala:268:18]
input io_x_sx, // @[package.scala:268:18]
input io_x_sr, // @[package.scala:268:18]
input io_x_hw, // @[package.scala:268:18]
input io_x_hx, // @[package.scala:268:18]
input io_x_hr, // @[package.scala:268:18]
input io_x_pw, // @[package.scala:268:18]
input io_x_px, // @[package.scala:268:18]
input io_x_pr, // @[package.scala:268:18]
input io_x_ppp, // @[package.scala:268:18]
input io_x_pal, // @[package.scala:268:18]
input io_x_paa, // @[package.scala:268:18]
input io_x_eff, // @[package.scala:268:18]
input io_x_c, // @[package.scala:268:18]
input io_x_fragmented_superpage, // @[package.scala:268:18]
output io_y_u, // @[package.scala:268:18]
output io_y_ae_ptw, // @[package.scala:268:18]
output io_y_ae_final, // @[package.scala:268:18]
output io_y_ae_stage2, // @[package.scala:268:18]
output io_y_pf, // @[package.scala:268:18]
output io_y_gf, // @[package.scala:268:18]
output io_y_sw, // @[package.scala:268:18]
output io_y_sx, // @[package.scala:268:18]
output io_y_sr, // @[package.scala:268:18]
output io_y_hw, // @[package.scala:268:18]
output io_y_hx, // @[package.scala:268:18]
output io_y_hr, // @[package.scala:268:18]
output io_y_pw, // @[package.scala:268:18]
output io_y_px, // @[package.scala:268:18]
output io_y_pr, // @[package.scala:268:18]
output io_y_ppp, // @[package.scala:268:18]
output io_y_pal, // @[package.scala:268:18]
output io_y_paa, // @[package.scala:268:18]
output io_y_eff, // @[package.scala:268:18]
output io_y_c // @[package.scala:268:18]
);
wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30]
wire io_x_u_0 = io_x_u; // @[package.scala:267:30]
wire io_x_g_0 = io_x_g; // @[package.scala:267:30]
wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30]
wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30]
wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30]
wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30]
wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30]
wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30]
wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30]
wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30]
wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30]
wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30]
wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30]
wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30]
wire io_x_px_0 = io_x_px; // @[package.scala:267:30]
wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30]
wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30]
wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30]
wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30]
wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30]
wire io_x_c_0 = io_x_c; // @[package.scala:267:30]
wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30]
wire [19:0] io_y_ppn = io_x_ppn_0; // @[package.scala:267:30]
wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30]
wire io_y_g = io_x_g_0; // @[package.scala:267:30]
wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30]
wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30]
wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30]
wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30]
wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30]
wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30]
wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30]
wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30]
wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30]
wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30]
wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30]
wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30]
wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30]
wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30]
wire io_y_ppp_0 = io_x_ppp_0; // @[package.scala:267:30]
wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30]
wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30]
wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30]
wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30]
wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30]
assign io_y_u = io_y_u_0; // @[package.scala:267:30]
assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30]
assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30]
assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30]
assign io_y_pf = io_y_pf_0; // @[package.scala:267:30]
assign io_y_gf = io_y_gf_0; // @[package.scala:267:30]
assign io_y_sw = io_y_sw_0; // @[package.scala:267:30]
assign io_y_sx = io_y_sx_0; // @[package.scala:267:30]
assign io_y_sr = io_y_sr_0; // @[package.scala:267:30]
assign io_y_hw = io_y_hw_0; // @[package.scala:267:30]
assign io_y_hx = io_y_hx_0; // @[package.scala:267:30]
assign io_y_hr = io_y_hr_0; // @[package.scala:267:30]
assign io_y_pw = io_y_pw_0; // @[package.scala:267:30]
assign io_y_px = io_y_px_0; // @[package.scala:267:30]
assign io_y_pr = io_y_pr_0; // @[package.scala:267:30]
assign io_y_ppp = io_y_ppp_0; // @[package.scala:267:30]
assign io_y_pal = io_y_pal_0; // @[package.scala:267:30]
assign io_y_paa = io_y_paa_0; // @[package.scala:267:30]
assign io_y_eff = io_y_eff_0; // @[package.scala:267:30]
assign io_y_c = io_y_c_0; // @[package.scala:267:30]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
package constellation.channel
import chisel3._
import chisel3.util._
import freechips.rocketchip.diplomacy._
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.util._
import constellation.noc.{HasNoCParams}
class NoCMonitor(val cParam: ChannelParams)(implicit val p: Parameters) extends Module with HasNoCParams {
val io = IO(new Bundle {
val in = Input(new Channel(cParam))
})
val in_flight = RegInit(VecInit(Seq.fill(cParam.nVirtualChannels) { false.B }))
for (i <- 0 until cParam.srcSpeedup) {
val flit = io.in.flit(i)
when (flit.valid) {
when (flit.bits.head) {
in_flight(flit.bits.virt_channel_id) := true.B
assert (!in_flight(flit.bits.virt_channel_id), "Flit head/tail sequencing is broken")
}
when (flit.bits.tail) {
in_flight(flit.bits.virt_channel_id) := false.B
}
}
val possibleFlows = cParam.possibleFlows
when (flit.valid && flit.bits.head) {
cParam match {
case n: ChannelParams => n.virtualChannelParams.zipWithIndex.foreach { case (v,i) =>
assert(flit.bits.virt_channel_id =/= i.U || v.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR)
}
case _ => assert(cParam.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR)
}
}
}
}
File Types.scala:
package constellation.routing
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Parameters}
import constellation.noc.{HasNoCParams}
import constellation.channel.{Flit}
/** A representation for 1 specific virtual channel in wormhole routing
*
* @param src the source node
* @param vc ID for the virtual channel
* @param dst the destination node
* @param n_vc the number of virtual channels
*/
// BEGIN: ChannelRoutingInfo
case class ChannelRoutingInfo(
src: Int,
dst: Int,
vc: Int,
n_vc: Int
) {
// END: ChannelRoutingInfo
require (src >= -1 && dst >= -1 && vc >= 0, s"Illegal $this")
require (!(src == -1 && dst == -1), s"Illegal $this")
require (vc < n_vc, s"Illegal $this")
val isIngress = src == -1
val isEgress = dst == -1
}
/** Represents the properties of a packet that are relevant for routing
* ingressId and egressId uniquely identify a flow, but vnet and dst are used here
* to simplify the implementation of routingrelations
*
* @param ingressId packet's source ingress point
* @param egressId packet's destination egress point
* @param vNet virtual subnetwork identifier
* @param dst packet's destination node ID
*/
// BEGIN: FlowRoutingInfo
case class FlowRoutingInfo(
ingressId: Int,
egressId: Int,
vNetId: Int,
ingressNode: Int,
ingressNodeId: Int,
egressNode: Int,
egressNodeId: Int,
fifo: Boolean
) {
// END: FlowRoutingInfo
def isFlow(f: FlowRoutingBundle): Bool = {
(f.ingress_node === ingressNode.U &&
f.egress_node === egressNode.U &&
f.ingress_node_id === ingressNodeId.U &&
f.egress_node_id === egressNodeId.U)
}
def asLiteral(b: FlowRoutingBundle): BigInt = {
Seq(
(vNetId , b.vnet_id),
(ingressNode , b.ingress_node),
(ingressNodeId , b.ingress_node_id),
(egressNode , b.egress_node),
(egressNodeId , b.egress_node_id)
).foldLeft(0)((l, t) => {
(l << t._2.getWidth) | t._1
})
}
}
class FlowRoutingBundle(implicit val p: Parameters) extends Bundle with HasNoCParams {
// Instead of tracking ingress/egress ID, track the physical destination id and the offset at the destination
// This simplifies the routing tables
val vnet_id = UInt(log2Ceil(nVirtualNetworks).W)
val ingress_node = UInt(log2Ceil(nNodes).W)
val ingress_node_id = UInt(log2Ceil(maxIngressesAtNode).W)
val egress_node = UInt(log2Ceil(nNodes).W)
val egress_node_id = UInt(log2Ceil(maxEgressesAtNode).W)
}
| module NoCMonitor_10( // @[Monitor.scala:11:7]
input clock, // @[Monitor.scala:11:7]
input reset, // @[Monitor.scala:11:7]
input io_in_flit_0_valid, // @[Monitor.scala:12:14]
input io_in_flit_0_bits_head, // @[Monitor.scala:12:14]
input io_in_flit_0_bits_tail, // @[Monitor.scala:12:14]
input [3:0] io_in_flit_0_bits_flow_ingress_node, // @[Monitor.scala:12:14]
input [2:0] io_in_flit_0_bits_flow_ingress_node_id, // @[Monitor.scala:12:14]
input [3:0] io_in_flit_0_bits_flow_egress_node, // @[Monitor.scala:12:14]
input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[Monitor.scala:12:14]
input [1:0] io_in_flit_0_bits_virt_channel_id // @[Monitor.scala:12:14]
);
reg in_flight_0; // @[Monitor.scala:16:26]
reg in_flight_1; // @[Monitor.scala:16:26]
reg in_flight_2; // @[Monitor.scala:16:26]
wire _GEN = io_in_flit_0_bits_virt_channel_id == 2'h1; // @[Monitor.scala:21:46]
wire _GEN_0 = io_in_flit_0_bits_virt_channel_id == 2'h2; // @[Monitor.scala:21:46] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_126( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7]
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_210 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_d (_output_T_1), // @[SynchronizerReg.scala:87:41]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_156( // @[AsyncQueue.scala:58:7]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in = 1'h1; // @[ShiftReg.scala:45:23]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_166 io_out_sink_valid_0 ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File UnsafeAXI4ToTL.scala:
package ara
import chisel3._
import chisel3.util._
import freechips.rocketchip.amba._
import freechips.rocketchip.amba.axi4._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle {
val data = UInt(dataWidth.W)
val resp = UInt(respWidth.W)
val last = Bool()
val user = BundleMap(userFields)
}
/** Parameters for [[BaseReservableListBuffer]] and all child classes.
*
* @param numEntries Total number of elements that can be stored in the 'data' RAM
* @param numLists Maximum number of linked lists
* @param numBeats Maximum number of beats per entry
*/
case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) {
// Avoid zero-width wires when we call 'log2Ceil'
val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries)
val listBits = if (numLists == 1) 1 else log2Ceil(numLists)
val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats)
}
case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName)
extends MixedAdapterNode(AXI4Imp, TLImp)(
dFn = { case mp =>
TLMasterPortParameters.v2(
masters = mp.masters.zipWithIndex.map { case (m, i) =>
// Support 'numTlTxns' read requests and 'numTlTxns' write requests at once.
val numSourceIds = numTlTxns * 2
TLMasterParameters.v2(
name = m.name,
sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds),
nodePath = m.nodePath
)
},
echoFields = mp.echoFields,
requestFields = AMBAProtField() +: mp.requestFields,
responseKeys = mp.responseKeys
)
},
uFn = { mp =>
AXI4SlavePortParameters(
slaves = mp.managers.map { m =>
val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits))
AXI4SlaveParameters(
address = m.address,
resources = m.resources,
regionType = m.regionType,
executable = m.executable,
nodePath = m.nodePath,
supportsWrite = m.supportsPutPartial.intersect(maxXfer),
supportsRead = m.supportsGet.intersect(maxXfer),
interleavedId = Some(0) // TL2 never interleaves D beats
)
},
beatBytes = mp.beatBytes,
minLatency = mp.minLatency,
responseFields = mp.responseFields,
requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt)
)
}
)
class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule {
require(numTlTxns >= 1)
require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2")
val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt)
lazy val module = new LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
edgeIn.master.masters.foreach { m =>
require(m.aligned, "AXI4ToTL requires aligned requests")
}
val numIds = edgeIn.master.endId
val beatBytes = edgeOut.slave.beatBytes
val maxTransfer = edgeOut.slave.maxTransfer
val maxBeats = maxTransfer / beatBytes
// Look for an Error device to redirect bad requests
val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError")
require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.")
val errorDev = errorDevs.maxBy(_.maxTransfer)
val errorDevAddr = errorDev.address.head.base
require(
errorDev.supportsPutPartial.contains(maxTransfer),
s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer"
)
require(
errorDev.supportsGet.contains(maxTransfer),
s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer"
)
// All of the read-response reordering logic.
val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields)
val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats)
val listBuffer = if (numTlTxns > 1) {
Module(new ReservableListBuffer(listBufData, listBufParams))
} else {
Module(new PassthroughListBuffer(listBufData, listBufParams))
}
// To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to
// 0 for read requests and 1 for write requests.
val isReadSourceBit = 0.U(1.W)
val isWriteSourceBit = 1.U(1.W)
/* Read request logic */
val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val rBytes1 = in.ar.bits.bytes1()
val rSize = OH1ToUInt(rBytes1)
val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize)
val rId = if (numTlTxns > 1) {
Cat(isReadSourceBit, listBuffer.ioReservedIndex)
} else {
isReadSourceBit
}
val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Indicates if there are still valid TileLink source IDs left to use.
val canIssueR = listBuffer.ioReserve.ready
listBuffer.ioReserve.bits := in.ar.bits.id
listBuffer.ioReserve.valid := in.ar.valid && rOut.ready
in.ar.ready := rOut.ready && canIssueR
rOut.valid := in.ar.valid && canIssueR
rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2
rOut.bits.user :<= in.ar.bits.user
rOut.bits.user.lift(AMBAProt).foreach { rProt =>
rProt.privileged := in.ar.bits.prot(0)
rProt.secure := !in.ar.bits.prot(1)
rProt.fetch := in.ar.bits.prot(2)
rProt.bufferable := in.ar.bits.cache(0)
rProt.modifiable := in.ar.bits.cache(1)
rProt.readalloc := in.ar.bits.cache(2)
rProt.writealloc := in.ar.bits.cache(3)
}
/* Write request logic */
// Strip off the MSB, which identifies the transaction as read vs write.
val strippedResponseSourceId = if (numTlTxns > 1) {
out.d.bits.source((out.d.bits.source).getWidth - 2, 0)
} else {
// When there's only 1 TileLink transaction allowed for read/write, then this field is always 0.
0.U(1.W)
}
// Track when a write request burst is in progress.
val writeBurstBusy = RegInit(false.B)
when(in.w.fire) {
writeBurstBusy := !in.w.bits.last
}
val usedWriteIds = RegInit(0.U(numTlTxns.W))
val canIssueW = !usedWriteIds.andR
val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W))
val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W))
usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet
// Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't
// change mid-burst.
val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W))
val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy
val freeWriteIdIndex = OHToUInt(freeWriteIdOH)
freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds
val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val wBytes1 = in.aw.bits.bytes1()
val wSize = OH1ToUInt(wBytes1)
val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize)
val wId = if (numTlTxns > 1) {
Cat(isWriteSourceBit, freeWriteIdIndex)
} else {
isWriteSourceBit
}
val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain
// asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but
// the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb
// bits during a W-channel burst.
in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW
in.w.ready := wOut.ready && in.aw.valid && canIssueW
wOut.valid := in.aw.valid && in.w.valid && canIssueW
wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2
in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ }
wOut.bits.user :<= in.aw.bits.user
wOut.bits.user.lift(AMBAProt).foreach { wProt =>
wProt.privileged := in.aw.bits.prot(0)
wProt.secure := !in.aw.bits.prot(1)
wProt.fetch := in.aw.bits.prot(2)
wProt.bufferable := in.aw.bits.cache(0)
wProt.modifiable := in.aw.bits.cache(1)
wProt.readalloc := in.aw.bits.cache(2)
wProt.writealloc := in.aw.bits.cache(3)
}
// Merge the AXI4 read/write requests into the TL-A channel.
TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut))
/* Read/write response logic */
val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle)))
val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle)))
val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY)
val dHasData = edgeOut.hasData(out.d.bits)
val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d)
val dNumBeats1 = edgeOut.numBeats1(out.d.bits)
// Handle cases where writeack arrives before write is done
val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U
out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck)
listBuffer.ioDataOut.ready := okR.ready
okR.valid := listBuffer.ioDataOut.valid
okB.valid := out.d.valid && !dHasData && !writeEarlyAck
listBuffer.ioResponse.valid := out.d.valid && dHasData
listBuffer.ioResponse.bits.index := strippedResponseSourceId
listBuffer.ioResponse.bits.data.data := out.d.bits.data
listBuffer.ioResponse.bits.data.resp := dResp
listBuffer.ioResponse.bits.data.last := dLast
listBuffer.ioResponse.bits.data.user :<= out.d.bits.user
listBuffer.ioResponse.bits.count := dCount
listBuffer.ioResponse.bits.numBeats1 := dNumBeats1
okR.bits.id := listBuffer.ioDataOut.bits.listIndex
okR.bits.data := listBuffer.ioDataOut.bits.payload.data
okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp
okR.bits.last := listBuffer.ioDataOut.bits.payload.last
okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user
// Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write
// response, mark the write transaction as complete.
val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W))
val writeResponseId = writeIdMap.read(strippedResponseSourceId)
when(wOut.fire) {
writeIdMap.write(freeWriteIdIndex, in.aw.bits.id)
}
when(edgeOut.done(wOut)) {
usedWriteIdsSet := freeWriteIdOH
}
when(okB.fire) {
usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns)
}
okB.bits.id := writeResponseId
okB.bits.resp := dResp
okB.bits.user :<= out.d.bits.user
// AXI4 needs irrevocable behaviour
in.r <> Queue.irrevocable(okR, 1, flow = true)
in.b <> Queue.irrevocable(okB, 1, flow = true)
// Unused channels
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
/* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */
def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = {
val lReqType = reqType.toLowerCase
when(a.valid) {
assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U)
// Narrow transfers and FIXED bursts must be single-beat bursts.
when(a.bits.len =/= 0.U) {
assert(
a.bits.size === log2Ceil(beatBytes).U,
s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)",
1.U << a.bits.size,
a.bits.len + 1.U
)
assert(
a.bits.burst =/= AXI4Parameters.BURST_FIXED,
s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)",
a.bits.len + 1.U
)
}
// Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in
// particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink
// Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts.
}
}
checkRequest(in.ar, "Read")
checkRequest(in.aw, "Write")
}
}
}
object UnsafeAXI4ToTL {
def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = {
val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt))
axi42tl.node
}
}
/* ReservableListBuffer logic, and associated classes. */
class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle {
val index = UInt(params.entryBits.W)
val count = UInt(params.beatBits.W)
val numBeats1 = UInt(params.beatBits.W)
}
class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle {
val listIndex = UInt(params.listBits.W)
}
/** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */
abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends Module {
require(params.numEntries > 0)
require(params.numLists > 0)
val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W))))
val ioReservedIndex = IO(Output(UInt(params.entryBits.W)))
val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params))))
val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params)))
}
/** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve
* linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the
* 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a
* given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order.
*
* ==Constructor==
* @param gen Chisel type of linked list data element
* @param params Other parameters
*
* ==Module IO==
* @param ioReserve Index of list to reserve a new element in
* @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire'
* @param ioResponse Payload containing response data and linked-list-entry index
* @param ioDataOut Payload containing data read from response linked list and linked list index
*/
class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
val valid = RegInit(0.U(params.numLists.W))
val head = Mem(params.numLists, UInt(params.entryBits.W))
val tail = Mem(params.numLists, UInt(params.entryBits.W))
val used = RegInit(0.U(params.numEntries.W))
val next = Mem(params.numEntries, UInt(params.entryBits.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) }
val dataIsPresent = RegInit(0.U(params.numEntries.W))
val beats = Mem(params.numEntries, UInt(params.beatBits.W))
// The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower.
val dataMemReadEnable = WireDefault(false.B)
val dataMemWriteEnable = WireDefault(false.B)
assert(!(dataMemReadEnable && dataMemWriteEnable))
// 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the
// lowest-index entry in the 'data' RAM which is free.
val freeOH = Wire(UInt(params.numEntries.W))
val freeIndex = OHToUInt(freeOH)
freeOH := ~(leftOR(~used) << 1) & ~used
ioReservedIndex := freeIndex
val validSet = WireDefault(0.U(params.numLists.W))
val validClr = WireDefault(0.U(params.numLists.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
val dataIsPresentSet = WireDefault(0.U(params.numEntries.W))
val dataIsPresentClr = WireDefault(0.U(params.numEntries.W))
valid := (valid & ~validClr) | validSet
used := (used & ~usedClr) | usedSet
dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet
/* Reservation logic signals */
val reserveTail = Wire(UInt(params.entryBits.W))
val reserveIsValid = Wire(Bool())
/* Response logic signals */
val responseIndex = Wire(UInt(params.entryBits.W))
val responseListIndex = Wire(UInt(params.listBits.W))
val responseHead = Wire(UInt(params.entryBits.W))
val responseTail = Wire(UInt(params.entryBits.W))
val nextResponseHead = Wire(UInt(params.entryBits.W))
val nextDataIsPresent = Wire(Bool())
val isResponseInOrder = Wire(Bool())
val isEndOfList = Wire(Bool())
val isLastBeat = Wire(Bool())
val isLastResponseBeat = Wire(Bool())
val isLastUnwindBeat = Wire(Bool())
/* Reservation logic */
reserveTail := tail.read(ioReserve.bits)
reserveIsValid := valid(ioReserve.bits)
ioReserve.ready := !used.andR
// When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we
// actually start a new list, rather than appending to a list that's about to disappear.
val reserveResponseSameList = ioReserve.bits === responseListIndex
val appendToAndDestroyList =
ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat
when(ioReserve.fire) {
validSet := UIntToOH(ioReserve.bits, params.numLists)
usedSet := freeOH
when(reserveIsValid && !appendToAndDestroyList) {
next.write(reserveTail, freeIndex)
}.otherwise {
head.write(ioReserve.bits, freeIndex)
}
tail.write(ioReserve.bits, freeIndex)
map.write(freeIndex, ioReserve.bits)
}
/* Response logic */
// The majority of the response logic (reading from and writing to the various RAMs) is common between the
// response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid).
// The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the
// 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and
// response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after
// two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker.
responseHead := head.read(responseListIndex)
responseTail := tail.read(responseListIndex)
nextResponseHead := next.read(responseIndex)
nextDataIsPresent := dataIsPresent(nextResponseHead)
// Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since
// there isn't a next element in the linked list.
isResponseInOrder := responseHead === responseIndex
isEndOfList := responseHead === responseTail
isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1
// When a response's last beat is sent to the output channel, mark it as completed. This can happen in two
// situations:
// 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM
// reservation was never needed.
// 2. An entry is read out of the 'data' SRAM (within the unwind FSM).
when(ioDataOut.fire && isLastBeat) {
// Mark the reservation as no-longer-used.
usedClr := UIntToOH(responseIndex, params.numEntries)
// If the response is in-order, then we're popping an element from this linked list.
when(isEndOfList) {
// Once we pop the last element from a linked list, mark it as no-longer-present.
validClr := UIntToOH(responseListIndex, params.numLists)
}.otherwise {
// Move the linked list's head pointer to the new head pointer.
head.write(responseListIndex, nextResponseHead)
}
}
// If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding.
when(ioResponse.fire && !isResponseInOrder) {
dataMemWriteEnable := true.B
when(isLastResponseBeat) {
dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries)
beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1)
}
}
// Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to.
val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats)
(responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) =>
when(select && dataMemWriteEnable) {
seqMem.write(ioResponse.bits.index, ioResponse.bits.data)
}
}
/* Response unwind logic */
// Unwind FSM state definitions
val sIdle :: sUnwinding :: Nil = Enum(2)
val unwindState = RegInit(sIdle)
val busyUnwinding = unwindState === sUnwinding
val startUnwind = Wire(Bool())
val stopUnwind = Wire(Bool())
when(startUnwind) {
unwindState := sUnwinding
}.elsewhen(stopUnwind) {
unwindState := sIdle
}
assert(!(startUnwind && stopUnwind))
// Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to
// become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is
// invalid.
//
// Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to
// worry about overwriting the 'data' SRAM's output when we start the unwind FSM.
startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent
// Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of
// two things happens:
// 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent)
// 2. There are no more outstanding responses in this list (isEndOfList)
//
// Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are
// passing from 'ioResponse' to 'ioDataOut'.
stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList)
val isUnwindBurstOver = Wire(Bool())
val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable)
// Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of
// beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we
// increment 'beatCounter' until it reaches 'unwindBeats1'.
val unwindBeats1 = Reg(UInt(params.beatBits.W))
val nextBeatCounter = Wire(UInt(params.beatBits.W))
val beatCounter = RegNext(nextBeatCounter)
isUnwindBurstOver := beatCounter === unwindBeats1
when(startNewBurst) {
unwindBeats1 := beats.read(nextResponseHead)
nextBeatCounter := 0.U
}.elsewhen(dataMemReadEnable) {
nextBeatCounter := beatCounter + 1.U
}.otherwise {
nextBeatCounter := beatCounter
}
// When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next
// entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which
// happens at the start of reading a new stored burst).
val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst)
responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index)
// Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the
// SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead
// holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'.
val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex)
// The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid
// until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle).
val unwindDataIsValid = RegInit(false.B)
when(dataMemReadEnable) {
unwindDataIsValid := true.B
}.elsewhen(ioDataOut.fire) {
unwindDataIsValid := false.B
}
isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid
// Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats.
isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat)
// Select which SRAM to read from based on the beat counter.
val dataOutputVec = Wire(Vec(params.numBeats, gen))
val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats)
(nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) =>
dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable)
}
// Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured
// by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading
// from.
val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable)
// Mark 'data' burst entries as no-longer-present as they get read out of the SRAM.
when(dataMemReadEnable) {
dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries)
}
// As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue
// a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know
// we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be
// consumed by the output channel).
val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready
dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem)
// While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need
// 'responseListIndex' to be coherent for the entire unwind process.
val rawResponseListIndex = map.read(responseIndex)
val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst)
responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex)
// Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are
// just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that
// could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be
// single-ported.
ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding
// Either pass an in-order response to the output channel, or data read from the unwind FSM.
ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder)
ioDataOut.bits.listIndex := responseListIndex
ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data)
// It's an error to get a response that isn't associated with a valid linked list.
when(ioResponse.fire || unwindDataIsValid) {
assert(
valid(responseListIndex),
"No linked list exists at index %d, mapped from %d",
responseListIndex,
responseIndex
)
}
when(busyUnwinding && dataMemReadEnable) {
assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order")
}
}
/** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1.
*
* Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to
* reorder any responses, or store any linked lists.
*/
class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1")
val used = RegInit(0.U(params.numEntries.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
used := (used & ~usedClr) | usedSet
ioReserve.ready := used === 0.U
// Store which list index was reserved, we need to return this value when we get a response.
when(ioReserve.fire) {
usedSet := 1.U
map.write(0.U, ioReserve.bits)
}
// There's only one valid linked list entry, which is at index 0.
ioReservedIndex := 0.U
val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1
// Mark the linked list as empty when we get the last beat in a response.
// Note that 'ioResponse.fire === ioDataOut.fire'.
when(ioResponse.fire && isLastResponseBeat) {
usedClr := 1.U
}
// Always pass the response data straight through, since we never need to reorder the response data.
ioDataOut.bits.listIndex := map.read(0.U)
ioDataOut.bits.payload := ioResponse.bits.data
ioDataOut.valid := ioResponse.valid
ioResponse.ready := ioDataOut.ready
}
| module dataMems_376( // @[UnsafeAXI4ToTL.scala:365:62]
input [4:0] R0_addr,
input R0_en,
input R0_clk,
output [66:0] R0_data,
input [4:0] W0_addr,
input W0_en,
input W0_clk,
input [66:0] W0_data
);
dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (W0_en),
.W0_clk (W0_clk),
.W0_data (W0_data)
); // @[UnsafeAXI4ToTL.scala:365:62]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_23( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [25:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [6:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [25:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [6:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27]
wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25]
wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_28 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_30 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_44 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_46 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_50 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_52 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_56 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_58 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_62 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_64 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_69 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_71 = 1'h1; // @[Parameters.scala:57:20]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28]
wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28]
wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_first_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_first_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_first_WIRE_2_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_first_WIRE_3_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_set_wo_ready_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_set_wo_ready_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_set_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_set_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_opcodes_set_interm_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_opcodes_set_interm_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_sizes_set_interm_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_sizes_set_interm_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_opcodes_set_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_opcodes_set_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_sizes_set_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_sizes_set_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_probe_ack_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_probe_ack_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _c_probe_ack_WIRE_2_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _c_probe_ack_WIRE_3_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _same_cycle_resp_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _same_cycle_resp_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _same_cycle_resp_WIRE_2_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _same_cycle_resp_WIRE_3_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [25:0] _same_cycle_resp_WIRE_4_bits_address = 26'h0; // @[Bundles.scala:265:74]
wire [25:0] _same_cycle_resp_WIRE_5_bits_address = 26'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_first_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_first_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_first_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_first_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_set_wo_ready_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_set_wo_ready_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_opcodes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_opcodes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_sizes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_sizes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_opcodes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_opcodes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_sizes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_sizes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_probe_ack_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_probe_ack_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_probe_ack_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_probe_ack_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_4_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_5_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [1026:0] _c_opcodes_set_T_1 = 1027'h0; // @[Monitor.scala:767:54]
wire [1026:0] _c_sizes_set_T_1 = 1027'h0; // @[Monitor.scala:768:52]
wire [9:0] _c_opcodes_set_T = 10'h0; // @[Monitor.scala:767:79]
wire [9:0] _c_sizes_set_T = 10'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51]
wire [127:0] _c_set_wo_ready_T = 128'h1; // @[OneHot.scala:58:35]
wire [127:0] _c_set_T = 128'h1; // @[OneHot.scala:58:35]
wire [259:0] c_opcodes_set = 260'h0; // @[Monitor.scala:740:34]
wire [259:0] c_sizes_set = 260'h0; // @[Monitor.scala:741:34]
wire [64:0] c_set = 65'h0; // @[Monitor.scala:738:34]
wire [64:0] c_set_wo_ready = 65'h0; // @[Monitor.scala:739:34]
wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [6:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_5 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_T = io_in_a_bits_source_0 == 7'h10; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_1 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_7 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_13 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_19 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_26 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_2 = _source_ok_T_1 == 5'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_8 = _source_ok_T_7 == 5'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_14 = _source_ok_T_13 == 5'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_20 = _source_ok_T_19 == 5'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31]
wire _source_ok_T_25 = io_in_a_bits_source_0 == 7'h28; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_27 = _source_ok_T_26 == 5'h8; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_29 = _source_ok_T_27; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_31 = _source_ok_T_29; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_6 = _source_ok_T_31; // @[Parameters.scala:1138:31]
wire _source_ok_T_32 = io_in_a_bits_source_0 == 7'h24; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_7 = _source_ok_T_32; // @[Parameters.scala:1138:31]
wire _source_ok_T_33 = io_in_a_bits_source_0 == 7'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_8 = _source_ok_T_33; // @[Parameters.scala:1138:31]
wire _source_ok_T_34 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_35 = _source_ok_T_34 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_36 = _source_ok_T_35 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_37 = _source_ok_T_36 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_38 = _source_ok_T_37 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_39 = _source_ok_T_38 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_40 = _source_ok_T_39 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_40 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [25:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 26'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_4 = _uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_11 = _uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_29 = _uncommonBits_T_29[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_34 = _uncommonBits_T_34[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_40 = _uncommonBits_T_40[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_41 = _uncommonBits_T_41[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_44 = _uncommonBits_T_44[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_46 = _uncommonBits_T_46[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_47 = _uncommonBits_T_47[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_48 = _uncommonBits_T_48[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_49 = _uncommonBits_T_49[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_52 = _uncommonBits_T_52[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_53 = _uncommonBits_T_53[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_54 = _uncommonBits_T_54[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_41 = io_in_d_bits_source_0 == 7'h10; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_41; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_42 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_48 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_54 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_60 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_67 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_43 = _source_ok_T_42 == 5'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_45 = _source_ok_T_43; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_47 = _source_ok_T_45; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_1 = _source_ok_T_47; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_49 = _source_ok_T_48 == 5'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_51 = _source_ok_T_49; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_53 = _source_ok_T_51; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_2 = _source_ok_T_53; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_55 = _source_ok_T_54 == 5'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_57 = _source_ok_T_55; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_59 = _source_ok_T_57; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_3 = _source_ok_T_59; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_61 = _source_ok_T_60 == 5'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_63 = _source_ok_T_61; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_65 = _source_ok_T_63; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_4 = _source_ok_T_65; // @[Parameters.scala:1138:31]
wire _source_ok_T_66 = io_in_d_bits_source_0 == 7'h28; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_5 = _source_ok_T_66; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_68 = _source_ok_T_67 == 5'h8; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_70 = _source_ok_T_68; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_72 = _source_ok_T_70; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_6 = _source_ok_T_72; // @[Parameters.scala:1138:31]
wire _source_ok_T_73 = io_in_d_bits_source_0 == 7'h24; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_7 = _source_ok_T_73; // @[Parameters.scala:1138:31]
wire _source_ok_T_74 = io_in_d_bits_source_0 == 7'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_8 = _source_ok_T_74; // @[Parameters.scala:1138:31]
wire _source_ok_T_75 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_76 = _source_ok_T_75 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_77 = _source_ok_T_76 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_78 = _source_ok_T_77 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_79 = _source_ok_T_78 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_80 = _source_ok_T_79 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_81 = _source_ok_T_80 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_81 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46]
wire _T_1149 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1149; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1149; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [6:0] source; // @[Monitor.scala:390:22]
reg [25:0] address; // @[Monitor.scala:391:22]
wire _T_1217 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_1217; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_1217; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_1217; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [6:0] source_1; // @[Monitor.scala:541:22]
reg [64:0] inflight; // @[Monitor.scala:614:27]
reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [259:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [64:0] a_set; // @[Monitor.scala:626:34]
wire [64:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [259:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [259:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [9:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [9:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [9:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [9:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [9:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [9:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [9:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [9:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [9:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [259:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [259:0] _a_opcode_lookup_T_6 = {256'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [259:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [259:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [259:0] _a_size_lookup_T_6 = {256'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [259:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[259:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [127:0] _GEN_2 = 128'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [127:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35]
wire [127:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1082 = _T_1149 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_1082 ? _a_set_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_1082 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_1082 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [9:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [9:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79]
wire [9:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77]
wire [1026:0] _a_opcodes_set_T_1 = {1023'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_1082 ? _a_opcodes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [1026:0] _a_sizes_set_T_1 = {1023'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_1082 ? _a_sizes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [64:0] d_clr; // @[Monitor.scala:664:34]
wire [64:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [259:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [259:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46]
wire _T_1128 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [127:0] _GEN_5 = 128'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_1128 & ~d_release_ack ? _d_clr_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1097 = _T_1217 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_1097 ? _d_clr_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [1038:0] _d_opcodes_clr_T_5 = 1039'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_1097 ? _d_opcodes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [1038:0] _d_sizes_clr_T_5 = 1039'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_1097 ? _d_sizes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [64:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [64:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [64:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [259:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [259:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [259:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [259:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [259:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [259:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [64:0] inflight_1; // @[Monitor.scala:726:35]
wire [64:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [259:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [259:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [259:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [259:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [259:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [259:0] _c_opcode_lookup_T_6 = {256'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [259:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [259:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [259:0] _c_size_lookup_T_6 = {256'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [259:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[259:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [64:0] d_clr_1; // @[Monitor.scala:774:34]
wire [64:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [259:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [259:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1193 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1193 & d_release_ack_1 ? _d_clr_wo_ready_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1175 = _T_1217 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_1175 ? _d_clr_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [1038:0] _d_opcodes_clr_T_11 = 1039'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_1175 ? _d_opcodes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [1038:0] _d_sizes_clr_T_11 = 1039'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_1175 ? _d_sizes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 7'h0; // @[Monitor.scala:36:7, :795:113]
wire [64:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [64:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [259:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [259:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [259:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [259:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File Tilelink.scala:
package constellation.protocol
import chisel3._
import chisel3.util._
import constellation.channel._
import constellation.noc._
import constellation.soc.{CanAttachToGlobalNoC}
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.util._
import freechips.rocketchip.tilelink._
import scala.collection.immutable.{ListMap}
trait TLFieldHelper {
def getBodyFields(b: TLChannel): Seq[Data] = b match {
case b: TLBundleA => Seq(b.mask, b.data, b.corrupt)
case b: TLBundleB => Seq(b.mask, b.data, b.corrupt)
case b: TLBundleC => Seq( b.data, b.corrupt)
case b: TLBundleD => Seq( b.data, b.corrupt)
case b: TLBundleE => Seq()
}
def getConstFields(b: TLChannel): Seq[Data] = b match {
case b: TLBundleA => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo )
case b: TLBundleB => Seq(b.opcode, b.param, b.size, b.source, b.address )
case b: TLBundleC => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo )
case b: TLBundleD => Seq(b.opcode, b.param, b.size, b.source, b.user, b.echo, b.sink, b.denied)
case b: TLBundleE => Seq( b.sink )
}
def minTLPayloadWidth(b: TLChannel): Int = Seq(getBodyFields(b), getConstFields(b)).map(_.map(_.getWidth).sum).max
def minTLPayloadWidth(bs: Seq[TLChannel]): Int = bs.map(b => minTLPayloadWidth(b)).max
def minTLPayloadWidth(b: TLBundle): Int = minTLPayloadWidth(Seq(b.a, b.b, b.c, b.d, b.e).map(_.bits))
}
class TLMasterToNoC(
edgeIn: TLEdge, edgesOut: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
slaveToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = Flipped(new TLBundle(wideBundle))
val flits = new Bundle {
val a = Decoupled(new IngressFlit(flitWidth))
val b = Flipped(Decoupled(new EgressFlit(flitWidth)))
val c = Decoupled(new IngressFlit(flitWidth))
val d = Flipped(Decoupled(new EgressFlit(flitWidth)))
val e = Decoupled(new IngressFlit(flitWidth))
}
})
val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart))
val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize))
val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart))
val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize))
val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 2))
a.io.protocol <> io.tilelink.a
io.tilelink.b <> b.io.protocol
c.io.protocol <> io.tilelink.c
io.tilelink.d <> d.io.protocol
e.io.protocol <> io.tilelink.e
io.flits.a <> a.io.flit
b.io.flit <> io.flits.b
io.flits.c <> c.io.flit
d.io.flit <> io.flits.d
io.flits.e <> e.io.flit
}
class TLMasterACDToNoC(
edgeIn: TLEdge, edgesOut: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
slaveToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = Flipped(new TLBundle(wideBundle))
val flits = new Bundle {
val a = Decoupled(new IngressFlit(flitWidth))
val c = Decoupled(new IngressFlit(flitWidth))
val d = Flipped(Decoupled(new EgressFlit(flitWidth)))
}
})
io.tilelink := DontCare
val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart))
val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart))
val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize))
a.io.protocol <> io.tilelink.a
c.io.protocol <> io.tilelink.c
io.tilelink.d <> d.io.protocol
io.flits.a <> a.io.flit
io.flits.c <> c.io.flit
d.io.flit <> io.flits.d
}
class TLMasterBEToNoC(
edgeIn: TLEdge, edgesOut: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
slaveToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = Flipped(new TLBundle(wideBundle))
val flits = new Bundle {
val b = Flipped(Decoupled(new EgressFlit(flitWidth)))
val e = Decoupled(new IngressFlit(flitWidth))
}
})
io.tilelink := DontCare
val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize))
val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0))
io.tilelink.b <> b.io.protocol
e.io.protocol <> io.tilelink.e
b.io.flit <> io.flits.b
io.flits.e <> e.io.flit
}
class TLSlaveToNoC(
edgeOut: TLEdge, edgesIn: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
masterToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = new TLBundle(wideBundle)
val flits = new Bundle {
val a = Flipped(Decoupled(new EgressFlit(flitWidth)))
val b = Decoupled(new IngressFlit(flitWidth))
val c = Flipped(Decoupled(new EgressFlit(flitWidth)))
val d = Decoupled(new IngressFlit(flitWidth))
val e = Flipped(Decoupled(new EgressFlit(flitWidth)))
}
})
val a = Module(new TLAFromNoC(edgeOut, wideBundle))
val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0))
val c = Module(new TLCFromNoC(edgeOut, wideBundle))
val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 1, sourceStart))
val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize))
io.tilelink.a <> a.io.protocol
b.io.protocol <> io.tilelink.b
io.tilelink.c <> c.io.protocol
d.io.protocol <> io.tilelink.d
io.tilelink.e <> e.io.protocol
a.io.flit <> io.flits.a
io.flits.b <> b.io.flit
c.io.flit <> io.flits.c
io.flits.d <> d.io.flit
e.io.flit <> io.flits.e
}
class TLSlaveACDToNoC(
edgeOut: TLEdge, edgesIn: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
masterToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = new TLBundle(wideBundle)
val flits = new Bundle {
val a = Flipped(Decoupled(new EgressFlit(flitWidth)))
val c = Flipped(Decoupled(new EgressFlit(flitWidth)))
val d = Decoupled(new IngressFlit(flitWidth))
}
})
io.tilelink := DontCare
val a = Module(new TLAFromNoC(edgeOut, wideBundle))
val c = Module(new TLCFromNoC(edgeOut, wideBundle))
val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0, sourceStart))
io.tilelink.a <> a.io.protocol
io.tilelink.c <> c.io.protocol
d.io.protocol <> io.tilelink.d
a.io.flit <> io.flits.a
c.io.flit <> io.flits.c
io.flits.d <> d.io.flit
}
class TLSlaveBEToNoC(
edgeOut: TLEdge, edgesIn: Seq[TLEdge],
sourceStart: Int, sourceSize: Int,
wideBundle: TLBundleParameters,
masterToEgressOffset: Int => Int,
flitWidth: Int
)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val tilelink = new TLBundle(wideBundle)
val flits = new Bundle {
val b = Decoupled(new IngressFlit(flitWidth))
val e = Flipped(Decoupled(new EgressFlit(flitWidth)))
}
})
io.tilelink := DontCare
val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0))
val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize))
b.io.protocol <> io.tilelink.b
io.tilelink.e <> e.io.protocol
io.flits.b <> b.io.flit
e.io.flit <> io.flits.e
}
class TileLinkInterconnectInterface(edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge])(implicit val p: Parameters) extends Bundle {
val in = MixedVec(edgesIn.map { e => Flipped(new TLBundle(e.bundle)) })
val out = MixedVec(edgesOut.map { e => new TLBundle(e.bundle) })
}
trait TileLinkProtocolParams extends ProtocolParams with TLFieldHelper {
def edgesIn: Seq[TLEdge]
def edgesOut: Seq[TLEdge]
def edgeInNodes: Seq[Int]
def edgeOutNodes: Seq[Int]
require(edgesIn.size == edgeInNodes.size && edgesOut.size == edgeOutNodes.size)
def wideBundle = TLBundleParameters.union(edgesIn.map(_.bundle) ++ edgesOut.map(_.bundle))
def genBundle = new TLBundle(wideBundle)
def inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client))
def outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager))
val vNetBlocking = (blocker: Int, blockee: Int) => blocker < blockee
def genIO()(implicit p: Parameters): Data = new TileLinkInterconnectInterface(edgesIn, edgesOut)
}
object TLConnect {
def apply[T <: TLBundleBase](l: DecoupledIO[T], r: DecoupledIO[T]) = {
l.valid := r.valid
r.ready := l.ready
l.bits.squeezeAll.waiveAll :<>= r.bits.squeezeAll.waiveAll
}
}
// BEGIN: TileLinkProtocolParams
case class TileLinkABCDEProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]
) extends TileLinkProtocolParams {
// END: TileLinkProtocolParams
val minPayloadWidth = minTLPayloadWidth(new TLBundle(wideBundle))
val ingressNodes = (edgeInNodes.map(u => Seq.fill(3) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten
val egressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (3) {u})).flatten
val nVirtualNetworks = 5
val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) =>
val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)
}}
}}
val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED)
val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB
( (if (reachable) Some(FlowParams(ii * 3 + 0 , oi * 3 + 0 + edgesIn.size * 2, 4)) else None) ++ // A
(if (probe ) Some(FlowParams(oi * 2 + 0 + edgesIn.size * 3, ii * 2 + 0 , 3)) else None) ++ // B
(if (release ) Some(FlowParams(ii * 3 + 1 , oi * 3 + 1 + edgesIn.size * 2, 2)) else None) ++ // C
(if (reachable) Some(FlowParams(oi * 2 + 1 + edgesIn.size * 3, ii * 2 + 1 , 1)) else None) ++ // D
(if (release ) Some(FlowParams(ii * 3 + 2 , oi * 3 + 2 + edgesIn.size * 2, 0)) else None)) // E
}}.flatten.flatten
def interface(terminals: NoCTerminalIO,
ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = {
val ingresses = terminals.ingress
val egresses = terminals.egress
protocol match { case protocol: TileLinkInterconnectInterface => {
edgesIn.zipWithIndex.map { case (e,i) =>
val nif_master = Module(new TLMasterToNoC(
e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size,
wideBundle,
(s) => s * 3 + edgesIn.size * 2 + egressOffset,
minPayloadWidth
))
nif_master.io.tilelink := DontCare
nif_master.io.tilelink.a.valid := false.B
nif_master.io.tilelink.c.valid := false.B
nif_master.io.tilelink.e.valid := false.B
TLConnect(nif_master.io.tilelink.a, protocol.in(i).a)
TLConnect(protocol.in(i).d, nif_master.io.tilelink.d)
if (protocol.in(i).params.hasBCE) {
TLConnect(protocol.in(i).b, nif_master.io.tilelink.b)
TLConnect(nif_master.io.tilelink.c, protocol.in(i).c)
TLConnect(nif_master.io.tilelink.e, protocol.in(i).e)
}
ingresses(i * 3 + 0).flit <> nif_master.io.flits.a
ingresses(i * 3 + 1).flit <> nif_master.io.flits.c
ingresses(i * 3 + 2).flit <> nif_master.io.flits.e
nif_master.io.flits.b <> egresses(i * 2 + 0).flit
nif_master.io.flits.d <> egresses(i * 2 + 1).flit
}
edgesOut.zipWithIndex.map { case (e,i) =>
val nif_slave = Module(new TLSlaveToNoC(
e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size,
wideBundle,
(s) => s * 2 + egressOffset,
minPayloadWidth
))
nif_slave.io.tilelink := DontCare
nif_slave.io.tilelink.b.valid := false.B
nif_slave.io.tilelink.d.valid := false.B
TLConnect(protocol.out(i).a, nif_slave.io.tilelink.a)
TLConnect(nif_slave.io.tilelink.d, protocol.out(i).d)
if (protocol.out(i).params.hasBCE) {
TLConnect(nif_slave.io.tilelink.b, protocol.out(i).b)
TLConnect(protocol.out(i).c, nif_slave.io.tilelink.c)
TLConnect(protocol.out(i).e, nif_slave.io.tilelink.e)
}
ingresses(i * 2 + 0 + edgesIn.size * 3).flit <> nif_slave.io.flits.b
ingresses(i * 2 + 1 + edgesIn.size * 3).flit <> nif_slave.io.flits.d
nif_slave.io.flits.a <> egresses(i * 3 + 0 + edgesIn.size * 2).flit
nif_slave.io.flits.c <> egresses(i * 3 + 1 + edgesIn.size * 2).flit
nif_slave.io.flits.e <> egresses(i * 3 + 2 + edgesIn.size * 2).flit
}
} }
}
}
case class TileLinkACDProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams {
val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.a, genBundle.c, genBundle.d).map(_.bits))
val ingressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten
val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten
val nVirtualNetworks = 3
val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) =>
val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)
}}
}}
val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB
( (if (reachable) Some(FlowParams(ii * 2 + 0 , oi * 2 + 0 + edgesIn.size * 1, 2)) else None) ++ // A
(if (release ) Some(FlowParams(ii * 2 + 1 , oi * 2 + 1 + edgesIn.size * 1, 1)) else None) ++ // C
(if (reachable) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 2, ii * 1 + 0 , 0)) else None)) // D
}}.flatten.flatten
def interface(terminals: NoCTerminalIO,
ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = {
val ingresses = terminals.ingress
val egresses = terminals.egress
protocol match { case protocol: TileLinkInterconnectInterface => {
protocol := DontCare
edgesIn.zipWithIndex.map { case (e,i) =>
val nif_master_acd = Module(new TLMasterACDToNoC(
e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size,
wideBundle,
(s) => s * 2 + edgesIn.size * 1 + egressOffset,
minPayloadWidth
))
nif_master_acd.io.tilelink := DontCare
nif_master_acd.io.tilelink.a.valid := false.B
nif_master_acd.io.tilelink.c.valid := false.B
nif_master_acd.io.tilelink.e.valid := false.B
TLConnect(nif_master_acd.io.tilelink.a, protocol.in(i).a)
TLConnect(protocol.in(i).d, nif_master_acd.io.tilelink.d)
if (protocol.in(i).params.hasBCE) {
TLConnect(nif_master_acd.io.tilelink.c, protocol.in(i).c)
}
ingresses(i * 2 + 0).flit <> nif_master_acd.io.flits.a
ingresses(i * 2 + 1).flit <> nif_master_acd.io.flits.c
nif_master_acd.io.flits.d <> egresses(i * 1 + 0).flit
}
edgesOut.zipWithIndex.map { case (e,i) =>
val nif_slave_acd = Module(new TLSlaveACDToNoC(
e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size,
wideBundle,
(s) => s * 1 + egressOffset,
minPayloadWidth
))
nif_slave_acd.io.tilelink := DontCare
nif_slave_acd.io.tilelink.b.valid := false.B
nif_slave_acd.io.tilelink.d.valid := false.B
TLConnect(protocol.out(i).a, nif_slave_acd.io.tilelink.a)
TLConnect(nif_slave_acd.io.tilelink.d, protocol.out(i).d)
if (protocol.out(i).params.hasBCE) {
TLConnect(protocol.out(i).c, nif_slave_acd.io.tilelink.c)
}
ingresses(i * 1 + 0 + edgesIn.size * 2).flit <> nif_slave_acd.io.flits.d
nif_slave_acd.io.flits.a <> egresses(i * 2 + 0 + edgesIn.size * 1).flit
nif_slave_acd.io.flits.c <> egresses(i * 2 + 1 + edgesIn.size * 1).flit
}
}}
}
}
case class TileLinkBEProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams {
val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.b, genBundle.e).map(_.bits))
val ingressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten
val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten
val nVirtualNetworks = 2
val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) =>
val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED)
val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB
( (if (probe ) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 1, ii * 1 + 0 , 1)) else None) ++ // B
(if (release ) Some(FlowParams(ii * 1 + 0 , oi * 1 + 0 + edgesIn.size * 1, 0)) else None)) // E
}}.flatten.flatten
def interface(terminals: NoCTerminalIO,
ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = {
val ingresses = terminals.ingress
val egresses = terminals.egress
protocol match { case protocol: TileLinkInterconnectInterface => {
protocol := DontCare
edgesIn.zipWithIndex.map { case (e,i) =>
val nif_master_be = Module(new TLMasterBEToNoC(
e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size,
wideBundle,
(s) => s * 1 + edgesIn.size * 1 + egressOffset,
minPayloadWidth
))
nif_master_be.io.tilelink := DontCare
nif_master_be.io.tilelink.a.valid := false.B
nif_master_be.io.tilelink.c.valid := false.B
nif_master_be.io.tilelink.e.valid := false.B
if (protocol.in(i).params.hasBCE) {
TLConnect(protocol.in(i).b, nif_master_be.io.tilelink.b)
TLConnect(nif_master_be.io.tilelink.e, protocol.in(i).e)
}
ingresses(i * 1 + 0).flit <> nif_master_be.io.flits.e
nif_master_be.io.flits.b <> egresses(i * 1 + 0).flit
}
edgesOut.zipWithIndex.map { case (e,i) =>
val nif_slave_be = Module(new TLSlaveBEToNoC(
e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size,
wideBundle,
(s) => s * 1 + egressOffset,
minPayloadWidth
))
nif_slave_be.io.tilelink := DontCare
nif_slave_be.io.tilelink.b.valid := false.B
nif_slave_be.io.tilelink.d.valid := false.B
if (protocol.out(i).params.hasBCE) {
TLConnect(protocol.out(i).e, nif_slave_be.io.tilelink.e)
TLConnect(nif_slave_be.io.tilelink.b, protocol.out(i).b)
}
ingresses(i * 1 + 0 + edgesIn.size * 1).flit <> nif_slave_be.io.flits.b
nif_slave_be.io.flits.e <> egresses(i * 1 + 0 + edgesIn.size * 1).flit
}
}}
}
}
abstract class TLNoCLike(implicit p: Parameters) extends LazyModule {
val node = new TLNexusNode(
clientFn = { seq =>
seq(0).v1copy(
echoFields = BundleField.union(seq.flatMap(_.echoFields)),
requestFields = BundleField.union(seq.flatMap(_.requestFields)),
responseKeys = seq.flatMap(_.responseKeys).distinct,
minLatency = seq.map(_.minLatency).min,
clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) =>
port.clients map { client => client.v1copy(
sourceId = client.sourceId.shift(range.start)
)}
}
)
},
managerFn = { seq =>
val fifoIdFactory = TLXbar.relabeler()
seq(0).v1copy(
responseFields = BundleField.union(seq.flatMap(_.responseFields)),
requestKeys = seq.flatMap(_.requestKeys).distinct,
minLatency = seq.map(_.minLatency).min,
endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max,
managers = seq.flatMap { port =>
require (port.beatBytes == seq(0).beatBytes,
s"TLNoC (data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B")
// TileLink NoC does not preserve FIFO-ness, masters to this NoC should instantiate FIFOFixers
port.managers map { manager => manager.v1copy(fifoId = None) }
}
)
}
)
}
abstract class TLNoCModuleImp(outer: LazyModule) extends LazyModuleImp(outer) {
val edgesIn: Seq[TLEdge]
val edgesOut: Seq[TLEdge]
val nodeMapping: DiplomaticNetworkNodeMapping
val nocName: String
lazy val inNames = nodeMapping.genUniqueName(edgesIn.map(_.master.masters.map(_.name)))
lazy val outNames = nodeMapping.genUniqueName(edgesOut.map(_.slave.slaves.map(_.name)))
lazy val edgeInNodes = nodeMapping.getNodesIn(inNames)
lazy val edgeOutNodes = nodeMapping.getNodesOut(outNames)
def printNodeMappings() {
println(s"Constellation: TLNoC $nocName inwards mapping:")
for ((n, i) <- inNames zip edgeInNodes) {
val node = i.map(_.toString).getOrElse("X")
println(s" $node <- $n")
}
println(s"Constellation: TLNoC $nocName outwards mapping:")
for ((n, i) <- outNames zip edgeOutNodes) {
val node = i.map(_.toString).getOrElse("X")
println(s" $node <- $n")
}
}
}
trait TLNoCParams
// Instantiates a private TLNoC. Replaces the TLXbar
// BEGIN: TLNoCParams
case class SimpleTLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping,
nocParams: NoCParams = NoCParams(),
) extends TLNoCParams
class TLNoC(params: SimpleTLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike {
// END: TLNoCParams
override def shouldBeInlined = inlineNoC
lazy val module = new TLNoCModuleImp(this) {
val (io_in, edgesIn) = node.in.unzip
val (io_out, edgesOut) = node.out.unzip
val nodeMapping = params.nodeMappings
val nocName = name
printNodeMappings()
val protocolParams = TileLinkABCDEProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
val noc = Module(new ProtocolNoC(ProtocolNoCParams(
params.nocParams.copy(hasCtrl = false, nocName=name, inlineNoC = inlineNoC),
Seq(protocolParams),
inlineNoC = inlineNoC
)))
noc.io.protocol(0) match {
case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) => l <> r }
(io_out zip protocol.out).foreach { case (l,r) => l <> r }
}
}
}
}
case class SplitACDxBETLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping,
acdNoCParams: NoCParams = NoCParams(),
beNoCParams: NoCParams = NoCParams(),
beDivision: Int = 2
) extends TLNoCParams
class TLSplitACDxBENoC(params: SplitACDxBETLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike {
override def shouldBeInlined = inlineNoC
lazy val module = new TLNoCModuleImp(this) {
val (io_in, edgesIn) = node.in.unzip
val (io_out, edgesOut) = node.out.unzip
val nodeMapping = params.nodeMappings
val nocName = name
printNodeMappings()
val acdProtocolParams = TileLinkACDProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
val beProtocolParams = TileLinkBEProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
val acd_noc = Module(new ProtocolNoC(ProtocolNoCParams(
params.acdNoCParams.copy(hasCtrl = false, nocName=s"${name}_acd", inlineNoC = inlineNoC),
Seq(acdProtocolParams),
inlineNoC = inlineNoC
)))
val be_noc = Module(new ProtocolNoC(ProtocolNoCParams(
params.beNoCParams.copy(hasCtrl = false, nocName=s"${name}_be", inlineNoC = inlineNoC),
Seq(beProtocolParams),
widthDivision = params.beDivision,
inlineNoC = inlineNoC
)))
acd_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) =>
l := DontCare
l.a <> r.a
l.c <> r.c
l.d <> r.d
}
(io_out zip protocol.out).foreach { case (l,r) =>
r := DontCare
l.a <> r.a
l.c <> r.c
l.d <> r.d
}
}}
be_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) =>
l := DontCare
l.b <> r.b
l.e <> r.e
}
(io_out zip protocol.out).foreach { case (l,r) =>
r := DontCare
l.b <> r.b
l.e <> r.e
}
}}
}
}
case class GlobalTLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping
) extends TLNoCParams
// Maps this interconnect onto a global NoC
class TLGlobalNoC(params: GlobalTLNoCParams, name: String = "test")(implicit p: Parameters) extends TLNoCLike {
lazy val module = new TLNoCModuleImp(this) with CanAttachToGlobalNoC {
val (io_in, edgesIn) = node.in.unzip
val (io_out, edgesOut) = node.out.unzip
val nodeMapping = params.nodeMappings
val nocName = name
val protocolParams = TileLinkABCDEProtocolParams(
edgesIn = edgesIn,
edgesOut = edgesOut,
edgeInNodes = edgeInNodes.flatten,
edgeOutNodes = edgeOutNodes.flatten
)
printNodeMappings()
val io_global = IO(Flipped(protocolParams.genIO()))
io_global match {
case protocol: TileLinkInterconnectInterface => {
(protocol.in zip io_in).foreach { case (l,r) => l <> r }
(io_out zip protocol.out).foreach { case (l,r) => l <> r }
}
}
}
}
| module TLMasterACDToNoC_5( // @[Tilelink.scala:72:7]
input clock, // @[Tilelink.scala:72:7]
input reset, // @[Tilelink.scala:72:7]
output io_tilelink_a_ready, // @[Tilelink.scala:79:14]
input io_tilelink_a_valid, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_a_bits_opcode, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_a_bits_param, // @[Tilelink.scala:79:14]
input [3:0] io_tilelink_a_bits_size, // @[Tilelink.scala:79:14]
input [5:0] io_tilelink_a_bits_source, // @[Tilelink.scala:79:14]
input [31:0] io_tilelink_a_bits_address, // @[Tilelink.scala:79:14]
input [7:0] io_tilelink_a_bits_mask, // @[Tilelink.scala:79:14]
input [63:0] io_tilelink_a_bits_data, // @[Tilelink.scala:79:14]
input io_tilelink_a_bits_corrupt, // @[Tilelink.scala:79:14]
output io_tilelink_c_ready, // @[Tilelink.scala:79:14]
input io_tilelink_c_valid, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_c_bits_opcode, // @[Tilelink.scala:79:14]
input [2:0] io_tilelink_c_bits_param, // @[Tilelink.scala:79:14]
input [3:0] io_tilelink_c_bits_size, // @[Tilelink.scala:79:14]
input [5:0] io_tilelink_c_bits_source, // @[Tilelink.scala:79:14]
input [31:0] io_tilelink_c_bits_address, // @[Tilelink.scala:79:14]
input [63:0] io_tilelink_c_bits_data, // @[Tilelink.scala:79:14]
input io_tilelink_c_bits_corrupt, // @[Tilelink.scala:79:14]
input io_tilelink_d_ready, // @[Tilelink.scala:79:14]
output io_tilelink_d_valid, // @[Tilelink.scala:79:14]
output [2:0] io_tilelink_d_bits_opcode, // @[Tilelink.scala:79:14]
output [1:0] io_tilelink_d_bits_param, // @[Tilelink.scala:79:14]
output [3:0] io_tilelink_d_bits_size, // @[Tilelink.scala:79:14]
output [5:0] io_tilelink_d_bits_source, // @[Tilelink.scala:79:14]
output [4:0] io_tilelink_d_bits_sink, // @[Tilelink.scala:79:14]
output io_tilelink_d_bits_denied, // @[Tilelink.scala:79:14]
output [63:0] io_tilelink_d_bits_data, // @[Tilelink.scala:79:14]
output io_tilelink_d_bits_corrupt, // @[Tilelink.scala:79:14]
input io_flits_a_ready, // @[Tilelink.scala:79:14]
output io_flits_a_valid, // @[Tilelink.scala:79:14]
output io_flits_a_bits_head, // @[Tilelink.scala:79:14]
output io_flits_a_bits_tail, // @[Tilelink.scala:79:14]
output [72:0] io_flits_a_bits_payload, // @[Tilelink.scala:79:14]
output [4:0] io_flits_a_bits_egress_id, // @[Tilelink.scala:79:14]
input io_flits_c_ready, // @[Tilelink.scala:79:14]
output io_flits_c_valid, // @[Tilelink.scala:79:14]
output io_flits_c_bits_head, // @[Tilelink.scala:79:14]
output io_flits_c_bits_tail, // @[Tilelink.scala:79:14]
output [72:0] io_flits_c_bits_payload, // @[Tilelink.scala:79:14]
output [4:0] io_flits_c_bits_egress_id, // @[Tilelink.scala:79:14]
output io_flits_d_ready, // @[Tilelink.scala:79:14]
input io_flits_d_valid, // @[Tilelink.scala:79:14]
input io_flits_d_bits_head, // @[Tilelink.scala:79:14]
input io_flits_d_bits_tail, // @[Tilelink.scala:79:14]
input [72:0] io_flits_d_bits_payload // @[Tilelink.scala:79:14]
);
wire [64:0] _c_io_flit_bits_payload; // @[Tilelink.scala:89:17]
TLAToNoC_5 a ( // @[Tilelink.scala:88:17]
.clock (clock),
.reset (reset),
.io_protocol_ready (io_tilelink_a_ready),
.io_protocol_valid (io_tilelink_a_valid),
.io_protocol_bits_opcode (io_tilelink_a_bits_opcode),
.io_protocol_bits_param (io_tilelink_a_bits_param),
.io_protocol_bits_size (io_tilelink_a_bits_size),
.io_protocol_bits_source (io_tilelink_a_bits_source),
.io_protocol_bits_address (io_tilelink_a_bits_address),
.io_protocol_bits_mask (io_tilelink_a_bits_mask),
.io_protocol_bits_data (io_tilelink_a_bits_data),
.io_protocol_bits_corrupt (io_tilelink_a_bits_corrupt),
.io_flit_ready (io_flits_a_ready),
.io_flit_valid (io_flits_a_valid),
.io_flit_bits_head (io_flits_a_bits_head),
.io_flit_bits_tail (io_flits_a_bits_tail),
.io_flit_bits_payload (io_flits_a_bits_payload),
.io_flit_bits_egress_id (io_flits_a_bits_egress_id)
); // @[Tilelink.scala:88:17]
TLCToNoC_5 c ( // @[Tilelink.scala:89:17]
.clock (clock),
.reset (reset),
.io_protocol_ready (io_tilelink_c_ready),
.io_protocol_valid (io_tilelink_c_valid),
.io_protocol_bits_opcode (io_tilelink_c_bits_opcode),
.io_protocol_bits_param (io_tilelink_c_bits_param),
.io_protocol_bits_size (io_tilelink_c_bits_size),
.io_protocol_bits_source (io_tilelink_c_bits_source),
.io_protocol_bits_address (io_tilelink_c_bits_address),
.io_protocol_bits_data (io_tilelink_c_bits_data),
.io_protocol_bits_corrupt (io_tilelink_c_bits_corrupt),
.io_flit_ready (io_flits_c_ready),
.io_flit_valid (io_flits_c_valid),
.io_flit_bits_head (io_flits_c_bits_head),
.io_flit_bits_tail (io_flits_c_bits_tail),
.io_flit_bits_payload (_c_io_flit_bits_payload),
.io_flit_bits_egress_id (io_flits_c_bits_egress_id)
); // @[Tilelink.scala:89:17]
TLDFromNoC_1 d ( // @[Tilelink.scala:90:17]
.clock (clock),
.reset (reset),
.io_protocol_ready (io_tilelink_d_ready),
.io_protocol_valid (io_tilelink_d_valid),
.io_protocol_bits_opcode (io_tilelink_d_bits_opcode),
.io_protocol_bits_param (io_tilelink_d_bits_param),
.io_protocol_bits_size (io_tilelink_d_bits_size),
.io_protocol_bits_source (io_tilelink_d_bits_source),
.io_protocol_bits_sink (io_tilelink_d_bits_sink),
.io_protocol_bits_denied (io_tilelink_d_bits_denied),
.io_protocol_bits_data (io_tilelink_d_bits_data),
.io_protocol_bits_corrupt (io_tilelink_d_bits_corrupt),
.io_flit_ready (io_flits_d_ready),
.io_flit_valid (io_flits_d_valid),
.io_flit_bits_head (io_flits_d_bits_head),
.io_flit_bits_tail (io_flits_d_bits_tail),
.io_flit_bits_payload (io_flits_d_bits_payload[64:0]) // @[Tilelink.scala:97:14]
); // @[Tilelink.scala:90:17]
assign io_flits_c_bits_payload = {8'h0, _c_io_flit_bits_payload}; // @[Tilelink.scala:72:7, :89:17, :96:14]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.{
AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry,
IdRange, RegionType, TransferSizes
}
import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions}
import freechips.rocketchip.util.{
AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase,
CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct
}
import scala.math.max
//These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel
case class TLMasterToSlaveTransferSizes(
// Supports both Acquire+Release of the following two sizes:
acquireT: TransferSizes = TransferSizes.none,
acquireB: TransferSizes = TransferSizes.none,
arithmetic: TransferSizes = TransferSizes.none,
logical: TransferSizes = TransferSizes.none,
get: TransferSizes = TransferSizes.none,
putFull: TransferSizes = TransferSizes.none,
putPartial: TransferSizes = TransferSizes.none,
hint: TransferSizes = TransferSizes.none)
extends TLCommonTransferSizes {
def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes(
acquireT = acquireT .intersect(rhs.acquireT),
acquireB = acquireB .intersect(rhs.acquireB),
arithmetic = arithmetic.intersect(rhs.arithmetic),
logical = logical .intersect(rhs.logical),
get = get .intersect(rhs.get),
putFull = putFull .intersect(rhs.putFull),
putPartial = putPartial.intersect(rhs.putPartial),
hint = hint .intersect(rhs.hint))
def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes(
acquireT = acquireT .mincover(rhs.acquireT),
acquireB = acquireB .mincover(rhs.acquireB),
arithmetic = arithmetic.mincover(rhs.arithmetic),
logical = logical .mincover(rhs.logical),
get = get .mincover(rhs.get),
putFull = putFull .mincover(rhs.putFull),
putPartial = putPartial.mincover(rhs.putPartial),
hint = hint .mincover(rhs.hint))
// Reduce rendering to a simple yes/no per field
override def toString = {
def str(x: TransferSizes, flag: String) = if (x.none) "" else flag
def flags = Vector(
str(acquireT, "T"),
str(acquireB, "B"),
str(arithmetic, "A"),
str(logical, "L"),
str(get, "G"),
str(putFull, "F"),
str(putPartial, "P"),
str(hint, "H"))
flags.mkString
}
// Prints out the actual information in a user readable way
def infoString = {
s"""acquireT = ${acquireT}
|acquireB = ${acquireB}
|arithmetic = ${arithmetic}
|logical = ${logical}
|get = ${get}
|putFull = ${putFull}
|putPartial = ${putPartial}
|hint = ${hint}
|
|""".stripMargin
}
}
object TLMasterToSlaveTransferSizes {
def unknownEmits = TLMasterToSlaveTransferSizes(
acquireT = TransferSizes(1, 4096),
acquireB = TransferSizes(1, 4096),
arithmetic = TransferSizes(1, 4096),
logical = TransferSizes(1, 4096),
get = TransferSizes(1, 4096),
putFull = TransferSizes(1, 4096),
putPartial = TransferSizes(1, 4096),
hint = TransferSizes(1, 4096))
def unknownSupports = TLMasterToSlaveTransferSizes()
}
//These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel
case class TLSlaveToMasterTransferSizes(
probe: TransferSizes = TransferSizes.none,
arithmetic: TransferSizes = TransferSizes.none,
logical: TransferSizes = TransferSizes.none,
get: TransferSizes = TransferSizes.none,
putFull: TransferSizes = TransferSizes.none,
putPartial: TransferSizes = TransferSizes.none,
hint: TransferSizes = TransferSizes.none
) extends TLCommonTransferSizes {
def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes(
probe = probe .intersect(rhs.probe),
arithmetic = arithmetic.intersect(rhs.arithmetic),
logical = logical .intersect(rhs.logical),
get = get .intersect(rhs.get),
putFull = putFull .intersect(rhs.putFull),
putPartial = putPartial.intersect(rhs.putPartial),
hint = hint .intersect(rhs.hint)
)
def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes(
probe = probe .mincover(rhs.probe),
arithmetic = arithmetic.mincover(rhs.arithmetic),
logical = logical .mincover(rhs.logical),
get = get .mincover(rhs.get),
putFull = putFull .mincover(rhs.putFull),
putPartial = putPartial.mincover(rhs.putPartial),
hint = hint .mincover(rhs.hint)
)
// Reduce rendering to a simple yes/no per field
override def toString = {
def str(x: TransferSizes, flag: String) = if (x.none) "" else flag
def flags = Vector(
str(probe, "P"),
str(arithmetic, "A"),
str(logical, "L"),
str(get, "G"),
str(putFull, "F"),
str(putPartial, "P"),
str(hint, "H"))
flags.mkString
}
// Prints out the actual information in a user readable way
def infoString = {
s"""probe = ${probe}
|arithmetic = ${arithmetic}
|logical = ${logical}
|get = ${get}
|putFull = ${putFull}
|putPartial = ${putPartial}
|hint = ${hint}
|
|""".stripMargin
}
}
object TLSlaveToMasterTransferSizes {
def unknownEmits = TLSlaveToMasterTransferSizes(
arithmetic = TransferSizes(1, 4096),
logical = TransferSizes(1, 4096),
get = TransferSizes(1, 4096),
putFull = TransferSizes(1, 4096),
putPartial = TransferSizes(1, 4096),
hint = TransferSizes(1, 4096),
probe = TransferSizes(1, 4096))
def unknownSupports = TLSlaveToMasterTransferSizes()
}
trait TLCommonTransferSizes {
def arithmetic: TransferSizes
def logical: TransferSizes
def get: TransferSizes
def putFull: TransferSizes
def putPartial: TransferSizes
def hint: TransferSizes
}
class TLSlaveParameters private(
val nodePath: Seq[BaseNode],
val resources: Seq[Resource],
setName: Option[String],
val address: Seq[AddressSet],
val regionType: RegionType.T,
val executable: Boolean,
val fifoId: Option[Int],
val supports: TLMasterToSlaveTransferSizes,
val emits: TLSlaveToMasterTransferSizes,
// By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation)
val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData
// If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order
// Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo
val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData
val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck
// ReleaseAck may NEVER be denied
extends SimpleProduct
{
def sortedAddress = address.sorted
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters]
override def productPrefix = "TLSlaveParameters"
// We intentionally omit nodePath for equality testing / formatting
def productArity: Int = 11
def productElement(n: Int): Any = n match {
case 0 => name
case 1 => address
case 2 => resources
case 3 => regionType
case 4 => executable
case 5 => fifoId
case 6 => supports
case 7 => emits
case 8 => alwaysGrantsT
case 9 => mayDenyGet
case 10 => mayDenyPut
case _ => throw new IndexOutOfBoundsException(n.toString)
}
def supportsAcquireT: TransferSizes = supports.acquireT
def supportsAcquireB: TransferSizes = supports.acquireB
def supportsArithmetic: TransferSizes = supports.arithmetic
def supportsLogical: TransferSizes = supports.logical
def supportsGet: TransferSizes = supports.get
def supportsPutFull: TransferSizes = supports.putFull
def supportsPutPartial: TransferSizes = supports.putPartial
def supportsHint: TransferSizes = supports.hint
require (!address.isEmpty, "Address cannot be empty")
address.foreach { a => require (a.finite, "Address must be finite") }
address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") }
require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)")
require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)")
require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)")
require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)")
require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)")
require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)")
require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT")
// Make sure that the regionType agrees with the capabilities
require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached
require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire
require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet
val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected")
val maxTransfer = List( // Largest supported transfer of all types
supportsAcquireT.max,
supportsAcquireB.max,
supportsArithmetic.max,
supportsLogical.max,
supportsGet.max,
supportsPutFull.max,
supportsPutPartial.max).max
val maxAddress = address.map(_.max).max
val minAlignment = address.map(_.alignment).min
// The device had better not support a transfer larger than its alignment
require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)")
def toResource: ResourceAddress = {
ResourceAddress(address, ResourcePermissions(
r = supportsAcquireB || supportsGet,
w = supportsAcquireT || supportsPutFull,
x = executable,
c = supportsAcquireB,
a = supportsArithmetic && supportsLogical))
}
def findTreeViolation() = nodePath.find {
case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false
case _: SinkNode[_, _, _, _, _] => false
case node => node.inputs.size != 1
}
def isTree = findTreeViolation() == None
def infoString = {
s"""Slave Name = ${name}
|Slave Address = ${address}
|supports = ${supports.infoString}
|
|""".stripMargin
}
def v1copy(
address: Seq[AddressSet] = address,
resources: Seq[Resource] = resources,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
nodePath: Seq[BaseNode] = nodePath,
supportsAcquireT: TransferSizes = supports.acquireT,
supportsAcquireB: TransferSizes = supports.acquireB,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut,
alwaysGrantsT: Boolean = alwaysGrantsT,
fifoId: Option[Int] = fifoId) =
{
new TLSlaveParameters(
setName = setName,
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supports = TLMasterToSlaveTransferSizes(
acquireT = supportsAcquireT,
acquireB = supportsAcquireB,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = emits,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
def v2copy(
nodePath: Seq[BaseNode] = nodePath,
resources: Seq[Resource] = resources,
name: Option[String] = setName,
address: Seq[AddressSet] = address,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
fifoId: Option[Int] = fifoId,
supports: TLMasterToSlaveTransferSizes = supports,
emits: TLSlaveToMasterTransferSizes = emits,
alwaysGrantsT: Boolean = alwaysGrantsT,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut) =
{
new TLSlaveParameters(
nodePath = nodePath,
resources = resources,
setName = name,
address = address,
regionType = regionType,
executable = executable,
fifoId = fifoId,
supports = supports,
emits = emits,
alwaysGrantsT = alwaysGrantsT,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut)
}
@deprecated("Use v1copy instead of copy","")
def copy(
address: Seq[AddressSet] = address,
resources: Seq[Resource] = resources,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
nodePath: Seq[BaseNode] = nodePath,
supportsAcquireT: TransferSizes = supports.acquireT,
supportsAcquireB: TransferSizes = supports.acquireB,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut,
alwaysGrantsT: Boolean = alwaysGrantsT,
fifoId: Option[Int] = fifoId) =
{
v1copy(
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supportsAcquireT = supportsAcquireT,
supportsAcquireB = supportsAcquireB,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
}
object TLSlaveParameters {
def v1(
address: Seq[AddressSet],
resources: Seq[Resource] = Seq(),
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
nodePath: Seq[BaseNode] = Seq(),
supportsAcquireT: TransferSizes = TransferSizes.none,
supportsAcquireB: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false,
alwaysGrantsT: Boolean = false,
fifoId: Option[Int] = None) =
{
new TLSlaveParameters(
setName = None,
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supports = TLMasterToSlaveTransferSizes(
acquireT = supportsAcquireT,
acquireB = supportsAcquireB,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = TLSlaveToMasterTransferSizes.unknownEmits,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
def v2(
address: Seq[AddressSet],
nodePath: Seq[BaseNode] = Seq(),
resources: Seq[Resource] = Seq(),
name: Option[String] = None,
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
fifoId: Option[Int] = None,
supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports,
emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits,
alwaysGrantsT: Boolean = false,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false) =
{
new TLSlaveParameters(
nodePath = nodePath,
resources = resources,
setName = name,
address = address,
regionType = regionType,
executable = executable,
fifoId = fifoId,
supports = supports,
emits = emits,
alwaysGrantsT = alwaysGrantsT,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut)
}
}
object TLManagerParameters {
@deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","")
def apply(
address: Seq[AddressSet],
resources: Seq[Resource] = Seq(),
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
nodePath: Seq[BaseNode] = Seq(),
supportsAcquireT: TransferSizes = TransferSizes.none,
supportsAcquireB: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false,
alwaysGrantsT: Boolean = false,
fifoId: Option[Int] = None) =
TLSlaveParameters.v1(
address,
resources,
regionType,
executable,
nodePath,
supportsAcquireT,
supportsAcquireB,
supportsArithmetic,
supportsLogical,
supportsGet,
supportsPutFull,
supportsPutPartial,
supportsHint,
mayDenyGet,
mayDenyPut,
alwaysGrantsT,
fifoId,
)
}
case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int])
{
def members = Seq(a, b, c, d)
members.collect { case Some(beatBytes) =>
require (isPow2(beatBytes), "Data channel width must be a power of 2")
}
}
object TLChannelBeatBytes{
def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes(
Some(beatBytes),
Some(beatBytes),
Some(beatBytes),
Some(beatBytes))
def apply(): TLChannelBeatBytes = TLChannelBeatBytes(
None,
None,
None,
None)
}
class TLSlavePortParameters private(
val slaves: Seq[TLSlaveParameters],
val channelBytes: TLChannelBeatBytes,
val endSinkId: Int,
val minLatency: Int,
val responseFields: Seq[BundleFieldBase],
val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct
{
def sortedSlaves = slaves.sortBy(_.sortedAddress.head)
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters]
override def productPrefix = "TLSlavePortParameters"
def productArity: Int = 6
def productElement(n: Int): Any = n match {
case 0 => slaves
case 1 => channelBytes
case 2 => endSinkId
case 3 => minLatency
case 4 => responseFields
case 5 => requestKeys
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!slaves.isEmpty, "Slave ports must have slaves")
require (endSinkId >= 0, "Sink ids cannot be negative")
require (minLatency >= 0, "Minimum required latency cannot be negative")
// Using this API implies you cannot handle mixed-width busses
def beatBytes = {
channelBytes.members.foreach { width =>
require (width.isDefined && width == channelBytes.a)
}
channelBytes.a.get
}
// TODO this should be deprecated
def managers = slaves
def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = {
val relevant = slaves.filter(m => policy(m))
relevant.foreach { m =>
require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ")
}
}
// Bounds on required sizes
def maxAddress = slaves.map(_.maxAddress).max
def maxTransfer = slaves.map(_.maxTransfer).max
def mayDenyGet = slaves.exists(_.mayDenyGet)
def mayDenyPut = slaves.exists(_.mayDenyPut)
// Diplomatically determined operation sizes emitted by all outward Slaves
// as opposed to emits* which generate circuitry to check which specific addresses
val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _)
// Operation Emitted by at least one outward Slaves
// as opposed to emits* which generate circuitry to check which specific addresses
val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _)
// Diplomatically determined operation sizes supported by all outward Slaves
// as opposed to supports* which generate circuitry to check which specific addresses
val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _)
val allSupportAcquireT = allSupportClaims.acquireT
val allSupportAcquireB = allSupportClaims.acquireB
val allSupportArithmetic = allSupportClaims.arithmetic
val allSupportLogical = allSupportClaims.logical
val allSupportGet = allSupportClaims.get
val allSupportPutFull = allSupportClaims.putFull
val allSupportPutPartial = allSupportClaims.putPartial
val allSupportHint = allSupportClaims.hint
// Operation supported by at least one outward Slaves
// as opposed to supports* which generate circuitry to check which specific addresses
val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _)
val anySupportAcquireT = !anySupportClaims.acquireT.none
val anySupportAcquireB = !anySupportClaims.acquireB.none
val anySupportArithmetic = !anySupportClaims.arithmetic.none
val anySupportLogical = !anySupportClaims.logical.none
val anySupportGet = !anySupportClaims.get.none
val anySupportPutFull = !anySupportClaims.putFull.none
val anySupportPutPartial = !anySupportClaims.putPartial.none
val anySupportHint = !anySupportClaims.hint.none
// Supporting Acquire means being routable for GrantAck
require ((endSinkId == 0) == !anySupportAcquireB)
// These return Option[TLSlaveParameters] for your convenience
def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address)))
// The safe version will check the entire address
def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _)))
// The fast version assumes the address is valid (you probably want fastProperty instead of this function)
def findFast(address: UInt) = {
val routingMask = AddressDecoder(slaves.map(_.address))
VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _)))
}
// Compute the simplest AddressSets that decide a key
def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = {
val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) =>
k -> vs.flatMap(_._2)
}
val reductionMask = AddressDecoder(groups.map(_._2))
groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) }
}
// Select a property
def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D =
Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) })
// Note: returns the actual fifoId + 1 or 0 if None
def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U)
def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B)
// Does this Port manage this ID/address?
def containsSafe(address: UInt) = findSafe(address).reduce(_ || _)
private def addressHelper(
// setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity
safe: Boolean,
// member filters out the sizes being checked based on the opcode being emitted or supported
member: TLSlaveParameters => TransferSizes,
address: UInt,
lgSize: UInt,
// range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity
range: Option[TransferSizes]): Bool = {
// trim reduces circuit complexity by intersecting checked sizes with the range argument
def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x)
// groupBy returns an unordered map, convert back to Seq and sort the result for determinism
// groupByIntoSeq is turning slaves into trimmed membership sizes
// We are grouping all the slaves by their transfer size where
// if they support the trimmed size then
// member is the type of transfer that you are looking for (What you are trying to filter on)
// When you consider membership, you are trimming the sizes to only the ones that you care about
// you are filtering the slaves based on both whether they support a particular opcode and the size
// Grouping the slaves based on the actual transfer size range they support
// intersecting the range and checking their membership
// FOR SUPPORTCASES instead of returning the list of slaves,
// you are returning a map from transfer size to the set of
// address sets that are supported for that transfer size
// find all the slaves that support a certain type of operation and then group their addresses by the supported size
// for every size there could be multiple address ranges
// safety is a trade off between checking between all possible addresses vs only the addresses
// that are known to have supported sizes
// the trade off is 'checking all addresses is a more expensive circuit but will always give you
// the right answer even if you give it an illegal address'
// the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer
// fast presumes address legality
// This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies.
// In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size.
val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) =>
k -> vs.flatMap(_.address)
}
// safe produces a circuit that compares against all possible addresses,
// whereas fast presumes that the address is legal but uses an efficient address decoder
val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2))
// Simplified creates the most concise possible representation of each cases' address sets based on the mask.
val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) }
simplified.map { case (s, a) =>
// s is a size, you are checking for this size either the size of the operation is in s
// We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire.
((Some(s) == range).B || s.containsLg(lgSize)) &&
a.map(_.contains(address)).reduce(_||_)
}.foldLeft(false.B)(_||_)
}
def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range)
def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range)
def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range)
def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range)
def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range)
def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range)
def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range)
def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range)
def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range)
def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range)
def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range)
def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range)
def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range)
def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range)
def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range)
def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range)
def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range)
def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range)
def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range)
def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range)
def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range)
def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range)
def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range)
def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption
def isTree = !slaves.exists(!_.isTree)
def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString
def v1copy(
managers: Seq[TLSlaveParameters] = slaves,
beatBytes: Int = -1,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
new TLSlavePortParameters(
slaves = managers,
channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes,
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
def v2copy(
slaves: Seq[TLSlaveParameters] = slaves,
channelBytes: TLChannelBeatBytes = channelBytes,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
new TLSlavePortParameters(
slaves = slaves,
channelBytes = channelBytes,
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
@deprecated("Use v1copy instead of copy","")
def copy(
managers: Seq[TLSlaveParameters] = slaves,
beatBytes: Int = -1,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
v1copy(
managers,
beatBytes,
endSinkId,
minLatency,
responseFields,
requestKeys)
}
}
object TLSlavePortParameters {
def v1(
managers: Seq[TLSlaveParameters],
beatBytes: Int,
endSinkId: Int = 0,
minLatency: Int = 0,
responseFields: Seq[BundleFieldBase] = Nil,
requestKeys: Seq[BundleKeyBase] = Nil) =
{
new TLSlavePortParameters(
slaves = managers,
channelBytes = TLChannelBeatBytes(beatBytes),
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
}
object TLManagerPortParameters {
@deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","")
def apply(
managers: Seq[TLSlaveParameters],
beatBytes: Int,
endSinkId: Int = 0,
minLatency: Int = 0,
responseFields: Seq[BundleFieldBase] = Nil,
requestKeys: Seq[BundleKeyBase] = Nil) =
{
TLSlavePortParameters.v1(
managers,
beatBytes,
endSinkId,
minLatency,
responseFields,
requestKeys)
}
}
class TLMasterParameters private(
val nodePath: Seq[BaseNode],
val resources: Seq[Resource],
val name: String,
val visibility: Seq[AddressSet],
val unusedRegionTypes: Set[RegionType.T],
val executesOnly: Boolean,
val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C.
val supports: TLSlaveToMasterTransferSizes,
val emits: TLMasterToSlaveTransferSizes,
val neverReleasesData: Boolean,
val sourceId: IdRange) extends SimpleProduct
{
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters]
override def productPrefix = "TLMasterParameters"
// We intentionally omit nodePath for equality testing / formatting
def productArity: Int = 10
def productElement(n: Int): Any = n match {
case 0 => name
case 1 => sourceId
case 2 => resources
case 3 => visibility
case 4 => unusedRegionTypes
case 5 => executesOnly
case 6 => requestFifo
case 7 => supports
case 8 => emits
case 9 => neverReleasesData
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!sourceId.isEmpty)
require (!visibility.isEmpty)
require (supports.putFull.contains(supports.putPartial))
// We only support these operations if we support Probe (ie: we're a cache)
require (supports.probe.contains(supports.arithmetic))
require (supports.probe.contains(supports.logical))
require (supports.probe.contains(supports.get))
require (supports.probe.contains(supports.putFull))
require (supports.probe.contains(supports.putPartial))
require (supports.probe.contains(supports.hint))
visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") }
val maxTransfer = List(
supports.probe.max,
supports.arithmetic.max,
supports.logical.max,
supports.get.max,
supports.putFull.max,
supports.putPartial.max).max
def infoString = {
s"""Master Name = ${name}
|visibility = ${visibility}
|emits = ${emits.infoString}
|sourceId = ${sourceId}
|
|""".stripMargin
}
def v1copy(
name: String = name,
sourceId: IdRange = sourceId,
nodePath: Seq[BaseNode] = nodePath,
requestFifo: Boolean = requestFifo,
visibility: Seq[AddressSet] = visibility,
supportsProbe: TransferSizes = supports.probe,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = this.resources,
name = name,
visibility = visibility,
unusedRegionTypes = this.unusedRegionTypes,
executesOnly = this.executesOnly,
requestFifo = requestFifo,
supports = TLSlaveToMasterTransferSizes(
probe = supportsProbe,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = this.emits,
neverReleasesData = this.neverReleasesData,
sourceId = sourceId)
}
def v2copy(
nodePath: Seq[BaseNode] = nodePath,
resources: Seq[Resource] = resources,
name: String = name,
visibility: Seq[AddressSet] = visibility,
unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes,
executesOnly: Boolean = executesOnly,
requestFifo: Boolean = requestFifo,
supports: TLSlaveToMasterTransferSizes = supports,
emits: TLMasterToSlaveTransferSizes = emits,
neverReleasesData: Boolean = neverReleasesData,
sourceId: IdRange = sourceId) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = resources,
name = name,
visibility = visibility,
unusedRegionTypes = unusedRegionTypes,
executesOnly = executesOnly,
requestFifo = requestFifo,
supports = supports,
emits = emits,
neverReleasesData = neverReleasesData,
sourceId = sourceId)
}
@deprecated("Use v1copy instead of copy","")
def copy(
name: String = name,
sourceId: IdRange = sourceId,
nodePath: Seq[BaseNode] = nodePath,
requestFifo: Boolean = requestFifo,
visibility: Seq[AddressSet] = visibility,
supportsProbe: TransferSizes = supports.probe,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint) =
{
v1copy(
name = name,
sourceId = sourceId,
nodePath = nodePath,
requestFifo = requestFifo,
visibility = visibility,
supportsProbe = supportsProbe,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint)
}
}
object TLMasterParameters {
def v1(
name: String,
sourceId: IdRange = IdRange(0,1),
nodePath: Seq[BaseNode] = Seq(),
requestFifo: Boolean = false,
visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)),
supportsProbe: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = Nil,
name = name,
visibility = visibility,
unusedRegionTypes = Set(),
executesOnly = false,
requestFifo = requestFifo,
supports = TLSlaveToMasterTransferSizes(
probe = supportsProbe,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = TLMasterToSlaveTransferSizes.unknownEmits,
neverReleasesData = false,
sourceId = sourceId)
}
def v2(
nodePath: Seq[BaseNode] = Seq(),
resources: Seq[Resource] = Nil,
name: String,
visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)),
unusedRegionTypes: Set[RegionType.T] = Set(),
executesOnly: Boolean = false,
requestFifo: Boolean = false,
supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports,
emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits,
neverReleasesData: Boolean = false,
sourceId: IdRange = IdRange(0,1)) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = resources,
name = name,
visibility = visibility,
unusedRegionTypes = unusedRegionTypes,
executesOnly = executesOnly,
requestFifo = requestFifo,
supports = supports,
emits = emits,
neverReleasesData = neverReleasesData,
sourceId = sourceId)
}
}
object TLClientParameters {
@deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","")
def apply(
name: String,
sourceId: IdRange = IdRange(0,1),
nodePath: Seq[BaseNode] = Seq(),
requestFifo: Boolean = false,
visibility: Seq[AddressSet] = Seq(AddressSet.everything),
supportsProbe: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none) =
{
TLMasterParameters.v1(
name = name,
sourceId = sourceId,
nodePath = nodePath,
requestFifo = requestFifo,
visibility = visibility,
supportsProbe = supportsProbe,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint)
}
}
class TLMasterPortParameters private(
val masters: Seq[TLMasterParameters],
val channelBytes: TLChannelBeatBytes,
val minLatency: Int,
val echoFields: Seq[BundleFieldBase],
val requestFields: Seq[BundleFieldBase],
val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct
{
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters]
override def productPrefix = "TLMasterPortParameters"
def productArity: Int = 6
def productElement(n: Int): Any = n match {
case 0 => masters
case 1 => channelBytes
case 2 => minLatency
case 3 => echoFields
case 4 => requestFields
case 5 => responseKeys
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!masters.isEmpty)
require (minLatency >= 0)
def clients = masters
// Require disjoint ranges for Ids
IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) =>
require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}")
}
// Bounds on required sizes
def endSourceId = masters.map(_.sourceId.end).max
def maxTransfer = masters.map(_.maxTransfer).max
// The unused sources < endSourceId
def unusedSources: Seq[Int] = {
val usedSources = masters.map(_.sourceId).sortBy(_.start)
((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) =>
end until start
}
}
// Diplomatically determined operation sizes emitted by all inward Masters
// as opposed to emits* which generate circuitry to check which specific addresses
val allEmitClaims = masters.map(_.emits).reduce( _ intersect _)
// Diplomatically determined operation sizes Emitted by at least one inward Masters
// as opposed to emits* which generate circuitry to check which specific addresses
val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _)
// Diplomatically determined operation sizes supported by all inward Masters
// as opposed to supports* which generate circuitry to check which specific addresses
val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _)
val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _)
val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _)
val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _)
val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _)
val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _)
val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _)
// Diplomatically determined operation sizes supported by at least one master
// as opposed to supports* which generate circuitry to check which specific addresses
val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _)
val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _)
val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _)
val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _)
val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _)
val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _)
val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _)
// These return Option[TLMasterParameters] for your convenience
def find(id: Int) = masters.find(_.sourceId.contains(id))
// Synthesizable lookup methods
def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id)))
def contains(id: UInt) = find(id).reduce(_ || _)
def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B))
// Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters
private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = {
val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _)
// this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version;
// the case where there is only one group.
if (allSame) member(masters(0)).containsLg(lgSize) else {
// Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize
Mux1H(find(id), masters.map(member(_).containsLg(lgSize)))
}
}
// Check for support of a given operation at a specific id
val supportsProbe = sourceIdHelper(_.supports.probe) _
val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _
val supportsLogical = sourceIdHelper(_.supports.logical) _
val supportsGet = sourceIdHelper(_.supports.get) _
val supportsPutFull = sourceIdHelper(_.supports.putFull) _
val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _
val supportsHint = sourceIdHelper(_.supports.hint) _
// TODO: Merge sourceIdHelper2 with sourceIdHelper
private def sourceIdHelper2(
member: TLMasterParameters => TransferSizes,
sourceId: UInt,
lgSize: UInt): Bool = {
// Because sourceIds are uniquely owned by each master, we use them to group the
// cases that have to be checked.
val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) =>
k -> vs.map(_.sourceId)
}
emitCases.map { case (s, a) =>
(s.containsLg(lgSize)) &&
a.map(_.contains(sourceId)).reduce(_||_)
}.foldLeft(false.B)(_||_)
}
// Check for emit of a given operation at a specific id
def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize)
def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize)
def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize)
def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize)
def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize)
def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize)
def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize)
def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize)
def infoString = masters.map(_.infoString).mkString
def v1copy(
clients: Seq[TLMasterParameters] = masters,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
new TLMasterPortParameters(
masters = clients,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
def v2copy(
masters: Seq[TLMasterParameters] = masters,
channelBytes: TLChannelBeatBytes = channelBytes,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
new TLMasterPortParameters(
masters = masters,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
@deprecated("Use v1copy instead of copy","")
def copy(
clients: Seq[TLMasterParameters] = masters,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
v1copy(
clients,
minLatency,
echoFields,
requestFields,
responseKeys)
}
}
object TLClientPortParameters {
@deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","")
def apply(
clients: Seq[TLMasterParameters],
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
TLMasterPortParameters.v1(
clients,
minLatency,
echoFields,
requestFields,
responseKeys)
}
}
object TLMasterPortParameters {
def v1(
clients: Seq[TLMasterParameters],
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
new TLMasterPortParameters(
masters = clients,
channelBytes = TLChannelBeatBytes(),
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
def v2(
masters: Seq[TLMasterParameters],
channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(),
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
new TLMasterPortParameters(
masters = masters,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
}
case class TLBundleParameters(
addressBits: Int,
dataBits: Int,
sourceBits: Int,
sinkBits: Int,
sizeBits: Int,
echoFields: Seq[BundleFieldBase],
requestFields: Seq[BundleFieldBase],
responseFields: Seq[BundleFieldBase],
hasBCE: Boolean)
{
// Chisel has issues with 0-width wires
require (addressBits >= 1)
require (dataBits >= 8)
require (sourceBits >= 1)
require (sinkBits >= 1)
require (sizeBits >= 1)
require (isPow2(dataBits))
echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") }
val addrLoBits = log2Up(dataBits/8)
// Used to uniquify bus IP names
def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u")
def union(x: TLBundleParameters) =
TLBundleParameters(
max(addressBits, x.addressBits),
max(dataBits, x.dataBits),
max(sourceBits, x.sourceBits),
max(sinkBits, x.sinkBits),
max(sizeBits, x.sizeBits),
echoFields = BundleField.union(echoFields ++ x.echoFields),
requestFields = BundleField.union(requestFields ++ x.requestFields),
responseFields = BundleField.union(responseFields ++ x.responseFields),
hasBCE || x.hasBCE)
}
object TLBundleParameters
{
val emptyBundleParams = TLBundleParameters(
addressBits = 1,
dataBits = 8,
sourceBits = 1,
sinkBits = 1,
sizeBits = 1,
echoFields = Nil,
requestFields = Nil,
responseFields = Nil,
hasBCE = false)
def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y))
def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) =
new TLBundleParameters(
addressBits = log2Up(slave.maxAddress + 1),
dataBits = slave.beatBytes * 8,
sourceBits = log2Up(master.endSourceId),
sinkBits = log2Up(slave.endSinkId),
sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1),
echoFields = master.echoFields,
requestFields = BundleField.accept(master.requestFields, slave.requestKeys),
responseFields = BundleField.accept(slave.responseFields, master.responseKeys),
hasBCE = master.anySupportProbe && slave.anySupportAcquireB)
}
case class TLEdgeParameters(
master: TLMasterPortParameters,
slave: TLSlavePortParameters,
params: Parameters,
sourceInfo: SourceInfo) extends FormatEdge
{
// legacy names:
def manager = slave
def client = master
val maxTransfer = max(master.maxTransfer, slave.maxTransfer)
val maxLgSize = log2Ceil(maxTransfer)
// Sanity check the link...
require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})")
def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims)
val bundle = TLBundleParameters(master, slave)
def formatEdge = master.infoString + "\n" + slave.infoString
}
case class TLCreditedDelay(
a: CreditedDelay,
b: CreditedDelay,
c: CreditedDelay,
d: CreditedDelay,
e: CreditedDelay)
{
def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay(
a = a + that.a,
b = b + that.b,
c = c + that.c,
d = d + that.d,
e = e + that.e)
override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})"
}
object TLCreditedDelay {
def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay)
}
case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val delay = client.delay + manager.delay
val bundle = TLBundleParameters(client.base, manager.base)
def formatEdge = client.infoString + "\n" + manager.infoString
}
case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters)
case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base))
def formatEdge = client.infoString + "\n" + manager.infoString
}
case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val bundle = TLBundleParameters(client.base, manager.base)
def formatEdge = client.infoString + "\n" + manager.infoString
}
// To be unified, devices must agree on all of these terms
case class ManagerUnificationKey(
resources: Seq[Resource],
regionType: RegionType.T,
executable: Boolean,
supportsAcquireT: TransferSizes,
supportsAcquireB: TransferSizes,
supportsArithmetic: TransferSizes,
supportsLogical: TransferSizes,
supportsGet: TransferSizes,
supportsPutFull: TransferSizes,
supportsPutPartial: TransferSizes,
supportsHint: TransferSizes)
object ManagerUnificationKey
{
def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey(
resources = x.resources,
regionType = x.regionType,
executable = x.executable,
supportsAcquireT = x.supportsAcquireT,
supportsAcquireB = x.supportsAcquireB,
supportsArithmetic = x.supportsArithmetic,
supportsLogical = x.supportsLogical,
supportsGet = x.supportsGet,
supportsPutFull = x.supportsPutFull,
supportsPutPartial = x.supportsPutPartial,
supportsHint = x.supportsHint)
}
object ManagerUnification
{
def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = {
slaves.groupBy(ManagerUnificationKey.apply).values.map { seq =>
val agree = seq.forall(_.fifoId == seq.head.fifoId)
seq(0).v1copy(
address = AddressSet.unify(seq.flatMap(_.address)),
fifoId = if (agree) seq(0).fifoId else None)
}.toList
}
}
case class TLBufferParams(
a: BufferParams = BufferParams.none,
b: BufferParams = BufferParams.none,
c: BufferParams = BufferParams.none,
d: BufferParams = BufferParams.none,
e: BufferParams = BufferParams.none
) extends DirectedBuffers[TLBufferParams] {
def copyIn(x: BufferParams) = this.copy(b = x, d = x)
def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x)
def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x)
}
/** Pretty printing of TL source id maps */
class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] {
private val tlDigits = String.valueOf(tl.endSourceId-1).length()
protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s"
private val sorted = tl.masters.sortBy(_.sourceId)
val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c =>
TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo)
}
}
case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean)
extends IdMapEntry
{
val from = tlId
val to = tlId
val maxTransactionsInFlight = Some(tlId.size)
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_46( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input io_in_d_bits_source, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_a_bits_source = 1'h0; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire c_set = 1'h0; // @[Monitor.scala:738:34]
wire c_set_wo_ready = 1'h0; // @[Monitor.scala:739:34]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [8:0] c_first_beats1_decode = 9'h0; // @[Edges.scala:220:59]
wire [8:0] c_first_beats1 = 9'h0; // @[Edges.scala:221:14]
wire [8:0] _c_first_count_T = 9'h0; // @[Edges.scala:234:27]
wire [8:0] c_first_count = 9'h0; // @[Edges.scala:234:25]
wire [8:0] _c_first_counter_T = 9'h0; // @[Edges.scala:236:21]
wire io_in_d_ready = 1'h1; // @[Monitor.scala:36:7]
wire _source_ok_T = 1'h1; // @[Parameters.scala:46:9]
wire _source_ok_WIRE_0 = 1'h1; // @[Parameters.scala:1138:31]
wire sink_ok = 1'h1; // @[Monitor.scala:309:31]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [8:0] c_first_counter1 = 9'h1FF; // @[Edges.scala:230:28]
wire [9:0] _c_first_counter1_T = 10'h3FF; // @[Edges.scala:230:28]
wire [2:0] io_in_a_bits_param = 3'h0; // @[Monitor.scala:36:7]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_first_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_first_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_first_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_first_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_set_wo_ready_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_set_wo_ready_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_opcodes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_opcodes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_sizes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_sizes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_opcodes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_opcodes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_sizes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_sizes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_probe_ack_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_probe_ack_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_probe_ack_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_probe_ack_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_4_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_5_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [3:0] _a_opcodes_set_T = 4'h0; // @[Monitor.scala:659:79]
wire [3:0] _a_sizes_set_T = 4'h0; // @[Monitor.scala:660:77]
wire [3:0] _c_first_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_first_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_first_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_first_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] c_opcodes_set = 4'h0; // @[Monitor.scala:740:34]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] _c_set_wo_ready_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_set_wo_ready_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_sizes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_opcodes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_T = 4'h0; // @[Monitor.scala:767:79]
wire [3:0] _c_sizes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_sizes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_sizes_set_T = 4'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_probe_ack_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_probe_ack_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_probe_ack_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_probe_ack_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_4_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_5_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57]
wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57]
wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [19:0] _c_sizes_set_T_1 = 20'h0; // @[Monitor.scala:768:52]
wire [18:0] _c_opcodes_set_T_1 = 19'h0; // @[Monitor.scala:767:54]
wire [4:0] _c_sizes_set_interm_T_1 = 5'h1; // @[Monitor.scala:766:59]
wire [4:0] c_sizes_set_interm = 5'h0; // @[Monitor.scala:755:40]
wire [4:0] _c_sizes_set_interm_T = 5'h0; // @[Monitor.scala:766:51]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [1:0] _a_set_wo_ready_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _a_set_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _c_set_wo_ready_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _c_set_T = 2'h1; // @[OneHot.scala:58:35]
wire [7:0] c_sizes_set = 8'h0; // @[Monitor.scala:741:34]
wire [11:0] _c_first_beats1_decode_T_2 = 12'h0; // @[package.scala:243:46]
wire [11:0] _c_first_beats1_decode_T_1 = 12'hFFF; // @[package.scala:243:76]
wire [26:0] _c_first_beats1_decode_T = 27'hFFF; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117]
wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48]
wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119]
wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire _d_first_T = io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T_1 = io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T_2 = io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 4'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire _source_ok_T_1 = ~io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_1; // @[Parameters.scala:1138:31]
wire _T_1212 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1212; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1212; // @[Decoupled.scala:51:35]
wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [8:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [8:0] a_first_counter; // @[Edges.scala:229:27]
wire [9:0] _a_first_counter1_T = {1'h0, a_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] a_first_counter1 = _a_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [3:0] size; // @[Monitor.scala:389:22]
reg [31:0] address; // @[Monitor.scala:391:22]
wire [26:0] _GEN_0 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [8:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T = {1'h0, d_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1 = _d_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [3:0] size_1; // @[Monitor.scala:540:22]
reg source_1; // @[Monitor.scala:541:22]
reg [2:0] sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
reg [1:0] inflight; // @[Monitor.scala:614:27]
reg [3:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [7:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [8:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [8:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] a_first_counter1_1 = _a_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_1 = _d_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire a_set; // @[Monitor.scala:626:34]
wire a_set_wo_ready; // @[Monitor.scala:627:34]
wire [3:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [7:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [3:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [3:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [3:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [3:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [3:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [3:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [15:0] _a_opcode_lookup_T_6 = {12'h0, _a_opcode_lookup_T_1}; // @[Monitor.scala:637:{44,97}]
wire [15:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [7:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [3:0] _GEN_2 = {io_in_d_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :641:65]
wire [3:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65]
wire [3:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_2; // @[Monitor.scala:641:65, :681:99]
wire [3:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65, :750:67]
wire [3:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_2; // @[Monitor.scala:641:65, :791:99]
wire [7:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [15:0] _a_size_lookup_T_6 = {8'h0, _a_size_lookup_T_1}; // @[Monitor.scala:641:{40,91}]
wire [15:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[15:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _T_1135 = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26]
assign a_set_wo_ready = _T_1135; // @[Monitor.scala:627:34, :651:26]
wire _same_cycle_resp_T; // @[Monitor.scala:684:44]
assign _same_cycle_resp_T = _T_1135; // @[Monitor.scala:651:26, :684:44]
assign a_set = _T_1212 & a_first_1; // @[Decoupled.scala:51:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = a_set ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:626:34, :646:40, :655:70, :657:{28,61}]
wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = a_set ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:626:34, :648:38, :655:70, :658:{28,59}]
wire [18:0] _a_opcodes_set_T_1 = {15'h0, a_opcodes_set_interm}; // @[Monitor.scala:646:40, :659:54]
assign a_opcodes_set = a_set ? _a_opcodes_set_T_1[3:0] : 4'h0; // @[Monitor.scala:626:34, :630:33, :655:70, :659:{28,54}]
wire [19:0] _a_sizes_set_T_1 = {15'h0, a_sizes_set_interm}; // @[Monitor.scala:648:38, :660:52]
assign a_sizes_set = a_set ? _a_sizes_set_T_1[7:0] : 8'h0; // @[Monitor.scala:626:34, :632:31, :655:70, :660:{28,52}]
wire d_clr; // @[Monitor.scala:664:34]
wire d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [3:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [7:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_3 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_3; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_3; // @[Monitor.scala:673:46, :783:46]
wire _T_1184 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [1:0] _GEN_4 = {1'h0, io_in_d_bits_source_0}; // @[OneHot.scala:58:35]
wire [1:0] _GEN_5 = 2'h1 << _GEN_4; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_1184 & ~d_release_ack & _d_clr_wo_ready_T[0]; // @[OneHot.scala:58:35]
wire _T_1153 = io_in_d_valid_0 & d_first_1 & ~d_release_ack; // @[Monitor.scala:36:7, :673:46, :674:74, :678:{25,70}]
assign d_clr = _T_1153 & _d_clr_T[0]; // @[OneHot.scala:58:35]
wire [30:0] _d_opcodes_clr_T_5 = 31'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_1153 ? _d_opcodes_clr_T_5[3:0] : 4'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [30:0] _d_sizes_clr_T_5 = 31'hFF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_1153 ? _d_sizes_clr_T_5[7:0] : 8'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = ~io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [1:0] _inflight_T = {inflight[1], inflight[0] | a_set}; // @[Monitor.scala:614:27, :626:34, :705:27]
wire _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [1:0] _inflight_T_2 = {1'h0, _inflight_T[0] & _inflight_T_1}; // @[Monitor.scala:705:{27,36,38}]
wire [3:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [3:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [3:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [7:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [7:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [7:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [1:0] inflight_1; // @[Monitor.scala:726:35]
wire [1:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [3:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [3:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [7:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [7:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_2 = _d_first_counter1_T_2[8:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [7:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [3:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [15:0] _c_opcode_lookup_T_6 = {12'h0, _c_opcode_lookup_T_1}; // @[Monitor.scala:749:{44,97}]
wire [15:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [7:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [15:0] _c_size_lookup_T_6 = {8'h0, _c_size_lookup_T_1}; // @[Monitor.scala:750:{42,93}]
wire [15:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[15:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire d_clr_1; // @[Monitor.scala:774:34]
wire d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [3:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [7:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1256 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1256 & d_release_ack_1 & _d_clr_wo_ready_T_1[0]; // @[OneHot.scala:58:35]
wire _T_1238 = io_in_d_valid_0 & d_first_2 & d_release_ack_1; // @[Monitor.scala:36:7, :783:46, :788:{25,70}]
assign d_clr_1 = _T_1238 & _d_clr_T_1[0]; // @[OneHot.scala:58:35]
wire [30:0] _d_opcodes_clr_T_11 = 31'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_1238 ? _d_opcodes_clr_T_11[3:0] : 4'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [30:0] _d_sizes_clr_T_11 = 31'hFF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_1238 ? _d_sizes_clr_T_11[7:0] : 8'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = ~io_in_d_bits_source_0; // @[Monitor.scala:36:7, :795:113]
wire _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [1:0] _inflight_T_5 = {1'h0, _inflight_T_3[0] & _inflight_T_4}; // @[Monitor.scala:814:{35,44,46}]
wire [3:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [3:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [7:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [7:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File UnsafeAXI4ToTL.scala:
package ara
import chisel3._
import chisel3.util._
import freechips.rocketchip.amba._
import freechips.rocketchip.amba.axi4._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle {
val data = UInt(dataWidth.W)
val resp = UInt(respWidth.W)
val last = Bool()
val user = BundleMap(userFields)
}
/** Parameters for [[BaseReservableListBuffer]] and all child classes.
*
* @param numEntries Total number of elements that can be stored in the 'data' RAM
* @param numLists Maximum number of linked lists
* @param numBeats Maximum number of beats per entry
*/
case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) {
// Avoid zero-width wires when we call 'log2Ceil'
val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries)
val listBits = if (numLists == 1) 1 else log2Ceil(numLists)
val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats)
}
case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName)
extends MixedAdapterNode(AXI4Imp, TLImp)(
dFn = { case mp =>
TLMasterPortParameters.v2(
masters = mp.masters.zipWithIndex.map { case (m, i) =>
// Support 'numTlTxns' read requests and 'numTlTxns' write requests at once.
val numSourceIds = numTlTxns * 2
TLMasterParameters.v2(
name = m.name,
sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds),
nodePath = m.nodePath
)
},
echoFields = mp.echoFields,
requestFields = AMBAProtField() +: mp.requestFields,
responseKeys = mp.responseKeys
)
},
uFn = { mp =>
AXI4SlavePortParameters(
slaves = mp.managers.map { m =>
val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits))
AXI4SlaveParameters(
address = m.address,
resources = m.resources,
regionType = m.regionType,
executable = m.executable,
nodePath = m.nodePath,
supportsWrite = m.supportsPutPartial.intersect(maxXfer),
supportsRead = m.supportsGet.intersect(maxXfer),
interleavedId = Some(0) // TL2 never interleaves D beats
)
},
beatBytes = mp.beatBytes,
minLatency = mp.minLatency,
responseFields = mp.responseFields,
requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt)
)
}
)
class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule {
require(numTlTxns >= 1)
require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2")
val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt)
lazy val module = new LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
edgeIn.master.masters.foreach { m =>
require(m.aligned, "AXI4ToTL requires aligned requests")
}
val numIds = edgeIn.master.endId
val beatBytes = edgeOut.slave.beatBytes
val maxTransfer = edgeOut.slave.maxTransfer
val maxBeats = maxTransfer / beatBytes
// Look for an Error device to redirect bad requests
val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError")
require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.")
val errorDev = errorDevs.maxBy(_.maxTransfer)
val errorDevAddr = errorDev.address.head.base
require(
errorDev.supportsPutPartial.contains(maxTransfer),
s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer"
)
require(
errorDev.supportsGet.contains(maxTransfer),
s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer"
)
// All of the read-response reordering logic.
val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields)
val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats)
val listBuffer = if (numTlTxns > 1) {
Module(new ReservableListBuffer(listBufData, listBufParams))
} else {
Module(new PassthroughListBuffer(listBufData, listBufParams))
}
// To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to
// 0 for read requests and 1 for write requests.
val isReadSourceBit = 0.U(1.W)
val isWriteSourceBit = 1.U(1.W)
/* Read request logic */
val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val rBytes1 = in.ar.bits.bytes1()
val rSize = OH1ToUInt(rBytes1)
val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize)
val rId = if (numTlTxns > 1) {
Cat(isReadSourceBit, listBuffer.ioReservedIndex)
} else {
isReadSourceBit
}
val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Indicates if there are still valid TileLink source IDs left to use.
val canIssueR = listBuffer.ioReserve.ready
listBuffer.ioReserve.bits := in.ar.bits.id
listBuffer.ioReserve.valid := in.ar.valid && rOut.ready
in.ar.ready := rOut.ready && canIssueR
rOut.valid := in.ar.valid && canIssueR
rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2
rOut.bits.user :<= in.ar.bits.user
rOut.bits.user.lift(AMBAProt).foreach { rProt =>
rProt.privileged := in.ar.bits.prot(0)
rProt.secure := !in.ar.bits.prot(1)
rProt.fetch := in.ar.bits.prot(2)
rProt.bufferable := in.ar.bits.cache(0)
rProt.modifiable := in.ar.bits.cache(1)
rProt.readalloc := in.ar.bits.cache(2)
rProt.writealloc := in.ar.bits.cache(3)
}
/* Write request logic */
// Strip off the MSB, which identifies the transaction as read vs write.
val strippedResponseSourceId = if (numTlTxns > 1) {
out.d.bits.source((out.d.bits.source).getWidth - 2, 0)
} else {
// When there's only 1 TileLink transaction allowed for read/write, then this field is always 0.
0.U(1.W)
}
// Track when a write request burst is in progress.
val writeBurstBusy = RegInit(false.B)
when(in.w.fire) {
writeBurstBusy := !in.w.bits.last
}
val usedWriteIds = RegInit(0.U(numTlTxns.W))
val canIssueW = !usedWriteIds.andR
val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W))
val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W))
usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet
// Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't
// change mid-burst.
val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W))
val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy
val freeWriteIdIndex = OHToUInt(freeWriteIdOH)
freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds
val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val wBytes1 = in.aw.bits.bytes1()
val wSize = OH1ToUInt(wBytes1)
val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize)
val wId = if (numTlTxns > 1) {
Cat(isWriteSourceBit, freeWriteIdIndex)
} else {
isWriteSourceBit
}
val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain
// asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but
// the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb
// bits during a W-channel burst.
in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW
in.w.ready := wOut.ready && in.aw.valid && canIssueW
wOut.valid := in.aw.valid && in.w.valid && canIssueW
wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2
in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ }
wOut.bits.user :<= in.aw.bits.user
wOut.bits.user.lift(AMBAProt).foreach { wProt =>
wProt.privileged := in.aw.bits.prot(0)
wProt.secure := !in.aw.bits.prot(1)
wProt.fetch := in.aw.bits.prot(2)
wProt.bufferable := in.aw.bits.cache(0)
wProt.modifiable := in.aw.bits.cache(1)
wProt.readalloc := in.aw.bits.cache(2)
wProt.writealloc := in.aw.bits.cache(3)
}
// Merge the AXI4 read/write requests into the TL-A channel.
TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut))
/* Read/write response logic */
val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle)))
val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle)))
val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY)
val dHasData = edgeOut.hasData(out.d.bits)
val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d)
val dNumBeats1 = edgeOut.numBeats1(out.d.bits)
// Handle cases where writeack arrives before write is done
val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U
out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck)
listBuffer.ioDataOut.ready := okR.ready
okR.valid := listBuffer.ioDataOut.valid
okB.valid := out.d.valid && !dHasData && !writeEarlyAck
listBuffer.ioResponse.valid := out.d.valid && dHasData
listBuffer.ioResponse.bits.index := strippedResponseSourceId
listBuffer.ioResponse.bits.data.data := out.d.bits.data
listBuffer.ioResponse.bits.data.resp := dResp
listBuffer.ioResponse.bits.data.last := dLast
listBuffer.ioResponse.bits.data.user :<= out.d.bits.user
listBuffer.ioResponse.bits.count := dCount
listBuffer.ioResponse.bits.numBeats1 := dNumBeats1
okR.bits.id := listBuffer.ioDataOut.bits.listIndex
okR.bits.data := listBuffer.ioDataOut.bits.payload.data
okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp
okR.bits.last := listBuffer.ioDataOut.bits.payload.last
okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user
// Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write
// response, mark the write transaction as complete.
val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W))
val writeResponseId = writeIdMap.read(strippedResponseSourceId)
when(wOut.fire) {
writeIdMap.write(freeWriteIdIndex, in.aw.bits.id)
}
when(edgeOut.done(wOut)) {
usedWriteIdsSet := freeWriteIdOH
}
when(okB.fire) {
usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns)
}
okB.bits.id := writeResponseId
okB.bits.resp := dResp
okB.bits.user :<= out.d.bits.user
// AXI4 needs irrevocable behaviour
in.r <> Queue.irrevocable(okR, 1, flow = true)
in.b <> Queue.irrevocable(okB, 1, flow = true)
// Unused channels
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
/* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */
def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = {
val lReqType = reqType.toLowerCase
when(a.valid) {
assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U)
// Narrow transfers and FIXED bursts must be single-beat bursts.
when(a.bits.len =/= 0.U) {
assert(
a.bits.size === log2Ceil(beatBytes).U,
s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)",
1.U << a.bits.size,
a.bits.len + 1.U
)
assert(
a.bits.burst =/= AXI4Parameters.BURST_FIXED,
s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)",
a.bits.len + 1.U
)
}
// Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in
// particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink
// Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts.
}
}
checkRequest(in.ar, "Read")
checkRequest(in.aw, "Write")
}
}
}
object UnsafeAXI4ToTL {
def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = {
val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt))
axi42tl.node
}
}
/* ReservableListBuffer logic, and associated classes. */
class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle {
val index = UInt(params.entryBits.W)
val count = UInt(params.beatBits.W)
val numBeats1 = UInt(params.beatBits.W)
}
class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle {
val listIndex = UInt(params.listBits.W)
}
/** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */
abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends Module {
require(params.numEntries > 0)
require(params.numLists > 0)
val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W))))
val ioReservedIndex = IO(Output(UInt(params.entryBits.W)))
val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params))))
val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params)))
}
/** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve
* linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the
* 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a
* given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order.
*
* ==Constructor==
* @param gen Chisel type of linked list data element
* @param params Other parameters
*
* ==Module IO==
* @param ioReserve Index of list to reserve a new element in
* @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire'
* @param ioResponse Payload containing response data and linked-list-entry index
* @param ioDataOut Payload containing data read from response linked list and linked list index
*/
class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
val valid = RegInit(0.U(params.numLists.W))
val head = Mem(params.numLists, UInt(params.entryBits.W))
val tail = Mem(params.numLists, UInt(params.entryBits.W))
val used = RegInit(0.U(params.numEntries.W))
val next = Mem(params.numEntries, UInt(params.entryBits.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) }
val dataIsPresent = RegInit(0.U(params.numEntries.W))
val beats = Mem(params.numEntries, UInt(params.beatBits.W))
// The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower.
val dataMemReadEnable = WireDefault(false.B)
val dataMemWriteEnable = WireDefault(false.B)
assert(!(dataMemReadEnable && dataMemWriteEnable))
// 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the
// lowest-index entry in the 'data' RAM which is free.
val freeOH = Wire(UInt(params.numEntries.W))
val freeIndex = OHToUInt(freeOH)
freeOH := ~(leftOR(~used) << 1) & ~used
ioReservedIndex := freeIndex
val validSet = WireDefault(0.U(params.numLists.W))
val validClr = WireDefault(0.U(params.numLists.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
val dataIsPresentSet = WireDefault(0.U(params.numEntries.W))
val dataIsPresentClr = WireDefault(0.U(params.numEntries.W))
valid := (valid & ~validClr) | validSet
used := (used & ~usedClr) | usedSet
dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet
/* Reservation logic signals */
val reserveTail = Wire(UInt(params.entryBits.W))
val reserveIsValid = Wire(Bool())
/* Response logic signals */
val responseIndex = Wire(UInt(params.entryBits.W))
val responseListIndex = Wire(UInt(params.listBits.W))
val responseHead = Wire(UInt(params.entryBits.W))
val responseTail = Wire(UInt(params.entryBits.W))
val nextResponseHead = Wire(UInt(params.entryBits.W))
val nextDataIsPresent = Wire(Bool())
val isResponseInOrder = Wire(Bool())
val isEndOfList = Wire(Bool())
val isLastBeat = Wire(Bool())
val isLastResponseBeat = Wire(Bool())
val isLastUnwindBeat = Wire(Bool())
/* Reservation logic */
reserveTail := tail.read(ioReserve.bits)
reserveIsValid := valid(ioReserve.bits)
ioReserve.ready := !used.andR
// When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we
// actually start a new list, rather than appending to a list that's about to disappear.
val reserveResponseSameList = ioReserve.bits === responseListIndex
val appendToAndDestroyList =
ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat
when(ioReserve.fire) {
validSet := UIntToOH(ioReserve.bits, params.numLists)
usedSet := freeOH
when(reserveIsValid && !appendToAndDestroyList) {
next.write(reserveTail, freeIndex)
}.otherwise {
head.write(ioReserve.bits, freeIndex)
}
tail.write(ioReserve.bits, freeIndex)
map.write(freeIndex, ioReserve.bits)
}
/* Response logic */
// The majority of the response logic (reading from and writing to the various RAMs) is common between the
// response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid).
// The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the
// 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and
// response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after
// two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker.
responseHead := head.read(responseListIndex)
responseTail := tail.read(responseListIndex)
nextResponseHead := next.read(responseIndex)
nextDataIsPresent := dataIsPresent(nextResponseHead)
// Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since
// there isn't a next element in the linked list.
isResponseInOrder := responseHead === responseIndex
isEndOfList := responseHead === responseTail
isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1
// When a response's last beat is sent to the output channel, mark it as completed. This can happen in two
// situations:
// 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM
// reservation was never needed.
// 2. An entry is read out of the 'data' SRAM (within the unwind FSM).
when(ioDataOut.fire && isLastBeat) {
// Mark the reservation as no-longer-used.
usedClr := UIntToOH(responseIndex, params.numEntries)
// If the response is in-order, then we're popping an element from this linked list.
when(isEndOfList) {
// Once we pop the last element from a linked list, mark it as no-longer-present.
validClr := UIntToOH(responseListIndex, params.numLists)
}.otherwise {
// Move the linked list's head pointer to the new head pointer.
head.write(responseListIndex, nextResponseHead)
}
}
// If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding.
when(ioResponse.fire && !isResponseInOrder) {
dataMemWriteEnable := true.B
when(isLastResponseBeat) {
dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries)
beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1)
}
}
// Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to.
val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats)
(responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) =>
when(select && dataMemWriteEnable) {
seqMem.write(ioResponse.bits.index, ioResponse.bits.data)
}
}
/* Response unwind logic */
// Unwind FSM state definitions
val sIdle :: sUnwinding :: Nil = Enum(2)
val unwindState = RegInit(sIdle)
val busyUnwinding = unwindState === sUnwinding
val startUnwind = Wire(Bool())
val stopUnwind = Wire(Bool())
when(startUnwind) {
unwindState := sUnwinding
}.elsewhen(stopUnwind) {
unwindState := sIdle
}
assert(!(startUnwind && stopUnwind))
// Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to
// become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is
// invalid.
//
// Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to
// worry about overwriting the 'data' SRAM's output when we start the unwind FSM.
startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent
// Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of
// two things happens:
// 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent)
// 2. There are no more outstanding responses in this list (isEndOfList)
//
// Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are
// passing from 'ioResponse' to 'ioDataOut'.
stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList)
val isUnwindBurstOver = Wire(Bool())
val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable)
// Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of
// beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we
// increment 'beatCounter' until it reaches 'unwindBeats1'.
val unwindBeats1 = Reg(UInt(params.beatBits.W))
val nextBeatCounter = Wire(UInt(params.beatBits.W))
val beatCounter = RegNext(nextBeatCounter)
isUnwindBurstOver := beatCounter === unwindBeats1
when(startNewBurst) {
unwindBeats1 := beats.read(nextResponseHead)
nextBeatCounter := 0.U
}.elsewhen(dataMemReadEnable) {
nextBeatCounter := beatCounter + 1.U
}.otherwise {
nextBeatCounter := beatCounter
}
// When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next
// entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which
// happens at the start of reading a new stored burst).
val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst)
responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index)
// Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the
// SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead
// holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'.
val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex)
// The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid
// until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle).
val unwindDataIsValid = RegInit(false.B)
when(dataMemReadEnable) {
unwindDataIsValid := true.B
}.elsewhen(ioDataOut.fire) {
unwindDataIsValid := false.B
}
isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid
// Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats.
isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat)
// Select which SRAM to read from based on the beat counter.
val dataOutputVec = Wire(Vec(params.numBeats, gen))
val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats)
(nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) =>
dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable)
}
// Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured
// by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading
// from.
val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable)
// Mark 'data' burst entries as no-longer-present as they get read out of the SRAM.
when(dataMemReadEnable) {
dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries)
}
// As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue
// a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know
// we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be
// consumed by the output channel).
val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready
dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem)
// While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need
// 'responseListIndex' to be coherent for the entire unwind process.
val rawResponseListIndex = map.read(responseIndex)
val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst)
responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex)
// Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are
// just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that
// could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be
// single-ported.
ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding
// Either pass an in-order response to the output channel, or data read from the unwind FSM.
ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder)
ioDataOut.bits.listIndex := responseListIndex
ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data)
// It's an error to get a response that isn't associated with a valid linked list.
when(ioResponse.fire || unwindDataIsValid) {
assert(
valid(responseListIndex),
"No linked list exists at index %d, mapped from %d",
responseListIndex,
responseIndex
)
}
when(busyUnwinding && dataMemReadEnable) {
assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order")
}
}
/** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1.
*
* Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to
* reorder any responses, or store any linked lists.
*/
class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1")
val used = RegInit(0.U(params.numEntries.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
used := (used & ~usedClr) | usedSet
ioReserve.ready := used === 0.U
// Store which list index was reserved, we need to return this value when we get a response.
when(ioReserve.fire) {
usedSet := 1.U
map.write(0.U, ioReserve.bits)
}
// There's only one valid linked list entry, which is at index 0.
ioReservedIndex := 0.U
val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1
// Mark the linked list as empty when we get the last beat in a response.
// Note that 'ioResponse.fire === ioDataOut.fire'.
when(ioResponse.fire && isLastResponseBeat) {
usedClr := 1.U
}
// Always pass the response data straight through, since we never need to reorder the response data.
ioDataOut.bits.listIndex := map.read(0.U)
ioDataOut.bits.payload := ioResponse.bits.data
ioDataOut.valid := ioResponse.valid
ioResponse.ready := ioDataOut.ready
}
| module dataMems_116( // @[UnsafeAXI4ToTL.scala:365:62]
input [4:0] R0_addr,
input R0_en,
input R0_clk,
output [66:0] R0_data,
input [4:0] W0_addr,
input W0_en,
input W0_clk,
input [66:0] W0_data
);
dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (W0_en),
.W0_clk (W0_clk),
.W0_data (W0_data)
); // @[UnsafeAXI4ToTL.scala:365:62]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ClockDomain.scala:
package freechips.rocketchip.prci
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing
{
def clockBundle: ClockBundle
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
childClock := clockBundle.clock
childReset := clockBundle.reset
override def provideImplicitClockToLazyChildren = true
// these are just for backwards compatibility with external devices
// that were manually wiring themselves to the domain's clock/reset input:
val clock = IO(Output(chiselTypeOf(clockBundle.clock)))
val reset = IO(Output(chiselTypeOf(clockBundle.reset)))
clock := clockBundle.clock
reset := clockBundle.reset
}
}
abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing
class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain
{
def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name))
val clockNode = ClockSinkNode(Seq(clockSinkParams))
def clockBundle = clockNode.in.head._1
override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString
}
class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain
{
def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name))
val clockNode = ClockSourceNode(Seq(clockSourceParams))
def clockBundle = clockNode.out.head._1
override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString
}
abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File NoC.scala:
package constellation.noc
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp, BundleBridgeSink, InModuleBody}
import freechips.rocketchip.util.ElaborationArtefacts
import freechips.rocketchip.prci._
import constellation.router._
import constellation.channel._
import constellation.routing.{RoutingRelation, ChannelRoutingInfo}
import constellation.topology.{PhysicalTopology, UnidirectionalLine}
class NoCTerminalIO(
val ingressParams: Seq[IngressChannelParams],
val egressParams: Seq[EgressChannelParams])(implicit val p: Parameters) extends Bundle {
val ingress = MixedVec(ingressParams.map { u => Flipped(new IngressChannel(u)) })
val egress = MixedVec(egressParams.map { u => new EgressChannel(u) })
}
class NoC(nocParams: NoCParams)(implicit p: Parameters) extends LazyModule {
override def shouldBeInlined = nocParams.inlineNoC
val internalParams = InternalNoCParams(nocParams)
val allChannelParams = internalParams.channelParams
val allIngressParams = internalParams.ingressParams
val allEgressParams = internalParams.egressParams
val allRouterParams = internalParams.routerParams
val iP = p.alterPartial({ case InternalNoCKey => internalParams })
val nNodes = nocParams.topology.nNodes
val nocName = nocParams.nocName
val skipValidationChecks = nocParams.skipValidationChecks
val clockSourceNodes = Seq.tabulate(nNodes) { i => ClockSourceNode(Seq(ClockSourceParameters())) }
val router_sink_domains = Seq.tabulate(nNodes) { i =>
val router_sink_domain = LazyModule(new ClockSinkDomain(ClockSinkParameters(
name = Some(s"${nocName}_router_$i")
)))
router_sink_domain.clockNode := clockSourceNodes(i)
router_sink_domain
}
val routers = Seq.tabulate(nNodes) { i => router_sink_domains(i) {
val inParams = allChannelParams.filter(_.destId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val outParams = allChannelParams.filter(_.srcId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val ingressParams = allIngressParams.filter(_.destId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val egressParams = allEgressParams.filter(_.srcId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val noIn = inParams.size + ingressParams.size == 0
val noOut = outParams.size + egressParams.size == 0
if (noIn || noOut) {
println(s"Constellation WARNING: $nocName router $i seems to be unused, it will not be generated")
None
} else {
Some(LazyModule(new Router(
routerParams = allRouterParams(i),
preDiplomaticInParams = inParams,
preDiplomaticIngressParams = ingressParams,
outDests = outParams.map(_.destId),
egressIds = egressParams.map(_.egressId)
)(iP)))
}
}}.flatten
val ingressNodes = allIngressParams.map { u => IngressChannelSourceNode(u.destId) }
val egressNodes = allEgressParams.map { u => EgressChannelDestNode(u) }
// Generate channels between routers diplomatically
Seq.tabulate(nNodes, nNodes) { case (i, j) => if (i != j) {
val routerI = routers.find(_.nodeId == i)
val routerJ = routers.find(_.nodeId == j)
if (routerI.isDefined && routerJ.isDefined) {
val sourceNodes: Seq[ChannelSourceNode] = routerI.get.sourceNodes.filter(_.destId == j)
val destNodes: Seq[ChannelDestNode] = routerJ.get.destNodes.filter(_.destParams.srcId == i)
require (sourceNodes.size == destNodes.size)
(sourceNodes zip destNodes).foreach { case (src, dst) =>
val channelParam = allChannelParams.find(c => c.srcId == i && c.destId == j).get
router_sink_domains(j) {
implicit val p: Parameters = iP
(dst
:= ChannelWidthWidget(routerJ.get.payloadBits, routerI.get.payloadBits)
:= channelParam.channelGen(p)(src)
)
}
}
}
}}
// Generate terminal channels diplomatically
routers.foreach { dst => router_sink_domains(dst.nodeId) {
implicit val p: Parameters = iP
dst.ingressNodes.foreach(n => {
val ingressId = n.destParams.ingressId
require(dst.payloadBits <= allIngressParams(ingressId).payloadBits)
(n
:= IngressWidthWidget(dst.payloadBits, allIngressParams(ingressId).payloadBits)
:= ingressNodes(ingressId)
)
})
dst.egressNodes.foreach(n => {
val egressId = n.egressId
require(dst.payloadBits <= allEgressParams(egressId).payloadBits)
(egressNodes(egressId)
:= EgressWidthWidget(allEgressParams(egressId).payloadBits, dst.payloadBits)
:= n
)
})
}}
val debugNodes = routers.map { r =>
val sink = BundleBridgeSink[DebugBundle]()
sink := r.debugNode
sink
}
val ctrlNodes = if (nocParams.hasCtrl) {
(0 until nNodes).map { i =>
routers.find(_.nodeId == i).map { r =>
val sink = BundleBridgeSink[RouterCtrlBundle]()
sink := r.ctrlNode.get
sink
}
}
} else {
Nil
}
println(s"Constellation: $nocName Finished parameter validation")
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
println(s"Constellation: $nocName Starting NoC RTL generation")
val io = IO(new NoCTerminalIO(allIngressParams, allEgressParams)(iP) {
val router_clocks = Vec(nNodes, Input(new ClockBundle(ClockBundleParameters())))
val router_ctrl = if (nocParams.hasCtrl) Vec(nNodes, new RouterCtrlBundle) else Nil
})
(io.ingress zip ingressNodes.map(_.out(0)._1)).foreach { case (l,r) => r <> l }
(io.egress zip egressNodes .map(_.in (0)._1)).foreach { case (l,r) => l <> r }
(io.router_clocks zip clockSourceNodes.map(_.out(0)._1)).foreach { case (l,r) => l <> r }
if (nocParams.hasCtrl) {
ctrlNodes.zipWithIndex.map { case (c,i) =>
if (c.isDefined) {
io.router_ctrl(i) <> c.get.in(0)._1
} else {
io.router_ctrl(i) <> DontCare
}
}
}
// TODO: These assume a single clock-domain across the entire noc
val debug_va_stall_ctr = RegInit(0.U(64.W))
val debug_sa_stall_ctr = RegInit(0.U(64.W))
val debug_any_stall_ctr = debug_va_stall_ctr + debug_sa_stall_ctr
debug_va_stall_ctr := debug_va_stall_ctr + debugNodes.map(_.in(0)._1.va_stall.reduce(_+_)).reduce(_+_)
debug_sa_stall_ctr := debug_sa_stall_ctr + debugNodes.map(_.in(0)._1.sa_stall.reduce(_+_)).reduce(_+_)
dontTouch(debug_va_stall_ctr)
dontTouch(debug_sa_stall_ctr)
dontTouch(debug_any_stall_ctr)
def prepend(s: String) = Seq(nocName, s).mkString(".")
ElaborationArtefacts.add(prepend("noc.graphml"), graphML)
val adjList = routers.map { r =>
val outs = r.outParams.map(o => s"${o.destId}").mkString(" ")
val egresses = r.egressParams.map(e => s"e${e.egressId}").mkString(" ")
val ingresses = r.ingressParams.map(i => s"i${i.ingressId} ${r.nodeId}")
(Seq(s"${r.nodeId} $outs $egresses") ++ ingresses).mkString("\n")
}.mkString("\n")
ElaborationArtefacts.add(prepend("noc.adjlist"), adjList)
val xys = routers.map(r => {
val n = r.nodeId
val ids = (Seq(r.nodeId.toString)
++ r.egressParams.map(e => s"e${e.egressId}")
++ r.ingressParams.map(i => s"i${i.ingressId}")
)
val plotter = nocParams.topology.plotter
val coords = (Seq(plotter.node(r.nodeId))
++ Seq.tabulate(r.egressParams.size ) { i => plotter. egress(i, r. egressParams.size, r.nodeId) }
++ Seq.tabulate(r.ingressParams.size) { i => plotter.ingress(i, r.ingressParams.size, r.nodeId) }
)
(ids zip coords).map { case (i, (x, y)) => s"$i $x $y" }.mkString("\n")
}).mkString("\n")
ElaborationArtefacts.add(prepend("noc.xy"), xys)
val edgeProps = routers.map { r =>
val outs = r.outParams.map { o =>
(Seq(s"${r.nodeId} ${o.destId}") ++ (if (o.possibleFlows.size == 0) Some("unused") else None))
.mkString(" ")
}
val egresses = r.egressParams.map { e =>
(Seq(s"${r.nodeId} e${e.egressId}") ++ (if (e.possibleFlows.size == 0) Some("unused") else None))
.mkString(" ")
}
val ingresses = r.ingressParams.map { i =>
(Seq(s"i${i.ingressId} ${r.nodeId}") ++ (if (i.possibleFlows.size == 0) Some("unused") else None))
.mkString(" ")
}
(outs ++ egresses ++ ingresses).mkString("\n")
}.mkString("\n")
ElaborationArtefacts.add(prepend("noc.edgeprops"), edgeProps)
println(s"Constellation: $nocName Finished NoC RTL generation")
}
}
| module test_router_13ClockSinkDomain( // @[ClockDomain.scala:14:9]
output [4:0] auto_routers_debug_out_va_stall_0, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_va_stall_1, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_va_stall_2, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_va_stall_3, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_sa_stall_0, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_sa_stall_1, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_sa_stall_2, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_debug_out_sa_stall_3, // @[LazyModuleImp.scala:107:25]
input auto_routers_egress_nodes_out_1_flit_ready, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_1_flit_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_1_flit_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_1_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
output [72:0] auto_routers_egress_nodes_out_1_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
input auto_routers_egress_nodes_out_0_flit_ready, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_0_flit_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_0_flit_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_0_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
output [72:0] auto_routers_egress_nodes_out_0_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
output auto_routers_ingress_nodes_in_2_flit_ready, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_2_flit_valid, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_2_flit_bits_head, // @[LazyModuleImp.scala:107:25]
input [72:0] auto_routers_ingress_nodes_in_2_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_routers_ingress_nodes_in_2_flit_bits_egress_id, // @[LazyModuleImp.scala:107:25]
output auto_routers_ingress_nodes_in_1_flit_ready, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_1_flit_valid, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_1_flit_bits_head, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_1_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
input [72:0] auto_routers_ingress_nodes_in_1_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_routers_ingress_nodes_in_1_flit_bits_egress_id, // @[LazyModuleImp.scala:107:25]
output auto_routers_ingress_nodes_in_0_flit_ready, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_0_flit_valid, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_0_flit_bits_head, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_0_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
input [72:0] auto_routers_ingress_nodes_in_0_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_routers_ingress_nodes_in_0_flit_bits_egress_id, // @[LazyModuleImp.scala:107:25]
output auto_routers_source_nodes_out_flit_0_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_source_nodes_out_flit_0_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_source_nodes_out_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25]
output [72:0] auto_routers_source_nodes_out_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_routers_source_nodes_out_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_routers_source_nodes_out_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_routers_source_nodes_out_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_routers_source_nodes_out_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25]
input [21:0] auto_routers_source_nodes_out_credit_return, // @[LazyModuleImp.scala:107:25]
input [21:0] auto_routers_source_nodes_out_vc_free, // @[LazyModuleImp.scala:107:25]
input auto_routers_dest_nodes_in_flit_0_valid, // @[LazyModuleImp.scala:107:25]
input auto_routers_dest_nodes_in_flit_0_bits_head, // @[LazyModuleImp.scala:107:25]
input auto_routers_dest_nodes_in_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25]
input [72:0] auto_routers_dest_nodes_in_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_routers_dest_nodes_in_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_routers_dest_nodes_in_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25]
output [21:0] auto_routers_dest_nodes_in_credit_return, // @[LazyModuleImp.scala:107:25]
output [21:0] auto_routers_dest_nodes_in_vc_free, // @[LazyModuleImp.scala:107:25]
input auto_clock_in_clock, // @[LazyModuleImp.scala:107:25]
input auto_clock_in_reset // @[LazyModuleImp.scala:107:25]
);
Router_10 routers ( // @[NoC.scala:67:22]
.clock (auto_clock_in_clock),
.reset (auto_clock_in_reset),
.auto_debug_out_va_stall_0 (auto_routers_debug_out_va_stall_0),
.auto_debug_out_va_stall_1 (auto_routers_debug_out_va_stall_1),
.auto_debug_out_va_stall_2 (auto_routers_debug_out_va_stall_2),
.auto_debug_out_va_stall_3 (auto_routers_debug_out_va_stall_3),
.auto_debug_out_sa_stall_0 (auto_routers_debug_out_sa_stall_0),
.auto_debug_out_sa_stall_1 (auto_routers_debug_out_sa_stall_1),
.auto_debug_out_sa_stall_2 (auto_routers_debug_out_sa_stall_2),
.auto_debug_out_sa_stall_3 (auto_routers_debug_out_sa_stall_3),
.auto_egress_nodes_out_1_flit_ready (auto_routers_egress_nodes_out_1_flit_ready),
.auto_egress_nodes_out_1_flit_valid (auto_routers_egress_nodes_out_1_flit_valid),
.auto_egress_nodes_out_1_flit_bits_head (auto_routers_egress_nodes_out_1_flit_bits_head),
.auto_egress_nodes_out_1_flit_bits_tail (auto_routers_egress_nodes_out_1_flit_bits_tail),
.auto_egress_nodes_out_1_flit_bits_payload (auto_routers_egress_nodes_out_1_flit_bits_payload),
.auto_egress_nodes_out_0_flit_ready (auto_routers_egress_nodes_out_0_flit_ready),
.auto_egress_nodes_out_0_flit_valid (auto_routers_egress_nodes_out_0_flit_valid),
.auto_egress_nodes_out_0_flit_bits_head (auto_routers_egress_nodes_out_0_flit_bits_head),
.auto_egress_nodes_out_0_flit_bits_tail (auto_routers_egress_nodes_out_0_flit_bits_tail),
.auto_egress_nodes_out_0_flit_bits_payload (auto_routers_egress_nodes_out_0_flit_bits_payload),
.auto_ingress_nodes_in_2_flit_ready (auto_routers_ingress_nodes_in_2_flit_ready),
.auto_ingress_nodes_in_2_flit_valid (auto_routers_ingress_nodes_in_2_flit_valid),
.auto_ingress_nodes_in_2_flit_bits_head (auto_routers_ingress_nodes_in_2_flit_bits_head),
.auto_ingress_nodes_in_2_flit_bits_payload (auto_routers_ingress_nodes_in_2_flit_bits_payload),
.auto_ingress_nodes_in_2_flit_bits_egress_id (auto_routers_ingress_nodes_in_2_flit_bits_egress_id),
.auto_ingress_nodes_in_1_flit_ready (auto_routers_ingress_nodes_in_1_flit_ready),
.auto_ingress_nodes_in_1_flit_valid (auto_routers_ingress_nodes_in_1_flit_valid),
.auto_ingress_nodes_in_1_flit_bits_head (auto_routers_ingress_nodes_in_1_flit_bits_head),
.auto_ingress_nodes_in_1_flit_bits_tail (auto_routers_ingress_nodes_in_1_flit_bits_tail),
.auto_ingress_nodes_in_1_flit_bits_payload (auto_routers_ingress_nodes_in_1_flit_bits_payload),
.auto_ingress_nodes_in_1_flit_bits_egress_id (auto_routers_ingress_nodes_in_1_flit_bits_egress_id),
.auto_ingress_nodes_in_0_flit_ready (auto_routers_ingress_nodes_in_0_flit_ready),
.auto_ingress_nodes_in_0_flit_valid (auto_routers_ingress_nodes_in_0_flit_valid),
.auto_ingress_nodes_in_0_flit_bits_head (auto_routers_ingress_nodes_in_0_flit_bits_head),
.auto_ingress_nodes_in_0_flit_bits_tail (auto_routers_ingress_nodes_in_0_flit_bits_tail),
.auto_ingress_nodes_in_0_flit_bits_payload (auto_routers_ingress_nodes_in_0_flit_bits_payload),
.auto_ingress_nodes_in_0_flit_bits_egress_id (auto_routers_ingress_nodes_in_0_flit_bits_egress_id),
.auto_source_nodes_out_flit_0_valid (auto_routers_source_nodes_out_flit_0_valid),
.auto_source_nodes_out_flit_0_bits_head (auto_routers_source_nodes_out_flit_0_bits_head),
.auto_source_nodes_out_flit_0_bits_tail (auto_routers_source_nodes_out_flit_0_bits_tail),
.auto_source_nodes_out_flit_0_bits_payload (auto_routers_source_nodes_out_flit_0_bits_payload),
.auto_source_nodes_out_flit_0_bits_flow_vnet_id (auto_routers_source_nodes_out_flit_0_bits_flow_vnet_id),
.auto_source_nodes_out_flit_0_bits_flow_ingress_node (auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node),
.auto_source_nodes_out_flit_0_bits_flow_ingress_node_id (auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node_id),
.auto_source_nodes_out_flit_0_bits_flow_egress_node (auto_routers_source_nodes_out_flit_0_bits_flow_egress_node),
.auto_source_nodes_out_flit_0_bits_flow_egress_node_id (auto_routers_source_nodes_out_flit_0_bits_flow_egress_node_id),
.auto_source_nodes_out_flit_0_bits_virt_channel_id (auto_routers_source_nodes_out_flit_0_bits_virt_channel_id),
.auto_source_nodes_out_credit_return (auto_routers_source_nodes_out_credit_return),
.auto_source_nodes_out_vc_free (auto_routers_source_nodes_out_vc_free),
.auto_dest_nodes_in_flit_0_valid (auto_routers_dest_nodes_in_flit_0_valid),
.auto_dest_nodes_in_flit_0_bits_head (auto_routers_dest_nodes_in_flit_0_bits_head),
.auto_dest_nodes_in_flit_0_bits_tail (auto_routers_dest_nodes_in_flit_0_bits_tail),
.auto_dest_nodes_in_flit_0_bits_payload (auto_routers_dest_nodes_in_flit_0_bits_payload),
.auto_dest_nodes_in_flit_0_bits_flow_vnet_id (auto_routers_dest_nodes_in_flit_0_bits_flow_vnet_id),
.auto_dest_nodes_in_flit_0_bits_flow_ingress_node (auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node),
.auto_dest_nodes_in_flit_0_bits_flow_ingress_node_id (auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node_id),
.auto_dest_nodes_in_flit_0_bits_flow_egress_node (auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node),
.auto_dest_nodes_in_flit_0_bits_flow_egress_node_id (auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node_id),
.auto_dest_nodes_in_flit_0_bits_virt_channel_id (auto_routers_dest_nodes_in_flit_0_bits_virt_channel_id),
.auto_dest_nodes_in_credit_return (auto_routers_dest_nodes_in_credit_return),
.auto_dest_nodes_in_vc_free (auto_routers_dest_nodes_in_vc_free)
); // @[NoC.scala:67:22]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File RecFNToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import consts._
class
RecFNToRecFN(
inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int)
extends chisel3.RawModule
{
val io = IO(new Bundle {
val in = Input(Bits((inExpWidth + inSigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((outExpWidth + outSigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val rawIn = rawFloatFromRecFN(inExpWidth, inSigWidth, io.in);
if ((inExpWidth == outExpWidth) && (inSigWidth <= outSigWidth)) {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
io.out := io.in<<(outSigWidth - inSigWidth)
io.exceptionFlags := isSigNaNRawFloat(rawIn) ## 0.U(4.W)
} else {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
inExpWidth,
inSigWidth,
outExpWidth,
outSigWidth,
flRoundOpt_sigMSBitAlwaysZero
))
roundAnyRawFNToRecFN.io.invalidExc := isSigNaNRawFloat(rawIn)
roundAnyRawFNToRecFN.io.infiniteExc := false.B
roundAnyRawFNToRecFN.io.in := rawIn
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
}
File rawFloatFromRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
/*----------------------------------------------------------------------------
| In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be
| set.
*----------------------------------------------------------------------------*/
object rawFloatFromRecFN
{
def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat =
{
val exp = in(expWidth + sigWidth - 1, sigWidth - 1)
val isZero = exp(expWidth, expWidth - 2) === 0.U
val isSpecial = exp(expWidth, expWidth - 1) === 3.U
val out = Wire(new RawFloat(expWidth, sigWidth))
out.isNaN := isSpecial && exp(expWidth - 2)
out.isInf := isSpecial && ! exp(expWidth - 2)
out.isZero := isZero
out.sign := in(expWidth + sigWidth)
out.sExp := exp.zext
out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0)
out
}
}
| module RecFNToRecFN_2( // @[RecFNToRecFN.scala:44:5]
input [32:0] io_in, // @[RecFNToRecFN.scala:48:16]
output [32:0] io_out // @[RecFNToRecFN.scala:48:16]
);
wire [32:0] io_in_0 = io_in; // @[RecFNToRecFN.scala:44:5]
wire io_detectTininess = 1'h1; // @[RecFNToRecFN.scala:44:5, :48:16]
wire [2:0] io_roundingMode = 3'h0; // @[RecFNToRecFN.scala:44:5, :48:16]
wire [32:0] _io_out_T = io_in_0; // @[RecFNToRecFN.scala:44:5, :64:35]
wire [4:0] _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:65:54]
wire [32:0] io_out_0; // @[RecFNToRecFN.scala:44:5]
wire [4:0] io_exceptionFlags; // @[RecFNToRecFN.scala:44:5]
wire [8:0] rawIn_exp = io_in_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _rawIn_isZero_T = rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire rawIn_isZero = _rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire rawIn_isZero_0 = rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _rawIn_isSpecial_T = rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire rawIn_isSpecial = &_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] rawIn_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _rawIn_out_isNaN_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _rawIn_out_isInf_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _rawIn_out_isNaN_T_1 = rawIn_isSpecial & _rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign rawIn_isNaN = _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _rawIn_out_isInf_T_1 = ~_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _rawIn_out_isInf_T_2 = rawIn_isSpecial & _rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign rawIn_isInf = _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _rawIn_out_sign_T = io_in_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign rawIn_sign = _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _rawIn_out_sExp_T = {1'h0, rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign rawIn_sExp = _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _rawIn_out_sig_T = ~rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _rawIn_out_sig_T_1 = {1'h0, _rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _rawIn_out_sig_T_2 = io_in_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _rawIn_out_sig_T_3 = {_rawIn_out_sig_T_1, _rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign rawIn_sig = _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
assign io_out_0 = _io_out_T; // @[RecFNToRecFN.scala:44:5, :64:35]
wire _io_exceptionFlags_T = rawIn_sig[22]; // @[rawFloatFromRecFN.scala:55:23]
wire _io_exceptionFlags_T_1 = ~_io_exceptionFlags_T; // @[common.scala:82:{49,56}]
wire _io_exceptionFlags_T_2 = rawIn_isNaN & _io_exceptionFlags_T_1; // @[rawFloatFromRecFN.scala:55:23]
assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, 4'h0}; // @[common.scala:82:46]
assign io_exceptionFlags = _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:44:5, :65:54]
assign io_out = io_out_0; // @[RecFNToRecFN.scala:44:5]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Tile.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
import Util._
/**
* A Tile is a purely combinational 2D array of passThrough PEs.
* a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs
* @param width The data width of each PE in bits
* @param rows Number of PEs on each row
* @param columns Number of PEs on each column
*/
class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module {
val io = IO(new Bundle {
val in_a = Input(Vec(rows, inputType))
val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it
val in_d = Input(Vec(columns, outputType))
val in_control = Input(Vec(columns, new PEControl(accType)))
val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val in_last = Input(Vec(columns, Bool()))
val out_a = Output(Vec(rows, inputType))
val out_c = Output(Vec(columns, outputType))
val out_b = Output(Vec(columns, outputType))
val out_control = Output(Vec(columns, new PEControl(accType)))
val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val out_last = Output(Vec(columns, Bool()))
val in_valid = Input(Vec(columns, Bool()))
val out_valid = Output(Vec(columns, Bool()))
val bad_dataflow = Output(Bool())
})
import ev._
val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls)))
val tileT = tile.transpose
// TODO: abstract hori/vert broadcast, all these connections look the same
// Broadcast 'a' horizontally across the Tile
for (r <- 0 until rows) {
tile(r).foldLeft(io.in_a(r)) {
case (in_a, pe) =>
pe.io.in_a := in_a
pe.io.out_a
}
}
// Broadcast 'b' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_b(c)) {
case (in_b, pe) =>
pe.io.in_b := (if (tree_reduction) in_b.zero else in_b)
pe.io.out_b
}
}
// Broadcast 'd' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_d(c)) {
case (in_d, pe) =>
pe.io.in_d := in_d
pe.io.out_c
}
}
// Broadcast 'control' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_control(c)) {
case (in_ctrl, pe) =>
pe.io.in_control := in_ctrl
pe.io.out_control
}
}
// Broadcast 'garbage' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_valid(c)) {
case (v, pe) =>
pe.io.in_valid := v
pe.io.out_valid
}
}
// Broadcast 'id' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_id(c)) {
case (id, pe) =>
pe.io.in_id := id
pe.io.out_id
}
}
// Broadcast 'last' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_last(c)) {
case (last, pe) =>
pe.io.in_last := last
pe.io.out_last
}
}
// Drive the Tile's bottom IO
for (c <- 0 until columns) {
io.out_c(c) := tile(rows-1)(c).io.out_c
io.out_control(c) := tile(rows-1)(c).io.out_control
io.out_id(c) := tile(rows-1)(c).io.out_id
io.out_last(c) := tile(rows-1)(c).io.out_last
io.out_valid(c) := tile(rows-1)(c).io.out_valid
io.out_b(c) := {
if (tree_reduction) {
val prods = tileT(c).map(_.io.out_b)
accumulateTree(prods :+ io.in_b(c))
} else {
tile(rows - 1)(c).io.out_b
}
}
}
io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_)
// Drive the Tile's right IO
for (r <- 0 until rows) {
io.out_a(r) := tile(r)(columns-1).io.out_a
}
}
| module Tile_93( // @[Tile.scala:16:7]
input clock, // @[Tile.scala:16:7]
input reset, // @[Tile.scala:16:7]
input [7:0] io_in_a_0, // @[Tile.scala:17:14]
input [19:0] io_in_b_0, // @[Tile.scala:17:14]
input [19:0] io_in_d_0, // @[Tile.scala:17:14]
input io_in_control_0_dataflow, // @[Tile.scala:17:14]
input io_in_control_0_propagate, // @[Tile.scala:17:14]
input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14]
input [2:0] io_in_id_0, // @[Tile.scala:17:14]
input io_in_last_0, // @[Tile.scala:17:14]
output [7:0] io_out_a_0, // @[Tile.scala:17:14]
output [19:0] io_out_c_0, // @[Tile.scala:17:14]
output [19:0] io_out_b_0, // @[Tile.scala:17:14]
output io_out_control_0_dataflow, // @[Tile.scala:17:14]
output io_out_control_0_propagate, // @[Tile.scala:17:14]
output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14]
output [2:0] io_out_id_0, // @[Tile.scala:17:14]
output io_out_last_0, // @[Tile.scala:17:14]
input io_in_valid_0, // @[Tile.scala:17:14]
output io_out_valid_0, // @[Tile.scala:17:14]
output io_bad_dataflow // @[Tile.scala:17:14]
);
wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7]
wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7]
wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7]
wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7]
wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7]
wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7]
wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7]
wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7]
wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7]
wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7]
wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
wire io_out_control_0_propagate_0; // @[Tile.scala:16:7]
wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7]
wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7]
wire io_out_last_0_0; // @[Tile.scala:16:7]
wire io_out_valid_0_0; // @[Tile.scala:16:7]
wire io_bad_dataflow_0; // @[Tile.scala:16:7]
PE_349 tile_0_0 ( // @[Tile.scala:42:44]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0_0), // @[Tile.scala:16:7]
.io_in_b (io_in_b_0_0), // @[Tile.scala:16:7]
.io_in_d (io_in_d_0_0), // @[Tile.scala:16:7]
.io_out_a (io_out_a_0_0),
.io_out_b (io_out_b_0_0),
.io_out_c (io_out_c_0_0),
.io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7]
.io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7]
.io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7]
.io_out_control_dataflow (io_out_control_0_dataflow_0),
.io_out_control_propagate (io_out_control_0_propagate_0),
.io_out_control_shift (io_out_control_0_shift_0),
.io_in_id (io_in_id_0_0), // @[Tile.scala:16:7]
.io_out_id (io_out_id_0_0),
.io_in_last (io_in_last_0_0), // @[Tile.scala:16:7]
.io_out_last (io_out_last_0_0),
.io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7]
.io_out_valid (io_out_valid_0_0),
.io_bad_dataflow (io_bad_dataflow_0)
); // @[Tile.scala:42:44]
assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7]
assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7]
assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7]
assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7]
assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7]
assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7]
assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7]
assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7]
assign io_bad_dataflow = io_bad_dataflow_0; // @[Tile.scala:16:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Tile.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
import Util._
/**
* A Tile is a purely combinational 2D array of passThrough PEs.
* a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs
* @param width The data width of each PE in bits
* @param rows Number of PEs on each row
* @param columns Number of PEs on each column
*/
class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module {
val io = IO(new Bundle {
val in_a = Input(Vec(rows, inputType))
val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it
val in_d = Input(Vec(columns, outputType))
val in_control = Input(Vec(columns, new PEControl(accType)))
val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val in_last = Input(Vec(columns, Bool()))
val out_a = Output(Vec(rows, inputType))
val out_c = Output(Vec(columns, outputType))
val out_b = Output(Vec(columns, outputType))
val out_control = Output(Vec(columns, new PEControl(accType)))
val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val out_last = Output(Vec(columns, Bool()))
val in_valid = Input(Vec(columns, Bool()))
val out_valid = Output(Vec(columns, Bool()))
val bad_dataflow = Output(Bool())
})
import ev._
val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls)))
val tileT = tile.transpose
// TODO: abstract hori/vert broadcast, all these connections look the same
// Broadcast 'a' horizontally across the Tile
for (r <- 0 until rows) {
tile(r).foldLeft(io.in_a(r)) {
case (in_a, pe) =>
pe.io.in_a := in_a
pe.io.out_a
}
}
// Broadcast 'b' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_b(c)) {
case (in_b, pe) =>
pe.io.in_b := (if (tree_reduction) in_b.zero else in_b)
pe.io.out_b
}
}
// Broadcast 'd' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_d(c)) {
case (in_d, pe) =>
pe.io.in_d := in_d
pe.io.out_c
}
}
// Broadcast 'control' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_control(c)) {
case (in_ctrl, pe) =>
pe.io.in_control := in_ctrl
pe.io.out_control
}
}
// Broadcast 'garbage' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_valid(c)) {
case (v, pe) =>
pe.io.in_valid := v
pe.io.out_valid
}
}
// Broadcast 'id' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_id(c)) {
case (id, pe) =>
pe.io.in_id := id
pe.io.out_id
}
}
// Broadcast 'last' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_last(c)) {
case (last, pe) =>
pe.io.in_last := last
pe.io.out_last
}
}
// Drive the Tile's bottom IO
for (c <- 0 until columns) {
io.out_c(c) := tile(rows-1)(c).io.out_c
io.out_control(c) := tile(rows-1)(c).io.out_control
io.out_id(c) := tile(rows-1)(c).io.out_id
io.out_last(c) := tile(rows-1)(c).io.out_last
io.out_valid(c) := tile(rows-1)(c).io.out_valid
io.out_b(c) := {
if (tree_reduction) {
val prods = tileT(c).map(_.io.out_b)
accumulateTree(prods :+ io.in_b(c))
} else {
tile(rows - 1)(c).io.out_b
}
}
}
io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_)
// Drive the Tile's right IO
for (r <- 0 until rows) {
io.out_a(r) := tile(r)(columns-1).io.out_a
}
}
| module Tile_116( // @[Tile.scala:16:7]
input clock, // @[Tile.scala:16:7]
input reset, // @[Tile.scala:16:7]
input [7:0] io_in_a_0, // @[Tile.scala:17:14]
input [19:0] io_in_b_0, // @[Tile.scala:17:14]
input [19:0] io_in_d_0, // @[Tile.scala:17:14]
input io_in_control_0_dataflow, // @[Tile.scala:17:14]
input io_in_control_0_propagate, // @[Tile.scala:17:14]
input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14]
input [2:0] io_in_id_0, // @[Tile.scala:17:14]
input io_in_last_0, // @[Tile.scala:17:14]
output [7:0] io_out_a_0, // @[Tile.scala:17:14]
output [19:0] io_out_c_0, // @[Tile.scala:17:14]
output [19:0] io_out_b_0, // @[Tile.scala:17:14]
output io_out_control_0_dataflow, // @[Tile.scala:17:14]
output io_out_control_0_propagate, // @[Tile.scala:17:14]
output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14]
output [2:0] io_out_id_0, // @[Tile.scala:17:14]
output io_out_last_0, // @[Tile.scala:17:14]
input io_in_valid_0, // @[Tile.scala:17:14]
output io_out_valid_0, // @[Tile.scala:17:14]
output io_bad_dataflow // @[Tile.scala:17:14]
);
wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7]
wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7]
wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7]
wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7]
wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7]
wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7]
wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7]
wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7]
wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7]
wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7]
wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
wire io_out_control_0_propagate_0; // @[Tile.scala:16:7]
wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7]
wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7]
wire io_out_last_0_0; // @[Tile.scala:16:7]
wire io_out_valid_0_0; // @[Tile.scala:16:7]
wire io_bad_dataflow_0; // @[Tile.scala:16:7]
PE_372 tile_0_0 ( // @[Tile.scala:42:44]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0_0), // @[Tile.scala:16:7]
.io_in_b (io_in_b_0_0), // @[Tile.scala:16:7]
.io_in_d (io_in_d_0_0), // @[Tile.scala:16:7]
.io_out_a (io_out_a_0_0),
.io_out_b (io_out_b_0_0),
.io_out_c (io_out_c_0_0),
.io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7]
.io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7]
.io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7]
.io_out_control_dataflow (io_out_control_0_dataflow_0),
.io_out_control_propagate (io_out_control_0_propagate_0),
.io_out_control_shift (io_out_control_0_shift_0),
.io_in_id (io_in_id_0_0), // @[Tile.scala:16:7]
.io_out_id (io_out_id_0_0),
.io_in_last (io_in_last_0_0), // @[Tile.scala:16:7]
.io_out_last (io_out_last_0_0),
.io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7]
.io_out_valid (io_out_valid_0_0),
.io_bad_dataflow (io_bad_dataflow_0)
); // @[Tile.scala:42:44]
assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7]
assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7]
assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7]
assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7]
assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7]
assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7]
assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7]
assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7]
assign io_bad_dataflow = io_bad_dataflow_0; // @[Tile.scala:16:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_215( // @[AsyncQueue.scala:58:7]
input io_in, // @[AsyncQueue.scala:59:14]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_232 io_out_source_valid ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_d (io_in_0), // @[AsyncQueue.scala:58:7]
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_4( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [8:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [8:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [8:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [28:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [8:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27]
wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25]
wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_30 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_32 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_46 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_48 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_52 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_54 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_58 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_60 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_64 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_66 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_73 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_75 = 1'h1; // @[Parameters.scala:57:20]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28]
wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_first_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_first_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_first_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_first_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_set_wo_ready_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_set_wo_ready_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_opcodes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_opcodes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_sizes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_sizes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_opcodes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_opcodes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_sizes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_sizes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_probe_ack_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_probe_ack_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_probe_ack_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_probe_ack_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_4_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_5_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_first_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_first_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_first_WIRE_2_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_first_WIRE_3_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_set_wo_ready_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_set_wo_ready_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_set_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_set_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_opcodes_set_interm_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_opcodes_set_interm_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_sizes_set_interm_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_sizes_set_interm_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_opcodes_set_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_opcodes_set_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_sizes_set_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_sizes_set_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_probe_ack_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_probe_ack_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_probe_ack_WIRE_2_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_probe_ack_WIRE_3_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _same_cycle_resp_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _same_cycle_resp_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _same_cycle_resp_WIRE_2_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _same_cycle_resp_WIRE_3_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _same_cycle_resp_WIRE_4_bits_source = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _same_cycle_resp_WIRE_5_bits_source = 9'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [4098:0] _c_opcodes_set_T_1 = 4099'h0; // @[Monitor.scala:767:54]
wire [4098:0] _c_sizes_set_T_1 = 4099'h0; // @[Monitor.scala:768:52]
wire [11:0] _c_opcodes_set_T = 12'h0; // @[Monitor.scala:767:79]
wire [11:0] _c_sizes_set_T = 12'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51]
wire [511:0] _c_set_wo_ready_T = 512'h1; // @[OneHot.scala:58:35]
wire [511:0] _c_set_T = 512'h1; // @[OneHot.scala:58:35]
wire [1027:0] c_opcodes_set = 1028'h0; // @[Monitor.scala:740:34]
wire [1027:0] c_sizes_set = 1028'h0; // @[Monitor.scala:741:34]
wire [256:0] c_set = 257'h0; // @[Monitor.scala:738:34]
wire [256:0] c_set_wo_ready = 257'h0; // @[Monitor.scala:739:34]
wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [8:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _source_ok_uncommonBits_T_5 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [8:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_T = io_in_a_bits_source_0 == 9'h90; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [6:0] _source_ok_T_1 = io_in_a_bits_source_0[8:2]; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_T_7 = io_in_a_bits_source_0[8:2]; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_T_13 = io_in_a_bits_source_0[8:2]; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_T_19 = io_in_a_bits_source_0[8:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_2 = _source_ok_T_1 == 7'h20; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_8 = _source_ok_T_7 == 7'h21; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_14 = _source_ok_T_13 == 7'h22; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_20 = _source_ok_T_19 == 7'h23; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31]
wire _source_ok_T_25 = io_in_a_bits_source_0 == 9'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31]
wire _source_ok_T_26 = io_in_a_bits_source_0 == 9'h41; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_6 = _source_ok_T_26; // @[Parameters.scala:1138:31]
wire _source_ok_T_27 = io_in_a_bits_source_0 == 9'h42; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_7 = _source_ok_T_27; // @[Parameters.scala:1138:31]
wire [5:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[5:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] _source_ok_T_28 = io_in_a_bits_source_0[8:6]; // @[Monitor.scala:36:7]
wire _source_ok_T_29 = _source_ok_T_28 == 3'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_31 = _source_ok_T_29; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_33 = _source_ok_T_31; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_8 = _source_ok_T_33; // @[Parameters.scala:1138:31]
wire _source_ok_T_34 = io_in_a_bits_source_0 == 9'h100; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_9 = _source_ok_T_34; // @[Parameters.scala:1138:31]
wire _source_ok_T_35 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_36 = _source_ok_T_35 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_37 = _source_ok_T_36 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_38 = _source_ok_T_37 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_39 = _source_ok_T_38 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_40 = _source_ok_T_39 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_41 = _source_ok_T_40 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_42 = _source_ok_T_41 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_42 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [28:0] _is_aligned_T = {23'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 29'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_4 = _uncommonBits_T_4[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_9 = _uncommonBits_T_9[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_11 = _uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_14 = _uncommonBits_T_14[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_19 = _uncommonBits_T_19[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_24 = _uncommonBits_T_24[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_29 = _uncommonBits_T_29[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_34 = _uncommonBits_T_34[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_39 = _uncommonBits_T_39[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_40 = _uncommonBits_T_40[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_41 = _uncommonBits_T_41[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_44 = _uncommonBits_T_44[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_46 = _uncommonBits_T_46[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_47 = _uncommonBits_T_47[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_48 = _uncommonBits_T_48[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_49 = _uncommonBits_T_49[5:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_52 = _uncommonBits_T_52[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_53 = _uncommonBits_T_53[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] uncommonBits_54 = _uncommonBits_T_54[5:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_43 = io_in_d_bits_source_0 == 9'h90; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_43; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire [6:0] _source_ok_T_44 = io_in_d_bits_source_0[8:2]; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_T_50 = io_in_d_bits_source_0[8:2]; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_T_56 = io_in_d_bits_source_0[8:2]; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_T_62 = io_in_d_bits_source_0[8:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_45 = _source_ok_T_44 == 7'h20; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_47 = _source_ok_T_45; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_49 = _source_ok_T_47; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_1 = _source_ok_T_49; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_51 = _source_ok_T_50 == 7'h21; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_53 = _source_ok_T_51; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_55 = _source_ok_T_53; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_2 = _source_ok_T_55; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_57 = _source_ok_T_56 == 7'h22; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_59 = _source_ok_T_57; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_61 = _source_ok_T_59; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_3 = _source_ok_T_61; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_63 = _source_ok_T_62 == 7'h23; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_65 = _source_ok_T_63; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_67 = _source_ok_T_65; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_4 = _source_ok_T_67; // @[Parameters.scala:1138:31]
wire _source_ok_T_68 = io_in_d_bits_source_0 == 9'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_5 = _source_ok_T_68; // @[Parameters.scala:1138:31]
wire _source_ok_T_69 = io_in_d_bits_source_0 == 9'h41; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_6 = _source_ok_T_69; // @[Parameters.scala:1138:31]
wire _source_ok_T_70 = io_in_d_bits_source_0 == 9'h42; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_7 = _source_ok_T_70; // @[Parameters.scala:1138:31]
wire [5:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[5:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] _source_ok_T_71 = io_in_d_bits_source_0[8:6]; // @[Monitor.scala:36:7]
wire _source_ok_T_72 = _source_ok_T_71 == 3'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_74 = _source_ok_T_72; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_76 = _source_ok_T_74; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_8 = _source_ok_T_76; // @[Parameters.scala:1138:31]
wire _source_ok_T_77 = io_in_d_bits_source_0 == 9'h100; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_9 = _source_ok_T_77; // @[Parameters.scala:1138:31]
wire _source_ok_T_78 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_79 = _source_ok_T_78 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_80 = _source_ok_T_79 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_81 = _source_ok_T_80 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_82 = _source_ok_T_81 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_83 = _source_ok_T_82 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_84 = _source_ok_T_83 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_85 = _source_ok_T_84 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_85 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46]
wire _T_1253 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1253; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1253; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [8:0] source; // @[Monitor.scala:390:22]
reg [28:0] address; // @[Monitor.scala:391:22]
wire _T_1326 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_1326; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_1326; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_1326; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [8:0] source_1; // @[Monitor.scala:541:22]
reg sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
reg [256:0] inflight; // @[Monitor.scala:614:27]
reg [1027:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [1027:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [256:0] a_set; // @[Monitor.scala:626:34]
wire [256:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [1027:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [1027:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [11:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [11:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [11:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [11:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [11:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [11:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [11:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [11:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [11:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [1027:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [1027:0] _a_opcode_lookup_T_6 = {1024'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [1027:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[1027:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [1027:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [1027:0] _a_size_lookup_T_6 = {1024'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [1027:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[1027:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [511:0] _GEN_2 = 512'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [511:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35]
wire [511:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[256:0] : 257'h0; // @[OneHot.scala:58:35]
wire _T_1179 = _T_1253 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_1179 ? _a_set_T[256:0] : 257'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_1179 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_1179 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [11:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [11:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79]
wire [11:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77]
wire [4098:0] _a_opcodes_set_T_1 = {4095'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_1179 ? _a_opcodes_set_T_1[1027:0] : 1028'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [4098:0] _a_sizes_set_T_1 = {4095'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_1179 ? _a_sizes_set_T_1[1027:0] : 1028'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [256:0] d_clr; // @[Monitor.scala:664:34]
wire [256:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [1027:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [1027:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46]
wire _T_1225 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [511:0] _GEN_5 = 512'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [511:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [511:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [511:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [511:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_1225 & ~d_release_ack ? _d_clr_wo_ready_T[256:0] : 257'h0; // @[OneHot.scala:58:35]
wire _T_1194 = _T_1326 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_1194 ? _d_clr_T[256:0] : 257'h0; // @[OneHot.scala:58:35]
wire [4110:0] _d_opcodes_clr_T_5 = 4111'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_1194 ? _d_opcodes_clr_T_5[1027:0] : 1028'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [4110:0] _d_sizes_clr_T_5 = 4111'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_1194 ? _d_sizes_clr_T_5[1027:0] : 1028'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [256:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [256:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [256:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [1027:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [1027:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [1027:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [1027:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [1027:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [1027:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [256:0] inflight_1; // @[Monitor.scala:726:35]
wire [256:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [1027:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [1027:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [1027:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [1027:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [1027:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [1027:0] _c_opcode_lookup_T_6 = {1024'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [1027:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[1027:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [1027:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [1027:0] _c_size_lookup_T_6 = {1024'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [1027:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[1027:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [256:0] d_clr_1; // @[Monitor.scala:774:34]
wire [256:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [1027:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [1027:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1297 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1297 & d_release_ack_1 ? _d_clr_wo_ready_T_1[256:0] : 257'h0; // @[OneHot.scala:58:35]
wire _T_1279 = _T_1326 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_1279 ? _d_clr_T_1[256:0] : 257'h0; // @[OneHot.scala:58:35]
wire [4110:0] _d_opcodes_clr_T_11 = 4111'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_1279 ? _d_opcodes_clr_T_11[1027:0] : 1028'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [4110:0] _d_sizes_clr_T_11 = 4111'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_1279 ? _d_sizes_clr_T_11[1027:0] : 1028'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 9'h0; // @[Monitor.scala:36:7, :795:113]
wire [256:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [256:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [1027:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [1027:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [1027:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [1027:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File PE.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle {
val dataflow = UInt(1.W) // TODO make this an Enum
val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)?
val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats
}
class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module {
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(inputType)
val in_c = Input(cType)
val out_d = Output(dType)
})
io.out_d := io.in_c.mac(io.in_a, io.in_b)
}
// TODO update documentation
/**
* A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh.
* @param width Data width of operands
*/
class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int)
(implicit ev: Arithmetic[T]) extends Module { // Debugging variables
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(outputType)
val in_d = Input(outputType)
val out_a = Output(inputType)
val out_b = Output(outputType)
val out_c = Output(outputType)
val in_control = Input(new PEControl(accType))
val out_control = Output(new PEControl(accType))
val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W))
val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W))
val in_last = Input(Bool())
val out_last = Output(Bool())
val in_valid = Input(Bool())
val out_valid = Output(Bool())
val bad_dataflow = Output(Bool())
})
val cType = if (df == Dataflow.WS) inputType else accType
// When creating PEs that support multiple dataflows, the
// elaboration/synthesis tools often fail to consolidate and de-duplicate
// MAC units. To force mac circuitry to be re-used, we create a "mac_unit"
// module here which just performs a single MAC operation
val mac_unit = Module(new MacUnit(inputType,
if (df == Dataflow.WS) outputType else accType, outputType))
val a = io.in_a
val b = io.in_b
val d = io.in_d
val c1 = Reg(cType)
val c2 = Reg(cType)
val dataflow = io.in_control.dataflow
val prop = io.in_control.propagate
val shift = io.in_control.shift
val id = io.in_id
val last = io.in_last
val valid = io.in_valid
io.out_a := a
io.out_control.dataflow := dataflow
io.out_control.propagate := prop
io.out_control.shift := shift
io.out_id := id
io.out_last := last
io.out_valid := valid
mac_unit.io.in_a := a
val last_s = RegEnable(prop, valid)
val flip = last_s =/= prop
val shift_offset = Mux(flip, shift, 0.U)
// Which dataflow are we using?
val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W)
val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W)
// Is c1 being computed on, or propagated forward (in the output-stationary dataflow)?
val COMPUTE = 0.U(1.W)
val PROPAGATE = 1.U(1.W)
io.bad_dataflow := false.B
when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
c2 := mac_unit.io.out_d
c1 := d.withWidthOf(cType)
}.otherwise {
io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c1
c1 := mac_unit.io.out_d
c2 := d.withWidthOf(cType)
}
}.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := c1
mac_unit.io.in_b := c2.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c1 := d
}.otherwise {
io.out_c := c2
mac_unit.io.in_b := c1.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c2 := d
}
}.otherwise {
io.bad_dataflow := true.B
//assert(false.B, "unknown dataflow")
io.out_c := DontCare
io.out_b := DontCare
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
}
when (!valid) {
c1 := c1
c2 := c2
mac_unit.io.in_b := DontCare
mac_unit.io.in_c := DontCare
}
}
File Arithmetic.scala:
// A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own:
// implicit MyTypeArithmetic extends Arithmetic[MyType] { ... }
package gemmini
import chisel3._
import chisel3.util._
import hardfloat._
// Bundles that represent the raw bits of custom datatypes
case class Float(expWidth: Int, sigWidth: Int) extends Bundle {
val bits = UInt((expWidth + sigWidth).W)
val bias: Int = (1 << (expWidth-1)) - 1
}
case class DummySInt(w: Int) extends Bundle {
val bits = UInt(w.W)
def dontCare: DummySInt = {
val o = Wire(new DummySInt(w))
o.bits := 0.U
o
}
}
// The Arithmetic typeclass which implements various arithmetic operations on custom datatypes
abstract class Arithmetic[T <: Data] {
implicit def cast(t: T): ArithmeticOps[T]
}
abstract class ArithmeticOps[T <: Data](self: T) {
def *(t: T): T
def mac(m1: T, m2: T): T // Returns (m1 * m2 + self)
def +(t: T): T
def -(t: T): T
def >>(u: UInt): T // This is a rounding shift! Rounds away from 0
def >(t: T): Bool
def identity: T
def withWidthOf(t: T): T
def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates
def relu: T
def zero: T
def minimum: T
// Optional parameters, which only need to be defined if you want to enable various optimizations for transformers
def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None
def mult_with_reciprocal[U <: Data](reciprocal: U) = self
}
object Arithmetic {
implicit object UIntArithmetic extends Arithmetic[UInt] {
override implicit def cast(self: UInt) = new ArithmeticOps(self) {
override def *(t: UInt) = self * t
override def mac(m1: UInt, m2: UInt) = m1 * m2 + self
override def +(t: UInt) = self + t
override def -(t: UInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = point_five & (zeros | ones_digit)
(self >> u).asUInt + r
}
override def >(t: UInt): Bool = self > t
override def withWidthOf(t: UInt) = self.asTypeOf(t)
override def clippedToWidthOf(t: UInt) = {
val sat = ((1 << (t.getWidth-1))-1).U
Mux(self > sat, sat, self)(t.getWidth-1, 0)
}
override def relu: UInt = self
override def zero: UInt = 0.U
override def identity: UInt = 1.U
override def minimum: UInt = 0.U
}
}
implicit object SIntArithmetic extends Arithmetic[SInt] {
override implicit def cast(self: SInt) = new ArithmeticOps(self) {
override def *(t: SInt) = self * t
override def mac(m1: SInt, m2: SInt) = m1 * m2 + self
override def +(t: SInt) = self + t
override def -(t: SInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = (point_five & (zeros | ones_digit)).asBool
(self >> u).asSInt + Mux(r, 1.S, 0.S)
}
override def >(t: SInt): Bool = self > t
override def withWidthOf(t: SInt) = {
if (self.getWidth >= t.getWidth)
self(t.getWidth-1, 0).asSInt
else {
val sign_bits = t.getWidth - self.getWidth
val sign = self(self.getWidth-1)
Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t)
}
}
override def clippedToWidthOf(t: SInt): SInt = {
val maxsat = ((1 << (t.getWidth-1))-1).S
val minsat = (-(1 << (t.getWidth-1))).S
MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt
}
override def relu: SInt = Mux(self >= 0.S, self, 0.S)
override def zero: SInt = 0.S
override def identity: SInt = 1.S
override def minimum: SInt = (-(1 << (self.getWidth-1))).S
override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(denom_t.cloneType))
val output = Wire(Decoupled(self.cloneType))
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def sin_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def uin_to_float(x: UInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := x
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = sin_to_float(self)
val denom_rec = uin_to_float(input.bits)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := self_rec
divider.io.b := denom_rec
divider.io.roundingMode := consts.round_minMag
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := float_to_in(divider.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(self.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
// Instantiate the hardloat sqrt
val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0))
input.ready := sqrter.io.inReady
sqrter.io.inValid := input.valid
sqrter.io.sqrtOp := true.B
sqrter.io.a := self_rec
sqrter.io.b := DontCare
sqrter.io.roundingMode := consts.round_minMag
sqrter.io.detectTininess := consts.tininess_afterRounding
output.valid := sqrter.io.outValid_sqrt
output.bits := float_to_in(sqrter.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match {
case Float(expWidth, sigWidth) =>
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(u.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
val self_rec = in_to_float(self)
val one_rec = in_to_float(1.S)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := one_rec
divider.io.b := self_rec
divider.io.roundingMode := consts.round_near_even
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u)
assert(!output.valid || output.ready)
Some((input, output))
case _ => None
}
override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match {
case recip @ Float(expWidth, sigWidth) =>
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits)
// Instantiate the hardloat divider
val muladder = Module(new MulRecFN(expWidth, sigWidth))
muladder.io.roundingMode := consts.round_near_even
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := reciprocal_rec
float_to_in(muladder.io.out)
case _ => self
}
}
}
implicit object FloatArithmetic extends Arithmetic[Float] {
// TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array
override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) {
override def *(t: Float): Float = {
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := t_rec_resized
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def mac(m1: Float, m2: Float): Float = {
// Recode all operands
val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits)
val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize m1 to self's width
val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth))
m1_resizer.io.in := m1_rec
m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m1_resizer.io.detectTininess := consts.tininess_afterRounding
val m1_rec_resized = m1_resizer.io.out
// Resize m2 to self's width
val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth))
m2_resizer.io.in := m2_rec
m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m2_resizer.io.detectTininess := consts.tininess_afterRounding
val m2_rec_resized = m2_resizer.io.out
// Perform multiply-add
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := m1_rec_resized
muladder.io.b := m2_rec_resized
muladder.io.c := self_rec
// Convert result to standard format // TODO remove these intermediate recodings
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def +(t: Float): Float = {
require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Generate 1 as a float
val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := 1.U
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
val one_rec = in_to_rec_fn.io.out
// Resize t
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
// Perform addition
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := t_rec_resized
muladder.io.b := one_rec
muladder.io.c := self_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def -(t: Float): Float = {
val t_sgn = t.bits(t.getWidth-1)
val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t)
self + neg_t
}
override def >>(u: UInt): Float = {
// Recode self
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Get 2^(-u) as a recoded float
val shift_exp = Wire(UInt(self.expWidth.W))
shift_exp := self.bias.U - u
val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W))
val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn)
assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported")
// Multiply self and 2^(-u)
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := shift_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def >(t: Float): Bool = {
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize t to self's width
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth))
comparator.io.a := self_rec
comparator.io.b := t_rec_resized
comparator.io.signaling := false.B
comparator.io.gt
}
override def withWidthOf(t: Float): Float = {
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def clippedToWidthOf(t: Float): Float = {
// TODO check for overflow. Right now, we just assume that overflow doesn't happen
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def relu: Float = {
val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits)
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits)
result
}
override def zero: Float = 0.U.asTypeOf(self)
override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
}
}
implicit object DummySIntArithmetic extends Arithmetic[DummySInt] {
override implicit def cast(self: DummySInt) = new ArithmeticOps(self) {
override def *(t: DummySInt) = self.dontCare
override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare
override def +(t: DummySInt) = self.dontCare
override def -(t: DummySInt) = self.dontCare
override def >>(t: UInt) = self.dontCare
override def >(t: DummySInt): Bool = false.B
override def identity = self.dontCare
override def withWidthOf(t: DummySInt) = self.dontCare
override def clippedToWidthOf(t: DummySInt) = self.dontCare
override def relu = self.dontCare
override def zero = self.dontCare
override def minimum: DummySInt = self.dontCare
}
}
}
| module PE_485( // @[PE.scala:31:7]
input clock, // @[PE.scala:31:7]
input reset, // @[PE.scala:31:7]
input [7:0] io_in_a, // @[PE.scala:35:14]
input [19:0] io_in_b, // @[PE.scala:35:14]
input [19:0] io_in_d, // @[PE.scala:35:14]
output [7:0] io_out_a, // @[PE.scala:35:14]
output [19:0] io_out_b, // @[PE.scala:35:14]
output [19:0] io_out_c, // @[PE.scala:35:14]
input io_in_control_dataflow, // @[PE.scala:35:14]
input io_in_control_propagate, // @[PE.scala:35:14]
input [4:0] io_in_control_shift, // @[PE.scala:35:14]
output io_out_control_dataflow, // @[PE.scala:35:14]
output io_out_control_propagate, // @[PE.scala:35:14]
output [4:0] io_out_control_shift, // @[PE.scala:35:14]
input [2:0] io_in_id, // @[PE.scala:35:14]
output [2:0] io_out_id, // @[PE.scala:35:14]
input io_in_last, // @[PE.scala:35:14]
output io_out_last, // @[PE.scala:35:14]
input io_in_valid, // @[PE.scala:35:14]
output io_out_valid, // @[PE.scala:35:14]
output io_bad_dataflow // @[PE.scala:35:14]
);
wire [19:0] _mac_unit_io_out_d; // @[PE.scala:64:24]
wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7]
wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7]
wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7]
wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7]
wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7]
wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7]
wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7]
wire io_in_last_0 = io_in_last; // @[PE.scala:31:7]
wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7]
wire io_bad_dataflow_0 = 1'h0; // @[PE.scala:31:7]
wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7]
wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37]
wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37]
wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35]
wire [19:0] c1_lo_1 = io_in_d_0; // @[PE.scala:31:7]
wire [19:0] c2_lo_1 = io_in_d_0; // @[PE.scala:31:7]
wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7]
wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7]
wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7]
wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7]
wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7]
wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7]
wire [19:0] io_out_b_0; // @[PE.scala:31:7]
wire [19:0] io_out_c_0; // @[PE.scala:31:7]
reg [31:0] c1; // @[PE.scala:70:15]
wire [31:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15]
wire [31:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38]
reg [31:0] c2; // @[PE.scala:71:15]
wire [31:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15]
wire [31:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38]
reg last_s; // @[PE.scala:89:25]
wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21]
wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25]
wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25]
wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32]
wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32]
wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25]
wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53]
wire [31:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15]
wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}]
wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25]
wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27]
wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27]
wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_7 = _io_out_c_zeros_T_1 & _io_out_c_zeros_T_6; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}]
wire [31:0] _GEN_2 = {27'h0, shift_offset}; // @[PE.scala:91:25]
wire [31:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15]
wire [31:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30]
wire [31:0] _io_out_c_T; // @[Arithmetic.scala:107:15]
assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33]
wire [32:0] _io_out_c_T_2 = {_io_out_c_T[31], _io_out_c_T} + {{31{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}]
wire [31:0] _io_out_c_T_3 = _io_out_c_T_2[31:0]; // @[Arithmetic.scala:107:28]
wire [31:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28]
wire _io_out_c_T_5 = $signed(_io_out_c_T_4) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33]
wire _io_out_c_T_6 = $signed(_io_out_c_T_4) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60]
wire [31:0] _io_out_c_T_7 = _io_out_c_T_6 ? 32'hFFF80000 : _io_out_c_T_4; // @[Mux.scala:126:16]
wire [31:0] _io_out_c_T_8 = _io_out_c_T_5 ? 32'h7FFFF : _io_out_c_T_7; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_9 = _io_out_c_T_8[19:0]; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37]
wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37]
wire c1_sign = io_in_d_0[19]; // @[PE.scala:31:7]
wire c2_sign = io_in_d_0[19]; // @[PE.scala:31:7]
wire [1:0] _GEN_4 = {2{c1_sign}}; // @[Arithmetic.scala:117:26, :118:18]
wire [1:0] c1_lo_lo_hi; // @[Arithmetic.scala:118:18]
assign c1_lo_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [1:0] c1_lo_hi_hi; // @[Arithmetic.scala:118:18]
assign c1_lo_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [1:0] c1_hi_lo_hi; // @[Arithmetic.scala:118:18]
assign c1_hi_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [1:0] c1_hi_hi_hi; // @[Arithmetic.scala:118:18]
assign c1_hi_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18]
wire [2:0] c1_lo_lo = {c1_lo_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c1_lo_hi = {c1_lo_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c1_lo = {c1_lo_hi, c1_lo_lo}; // @[Arithmetic.scala:118:18]
wire [2:0] c1_hi_lo = {c1_hi_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c1_hi_hi = {c1_hi_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c1_hi = {c1_hi_hi, c1_hi_lo}; // @[Arithmetic.scala:118:18]
wire [11:0] _c1_T = {c1_hi, c1_lo}; // @[Arithmetic.scala:118:18]
wire [31:0] _c1_T_1 = {_c1_T, c1_lo_1}; // @[Arithmetic.scala:118:{14,18}]
wire [31:0] _c1_T_2 = _c1_T_1; // @[Arithmetic.scala:118:{14,61}]
wire [31:0] _c1_WIRE = _c1_T_2; // @[Arithmetic.scala:118:61]
wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53]
wire [31:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15]
wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}]
wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_16 = _io_out_c_zeros_T_10 & _io_out_c_zeros_T_15; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}]
wire [31:0] _GEN_5 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15]
wire [31:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T_1 = _GEN_5; // @[Arithmetic.scala:103:30]
wire [31:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15]
assign _io_out_c_T_11 = _GEN_5; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33]
wire [32:0] _io_out_c_T_13 = {_io_out_c_T_11[31], _io_out_c_T_11} + {{31{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}]
wire [31:0] _io_out_c_T_14 = _io_out_c_T_13[31:0]; // @[Arithmetic.scala:107:28]
wire [31:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28]
wire _io_out_c_T_16 = $signed(_io_out_c_T_15) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33]
wire _io_out_c_T_17 = $signed(_io_out_c_T_15) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60]
wire [31:0] _io_out_c_T_18 = _io_out_c_T_17 ? 32'hFFF80000 : _io_out_c_T_15; // @[Mux.scala:126:16]
wire [31:0] _io_out_c_T_19 = _io_out_c_T_16 ? 32'h7FFFF : _io_out_c_T_18; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_20 = _io_out_c_T_19[19:0]; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37]
wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37]
wire [1:0] _GEN_6 = {2{c2_sign}}; // @[Arithmetic.scala:117:26, :118:18]
wire [1:0] c2_lo_lo_hi; // @[Arithmetic.scala:118:18]
assign c2_lo_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [1:0] c2_lo_hi_hi; // @[Arithmetic.scala:118:18]
assign c2_lo_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [1:0] c2_hi_lo_hi; // @[Arithmetic.scala:118:18]
assign c2_hi_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [1:0] c2_hi_hi_hi; // @[Arithmetic.scala:118:18]
assign c2_hi_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18]
wire [2:0] c2_lo_lo = {c2_lo_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c2_lo_hi = {c2_lo_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c2_lo = {c2_lo_hi, c2_lo_lo}; // @[Arithmetic.scala:118:18]
wire [2:0] c2_hi_lo = {c2_hi_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [2:0] c2_hi_hi = {c2_hi_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18]
wire [5:0] c2_hi = {c2_hi_hi, c2_hi_lo}; // @[Arithmetic.scala:118:18]
wire [11:0] _c2_T = {c2_hi, c2_lo}; // @[Arithmetic.scala:118:18]
wire [31:0] _c2_T_1 = {_c2_T, c2_lo_1}; // @[Arithmetic.scala:118:{14,18}]
wire [31:0] _c2_T_2 = _c2_T_1; // @[Arithmetic.scala:118:{14,61}]
wire [31:0] _c2_WIRE = _c2_T_2; // @[Arithmetic.scala:118:61]
wire [31:0] _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38]
wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5[7:0]; // @[PE.scala:121:38]
wire [31:0] _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38]
wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7[7:0]; // @[PE.scala:127:38]
assign io_out_c_0 = io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? c1[19:0] : c2[19:0]) : io_in_control_propagate_0 ? _io_out_c_T_10 : _io_out_c_T_21; // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :104:16, :111:16, :118:101, :119:30, :120:16, :126:16]
assign io_out_b_0 = io_in_control_dataflow_0 ? _mac_unit_io_out_d : io_in_b_0; // @[PE.scala:31:7, :64:24, :102:95, :103:30, :118:101]
wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35]
wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35]
wire [31:0] _GEN_7 = {{12{io_in_d_0[19]}}, io_in_d_0}; // @[PE.scala:31:7, :124:10]
wire [31:0] _GEN_8 = {{12{_mac_unit_io_out_d[19]}}, _mac_unit_io_out_d}; // @[PE.scala:64:24, :108:10]
always @(posedge clock) begin // @[PE.scala:31:7]
if (io_in_valid_0) begin // @[PE.scala:31:7]
if (io_in_control_dataflow_0) begin // @[PE.scala:31:7]
if (io_in_control_dataflow_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :70:15, :118:101, :119:30, :124:10]
c1 <= _GEN_7; // @[PE.scala:70:15, :124:10]
if (~io_in_control_dataflow_0 | io_in_control_propagate_0) begin // @[PE.scala:31:7, :71:15, :118:101, :119:30]
end
else // @[PE.scala:71:15, :118:101, :119:30]
c2 <= _GEN_7; // @[PE.scala:71:15, :124:10]
end
else begin // @[PE.scala:31:7]
c1 <= io_in_control_propagate_0 ? _c1_WIRE : _GEN_8; // @[PE.scala:31:7, :70:15, :103:30, :108:10, :109:10, :115:10]
c2 <= io_in_control_propagate_0 ? _GEN_8 : _c2_WIRE; // @[PE.scala:31:7, :71:15, :103:30, :108:10, :116:10]
end
last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25]
end
always @(posedge)
MacUnit_229 mac_unit ( // @[PE.scala:64:24]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0), // @[PE.scala:31:7]
.io_in_b (io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3) : io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE : _mac_unit_io_in_b_WIRE_1), // @[PE.scala:31:7, :102:95, :103:30, :106:{24,37}, :113:{24,37}, :118:101, :119:30, :121:{24,38}, :127:{24,38}]
.io_in_c (io_in_control_dataflow_0 ? {{12{io_in_b_0[19]}}, io_in_b_0} : io_in_control_propagate_0 ? c2 : c1), // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :107:24, :114:24, :118:101, :122:24]
.io_out_d (_mac_unit_io_out_d)
); // @[PE.scala:64:24]
assign io_out_a = io_out_a_0; // @[PE.scala:31:7]
assign io_out_b = io_out_b_0; // @[PE.scala:31:7]
assign io_out_c = io_out_c_0; // @[PE.scala:31:7]
assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7]
assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7]
assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7]
assign io_out_id = io_out_id_0; // @[PE.scala:31:7]
assign io_out_last = io_out_last_0; // @[PE.scala:31:7]
assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7]
assign io_bad_dataflow = io_bad_dataflow_0; // @[PE.scala:31:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Replacement.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import freechips.rocketchip.util.property.cover
abstract class ReplacementPolicy {
def nBits: Int
def perSet: Boolean
def way: UInt
def miss: Unit
def hit: Unit
def access(touch_way: UInt): Unit
def access(touch_ways: Seq[Valid[UInt]]): Unit
def state_read: UInt
def get_next_state(state: UInt, touch_way: UInt): UInt
def get_next_state(state: UInt, touch_ways: Seq[Valid[UInt]]): UInt = {
touch_ways.foldLeft(state)((prev, touch_way) => Mux(touch_way.valid, get_next_state(prev, touch_way.bits), prev))
}
def get_replace_way(state: UInt): UInt
}
object ReplacementPolicy {
def fromString(s: String, n_ways: Int): ReplacementPolicy = s.toLowerCase match {
case "random" => new RandomReplacement(n_ways)
case "lru" => new TrueLRU(n_ways)
case "plru" => new PseudoLRU(n_ways)
case t => throw new IllegalArgumentException(s"unknown Replacement Policy type $t")
}
}
class RandomReplacement(n_ways: Int) extends ReplacementPolicy {
private val replace = Wire(Bool())
replace := false.B
def nBits = 16
def perSet = false
private val lfsr = LFSR(nBits, replace)
def state_read = WireDefault(lfsr)
def way = Random(n_ways, lfsr)
def miss = replace := true.B
def hit = {}
def access(touch_way: UInt) = {}
def access(touch_ways: Seq[Valid[UInt]]) = {}
def get_next_state(state: UInt, touch_way: UInt) = 0.U //DontCare
def get_replace_way(state: UInt) = way
}
abstract class SeqReplacementPolicy {
def access(set: UInt): Unit
def update(valid: Bool, hit: Bool, set: UInt, way: UInt): Unit
def way: UInt
}
abstract class SetAssocReplacementPolicy {
def access(set: UInt, touch_way: UInt): Unit
def access(sets: Seq[UInt], touch_ways: Seq[Valid[UInt]]): Unit
def way(set: UInt): UInt
}
class SeqRandom(n_ways: Int) extends SeqReplacementPolicy {
val logic = new RandomReplacement(n_ways)
def access(set: UInt) = { }
def update(valid: Bool, hit: Bool, set: UInt, way: UInt) = {
when (valid && !hit) { logic.miss }
}
def way = logic.way
}
class TrueLRU(n_ways: Int) extends ReplacementPolicy {
// True LRU replacement policy, using a triangular matrix to track which sets are more recently used than others.
// The matrix is packed into a single UInt (or Bits). Example 4-way (6-bits):
// [5] - 3 more recent than 2
// [4] - 3 more recent than 1
// [3] - 2 more recent than 1
// [2] - 3 more recent than 0
// [1] - 2 more recent than 0
// [0] - 1 more recent than 0
def nBits = (n_ways * (n_ways-1)) / 2
def perSet = true
private val state_reg = RegInit(0.U(nBits.W))
def state_read = WireDefault(state_reg)
private def extractMRUVec(state: UInt): Seq[UInt] = {
// Extract per-way information about which higher-indexed ways are more recently used
val moreRecentVec = Wire(Vec(n_ways-1, UInt(n_ways.W)))
var lsb = 0
for (i <- 0 until n_ways-1) {
moreRecentVec(i) := Cat(state(lsb+n_ways-i-2,lsb), 0.U((i+1).W))
lsb = lsb + (n_ways - i - 1)
}
moreRecentVec
}
def get_next_state(state: UInt, touch_way: UInt): UInt = {
val nextState = Wire(Vec(n_ways-1, UInt(n_ways.W)))
val moreRecentVec = extractMRUVec(state) // reconstruct lower triangular matrix
val wayDec = UIntToOH(touch_way, n_ways)
// Compute next value of triangular matrix
// set the touched way as more recent than every other way
nextState.zipWithIndex.map { case (e, i) =>
e := Mux(i.U === touch_way, 0.U(n_ways.W), moreRecentVec(i) | wayDec)
}
nextState.zipWithIndex.tail.foldLeft((nextState.head.apply(n_ways-1,1),0)) { case ((pe,pi),(ce,ci)) => (Cat(ce.apply(n_ways-1,ci+1), pe), ci) }._1
}
def access(touch_way: UInt): Unit = {
state_reg := get_next_state(state_reg, touch_way)
}
def access(touch_ways: Seq[Valid[UInt]]): Unit = {
when (touch_ways.map(_.valid).orR) {
state_reg := get_next_state(state_reg, touch_ways)
}
for (i <- 1 until touch_ways.size) {
cover(PopCount(touch_ways.map(_.valid)) === i.U, s"LRU_UpdateCount$i", s"LRU Update $i simultaneous")
}
}
def get_replace_way(state: UInt): UInt = {
val moreRecentVec = extractMRUVec(state) // reconstruct lower triangular matrix
// For each way, determine if all other ways are more recent
val mruWayDec = (0 until n_ways).map { i =>
val upperMoreRecent = (if (i == n_ways-1) true.B else moreRecentVec(i).apply(n_ways-1,i+1).andR)
val lowerMoreRecent = (if (i == 0) true.B else moreRecentVec.map(e => !e(i)).reduce(_ && _))
upperMoreRecent && lowerMoreRecent
}
OHToUInt(mruWayDec)
}
def way = get_replace_way(state_reg)
def miss = access(way)
def hit = {}
@deprecated("replace 'replace' with 'way' from abstract class ReplacementPolicy","Rocket Chip 2020.05")
def replace: UInt = way
}
class PseudoLRU(n_ways: Int) extends ReplacementPolicy {
// Pseudo-LRU tree algorithm: https://en.wikipedia.org/wiki/Pseudo-LRU#Tree-PLRU
//
//
// - bits storage example for 4-way PLRU binary tree:
// bit[2]: ways 3+2 older than ways 1+0
// / \
// bit[1]: way 3 older than way 2 bit[0]: way 1 older than way 0
//
//
// - bits storage example for 3-way PLRU binary tree:
// bit[1]: way 2 older than ways 1+0
// \
// bit[0]: way 1 older than way 0
//
//
// - bits storage example for 8-way PLRU binary tree:
// bit[6]: ways 7-4 older than ways 3-0
// / \
// bit[5]: ways 7+6 > 5+4 bit[2]: ways 3+2 > 1+0
// / \ / \
// bit[4]: way 7>6 bit[3]: way 5>4 bit[1]: way 3>2 bit[0]: way 1>0
def nBits = n_ways - 1
def perSet = true
private val state_reg = if (nBits == 0) Reg(UInt(0.W)) else RegInit(0.U(nBits.W))
def state_read = WireDefault(state_reg)
def access(touch_way: UInt): Unit = {
state_reg := get_next_state(state_reg, touch_way)
}
def access(touch_ways: Seq[Valid[UInt]]): Unit = {
when (touch_ways.map(_.valid).orR) {
state_reg := get_next_state(state_reg, touch_ways)
}
for (i <- 1 until touch_ways.size) {
cover(PopCount(touch_ways.map(_.valid)) === i.U, s"PLRU_UpdateCount$i", s"PLRU Update $i simultaneous")
}
}
/** @param state state_reg bits for this sub-tree
* @param touch_way touched way encoded value bits for this sub-tree
* @param tree_nways number of ways in this sub-tree
*/
def get_next_state(state: UInt, touch_way: UInt, tree_nways: Int): UInt = {
require(state.getWidth == (tree_nways-1), s"wrong state bits width ${state.getWidth} for $tree_nways ways")
require(touch_way.getWidth == (log2Ceil(tree_nways) max 1), s"wrong encoded way width ${touch_way.getWidth} for $tree_nways ways")
if (tree_nways > 2) {
// we are at a branching node in the tree, so recurse
val right_nways: Int = 1 << (log2Ceil(tree_nways) - 1) // number of ways in the right sub-tree
val left_nways: Int = tree_nways - right_nways // number of ways in the left sub-tree
val set_left_older = !touch_way(log2Ceil(tree_nways)-1)
val left_subtree_state = state.extract(tree_nways-3, right_nways-1)
val right_subtree_state = state(right_nways-2, 0)
if (left_nways > 1) {
// we are at a branching node in the tree with both left and right sub-trees, so recurse both sub-trees
Cat(set_left_older,
Mux(set_left_older,
left_subtree_state, // if setting left sub-tree as older, do NOT recurse into left sub-tree
get_next_state(left_subtree_state, touch_way.extract(log2Ceil(left_nways)-1,0), left_nways)), // recurse left if newer
Mux(set_left_older,
get_next_state(right_subtree_state, touch_way(log2Ceil(right_nways)-1,0), right_nways), // recurse right if newer
right_subtree_state)) // if setting right sub-tree as older, do NOT recurse into right sub-tree
} else {
// we are at a branching node in the tree with only a right sub-tree, so recurse only right sub-tree
Cat(set_left_older,
Mux(set_left_older,
get_next_state(right_subtree_state, touch_way(log2Ceil(right_nways)-1,0), right_nways), // recurse right if newer
right_subtree_state)) // if setting right sub-tree as older, do NOT recurse into right sub-tree
}
} else if (tree_nways == 2) {
// we are at a leaf node at the end of the tree, so set the single state bit opposite of the lsb of the touched way encoded value
!touch_way(0)
} else { // tree_nways <= 1
// we are at an empty node in an empty tree for 1 way, so return single zero bit for Chisel (no zero-width wires)
0.U(1.W)
}
}
def get_next_state(state: UInt, touch_way: UInt): UInt = {
val touch_way_sized = if (touch_way.getWidth < log2Ceil(n_ways)) touch_way.padTo (log2Ceil(n_ways))
else touch_way.extract(log2Ceil(n_ways)-1,0)
get_next_state(state, touch_way_sized, n_ways)
}
/** @param state state_reg bits for this sub-tree
* @param tree_nways number of ways in this sub-tree
*/
def get_replace_way(state: UInt, tree_nways: Int): UInt = {
require(state.getWidth == (tree_nways-1), s"wrong state bits width ${state.getWidth} for $tree_nways ways")
// this algorithm recursively descends the binary tree, filling in the way-to-replace encoded value from msb to lsb
if (tree_nways > 2) {
// we are at a branching node in the tree, so recurse
val right_nways: Int = 1 << (log2Ceil(tree_nways) - 1) // number of ways in the right sub-tree
val left_nways: Int = tree_nways - right_nways // number of ways in the left sub-tree
val left_subtree_older = state(tree_nways-2)
val left_subtree_state = state.extract(tree_nways-3, right_nways-1)
val right_subtree_state = state(right_nways-2, 0)
if (left_nways > 1) {
// we are at a branching node in the tree with both left and right sub-trees, so recurse both sub-trees
Cat(left_subtree_older, // return the top state bit (current tree node) as msb of the way-to-replace encoded value
Mux(left_subtree_older, // if left sub-tree is older, recurse left, else recurse right
get_replace_way(left_subtree_state, left_nways), // recurse left
get_replace_way(right_subtree_state, right_nways))) // recurse right
} else {
// we are at a branching node in the tree with only a right sub-tree, so recurse only right sub-tree
Cat(left_subtree_older, // return the top state bit (current tree node) as msb of the way-to-replace encoded value
Mux(left_subtree_older, // if left sub-tree is older, return and do not recurse right
0.U(1.W),
get_replace_way(right_subtree_state, right_nways))) // recurse right
}
} else if (tree_nways == 2) {
// we are at a leaf node at the end of the tree, so just return the single state bit as lsb of the way-to-replace encoded value
state(0)
} else { // tree_nways <= 1
// we are at an empty node in an unbalanced tree for non-power-of-2 ways, so return single zero bit as lsb of the way-to-replace encoded value
0.U(1.W)
}
}
def get_replace_way(state: UInt): UInt = get_replace_way(state, n_ways)
def way = get_replace_way(state_reg)
def miss = access(way)
def hit = {}
}
class SeqPLRU(n_sets: Int, n_ways: Int) extends SeqReplacementPolicy {
val logic = new PseudoLRU(n_ways)
val state = SyncReadMem(n_sets, UInt(logic.nBits.W))
val current_state = Wire(UInt(logic.nBits.W))
val next_state = Wire(UInt(logic.nBits.W))
val plru_way = logic.get_replace_way(current_state)
def access(set: UInt) = {
current_state := state.read(set)
}
def update(valid: Bool, hit: Bool, set: UInt, way: UInt) = {
val update_way = Mux(hit, way, plru_way)
next_state := logic.get_next_state(current_state, update_way)
when (valid) { state.write(set, next_state) }
}
def way = plru_way
}
class SetAssocLRU(n_sets: Int, n_ways: Int, policy: String) extends SetAssocReplacementPolicy {
val logic = policy.toLowerCase match {
case "plru" => new PseudoLRU(n_ways)
case "lru" => new TrueLRU(n_ways)
case t => throw new IllegalArgumentException(s"unknown Replacement Policy type $t")
}
val state_vec =
if (logic.nBits == 0) Reg(Vec(n_sets, UInt(logic.nBits.W))) // Work around elaboration error on following line
else RegInit(VecInit(Seq.fill(n_sets)(0.U(logic.nBits.W))))
def access(set: UInt, touch_way: UInt) = {
state_vec(set) := logic.get_next_state(state_vec(set), touch_way)
}
def access(sets: Seq[UInt], touch_ways: Seq[Valid[UInt]]) = {
require(sets.size == touch_ways.size, "internal consistency check: should be same number of simultaneous updates for sets and touch_ways")
for (set <- 0 until n_sets) {
val set_touch_ways = (sets zip touch_ways).map { case (touch_set, touch_way) =>
Pipe(touch_way.valid && (touch_set === set.U), touch_way.bits, 0)}
when (set_touch_ways.map(_.valid).orR) {
state_vec(set) := logic.get_next_state(state_vec(set), set_touch_ways)
}
}
}
def way(set: UInt) = logic.get_replace_way(state_vec(set))
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class PLRUTest(n_ways: Int, timeout: Int = 500) extends UnitTest(timeout) {
val plru = new PseudoLRU(n_ways)
// step
io.finished := RegNext(true.B, false.B)
val get_replace_ways = (0 until (1 << (n_ways-1))).map(state =>
plru.get_replace_way(state = state.U((n_ways-1).W)))
val get_next_states = (0 until (1 << (n_ways-1))).map(state => (0 until n_ways).map(way =>
plru.get_next_state (state = state.U((n_ways-1).W), touch_way = way.U(log2Ceil(n_ways).W))))
n_ways match {
case 2 => {
assert(get_replace_ways(0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=0: expected=0 actual=%d", get_replace_ways(0))
assert(get_replace_ways(1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=1: expected=1 actual=%d", get_replace_ways(1))
assert(get_next_states(0)(0) === 1.U(plru.nBits.W), s"get_next_state state=0 way=0: expected=1 actual=%d", get_next_states(0)(0))
assert(get_next_states(0)(1) === 0.U(plru.nBits.W), s"get_next_state state=0 way=1: expected=0 actual=%d", get_next_states(0)(1))
assert(get_next_states(1)(0) === 1.U(plru.nBits.W), s"get_next_state state=1 way=0: expected=1 actual=%d", get_next_states(1)(0))
assert(get_next_states(1)(1) === 0.U(plru.nBits.W), s"get_next_state state=1 way=1: expected=0 actual=%d", get_next_states(1)(1))
}
case 3 => {
assert(get_replace_ways(0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=0: expected=0 actual=%d", get_replace_ways(0))
assert(get_replace_ways(1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=1: expected=1 actual=%d", get_replace_ways(1))
assert(get_replace_ways(2) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=2: expected=2 actual=%d", get_replace_ways(2))
assert(get_replace_ways(3) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=3: expected=2 actual=%d", get_replace_ways(3))
assert(get_next_states(0)(0) === 3.U(plru.nBits.W), s"get_next_state state=0 way=0: expected=3 actual=%d", get_next_states(0)(0))
assert(get_next_states(0)(1) === 2.U(plru.nBits.W), s"get_next_state state=0 way=1: expected=2 actual=%d", get_next_states(0)(1))
assert(get_next_states(0)(2) === 0.U(plru.nBits.W), s"get_next_state state=0 way=2: expected=0 actual=%d", get_next_states(0)(2))
assert(get_next_states(1)(0) === 3.U(plru.nBits.W), s"get_next_state state=1 way=0: expected=3 actual=%d", get_next_states(1)(0))
assert(get_next_states(1)(1) === 2.U(plru.nBits.W), s"get_next_state state=1 way=1: expected=2 actual=%d", get_next_states(1)(1))
assert(get_next_states(1)(2) === 1.U(plru.nBits.W), s"get_next_state state=1 way=2: expected=1 actual=%d", get_next_states(1)(2))
assert(get_next_states(2)(0) === 3.U(plru.nBits.W), s"get_next_state state=2 way=0: expected=3 actual=%d", get_next_states(2)(0))
assert(get_next_states(2)(1) === 2.U(plru.nBits.W), s"get_next_state state=2 way=1: expected=2 actual=%d", get_next_states(2)(1))
assert(get_next_states(2)(2) === 0.U(plru.nBits.W), s"get_next_state state=2 way=2: expected=0 actual=%d", get_next_states(2)(2))
assert(get_next_states(3)(0) === 3.U(plru.nBits.W), s"get_next_state state=3 way=0: expected=3 actual=%d", get_next_states(3)(0))
assert(get_next_states(3)(1) === 2.U(plru.nBits.W), s"get_next_state state=3 way=1: expected=2 actual=%d", get_next_states(3)(1))
assert(get_next_states(3)(2) === 1.U(plru.nBits.W), s"get_next_state state=3 way=2: expected=1 actual=%d", get_next_states(3)(2))
}
case 4 => {
assert(get_replace_ways(0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=0: expected=0 actual=%d", get_replace_ways(0))
assert(get_replace_ways(1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=1: expected=1 actual=%d", get_replace_ways(1))
assert(get_replace_ways(2) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=2: expected=0 actual=%d", get_replace_ways(2))
assert(get_replace_ways(3) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=3: expected=1 actual=%d", get_replace_ways(3))
assert(get_replace_ways(4) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=4: expected=2 actual=%d", get_replace_ways(4))
assert(get_replace_ways(5) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=5: expected=2 actual=%d", get_replace_ways(5))
assert(get_replace_ways(6) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=6: expected=3 actual=%d", get_replace_ways(6))
assert(get_replace_ways(7) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=7: expected=3 actual=%d", get_replace_ways(7))
assert(get_next_states(0)(0) === 5.U(plru.nBits.W), s"get_next_state state=0 way=0: expected=5 actual=%d", get_next_states(0)(0))
assert(get_next_states(0)(1) === 4.U(plru.nBits.W), s"get_next_state state=0 way=1: expected=4 actual=%d", get_next_states(0)(1))
assert(get_next_states(0)(2) === 2.U(plru.nBits.W), s"get_next_state state=0 way=2: expected=2 actual=%d", get_next_states(0)(2))
assert(get_next_states(0)(3) === 0.U(plru.nBits.W), s"get_next_state state=0 way=3: expected=0 actual=%d", get_next_states(0)(3))
assert(get_next_states(1)(0) === 5.U(plru.nBits.W), s"get_next_state state=1 way=0: expected=5 actual=%d", get_next_states(1)(0))
assert(get_next_states(1)(1) === 4.U(plru.nBits.W), s"get_next_state state=1 way=1: expected=4 actual=%d", get_next_states(1)(1))
assert(get_next_states(1)(2) === 3.U(plru.nBits.W), s"get_next_state state=1 way=2: expected=3 actual=%d", get_next_states(1)(2))
assert(get_next_states(1)(3) === 1.U(plru.nBits.W), s"get_next_state state=1 way=3: expected=1 actual=%d", get_next_states(1)(3))
assert(get_next_states(2)(0) === 7.U(plru.nBits.W), s"get_next_state state=2 way=0: expected=7 actual=%d", get_next_states(2)(0))
assert(get_next_states(2)(1) === 6.U(plru.nBits.W), s"get_next_state state=2 way=1: expected=6 actual=%d", get_next_states(2)(1))
assert(get_next_states(2)(2) === 2.U(plru.nBits.W), s"get_next_state state=2 way=2: expected=2 actual=%d", get_next_states(2)(2))
assert(get_next_states(2)(3) === 0.U(plru.nBits.W), s"get_next_state state=2 way=3: expected=0 actual=%d", get_next_states(2)(3))
assert(get_next_states(3)(0) === 7.U(plru.nBits.W), s"get_next_state state=3 way=0: expected=7 actual=%d", get_next_states(3)(0))
assert(get_next_states(3)(1) === 6.U(plru.nBits.W), s"get_next_state state=3 way=1: expected=6 actual=%d", get_next_states(3)(1))
assert(get_next_states(3)(2) === 3.U(plru.nBits.W), s"get_next_state state=3 way=2: expected=3 actual=%d", get_next_states(3)(2))
assert(get_next_states(3)(3) === 1.U(plru.nBits.W), s"get_next_state state=3 way=3: expected=1 actual=%d", get_next_states(3)(3))
assert(get_next_states(4)(0) === 5.U(plru.nBits.W), s"get_next_state state=4 way=0: expected=5 actual=%d", get_next_states(4)(0))
assert(get_next_states(4)(1) === 4.U(plru.nBits.W), s"get_next_state state=4 way=1: expected=4 actual=%d", get_next_states(4)(1))
assert(get_next_states(4)(2) === 2.U(plru.nBits.W), s"get_next_state state=4 way=2: expected=2 actual=%d", get_next_states(4)(2))
assert(get_next_states(4)(3) === 0.U(plru.nBits.W), s"get_next_state state=4 way=3: expected=0 actual=%d", get_next_states(4)(3))
assert(get_next_states(5)(0) === 5.U(plru.nBits.W), s"get_next_state state=5 way=0: expected=5 actual=%d", get_next_states(5)(0))
assert(get_next_states(5)(1) === 4.U(plru.nBits.W), s"get_next_state state=5 way=1: expected=4 actual=%d", get_next_states(5)(1))
assert(get_next_states(5)(2) === 3.U(plru.nBits.W), s"get_next_state state=5 way=2: expected=3 actual=%d", get_next_states(5)(2))
assert(get_next_states(5)(3) === 1.U(plru.nBits.W), s"get_next_state state=5 way=3: expected=1 actual=%d", get_next_states(5)(3))
assert(get_next_states(6)(0) === 7.U(plru.nBits.W), s"get_next_state state=6 way=0: expected=7 actual=%d", get_next_states(6)(0))
assert(get_next_states(6)(1) === 6.U(plru.nBits.W), s"get_next_state state=6 way=1: expected=6 actual=%d", get_next_states(6)(1))
assert(get_next_states(6)(2) === 2.U(plru.nBits.W), s"get_next_state state=6 way=2: expected=2 actual=%d", get_next_states(6)(2))
assert(get_next_states(6)(3) === 0.U(plru.nBits.W), s"get_next_state state=6 way=3: expected=0 actual=%d", get_next_states(6)(3))
assert(get_next_states(7)(0) === 7.U(plru.nBits.W), s"get_next_state state=7 way=0: expected=7 actual=%d", get_next_states(7)(0))
assert(get_next_states(7)(1) === 6.U(plru.nBits.W), s"get_next_state state=7 way=5: expected=6 actual=%d", get_next_states(7)(1))
assert(get_next_states(7)(2) === 3.U(plru.nBits.W), s"get_next_state state=7 way=2: expected=3 actual=%d", get_next_states(7)(2))
assert(get_next_states(7)(3) === 1.U(plru.nBits.W), s"get_next_state state=7 way=3: expected=1 actual=%d", get_next_states(7)(3))
}
case 5 => {
assert(get_replace_ways( 0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=00: expected=0 actual=%d", get_replace_ways( 0))
assert(get_replace_ways( 1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=01: expected=1 actual=%d", get_replace_ways( 1))
assert(get_replace_ways( 2) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=02: expected=0 actual=%d", get_replace_ways( 2))
assert(get_replace_ways( 3) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=03: expected=1 actual=%d", get_replace_ways( 3))
assert(get_replace_ways( 4) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=04: expected=2 actual=%d", get_replace_ways( 4))
assert(get_replace_ways( 5) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=05: expected=2 actual=%d", get_replace_ways( 5))
assert(get_replace_ways( 6) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=06: expected=3 actual=%d", get_replace_ways( 6))
assert(get_replace_ways( 7) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=07: expected=3 actual=%d", get_replace_ways( 7))
assert(get_replace_ways( 8) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=08: expected=4 actual=%d", get_replace_ways( 8))
assert(get_replace_ways( 9) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=09: expected=4 actual=%d", get_replace_ways( 9))
assert(get_replace_ways(10) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=10: expected=4 actual=%d", get_replace_ways(10))
assert(get_replace_ways(11) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=11: expected=4 actual=%d", get_replace_ways(11))
assert(get_replace_ways(12) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=12: expected=4 actual=%d", get_replace_ways(12))
assert(get_replace_ways(13) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=13: expected=4 actual=%d", get_replace_ways(13))
assert(get_replace_ways(14) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=14: expected=4 actual=%d", get_replace_ways(14))
assert(get_replace_ways(15) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=15: expected=4 actual=%d", get_replace_ways(15))
assert(get_next_states( 0)(0) === 13.U(plru.nBits.W), s"get_next_state state=00 way=0: expected=13 actual=%d", get_next_states( 0)(0))
assert(get_next_states( 0)(1) === 12.U(plru.nBits.W), s"get_next_state state=00 way=1: expected=12 actual=%d", get_next_states( 0)(1))
assert(get_next_states( 0)(2) === 10.U(plru.nBits.W), s"get_next_state state=00 way=2: expected=10 actual=%d", get_next_states( 0)(2))
assert(get_next_states( 0)(3) === 8.U(plru.nBits.W), s"get_next_state state=00 way=3: expected=08 actual=%d", get_next_states( 0)(3))
assert(get_next_states( 0)(4) === 0.U(plru.nBits.W), s"get_next_state state=00 way=4: expected=00 actual=%d", get_next_states( 0)(4))
assert(get_next_states( 1)(0) === 13.U(plru.nBits.W), s"get_next_state state=01 way=0: expected=13 actual=%d", get_next_states( 1)(0))
assert(get_next_states( 1)(1) === 12.U(plru.nBits.W), s"get_next_state state=01 way=1: expected=12 actual=%d", get_next_states( 1)(1))
assert(get_next_states( 1)(2) === 11.U(plru.nBits.W), s"get_next_state state=01 way=2: expected=11 actual=%d", get_next_states( 1)(2))
assert(get_next_states( 1)(3) === 9.U(plru.nBits.W), s"get_next_state state=01 way=3: expected=09 actual=%d", get_next_states( 1)(3))
assert(get_next_states( 1)(4) === 1.U(plru.nBits.W), s"get_next_state state=01 way=4: expected=01 actual=%d", get_next_states( 1)(4))
assert(get_next_states( 2)(0) === 15.U(plru.nBits.W), s"get_next_state state=02 way=0: expected=15 actual=%d", get_next_states( 2)(0))
assert(get_next_states( 2)(1) === 14.U(plru.nBits.W), s"get_next_state state=02 way=1: expected=14 actual=%d", get_next_states( 2)(1))
assert(get_next_states( 2)(2) === 10.U(plru.nBits.W), s"get_next_state state=02 way=2: expected=10 actual=%d", get_next_states( 2)(2))
assert(get_next_states( 2)(3) === 8.U(plru.nBits.W), s"get_next_state state=02 way=3: expected=08 actual=%d", get_next_states( 2)(3))
assert(get_next_states( 2)(4) === 2.U(plru.nBits.W), s"get_next_state state=02 way=4: expected=02 actual=%d", get_next_states( 2)(4))
assert(get_next_states( 3)(0) === 15.U(plru.nBits.W), s"get_next_state state=03 way=0: expected=15 actual=%d", get_next_states( 3)(0))
assert(get_next_states( 3)(1) === 14.U(plru.nBits.W), s"get_next_state state=03 way=1: expected=14 actual=%d", get_next_states( 3)(1))
assert(get_next_states( 3)(2) === 11.U(plru.nBits.W), s"get_next_state state=03 way=2: expected=11 actual=%d", get_next_states( 3)(2))
assert(get_next_states( 3)(3) === 9.U(plru.nBits.W), s"get_next_state state=03 way=3: expected=09 actual=%d", get_next_states( 3)(3))
assert(get_next_states( 3)(4) === 3.U(plru.nBits.W), s"get_next_state state=03 way=4: expected=03 actual=%d", get_next_states( 3)(4))
assert(get_next_states( 4)(0) === 13.U(plru.nBits.W), s"get_next_state state=04 way=0: expected=13 actual=%d", get_next_states( 4)(0))
assert(get_next_states( 4)(1) === 12.U(plru.nBits.W), s"get_next_state state=04 way=1: expected=12 actual=%d", get_next_states( 4)(1))
assert(get_next_states( 4)(2) === 10.U(plru.nBits.W), s"get_next_state state=04 way=2: expected=10 actual=%d", get_next_states( 4)(2))
assert(get_next_states( 4)(3) === 8.U(plru.nBits.W), s"get_next_state state=04 way=3: expected=08 actual=%d", get_next_states( 4)(3))
assert(get_next_states( 4)(4) === 4.U(plru.nBits.W), s"get_next_state state=04 way=4: expected=04 actual=%d", get_next_states( 4)(4))
assert(get_next_states( 5)(0) === 13.U(plru.nBits.W), s"get_next_state state=05 way=0: expected=13 actual=%d", get_next_states( 5)(0))
assert(get_next_states( 5)(1) === 12.U(plru.nBits.W), s"get_next_state state=05 way=1: expected=12 actual=%d", get_next_states( 5)(1))
assert(get_next_states( 5)(2) === 11.U(plru.nBits.W), s"get_next_state state=05 way=2: expected=11 actual=%d", get_next_states( 5)(2))
assert(get_next_states( 5)(3) === 9.U(plru.nBits.W), s"get_next_state state=05 way=3: expected=09 actual=%d", get_next_states( 5)(3))
assert(get_next_states( 5)(4) === 5.U(plru.nBits.W), s"get_next_state state=05 way=4: expected=05 actual=%d", get_next_states( 5)(4))
assert(get_next_states( 6)(0) === 15.U(plru.nBits.W), s"get_next_state state=06 way=0: expected=15 actual=%d", get_next_states( 6)(0))
assert(get_next_states( 6)(1) === 14.U(plru.nBits.W), s"get_next_state state=06 way=1: expected=14 actual=%d", get_next_states( 6)(1))
assert(get_next_states( 6)(2) === 10.U(plru.nBits.W), s"get_next_state state=06 way=2: expected=10 actual=%d", get_next_states( 6)(2))
assert(get_next_states( 6)(3) === 8.U(plru.nBits.W), s"get_next_state state=06 way=3: expected=08 actual=%d", get_next_states( 6)(3))
assert(get_next_states( 6)(4) === 6.U(plru.nBits.W), s"get_next_state state=06 way=4: expected=06 actual=%d", get_next_states( 6)(4))
assert(get_next_states( 7)(0) === 15.U(plru.nBits.W), s"get_next_state state=07 way=0: expected=15 actual=%d", get_next_states( 7)(0))
assert(get_next_states( 7)(1) === 14.U(plru.nBits.W), s"get_next_state state=07 way=5: expected=14 actual=%d", get_next_states( 7)(1))
assert(get_next_states( 7)(2) === 11.U(plru.nBits.W), s"get_next_state state=07 way=2: expected=11 actual=%d", get_next_states( 7)(2))
assert(get_next_states( 7)(3) === 9.U(plru.nBits.W), s"get_next_state state=07 way=3: expected=09 actual=%d", get_next_states( 7)(3))
assert(get_next_states( 7)(4) === 7.U(plru.nBits.W), s"get_next_state state=07 way=4: expected=07 actual=%d", get_next_states( 7)(4))
assert(get_next_states( 8)(0) === 13.U(plru.nBits.W), s"get_next_state state=08 way=0: expected=13 actual=%d", get_next_states( 8)(0))
assert(get_next_states( 8)(1) === 12.U(plru.nBits.W), s"get_next_state state=08 way=1: expected=12 actual=%d", get_next_states( 8)(1))
assert(get_next_states( 8)(2) === 10.U(plru.nBits.W), s"get_next_state state=08 way=2: expected=10 actual=%d", get_next_states( 8)(2))
assert(get_next_states( 8)(3) === 8.U(plru.nBits.W), s"get_next_state state=08 way=3: expected=08 actual=%d", get_next_states( 8)(3))
assert(get_next_states( 8)(4) === 0.U(plru.nBits.W), s"get_next_state state=08 way=4: expected=00 actual=%d", get_next_states( 8)(4))
assert(get_next_states( 9)(0) === 13.U(plru.nBits.W), s"get_next_state state=09 way=0: expected=13 actual=%d", get_next_states( 9)(0))
assert(get_next_states( 9)(1) === 12.U(plru.nBits.W), s"get_next_state state=09 way=1: expected=12 actual=%d", get_next_states( 9)(1))
assert(get_next_states( 9)(2) === 11.U(plru.nBits.W), s"get_next_state state=09 way=2: expected=11 actual=%d", get_next_states( 9)(2))
assert(get_next_states( 9)(3) === 9.U(plru.nBits.W), s"get_next_state state=09 way=3: expected=09 actual=%d", get_next_states( 9)(3))
assert(get_next_states( 9)(4) === 1.U(plru.nBits.W), s"get_next_state state=09 way=4: expected=01 actual=%d", get_next_states( 9)(4))
assert(get_next_states(10)(0) === 15.U(plru.nBits.W), s"get_next_state state=10 way=0: expected=15 actual=%d", get_next_states(10)(0))
assert(get_next_states(10)(1) === 14.U(plru.nBits.W), s"get_next_state state=10 way=1: expected=14 actual=%d", get_next_states(10)(1))
assert(get_next_states(10)(2) === 10.U(plru.nBits.W), s"get_next_state state=10 way=2: expected=10 actual=%d", get_next_states(10)(2))
assert(get_next_states(10)(3) === 8.U(plru.nBits.W), s"get_next_state state=10 way=3: expected=08 actual=%d", get_next_states(10)(3))
assert(get_next_states(10)(4) === 2.U(plru.nBits.W), s"get_next_state state=10 way=4: expected=02 actual=%d", get_next_states(10)(4))
assert(get_next_states(11)(0) === 15.U(plru.nBits.W), s"get_next_state state=11 way=0: expected=15 actual=%d", get_next_states(11)(0))
assert(get_next_states(11)(1) === 14.U(plru.nBits.W), s"get_next_state state=11 way=1: expected=14 actual=%d", get_next_states(11)(1))
assert(get_next_states(11)(2) === 11.U(plru.nBits.W), s"get_next_state state=11 way=2: expected=11 actual=%d", get_next_states(11)(2))
assert(get_next_states(11)(3) === 9.U(plru.nBits.W), s"get_next_state state=11 way=3: expected=09 actual=%d", get_next_states(11)(3))
assert(get_next_states(11)(4) === 3.U(plru.nBits.W), s"get_next_state state=11 way=4: expected=03 actual=%d", get_next_states(11)(4))
assert(get_next_states(12)(0) === 13.U(plru.nBits.W), s"get_next_state state=12 way=0: expected=13 actual=%d", get_next_states(12)(0))
assert(get_next_states(12)(1) === 12.U(plru.nBits.W), s"get_next_state state=12 way=1: expected=12 actual=%d", get_next_states(12)(1))
assert(get_next_states(12)(2) === 10.U(plru.nBits.W), s"get_next_state state=12 way=2: expected=10 actual=%d", get_next_states(12)(2))
assert(get_next_states(12)(3) === 8.U(plru.nBits.W), s"get_next_state state=12 way=3: expected=08 actual=%d", get_next_states(12)(3))
assert(get_next_states(12)(4) === 4.U(plru.nBits.W), s"get_next_state state=12 way=4: expected=04 actual=%d", get_next_states(12)(4))
assert(get_next_states(13)(0) === 13.U(plru.nBits.W), s"get_next_state state=13 way=0: expected=13 actual=%d", get_next_states(13)(0))
assert(get_next_states(13)(1) === 12.U(plru.nBits.W), s"get_next_state state=13 way=1: expected=12 actual=%d", get_next_states(13)(1))
assert(get_next_states(13)(2) === 11.U(plru.nBits.W), s"get_next_state state=13 way=2: expected=11 actual=%d", get_next_states(13)(2))
assert(get_next_states(13)(3) === 9.U(plru.nBits.W), s"get_next_state state=13 way=3: expected=09 actual=%d", get_next_states(13)(3))
assert(get_next_states(13)(4) === 5.U(plru.nBits.W), s"get_next_state state=13 way=4: expected=05 actual=%d", get_next_states(13)(4))
assert(get_next_states(14)(0) === 15.U(plru.nBits.W), s"get_next_state state=14 way=0: expected=15 actual=%d", get_next_states(14)(0))
assert(get_next_states(14)(1) === 14.U(plru.nBits.W), s"get_next_state state=14 way=1: expected=14 actual=%d", get_next_states(14)(1))
assert(get_next_states(14)(2) === 10.U(plru.nBits.W), s"get_next_state state=14 way=2: expected=10 actual=%d", get_next_states(14)(2))
assert(get_next_states(14)(3) === 8.U(plru.nBits.W), s"get_next_state state=14 way=3: expected=08 actual=%d", get_next_states(14)(3))
assert(get_next_states(14)(4) === 6.U(plru.nBits.W), s"get_next_state state=14 way=4: expected=06 actual=%d", get_next_states(14)(4))
assert(get_next_states(15)(0) === 15.U(plru.nBits.W), s"get_next_state state=15 way=0: expected=15 actual=%d", get_next_states(15)(0))
assert(get_next_states(15)(1) === 14.U(plru.nBits.W), s"get_next_state state=15 way=5: expected=14 actual=%d", get_next_states(15)(1))
assert(get_next_states(15)(2) === 11.U(plru.nBits.W), s"get_next_state state=15 way=2: expected=11 actual=%d", get_next_states(15)(2))
assert(get_next_states(15)(3) === 9.U(plru.nBits.W), s"get_next_state state=15 way=3: expected=09 actual=%d", get_next_states(15)(3))
assert(get_next_states(15)(4) === 7.U(plru.nBits.W), s"get_next_state state=15 way=4: expected=07 actual=%d", get_next_states(15)(4))
}
case 6 => {
assert(get_replace_ways( 0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=00: expected=0 actual=%d", get_replace_ways( 0))
assert(get_replace_ways( 1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=01: expected=1 actual=%d", get_replace_ways( 1))
assert(get_replace_ways( 2) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=02: expected=0 actual=%d", get_replace_ways( 2))
assert(get_replace_ways( 3) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=03: expected=1 actual=%d", get_replace_ways( 3))
assert(get_replace_ways( 4) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=04: expected=2 actual=%d", get_replace_ways( 4))
assert(get_replace_ways( 5) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=05: expected=2 actual=%d", get_replace_ways( 5))
assert(get_replace_ways( 6) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=06: expected=3 actual=%d", get_replace_ways( 6))
assert(get_replace_ways( 7) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=07: expected=3 actual=%d", get_replace_ways( 7))
assert(get_replace_ways( 8) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=08: expected=0 actual=%d", get_replace_ways( 8))
assert(get_replace_ways( 9) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=09: expected=1 actual=%d", get_replace_ways( 9))
assert(get_replace_ways(10) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=10: expected=0 actual=%d", get_replace_ways(10))
assert(get_replace_ways(11) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=11: expected=1 actual=%d", get_replace_ways(11))
assert(get_replace_ways(12) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=12: expected=2 actual=%d", get_replace_ways(12))
assert(get_replace_ways(13) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=13: expected=2 actual=%d", get_replace_ways(13))
assert(get_replace_ways(14) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=14: expected=3 actual=%d", get_replace_ways(14))
assert(get_replace_ways(15) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=15: expected=3 actual=%d", get_replace_ways(15))
assert(get_replace_ways(16) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=16: expected=4 actual=%d", get_replace_ways(16))
assert(get_replace_ways(17) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=17: expected=4 actual=%d", get_replace_ways(17))
assert(get_replace_ways(18) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=18: expected=4 actual=%d", get_replace_ways(18))
assert(get_replace_ways(19) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=19: expected=4 actual=%d", get_replace_ways(19))
assert(get_replace_ways(20) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=20: expected=4 actual=%d", get_replace_ways(20))
assert(get_replace_ways(21) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=21: expected=4 actual=%d", get_replace_ways(21))
assert(get_replace_ways(22) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=22: expected=4 actual=%d", get_replace_ways(22))
assert(get_replace_ways(23) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=23: expected=4 actual=%d", get_replace_ways(23))
assert(get_replace_ways(24) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=24: expected=5 actual=%d", get_replace_ways(24))
assert(get_replace_ways(25) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=25: expected=5 actual=%d", get_replace_ways(25))
assert(get_replace_ways(26) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=26: expected=5 actual=%d", get_replace_ways(26))
assert(get_replace_ways(27) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=27: expected=5 actual=%d", get_replace_ways(27))
assert(get_replace_ways(28) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=28: expected=5 actual=%d", get_replace_ways(28))
assert(get_replace_ways(29) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=29: expected=5 actual=%d", get_replace_ways(29))
assert(get_replace_ways(30) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=30: expected=5 actual=%d", get_replace_ways(30))
assert(get_replace_ways(31) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=31: expected=5 actual=%d", get_replace_ways(31))
}
case _ => throw new IllegalArgumentException(s"no test pattern found for n_ways=$n_ways")
}
}
File Consts.scala:
// See LICENSE.Berkeley for license details.
package freechips.rocketchip.rocket.constants
import chisel3._
import chisel3.util._
import freechips.rocketchip.util._
trait ScalarOpConstants {
val SZ_BR = 3
def BR_X = BitPat("b???")
def BR_EQ = 0.U(3.W)
def BR_NE = 1.U(3.W)
def BR_J = 2.U(3.W)
def BR_N = 3.U(3.W)
def BR_LT = 4.U(3.W)
def BR_GE = 5.U(3.W)
def BR_LTU = 6.U(3.W)
def BR_GEU = 7.U(3.W)
def A1_X = BitPat("b??")
def A1_ZERO = 0.U(2.W)
def A1_RS1 = 1.U(2.W)
def A1_PC = 2.U(2.W)
def A1_RS1SHL = 3.U(2.W)
def IMM_X = BitPat("b???")
def IMM_S = 0.U(3.W)
def IMM_SB = 1.U(3.W)
def IMM_U = 2.U(3.W)
def IMM_UJ = 3.U(3.W)
def IMM_I = 4.U(3.W)
def IMM_Z = 5.U(3.W)
def A2_X = BitPat("b???")
def A2_ZERO = 0.U(3.W)
def A2_SIZE = 1.U(3.W)
def A2_RS2 = 2.U(3.W)
def A2_IMM = 3.U(3.W)
def A2_RS2OH = 4.U(3.W)
def A2_IMMOH = 5.U(3.W)
def X = BitPat("b?")
def N = BitPat("b0")
def Y = BitPat("b1")
val SZ_DW = 1
def DW_X = X
def DW_32 = false.B
def DW_64 = true.B
def DW_XPR = DW_64
}
trait MemoryOpConstants {
val NUM_XA_OPS = 9
val M_SZ = 5
def M_X = BitPat("b?????");
def M_XRD = "b00000".U; // int load
def M_XWR = "b00001".U; // int store
def M_PFR = "b00010".U; // prefetch with intent to read
def M_PFW = "b00011".U; // prefetch with intent to write
def M_XA_SWAP = "b00100".U
def M_FLUSH_ALL = "b00101".U // flush all lines
def M_XLR = "b00110".U
def M_XSC = "b00111".U
def M_XA_ADD = "b01000".U
def M_XA_XOR = "b01001".U
def M_XA_OR = "b01010".U
def M_XA_AND = "b01011".U
def M_XA_MIN = "b01100".U
def M_XA_MAX = "b01101".U
def M_XA_MINU = "b01110".U
def M_XA_MAXU = "b01111".U
def M_FLUSH = "b10000".U // write back dirty data and cede R/W permissions
def M_PWR = "b10001".U // partial (masked) store
def M_PRODUCE = "b10010".U // write back dirty data and cede W permissions
def M_CLEAN = "b10011".U // write back dirty data and retain R/W permissions
def M_SFENCE = "b10100".U // SFENCE.VMA
def M_HFENCEV = "b10101".U // HFENCE.VVMA
def M_HFENCEG = "b10110".U // HFENCE.GVMA
def M_WOK = "b10111".U // check write permissions but don't perform a write
def M_HLVX = "b10000".U // HLVX instruction
def isAMOLogical(cmd: UInt) = cmd.isOneOf(M_XA_SWAP, M_XA_XOR, M_XA_OR, M_XA_AND)
def isAMOArithmetic(cmd: UInt) = cmd.isOneOf(M_XA_ADD, M_XA_MIN, M_XA_MAX, M_XA_MINU, M_XA_MAXU)
def isAMO(cmd: UInt) = isAMOLogical(cmd) || isAMOArithmetic(cmd)
def isPrefetch(cmd: UInt) = cmd === M_PFR || cmd === M_PFW
def isRead(cmd: UInt) = cmd.isOneOf(M_XRD, M_HLVX, M_XLR, M_XSC) || isAMO(cmd)
def isWrite(cmd: UInt) = cmd === M_XWR || cmd === M_PWR || cmd === M_XSC || isAMO(cmd)
def isWriteIntent(cmd: UInt) = isWrite(cmd) || cmd === M_PFW || cmd === M_XLR
}
File TLB.scala:
// See LICENSE.SiFive for license details.
// See LICENSE.Berkeley for license details.
package freechips.rocketchip.rocket
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import freechips.rocketchip.devices.debug.DebugModuleKey
import freechips.rocketchip.diplomacy.RegionType
import freechips.rocketchip.subsystem.CacheBlockBytes
import freechips.rocketchip.tile.{CoreModule, CoreBundle}
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util.{OptimizationBarrier, SetAssocLRU, PseudoLRU, PopCountAtLeast, property}
import freechips.rocketchip.util.BooleanToAugmentedBoolean
import freechips.rocketchip.util.IntToAugmentedInt
import freechips.rocketchip.util.UIntToAugmentedUInt
import freechips.rocketchip.util.UIntIsOneOf
import freechips.rocketchip.util.SeqToAugmentedSeq
import freechips.rocketchip.util.SeqBoolBitwiseOps
case object ASIdBits extends Field[Int](0)
case object VMIdBits extends Field[Int](0)
/** =SFENCE=
* rs1 rs2
* {{{
* 0 0 -> flush All
* 0 1 -> flush by ASID
* 1 1 -> flush by ADDR
* 1 0 -> flush by ADDR and ASID
* }}}
* {{{
* If rs1=x0 and rs2=x0, the fence orders all reads and writes made to any level of the page tables, for all address spaces.
* If rs1=x0 and rs2!=x0, the fence orders all reads and writes made to any level of the page tables, but only for the address space identified by integer register rs2. Accesses to global mappings (see Section 4.3.1) are not ordered.
* If rs1!=x0 and rs2=x0, the fence orders only reads and writes made to the leaf page table entry corresponding to the virtual address in rs1, for all address spaces.
* If rs1!=x0 and rs2!=x0, the fence orders only reads and writes made to the leaf page table entry corresponding to the virtual address in rs1, for the address space identified by integer register rs2. Accesses to global mappings are not ordered.
* }}}
*/
class SFenceReq(implicit p: Parameters) extends CoreBundle()(p) {
val rs1 = Bool()
val rs2 = Bool()
val addr = UInt(vaddrBits.W)
val asid = UInt((asIdBits max 1).W) // TODO zero-width
val hv = Bool()
val hg = Bool()
}
class TLBReq(lgMaxSize: Int)(implicit p: Parameters) extends CoreBundle()(p) {
/** request address from CPU. */
val vaddr = UInt(vaddrBitsExtended.W)
/** don't lookup TLB, bypass vaddr as paddr */
val passthrough = Bool()
/** granularity */
val size = UInt(log2Ceil(lgMaxSize + 1).W)
/** memory command. */
val cmd = Bits(M_SZ.W)
val prv = UInt(PRV.SZ.W)
/** virtualization mode */
val v = Bool()
}
class TLBExceptions extends Bundle {
val ld = Bool()
val st = Bool()
val inst = Bool()
}
class TLBResp(lgMaxSize: Int = 3)(implicit p: Parameters) extends CoreBundle()(p) {
// lookup responses
val miss = Bool()
/** physical address */
val paddr = UInt(paddrBits.W)
val gpa = UInt(vaddrBitsExtended.W)
val gpa_is_pte = Bool()
/** page fault exception */
val pf = new TLBExceptions
/** guest page fault exception */
val gf = new TLBExceptions
/** access exception */
val ae = new TLBExceptions
/** misaligned access exception */
val ma = new TLBExceptions
/** if this address is cacheable */
val cacheable = Bool()
/** if caches must allocate this address */
val must_alloc = Bool()
/** if this address is prefetchable for caches*/
val prefetchable = Bool()
/** size/cmd of request that generated this response*/
val size = UInt(log2Ceil(lgMaxSize + 1).W)
val cmd = UInt(M_SZ.W)
}
class TLBEntryData(implicit p: Parameters) extends CoreBundle()(p) {
val ppn = UInt(ppnBits.W)
/** pte.u user */
val u = Bool()
/** pte.g global */
val g = Bool()
/** access exception.
* D$ -> PTW -> TLB AE
* Alignment failed.
*/
val ae_ptw = Bool()
val ae_final = Bool()
val ae_stage2 = Bool()
/** page fault */
val pf = Bool()
/** guest page fault */
val gf = Bool()
/** supervisor write */
val sw = Bool()
/** supervisor execute */
val sx = Bool()
/** supervisor read */
val sr = Bool()
/** hypervisor write */
val hw = Bool()
/** hypervisor excute */
val hx = Bool()
/** hypervisor read */
val hr = Bool()
/** prot_w */
val pw = Bool()
/** prot_x */
val px = Bool()
/** prot_r */
val pr = Bool()
/** PutPartial */
val ppp = Bool()
/** AMO logical */
val pal = Bool()
/** AMO arithmetic */
val paa = Bool()
/** get/put effects */
val eff = Bool()
/** cacheable */
val c = Bool()
/** fragmented_superpage support */
val fragmented_superpage = Bool()
}
/** basic cell for TLB data */
class TLBEntry(val nSectors: Int, val superpage: Boolean, val superpageOnly: Boolean)(implicit p: Parameters) extends CoreBundle()(p) {
require(nSectors == 1 || !superpage)
require(!superpageOnly || superpage)
val level = UInt(log2Ceil(pgLevels).W)
/** use vpn as tag */
val tag_vpn = UInt(vpnBits.W)
/** tag in vitualization mode */
val tag_v = Bool()
/** entry data */
val data = Vec(nSectors, UInt(new TLBEntryData().getWidth.W))
/** valid bit */
val valid = Vec(nSectors, Bool())
/** returns all entry data in this entry */
def entry_data = data.map(_.asTypeOf(new TLBEntryData))
/** returns the index of sector */
private def sectorIdx(vpn: UInt) = vpn.extract(nSectors.log2-1, 0)
/** returns the entry data matched with this vpn*/
def getData(vpn: UInt) = OptimizationBarrier(data(sectorIdx(vpn)).asTypeOf(new TLBEntryData))
/** returns whether a sector hits */
def sectorHit(vpn: UInt, virtual: Bool) = valid.orR && sectorTagMatch(vpn, virtual)
/** returns whether tag matches vpn */
def sectorTagMatch(vpn: UInt, virtual: Bool) = (((tag_vpn ^ vpn) >> nSectors.log2) === 0.U) && (tag_v === virtual)
/** returns hit signal */
def hit(vpn: UInt, virtual: Bool): Bool = {
if (superpage && usingVM) {
var tagMatch = valid.head && (tag_v === virtual)
for (j <- 0 until pgLevels) {
val base = (pgLevels - 1 - j) * pgLevelBits
val n = pgLevelBits + (if (j == 0) hypervisorExtraAddrBits else 0)
val ignore = level < j.U || (superpageOnly && j == pgLevels - 1).B
tagMatch = tagMatch && (ignore || (tag_vpn ^ vpn)(base + n - 1, base) === 0.U)
}
tagMatch
} else {
val idx = sectorIdx(vpn)
valid(idx) && sectorTagMatch(vpn, virtual)
}
}
/** returns the ppn of the input TLBEntryData */
def ppn(vpn: UInt, data: TLBEntryData) = {
val supervisorVPNBits = pgLevels * pgLevelBits
if (superpage && usingVM) {
var res = data.ppn >> pgLevelBits*(pgLevels - 1)
for (j <- 1 until pgLevels) {
val ignore = level < j.U || (superpageOnly && j == pgLevels - 1).B
res = Cat(res, (Mux(ignore, vpn, 0.U) | data.ppn)(supervisorVPNBits - j*pgLevelBits - 1, supervisorVPNBits - (j + 1)*pgLevelBits))
}
res
} else {
data.ppn
}
}
/** does the refill
*
* find the target entry with vpn tag
* and replace the target entry with the input entry data
*/
def insert(vpn: UInt, virtual: Bool, level: UInt, entry: TLBEntryData): Unit = {
this.tag_vpn := vpn
this.tag_v := virtual
this.level := level.extract(log2Ceil(pgLevels - superpageOnly.toInt)-1, 0)
val idx = sectorIdx(vpn)
valid(idx) := true.B
data(idx) := entry.asUInt
}
def invalidate(): Unit = { valid.foreach(_ := false.B) }
def invalidate(virtual: Bool): Unit = {
for ((v, e) <- valid zip entry_data)
when (tag_v === virtual) { v := false.B }
}
def invalidateVPN(vpn: UInt, virtual: Bool): Unit = {
if (superpage) {
when (hit(vpn, virtual)) { invalidate() }
} else {
when (sectorTagMatch(vpn, virtual)) {
for (((v, e), i) <- (valid zip entry_data).zipWithIndex)
when (tag_v === virtual && i.U === sectorIdx(vpn)) { v := false.B }
}
}
// For fragmented superpage mappings, we assume the worst (largest)
// case, and zap entries whose most-significant VPNs match
when (((tag_vpn ^ vpn) >> (pgLevelBits * (pgLevels - 1))) === 0.U) {
for ((v, e) <- valid zip entry_data)
when (tag_v === virtual && e.fragmented_superpage) { v := false.B }
}
}
def invalidateNonGlobal(virtual: Bool): Unit = {
for ((v, e) <- valid zip entry_data)
when (tag_v === virtual && !e.g) { v := false.B }
}
}
/** TLB config
*
* @param nSets the number of sets of PTE, follow [[ICacheParams.nSets]]
* @param nWays the total number of wayss of PTE, follow [[ICacheParams.nWays]]
* @param nSectors the number of ways in a single PTE TLBEntry
* @param nSuperpageEntries the number of SuperpageEntries
*/
case class TLBConfig(
nSets: Int,
nWays: Int,
nSectors: Int = 4,
nSuperpageEntries: Int = 4)
/** =Overview=
* [[TLB]] is a TLB template which contains PMA logic and PMP checker.
*
* TLB caches PTE and accelerates the address translation process.
* When tlb miss happens, ask PTW(L2TLB) for Page Table Walk.
* Perform PMP and PMA check during the translation and throw exception if there were any.
*
* ==Cache Structure==
* - Sectored Entry (PTE)
* - set-associative or direct-mapped
* - nsets = [[TLBConfig.nSets]]
* - nways = [[TLBConfig.nWays]] / [[TLBConfig.nSectors]]
* - PTEEntry( sectors = [[TLBConfig.nSectors]] )
* - LRU(if set-associative)
*
* - Superpage Entry(superpage PTE)
* - fully associative
* - nsets = [[TLBConfig.nSuperpageEntries]]
* - PTEEntry(sectors = 1)
* - PseudoLRU
*
* - Special Entry(PTE across PMP)
* - nsets = 1
* - PTEEntry(sectors = 1)
*
* ==Address structure==
* {{{
* |vaddr |
* |ppn/vpn | pgIndex |
* | | |
* | |nSets |nSector | |}}}
*
* ==State Machine==
* {{{
* s_ready: ready to accept request from CPU.
* s_request: when L1TLB(this) miss, send request to PTW(L2TLB), .
* s_wait: wait for PTW to refill L1TLB.
* s_wait_invalidate: L1TLB is waiting for respond from PTW, but L1TLB will invalidate respond from PTW.}}}
*
* ==PMP==
* pmp check
* - special_entry: always check
* - other entry: check on refill
*
* ==Note==
* PMA consume diplomacy parameter generate physical memory address checking logic
*
* Boom use Rocket ITLB, and its own DTLB.
*
* Accelerators:{{{
* sha3: DTLB
* gemmini: DTLB
* hwacha: DTLB*2+ITLB}}}
* @param instruction true for ITLB, false for DTLB
* @param lgMaxSize @todo seems granularity
* @param cfg [[TLBConfig]]
* @param edge collect SoC metadata.
*/
class TLB(instruction: Boolean, lgMaxSize: Int, cfg: TLBConfig)(implicit edge: TLEdgeOut, p: Parameters) extends CoreModule()(p) {
override def desiredName = if (instruction) "ITLB" else "DTLB"
val io = IO(new Bundle {
/** request from Core */
val req = Flipped(Decoupled(new TLBReq(lgMaxSize)))
/** response to Core */
val resp = Output(new TLBResp(lgMaxSize))
/** SFence Input */
val sfence = Flipped(Valid(new SFenceReq))
/** IO to PTW */
val ptw = new TLBPTWIO
/** suppress a TLB refill, one cycle after a miss */
val kill = Input(Bool())
})
io.ptw.customCSRs := DontCare
val pageGranularityPMPs = pmpGranularity >= (1 << pgIdxBits)
val vpn = io.req.bits.vaddr(vaddrBits-1, pgIdxBits)
/** index for sectored_Entry */
val memIdx = vpn.extract(cfg.nSectors.log2 + cfg.nSets.log2 - 1, cfg.nSectors.log2)
/** TLB Entry */
val sectored_entries = Reg(Vec(cfg.nSets, Vec(cfg.nWays / cfg.nSectors, new TLBEntry(cfg.nSectors, false, false))))
/** Superpage Entry */
val superpage_entries = Reg(Vec(cfg.nSuperpageEntries, new TLBEntry(1, true, true)))
/** Special Entry
*
* If PMP granularity is less than page size, thus need additional "special" entry manage PMP.
*/
val special_entry = (!pageGranularityPMPs).option(Reg(new TLBEntry(1, true, false)))
def ordinary_entries = sectored_entries(memIdx) ++ superpage_entries
def all_entries = ordinary_entries ++ special_entry
def all_real_entries = sectored_entries.flatten ++ superpage_entries ++ special_entry
val s_ready :: s_request :: s_wait :: s_wait_invalidate :: Nil = Enum(4)
val state = RegInit(s_ready)
// use vpn as refill_tag
val r_refill_tag = Reg(UInt(vpnBits.W))
val r_superpage_repl_addr = Reg(UInt(log2Ceil(superpage_entries.size).W))
val r_sectored_repl_addr = Reg(UInt(log2Ceil(sectored_entries.head.size).W))
val r_sectored_hit = Reg(Valid(UInt(log2Ceil(sectored_entries.head.size).W)))
val r_superpage_hit = Reg(Valid(UInt(log2Ceil(superpage_entries.size).W)))
val r_vstage1_en = Reg(Bool())
val r_stage2_en = Reg(Bool())
val r_need_gpa = Reg(Bool())
val r_gpa_valid = Reg(Bool())
val r_gpa = Reg(UInt(vaddrBits.W))
val r_gpa_vpn = Reg(UInt(vpnBits.W))
val r_gpa_is_pte = Reg(Bool())
/** privilege mode */
val priv = io.req.bits.prv
val priv_v = usingHypervisor.B && io.req.bits.v
val priv_s = priv(0)
// user mode and supervisor mode
val priv_uses_vm = priv <= PRV.S.U
val satp = Mux(priv_v, io.ptw.vsatp, io.ptw.ptbr)
val stage1_en = usingVM.B && satp.mode(satp.mode.getWidth-1)
/** VS-stage translation enable */
val vstage1_en = usingHypervisor.B && priv_v && io.ptw.vsatp.mode(io.ptw.vsatp.mode.getWidth-1)
/** G-stage translation enable */
val stage2_en = usingHypervisor.B && priv_v && io.ptw.hgatp.mode(io.ptw.hgatp.mode.getWidth-1)
/** Enable Virtual Memory when:
* 1. statically configured
* 1. satp highest bits enabled
* i. RV32:
* - 0 -> Bare
* - 1 -> SV32
* i. RV64:
* - 0000 -> Bare
* - 1000 -> SV39
* - 1001 -> SV48
* - 1010 -> SV57
* - 1011 -> SV64
* 1. In virtualization mode, vsatp highest bits enabled
* 1. priv mode in U and S.
* 1. in H & M mode, disable VM.
* 1. no passthrough(micro-arch defined.)
*
* @see RV-priv spec 4.1.11 Supervisor Address Translation and Protection (satp) Register
* @see RV-priv spec 8.2.18 Virtual Supervisor Address Translation and Protection Register (vsatp)
*/
val vm_enabled = (stage1_en || stage2_en) && priv_uses_vm && !io.req.bits.passthrough
// flush guest entries on vsatp.MODE Bare <-> SvXX transitions
val v_entries_use_stage1 = RegInit(false.B)
val vsatp_mode_mismatch = priv_v && (vstage1_en =/= v_entries_use_stage1) && !io.req.bits.passthrough
// share a single physical memory attribute checker (unshare if critical path)
val refill_ppn = io.ptw.resp.bits.pte.ppn(ppnBits-1, 0)
/** refill signal */
val do_refill = usingVM.B && io.ptw.resp.valid
/** sfence invalidate refill */
val invalidate_refill = state.isOneOf(s_request /* don't care */, s_wait_invalidate) || io.sfence.valid
// PMP
val mpu_ppn = Mux(do_refill, refill_ppn,
Mux(vm_enabled && special_entry.nonEmpty.B, special_entry.map(e => e.ppn(vpn, e.getData(vpn))).getOrElse(0.U), io.req.bits.vaddr >> pgIdxBits))
val mpu_physaddr = Cat(mpu_ppn, io.req.bits.vaddr(pgIdxBits-1, 0))
val mpu_priv = Mux[UInt](usingVM.B && (do_refill || io.req.bits.passthrough /* PTW */), PRV.S.U, Cat(io.ptw.status.debug, priv))
val pmp = Module(new PMPChecker(lgMaxSize))
pmp.io.addr := mpu_physaddr
pmp.io.size := io.req.bits.size
pmp.io.pmp := (io.ptw.pmp: Seq[PMP])
pmp.io.prv := mpu_priv
val pma = Module(new PMAChecker(edge.manager)(p))
pma.io.paddr := mpu_physaddr
// todo: using DataScratchpad doesn't support cacheable.
val cacheable = pma.io.resp.cacheable && (instruction || !usingDataScratchpad).B
val homogeneous = TLBPageLookup(edge.manager.managers, xLen, p(CacheBlockBytes), BigInt(1) << pgIdxBits, 1 << lgMaxSize)(mpu_physaddr).homogeneous
// In M mode, if access DM address(debug module program buffer)
val deny_access_to_debug = mpu_priv <= PRV.M.U && p(DebugModuleKey).map(dmp => dmp.address.contains(mpu_physaddr)).getOrElse(false.B)
val prot_r = pma.io.resp.r && !deny_access_to_debug && pmp.io.r
val prot_w = pma.io.resp.w && !deny_access_to_debug && pmp.io.w
val prot_pp = pma.io.resp.pp
val prot_al = pma.io.resp.al
val prot_aa = pma.io.resp.aa
val prot_x = pma.io.resp.x && !deny_access_to_debug && pmp.io.x
val prot_eff = pma.io.resp.eff
// hit check
val sector_hits = sectored_entries(memIdx).map(_.sectorHit(vpn, priv_v))
val superpage_hits = superpage_entries.map(_.hit(vpn, priv_v))
val hitsVec = all_entries.map(vm_enabled && _.hit(vpn, priv_v))
val real_hits = hitsVec.asUInt
val hits = Cat(!vm_enabled, real_hits)
// use ptw response to refill
// permission bit arrays
when (do_refill) {
val pte = io.ptw.resp.bits.pte
val refill_v = r_vstage1_en || r_stage2_en
val newEntry = Wire(new TLBEntryData)
newEntry.ppn := pte.ppn
newEntry.c := cacheable
newEntry.u := pte.u
newEntry.g := pte.g && pte.v
newEntry.ae_ptw := io.ptw.resp.bits.ae_ptw
newEntry.ae_final := io.ptw.resp.bits.ae_final
newEntry.ae_stage2 := io.ptw.resp.bits.ae_final && io.ptw.resp.bits.gpa_is_pte && r_stage2_en
newEntry.pf := io.ptw.resp.bits.pf
newEntry.gf := io.ptw.resp.bits.gf
newEntry.hr := io.ptw.resp.bits.hr
newEntry.hw := io.ptw.resp.bits.hw
newEntry.hx := io.ptw.resp.bits.hx
newEntry.sr := pte.sr()
newEntry.sw := pte.sw()
newEntry.sx := pte.sx()
newEntry.pr := prot_r
newEntry.pw := prot_w
newEntry.px := prot_x
newEntry.ppp := prot_pp
newEntry.pal := prot_al
newEntry.paa := prot_aa
newEntry.eff := prot_eff
newEntry.fragmented_superpage := io.ptw.resp.bits.fragmented_superpage
// refill special_entry
when (special_entry.nonEmpty.B && !io.ptw.resp.bits.homogeneous) {
special_entry.foreach(_.insert(r_refill_tag, refill_v, io.ptw.resp.bits.level, newEntry))
}.elsewhen (io.ptw.resp.bits.level < (pgLevels-1).U) {
val waddr = Mux(r_superpage_hit.valid && usingHypervisor.B, r_superpage_hit.bits, r_superpage_repl_addr)
for ((e, i) <- superpage_entries.zipWithIndex) when (r_superpage_repl_addr === i.U) {
e.insert(r_refill_tag, refill_v, io.ptw.resp.bits.level, newEntry)
when (invalidate_refill) { e.invalidate() }
}
// refill sectored_hit
}.otherwise {
val r_memIdx = r_refill_tag.extract(cfg.nSectors.log2 + cfg.nSets.log2 - 1, cfg.nSectors.log2)
val waddr = Mux(r_sectored_hit.valid, r_sectored_hit.bits, r_sectored_repl_addr)
for ((e, i) <- sectored_entries(r_memIdx).zipWithIndex) when (waddr === i.U) {
when (!r_sectored_hit.valid) { e.invalidate() }
e.insert(r_refill_tag, refill_v, 0.U, newEntry)
when (invalidate_refill) { e.invalidate() }
}
}
r_gpa_valid := io.ptw.resp.bits.gpa.valid
r_gpa := io.ptw.resp.bits.gpa.bits
r_gpa_is_pte := io.ptw.resp.bits.gpa_is_pte
}
// get all entries data.
val entries = all_entries.map(_.getData(vpn))
val normal_entries = entries.take(ordinary_entries.size)
// parallel query PPN from [[all_entries]], if VM not enabled return VPN instead
val ppn = Mux1H(hitsVec :+ !vm_enabled, (all_entries zip entries).map{ case (entry, data) => entry.ppn(vpn, data) } :+ vpn(ppnBits-1, 0))
val nPhysicalEntries = 1 + special_entry.size
// generally PTW misaligned load exception.
val ptw_ae_array = Cat(false.B, entries.map(_.ae_ptw).asUInt)
val final_ae_array = Cat(false.B, entries.map(_.ae_final).asUInt)
val ptw_pf_array = Cat(false.B, entries.map(_.pf).asUInt)
val ptw_gf_array = Cat(false.B, entries.map(_.gf).asUInt)
val sum = Mux(priv_v, io.ptw.gstatus.sum, io.ptw.status.sum)
// if in hypervisor/machine mode, cannot read/write user entries.
// if in superviosr/user mode, "If the SUM bit in the sstatus register is set, supervisor mode software may also access pages with U=1.(from spec)"
val priv_rw_ok = Mux(!priv_s || sum, entries.map(_.u).asUInt, 0.U) | Mux(priv_s, ~entries.map(_.u).asUInt, 0.U)
// if in hypervisor/machine mode, other than user pages, all pages are executable.
// if in superviosr/user mode, only user page can execute.
val priv_x_ok = Mux(priv_s, ~entries.map(_.u).asUInt, entries.map(_.u).asUInt)
val stage1_bypass = Fill(entries.size, usingHypervisor.B) & (Fill(entries.size, !stage1_en) | entries.map(_.ae_stage2).asUInt)
val mxr = io.ptw.status.mxr | Mux(priv_v, io.ptw.gstatus.mxr, false.B)
// "The vsstatus field MXR, which makes execute-only pages readable, only overrides VS-stage page protection.(from spec)"
val r_array = Cat(true.B, (priv_rw_ok & (entries.map(_.sr).asUInt | Mux(mxr, entries.map(_.sx).asUInt, 0.U))) | stage1_bypass)
val w_array = Cat(true.B, (priv_rw_ok & entries.map(_.sw).asUInt) | stage1_bypass)
val x_array = Cat(true.B, (priv_x_ok & entries.map(_.sx).asUInt) | stage1_bypass)
val stage2_bypass = Fill(entries.size, !stage2_en)
val hr_array = Cat(true.B, entries.map(_.hr).asUInt | Mux(io.ptw.status.mxr, entries.map(_.hx).asUInt, 0.U) | stage2_bypass)
val hw_array = Cat(true.B, entries.map(_.hw).asUInt | stage2_bypass)
val hx_array = Cat(true.B, entries.map(_.hx).asUInt | stage2_bypass)
// These array is for each TLB entries.
// user mode can read: PMA OK, TLB OK, AE OK
val pr_array = Cat(Fill(nPhysicalEntries, prot_r), normal_entries.map(_.pr).asUInt) & ~(ptw_ae_array | final_ae_array)
// user mode can write: PMA OK, TLB OK, AE OK
val pw_array = Cat(Fill(nPhysicalEntries, prot_w), normal_entries.map(_.pw).asUInt) & ~(ptw_ae_array | final_ae_array)
// user mode can write: PMA OK, TLB OK, AE OK
val px_array = Cat(Fill(nPhysicalEntries, prot_x), normal_entries.map(_.px).asUInt) & ~(ptw_ae_array | final_ae_array)
// put effect
val eff_array = Cat(Fill(nPhysicalEntries, prot_eff), normal_entries.map(_.eff).asUInt)
// cacheable
val c_array = Cat(Fill(nPhysicalEntries, cacheable), normal_entries.map(_.c).asUInt)
// put partial
val ppp_array = Cat(Fill(nPhysicalEntries, prot_pp), normal_entries.map(_.ppp).asUInt)
// atomic arithmetic
val paa_array = Cat(Fill(nPhysicalEntries, prot_aa), normal_entries.map(_.paa).asUInt)
// atomic logic
val pal_array = Cat(Fill(nPhysicalEntries, prot_al), normal_entries.map(_.pal).asUInt)
val ppp_array_if_cached = ppp_array | c_array
val paa_array_if_cached = paa_array | (if(usingAtomicsInCache) c_array else 0.U)
val pal_array_if_cached = pal_array | (if(usingAtomicsInCache) c_array else 0.U)
val prefetchable_array = Cat((cacheable && homogeneous) << (nPhysicalEntries-1), normal_entries.map(_.c).asUInt)
// vaddr misaligned: vaddr[1:0]=b00
val misaligned = (io.req.bits.vaddr & (UIntToOH(io.req.bits.size) - 1.U)).orR
def badVA(guestPA: Boolean): Bool = {
val additionalPgLevels = (if (guestPA) io.ptw.hgatp else satp).additionalPgLevels
val extraBits = if (guestPA) hypervisorExtraAddrBits else 0
val signed = !guestPA
val nPgLevelChoices = pgLevels - minPgLevels + 1
val minVAddrBits = pgIdxBits + minPgLevels * pgLevelBits + extraBits
(for (i <- 0 until nPgLevelChoices) yield {
val mask = ((BigInt(1) << vaddrBitsExtended) - (BigInt(1) << (minVAddrBits + i * pgLevelBits - signed.toInt))).U
val maskedVAddr = io.req.bits.vaddr & mask
additionalPgLevels === i.U && !(maskedVAddr === 0.U || signed.B && maskedVAddr === mask)
}).orR
}
val bad_gpa =
if (!usingHypervisor) false.B
else vm_enabled && !stage1_en && badVA(true)
val bad_va =
if (!usingVM || (minPgLevels == pgLevels && vaddrBits == vaddrBitsExtended)) false.B
else vm_enabled && stage1_en && badVA(false)
val cmd_lrsc = usingAtomics.B && io.req.bits.cmd.isOneOf(M_XLR, M_XSC)
val cmd_amo_logical = usingAtomics.B && isAMOLogical(io.req.bits.cmd)
val cmd_amo_arithmetic = usingAtomics.B && isAMOArithmetic(io.req.bits.cmd)
val cmd_put_partial = io.req.bits.cmd === M_PWR
val cmd_read = isRead(io.req.bits.cmd)
val cmd_readx = usingHypervisor.B && io.req.bits.cmd === M_HLVX
val cmd_write = isWrite(io.req.bits.cmd)
val cmd_write_perms = cmd_write ||
io.req.bits.cmd.isOneOf(M_FLUSH_ALL, M_WOK) // not a write, but needs write permissions
val lrscAllowed = Mux((usingDataScratchpad || usingAtomicsOnlyForIO).B, 0.U, c_array)
val ae_array =
Mux(misaligned, eff_array, 0.U) |
Mux(cmd_lrsc, ~lrscAllowed, 0.U)
// access exception needs SoC information from PMA
val ae_ld_array = Mux(cmd_read, ae_array | ~pr_array, 0.U)
val ae_st_array =
Mux(cmd_write_perms, ae_array | ~pw_array, 0.U) |
Mux(cmd_put_partial, ~ppp_array_if_cached, 0.U) |
Mux(cmd_amo_logical, ~pal_array_if_cached, 0.U) |
Mux(cmd_amo_arithmetic, ~paa_array_if_cached, 0.U)
val must_alloc_array =
Mux(cmd_put_partial, ~ppp_array, 0.U) |
Mux(cmd_amo_logical, ~pal_array, 0.U) |
Mux(cmd_amo_arithmetic, ~paa_array, 0.U) |
Mux(cmd_lrsc, ~0.U(pal_array.getWidth.W), 0.U)
val pf_ld_array = Mux(cmd_read, ((~Mux(cmd_readx, x_array, r_array) & ~ptw_ae_array) | ptw_pf_array) & ~ptw_gf_array, 0.U)
val pf_st_array = Mux(cmd_write_perms, ((~w_array & ~ptw_ae_array) | ptw_pf_array) & ~ptw_gf_array, 0.U)
val pf_inst_array = ((~x_array & ~ptw_ae_array) | ptw_pf_array) & ~ptw_gf_array
val gf_ld_array = Mux(priv_v && cmd_read, (~Mux(cmd_readx, hx_array, hr_array) | ptw_gf_array) & ~ptw_ae_array, 0.U)
val gf_st_array = Mux(priv_v && cmd_write_perms, (~hw_array | ptw_gf_array) & ~ptw_ae_array, 0.U)
val gf_inst_array = Mux(priv_v, (~hx_array | ptw_gf_array) & ~ptw_ae_array, 0.U)
val gpa_hits = {
val need_gpa_mask = if (instruction) gf_inst_array else gf_ld_array | gf_st_array
val hit_mask = Fill(ordinary_entries.size, r_gpa_valid && r_gpa_vpn === vpn) | Fill(all_entries.size, !vstage1_en)
hit_mask | ~need_gpa_mask(all_entries.size-1, 0)
}
val tlb_hit_if_not_gpa_miss = real_hits.orR
val tlb_hit = (real_hits & gpa_hits).orR
// leads to s_request
val tlb_miss = vm_enabled && !vsatp_mode_mismatch && !bad_va && !tlb_hit
val sectored_plru = new SetAssocLRU(cfg.nSets, sectored_entries.head.size, "plru")
val superpage_plru = new PseudoLRU(superpage_entries.size)
when (io.req.valid && vm_enabled) {
// replace
when (sector_hits.orR) { sectored_plru.access(memIdx, OHToUInt(sector_hits)) }
when (superpage_hits.orR) { superpage_plru.access(OHToUInt(superpage_hits)) }
}
// Superpages create the possibility that two entries in the TLB may match.
// This corresponds to a software bug, but we can't return complete garbage;
// we must return either the old translation or the new translation. This
// isn't compatible with the Mux1H approach. So, flush the TLB and report
// a miss on duplicate entries.
val multipleHits = PopCountAtLeast(real_hits, 2)
// only pull up req.ready when this is s_ready state.
io.req.ready := state === s_ready
// page fault
io.resp.pf.ld := (bad_va && cmd_read) || (pf_ld_array & hits).orR
io.resp.pf.st := (bad_va && cmd_write_perms) || (pf_st_array & hits).orR
io.resp.pf.inst := bad_va || (pf_inst_array & hits).orR
// guest page fault
io.resp.gf.ld := (bad_gpa && cmd_read) || (gf_ld_array & hits).orR
io.resp.gf.st := (bad_gpa && cmd_write_perms) || (gf_st_array & hits).orR
io.resp.gf.inst := bad_gpa || (gf_inst_array & hits).orR
// access exception
io.resp.ae.ld := (ae_ld_array & hits).orR
io.resp.ae.st := (ae_st_array & hits).orR
io.resp.ae.inst := (~px_array & hits).orR
// misaligned
io.resp.ma.ld := misaligned && cmd_read
io.resp.ma.st := misaligned && cmd_write
io.resp.ma.inst := false.B // this is up to the pipeline to figure out
io.resp.cacheable := (c_array & hits).orR
io.resp.must_alloc := (must_alloc_array & hits).orR
io.resp.prefetchable := (prefetchable_array & hits).orR && edge.manager.managers.forall(m => !m.supportsAcquireB || m.supportsHint).B
io.resp.miss := do_refill || vsatp_mode_mismatch || tlb_miss || multipleHits
io.resp.paddr := Cat(ppn, io.req.bits.vaddr(pgIdxBits-1, 0))
io.resp.size := io.req.bits.size
io.resp.cmd := io.req.bits.cmd
io.resp.gpa_is_pte := vstage1_en && r_gpa_is_pte
io.resp.gpa := {
val page = Mux(!vstage1_en, Cat(bad_gpa, vpn), r_gpa >> pgIdxBits)
val offset = Mux(io.resp.gpa_is_pte, r_gpa(pgIdxBits-1, 0), io.req.bits.vaddr(pgIdxBits-1, 0))
Cat(page, offset)
}
io.ptw.req.valid := state === s_request
io.ptw.req.bits.valid := !io.kill
io.ptw.req.bits.bits.addr := r_refill_tag
io.ptw.req.bits.bits.vstage1 := r_vstage1_en
io.ptw.req.bits.bits.stage2 := r_stage2_en
io.ptw.req.bits.bits.need_gpa := r_need_gpa
if (usingVM) {
when(io.ptw.req.fire && io.ptw.req.bits.valid) {
r_gpa_valid := false.B
r_gpa_vpn := r_refill_tag
}
val sfence = io.sfence.valid
// this is [[s_ready]]
// handle miss/hit at the first cycle.
// if miss, request PTW(L2TLB).
when (io.req.fire && tlb_miss) {
state := s_request
r_refill_tag := vpn
r_need_gpa := tlb_hit_if_not_gpa_miss
r_vstage1_en := vstage1_en
r_stage2_en := stage2_en
r_superpage_repl_addr := replacementEntry(superpage_entries, superpage_plru.way)
r_sectored_repl_addr := replacementEntry(sectored_entries(memIdx), sectored_plru.way(memIdx))
r_sectored_hit.valid := sector_hits.orR
r_sectored_hit.bits := OHToUInt(sector_hits)
r_superpage_hit.valid := superpage_hits.orR
r_superpage_hit.bits := OHToUInt(superpage_hits)
}
// Handle SFENCE.VMA when send request to PTW.
// SFENCE.VMA io.ptw.req.ready kill
// ? ? 1
// 0 0 0
// 0 1 0 -> s_wait
// 1 0 0 -> s_wait_invalidate
// 1 0 0 -> s_ready
when (state === s_request) {
// SFENCE.VMA will kill TLB entries based on rs1 and rs2. It will take 1 cycle.
when (sfence) { state := s_ready }
// here should be io.ptw.req.fire, but assert(io.ptw.req.ready === true.B)
// fire -> s_wait
when (io.ptw.req.ready) { state := Mux(sfence, s_wait_invalidate, s_wait) }
// If CPU kills request(frontend.s2_redirect)
when (io.kill) { state := s_ready }
}
// sfence in refill will results in invalidate
when (state === s_wait && sfence) {
state := s_wait_invalidate
}
// after CPU acquire response, go back to s_ready.
when (io.ptw.resp.valid) {
state := s_ready
}
// SFENCE processing logic.
when (sfence) {
assert(!io.sfence.bits.rs1 || (io.sfence.bits.addr >> pgIdxBits) === vpn)
for (e <- all_real_entries) {
val hv = usingHypervisor.B && io.sfence.bits.hv
val hg = usingHypervisor.B && io.sfence.bits.hg
when (!hg && io.sfence.bits.rs1) { e.invalidateVPN(vpn, hv) }
.elsewhen (!hg && io.sfence.bits.rs2) { e.invalidateNonGlobal(hv) }
.otherwise { e.invalidate(hv || hg) }
}
}
when(io.req.fire && vsatp_mode_mismatch) {
all_real_entries.foreach(_.invalidate(true.B))
v_entries_use_stage1 := vstage1_en
}
when (multipleHits || reset.asBool) {
all_real_entries.foreach(_.invalidate())
}
ccover(io.ptw.req.fire, "MISS", "TLB miss")
ccover(io.ptw.req.valid && !io.ptw.req.ready, "PTW_STALL", "TLB miss, but PTW busy")
ccover(state === s_wait_invalidate, "SFENCE_DURING_REFILL", "flush TLB during TLB refill")
ccover(sfence && !io.sfence.bits.rs1 && !io.sfence.bits.rs2, "SFENCE_ALL", "flush TLB")
ccover(sfence && !io.sfence.bits.rs1 && io.sfence.bits.rs2, "SFENCE_ASID", "flush TLB ASID")
ccover(sfence && io.sfence.bits.rs1 && !io.sfence.bits.rs2, "SFENCE_LINE", "flush TLB line")
ccover(sfence && io.sfence.bits.rs1 && io.sfence.bits.rs2, "SFENCE_LINE_ASID", "flush TLB line/ASID")
ccover(multipleHits, "MULTIPLE_HITS", "Two matching translations in TLB")
}
def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) =
property.cover(cond, s"${if (instruction) "I" else "D"}TLB_$label", "MemorySystem;;" + desc)
/** Decides which entry to be replaced
*
* If there is a invalid entry, replace it with priorityencoder;
* if not, replace the alt entry
*
* @return mask for TLBEntry replacement
*/
def replacementEntry(set: Seq[TLBEntry], alt: UInt) = {
val valids = set.map(_.valid.orR).asUInt
Mux(valids.andR, alt, PriorityEncoder(~valids))
}
}
File TLBPermissions.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.rocket
import chisel3._
import chisel3.util._
import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes, RegionType, AddressDecoder}
import freechips.rocketchip.tilelink.TLManagerParameters
case class TLBPermissions(
homogeneous: Bool, // if false, the below are undefined
r: Bool, // readable
w: Bool, // writeable
x: Bool, // executable
c: Bool, // cacheable
a: Bool, // arithmetic ops
l: Bool) // logical ops
object TLBPageLookup
{
private case class TLBFixedPermissions(
e: Boolean, // get-/put-effects
r: Boolean, // readable
w: Boolean, // writeable
x: Boolean, // executable
c: Boolean, // cacheable
a: Boolean, // arithmetic ops
l: Boolean) { // logical ops
val useful = r || w || x || c || a || l
}
private def groupRegions(managers: Seq[TLManagerParameters]): Map[TLBFixedPermissions, Seq[AddressSet]] = {
val permissions = managers.map { m =>
(m.address, TLBFixedPermissions(
e = Seq(RegionType.PUT_EFFECTS, RegionType.GET_EFFECTS) contains m.regionType,
r = m.supportsGet || m.supportsAcquireB, // if cached, never uses Get
w = m.supportsPutFull || m.supportsAcquireT, // if cached, never uses Put
x = m.executable,
c = m.supportsAcquireB,
a = m.supportsArithmetic,
l = m.supportsLogical))
}
permissions
.filter(_._2.useful) // get rid of no-permission devices
.groupBy(_._2) // group by permission type
.mapValues(seq =>
AddressSet.unify(seq.flatMap(_._1))) // coalesce same-permission regions
.toMap
}
// Unmapped memory is considered to be inhomogeneous
def apply(managers: Seq[TLManagerParameters], xLen: Int, cacheBlockBytes: Int, pageSize: BigInt, maxRequestBytes: Int): UInt => TLBPermissions = {
require (isPow2(xLen) && xLen >= 8)
require (isPow2(cacheBlockBytes) && cacheBlockBytes >= xLen/8)
require (isPow2(pageSize) && pageSize >= cacheBlockBytes)
val xferSizes = TransferSizes(cacheBlockBytes, cacheBlockBytes)
val allSizes = TransferSizes(1, maxRequestBytes)
val amoSizes = TransferSizes(4, xLen/8)
val permissions = managers.foreach { m =>
require (!m.supportsGet || m.supportsGet .contains(allSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsGet} Get, but must support ${allSizes}")
require (!m.supportsPutFull || m.supportsPutFull .contains(allSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsPutFull} PutFull, but must support ${allSizes}")
require (!m.supportsPutPartial || m.supportsPutPartial.contains(allSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsPutPartial} PutPartial, but must support ${allSizes}")
require (!m.supportsAcquireB || m.supportsAcquireB .contains(xferSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsAcquireB} AcquireB, but must support ${xferSizes}")
require (!m.supportsAcquireT || m.supportsAcquireT .contains(xferSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsAcquireT} AcquireT, but must support ${xferSizes}")
require (!m.supportsLogical || m.supportsLogical .contains(amoSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsLogical} Logical, but must support ${amoSizes}")
require (!m.supportsArithmetic || m.supportsArithmetic.contains(amoSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsArithmetic} Arithmetic, but must support ${amoSizes}")
require (!(m.supportsAcquireB && m.supportsPutFull && !m.supportsAcquireT), s"Memory region '${m.name}' supports AcquireB (cached read) and PutFull (un-cached write) but not AcquireT (cached write)")
}
val grouped = groupRegions(managers)
.mapValues(_.filter(_.alignment >= pageSize)) // discard any region that's not big enough
def lowCostProperty(prop: TLBFixedPermissions => Boolean): UInt => Bool = {
val (yesm, nom) = grouped.partition { case (k, eq) => prop(k) }
val (yes, no) = (yesm.values.flatten.toList, nom.values.flatten.toList)
// Find the minimal bits needed to distinguish between yes and no
val decisionMask = AddressDecoder(Seq(yes, no))
def simplify(x: Seq[AddressSet]) = AddressSet.unify(x.map(_.widen(~decisionMask)).distinct)
val (yesf, nof) = (simplify(yes), simplify(no))
if (yesf.size < no.size) {
(x: UInt) => yesf.map(_.contains(x)).foldLeft(false.B)(_ || _)
} else {
(x: UInt) => !nof.map(_.contains(x)).foldLeft(false.B)(_ || _)
}
}
// Derive simplified property circuits (don't care when !homo)
val rfn = lowCostProperty(_.r)
val wfn = lowCostProperty(_.w)
val xfn = lowCostProperty(_.x)
val cfn = lowCostProperty(_.c)
val afn = lowCostProperty(_.a)
val lfn = lowCostProperty(_.l)
val homo = AddressSet.unify(grouped.values.flatten.toList)
(x: UInt) => TLBPermissions(
homogeneous = homo.map(_.contains(x)).foldLeft(false.B)(_ || _),
r = rfn(x),
w = wfn(x),
x = xfn(x),
c = cfn(x),
a = afn(x),
l = lfn(x))
}
// Are all pageSize intervals of mapped regions homogeneous?
def homogeneous(managers: Seq[TLManagerParameters], pageSize: BigInt): Boolean = {
groupRegions(managers).values.forall(_.forall(_.alignment >= pageSize))
}
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File PTW.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.rocket
import chisel3._
import chisel3.util.{Arbiter, Cat, Decoupled, Enum, Mux1H, OHToUInt, PopCount, PriorityEncoder, PriorityEncoderOH, RegEnable, UIntToOH, Valid, is, isPow2, log2Ceil, switch}
import chisel3.withClock
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.subsystem.CacheBlockBytes
import freechips.rocketchip.tile._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
import freechips.rocketchip.util.property
import scala.collection.mutable.ListBuffer
/** PTE request from TLB to PTW
*
* TLB send a PTE request to PTW when L1TLB miss
*/
class PTWReq(implicit p: Parameters) extends CoreBundle()(p) {
val addr = UInt(vpnBits.W)
val need_gpa = Bool()
val vstage1 = Bool()
val stage2 = Bool()
}
/** PTE info from L2TLB to TLB
*
* containing: target PTE, exceptions, two-satge tanslation info
*/
class PTWResp(implicit p: Parameters) extends CoreBundle()(p) {
/** ptw access exception */
val ae_ptw = Bool()
/** final access exception */
val ae_final = Bool()
/** page fault */
val pf = Bool()
/** guest page fault */
val gf = Bool()
/** hypervisor read */
val hr = Bool()
/** hypervisor write */
val hw = Bool()
/** hypervisor execute */
val hx = Bool()
/** PTE to refill L1TLB
*
* source: L2TLB
*/
val pte = new PTE
/** pte pglevel */
val level = UInt(log2Ceil(pgLevels).W)
/** fragmented_superpage support */
val fragmented_superpage = Bool()
/** homogeneous for both pma and pmp */
val homogeneous = Bool()
val gpa = Valid(UInt(vaddrBits.W))
val gpa_is_pte = Bool()
}
/** IO between TLB and PTW
*
* PTW receives :
* - PTE request
* - CSRs info
* - pmp results from PMP(in TLB)
*/
class TLBPTWIO(implicit p: Parameters) extends CoreBundle()(p)
with HasCoreParameters {
val req = Decoupled(Valid(new PTWReq))
val resp = Flipped(Valid(new PTWResp))
val ptbr = Input(new PTBR())
val hgatp = Input(new PTBR())
val vsatp = Input(new PTBR())
val status = Input(new MStatus())
val hstatus = Input(new HStatus())
val gstatus = Input(new MStatus())
val pmp = Input(Vec(nPMPs, new PMP))
val customCSRs = Flipped(coreParams.customCSRs)
}
/** PTW performance statistics */
class PTWPerfEvents extends Bundle {
val l2miss = Bool()
val l2hit = Bool()
val pte_miss = Bool()
val pte_hit = Bool()
}
/** Datapath IO between PTW and Core
*
* PTW receives CSRs info, pmp checks, sfence instruction info
*
* PTW sends its performance statistics to core
*/
class DatapathPTWIO(implicit p: Parameters) extends CoreBundle()(p)
with HasCoreParameters {
val ptbr = Input(new PTBR())
val hgatp = Input(new PTBR())
val vsatp = Input(new PTBR())
val sfence = Flipped(Valid(new SFenceReq))
val status = Input(new MStatus())
val hstatus = Input(new HStatus())
val gstatus = Input(new MStatus())
val pmp = Input(Vec(nPMPs, new PMP))
val perf = Output(new PTWPerfEvents())
val customCSRs = Flipped(coreParams.customCSRs)
/** enable clock generated by ptw */
val clock_enabled = Output(Bool())
}
/** PTE template for transmission
*
* contains useful methods to check PTE attributes
* @see RV-priv spec 4.3.1 for pgae table entry format
*/
class PTE(implicit p: Parameters) extends CoreBundle()(p) {
val reserved_for_future = UInt(10.W)
val ppn = UInt(44.W)
val reserved_for_software = Bits(2.W)
/** dirty bit */
val d = Bool()
/** access bit */
val a = Bool()
/** global mapping */
val g = Bool()
/** user mode accessible */
val u = Bool()
/** whether the page is executable */
val x = Bool()
/** whether the page is writable */
val w = Bool()
/** whether the page is readable */
val r = Bool()
/** valid bit */
val v = Bool()
/** return true if find a pointer to next level page table */
def table(dummy: Int = 0) = v && !r && !w && !x && !d && !a && !u && reserved_for_future === 0.U
/** return true if find a leaf PTE */
def leaf(dummy: Int = 0) = v && (r || (x && !w)) && a
/** user read */
def ur(dummy: Int = 0) = sr() && u
/** user write*/
def uw(dummy: Int = 0) = sw() && u
/** user execute */
def ux(dummy: Int = 0) = sx() && u
/** supervisor read */
def sr(dummy: Int = 0) = leaf() && r
/** supervisor write */
def sw(dummy: Int = 0) = leaf() && w && d
/** supervisor execute */
def sx(dummy: Int = 0) = leaf() && x
/** full permission: writable and executable in user mode */
def isFullPerm(dummy: Int = 0) = uw() && ux()
}
/** L2TLB PTE template
*
* contains tag bits
* @param nSets number of sets in L2TLB
* @see RV-priv spec 4.3.1 for page table entry format
*/
class L2TLBEntry(nSets: Int)(implicit p: Parameters) extends CoreBundle()(p)
with HasCoreParameters {
val idxBits = log2Ceil(nSets)
val tagBits = maxSVAddrBits - pgIdxBits - idxBits + (if (usingHypervisor) 1 else 0)
val tag = UInt(tagBits.W)
val ppn = UInt(ppnBits.W)
/** dirty bit */
val d = Bool()
/** access bit */
val a = Bool()
/** user mode accessible */
val u = Bool()
/** whether the page is executable */
val x = Bool()
/** whether the page is writable */
val w = Bool()
/** whether the page is readable */
val r = Bool()
}
/** PTW contains L2TLB, and performs page table walk for high level TLB, and cache queries from L1 TLBs(I$, D$, RoCC)
*
* It performs hierarchy page table query to mem for the desired leaf PTE and cache them in l2tlb.
* Besides leaf PTEs, it also caches non-leaf PTEs in pte_cache to accerlerate the process.
*
* ==Structure==
* - l2tlb : for leaf PTEs
* - set-associative (configurable with [[CoreParams.nL2TLBEntries]]and [[CoreParams.nL2TLBWays]]))
* - PLRU
* - pte_cache: for non-leaf PTEs
* - set-associative
* - LRU
* - s2_pte_cache: for non-leaf PTEs in 2-stage translation
* - set-associative
* - PLRU
*
* l2tlb Pipeline: 3 stage
* {{{
* stage 0 : read
* stage 1 : decode
* stage 2 : hit check
* }}}
* ==State Machine==
* s_ready: ready to reveive request from TLB
* s_req: request mem; pte_cache hit judge
* s_wait1: deal with l2tlb error
* s_wait2: final hit judge
* s_wait3: receive mem response
* s_fragment_superpage: for superpage PTE
*
* @note l2tlb hit happens in s_req or s_wait1
* @see RV-priv spec 4.3-4.6 for Virtual-Memory System
* @see RV-priv spec 8.5 for Two-Stage Address Translation
* @todo details in two-stage translation
*/
class PTW(n: Int)(implicit edge: TLEdgeOut, p: Parameters) extends CoreModule()(p) {
val io = IO(new Bundle {
/** to n TLB */
val requestor = Flipped(Vec(n, new TLBPTWIO))
/** to HellaCache */
val mem = new HellaCacheIO
/** to Core
*
* contains CSRs info and performance statistics
*/
val dpath = new DatapathPTWIO
})
val s_ready :: s_req :: s_wait1 :: s_dummy1 :: s_wait2 :: s_wait3 :: s_dummy2 :: s_fragment_superpage :: Nil = Enum(8)
val state = RegInit(s_ready)
val l2_refill_wire = Wire(Bool())
/** Arbiter to arbite request from n TLB */
val arb = Module(new Arbiter(Valid(new PTWReq), n))
// use TLB req as arbitor's input
arb.io.in <> io.requestor.map(_.req)
// receive req only when s_ready and not in refill
arb.io.out.ready := (state === s_ready) && !l2_refill_wire
val resp_valid = RegNext(VecInit(Seq.fill(io.requestor.size)(false.B)))
val clock_en = state =/= s_ready || l2_refill_wire || arb.io.out.valid || io.dpath.sfence.valid || io.dpath.customCSRs.disableDCacheClockGate
io.dpath.clock_enabled := usingVM.B && clock_en
val gated_clock =
if (!usingVM || !tileParams.dcache.get.clockGate) clock
else ClockGate(clock, clock_en, "ptw_clock_gate")
withClock (gated_clock) { // entering gated-clock domain
val invalidated = Reg(Bool())
/** current PTE level
* {{{
* 0 <= count <= pgLevel-1
* count = pgLevel - 1 : leaf PTE
* count < pgLevel - 1 : non-leaf PTE
* }}}
*/
val count = Reg(UInt(log2Ceil(pgLevels).W))
val resp_ae_ptw = Reg(Bool())
val resp_ae_final = Reg(Bool())
val resp_pf = Reg(Bool())
val resp_gf = Reg(Bool())
val resp_hr = Reg(Bool())
val resp_hw = Reg(Bool())
val resp_hx = Reg(Bool())
val resp_fragmented_superpage = Reg(Bool())
/** tlb request */
val r_req = Reg(new PTWReq)
/** current selected way in arbitor */
val r_req_dest = Reg(Bits())
// to respond to L1TLB : l2_hit
// to construct mem.req.addr
val r_pte = Reg(new PTE)
val r_hgatp = Reg(new PTBR)
// 2-stage pageLevel
val aux_count = Reg(UInt(log2Ceil(pgLevels).W))
/** pte for 2-stage translation */
val aux_pte = Reg(new PTE)
val gpa_pgoff = Reg(UInt(pgIdxBits.W)) // only valid in resp_gf case
val stage2 = Reg(Bool())
val stage2_final = Reg(Bool())
val satp = Mux(arb.io.out.bits.bits.vstage1, io.dpath.vsatp, io.dpath.ptbr)
val r_hgatp_initial_count = pgLevels.U - minPgLevels.U - r_hgatp.additionalPgLevels
/** 2-stage translation both enable */
val do_both_stages = r_req.vstage1 && r_req.stage2
val max_count = count max aux_count
val vpn = Mux(r_req.vstage1 && stage2, aux_pte.ppn, r_req.addr)
val mem_resp_valid = RegNext(io.mem.resp.valid)
val mem_resp_data = RegNext(io.mem.resp.bits.data)
io.mem.uncached_resp.map { resp =>
assert(!(resp.valid && io.mem.resp.valid))
resp.ready := true.B
when (resp.valid) {
mem_resp_valid := true.B
mem_resp_data := resp.bits.data
}
}
// construct pte from mem.resp
val (pte, invalid_paddr, invalid_gpa) = {
val tmp = mem_resp_data.asTypeOf(new PTE())
val res = WireDefault(tmp)
res.ppn := Mux(do_both_stages && !stage2, tmp.ppn(vpnBits.min(tmp.ppn.getWidth)-1, 0), tmp.ppn(ppnBits-1, 0))
when (tmp.r || tmp.w || tmp.x) {
// for superpage mappings, make sure PPN LSBs are zero
for (i <- 0 until pgLevels-1)
when (count <= i.U && tmp.ppn((pgLevels-1-i)*pgLevelBits-1, (pgLevels-2-i)*pgLevelBits) =/= 0.U) { res.v := false.B }
}
(res,
Mux(do_both_stages && !stage2, (tmp.ppn >> vpnBits) =/= 0.U, (tmp.ppn >> ppnBits) =/= 0.U),
do_both_stages && !stage2 && checkInvalidHypervisorGPA(r_hgatp, tmp.ppn))
}
// find non-leaf PTE, need traverse
val traverse = pte.table() && !invalid_paddr && !invalid_gpa && count < (pgLevels-1).U
/** address send to mem for enquerry */
val pte_addr = if (!usingVM) 0.U else {
val vpn_idxs = (0 until pgLevels).map { i =>
val width = pgLevelBits + (if (i <= pgLevels - minPgLevels) hypervisorExtraAddrBits else 0)
(vpn >> (pgLevels - i - 1) * pgLevelBits)(width - 1, 0)
}
val mask = Mux(stage2 && count === r_hgatp_initial_count, ((1 << (hypervisorExtraAddrBits + pgLevelBits)) - 1).U, ((1 << pgLevelBits) - 1).U)
val vpn_idx = vpn_idxs(count) & mask
val raw_pte_addr = ((r_pte.ppn << pgLevelBits) | vpn_idx) << log2Ceil(xLen / 8)
val size = if (usingHypervisor) vaddrBits else paddrBits
//use r_pte.ppn as page table base address
//use vpn slice as offset
raw_pte_addr.apply(size.min(raw_pte_addr.getWidth) - 1, 0)
}
/** stage2_pte_cache input addr */
val stage2_pte_cache_addr = if (!usingHypervisor) 0.U else {
val vpn_idxs = (0 until pgLevels - 1).map { i =>
(r_req.addr >> (pgLevels - i - 1) * pgLevelBits)(pgLevelBits - 1, 0)
}
val vpn_idx = vpn_idxs(aux_count)
val raw_s2_pte_cache_addr = Cat(aux_pte.ppn, vpn_idx) << log2Ceil(xLen / 8)
raw_s2_pte_cache_addr(vaddrBits.min(raw_s2_pte_cache_addr.getWidth) - 1, 0)
}
def makeFragmentedSuperpagePPN(ppn: UInt): Seq[UInt] = {
(pgLevels-1 until 0 by -1).map(i => Cat(ppn >> (pgLevelBits*i), r_req.addr(((pgLevelBits*i) min vpnBits)-1, 0).padTo(pgLevelBits*i)))
}
/** PTECache caches non-leaf PTE
* @param s2 true: 2-stage address translation
*/
def makePTECache(s2: Boolean): (Bool, UInt) = if (coreParams.nPTECacheEntries == 0) {
(false.B, 0.U)
} else {
val plru = new PseudoLRU(coreParams.nPTECacheEntries)
val valid = RegInit(0.U(coreParams.nPTECacheEntries.W))
val tags = Reg(Vec(coreParams.nPTECacheEntries, UInt((if (usingHypervisor) 1 + vaddrBits else paddrBits).W)))
// not include full pte, only ppn
val data = Reg(Vec(coreParams.nPTECacheEntries, UInt((if (usingHypervisor && s2) vpnBits else ppnBits).W)))
val can_hit =
if (s2) count === r_hgatp_initial_count && aux_count < (pgLevels-1).U && r_req.vstage1 && stage2 && !stage2_final
else count < (pgLevels-1).U && Mux(r_req.vstage1, stage2, !r_req.stage2)
val can_refill =
if (s2) do_both_stages && !stage2 && !stage2_final
else can_hit
val tag =
if (s2) Cat(true.B, stage2_pte_cache_addr.padTo(vaddrBits))
else Cat(r_req.vstage1, pte_addr.padTo(if (usingHypervisor) vaddrBits else paddrBits))
val hits = tags.map(_ === tag).asUInt & valid
val hit = hits.orR && can_hit
// refill with mem response
when (mem_resp_valid && traverse && can_refill && !hits.orR && !invalidated) {
val r = Mux(valid.andR, plru.way, PriorityEncoder(~valid))
valid := valid | UIntToOH(r)
tags(r) := tag
data(r) := pte.ppn
plru.access(r)
}
// replace
when (hit && state === s_req) { plru.access(OHToUInt(hits)) }
when (io.dpath.sfence.valid && (!io.dpath.sfence.bits.rs1 || usingHypervisor.B && io.dpath.sfence.bits.hg)) { valid := 0.U }
val lcount = if (s2) aux_count else count
for (i <- 0 until pgLevels-1) {
ccover(hit && state === s_req && lcount === i.U, s"PTE_CACHE_HIT_L$i", s"PTE cache hit, level $i")
}
(hit, Mux1H(hits, data))
}
// generate pte_cache
val (pte_cache_hit, pte_cache_data) = makePTECache(false)
// generate pte_cache with 2-stage translation
val (stage2_pte_cache_hit, stage2_pte_cache_data) = makePTECache(true)
// pte_cache hit or 2-stage pte_cache hit
val pte_hit = RegNext(false.B)
io.dpath.perf.pte_miss := false.B
io.dpath.perf.pte_hit := pte_hit && (state === s_req) && !io.dpath.perf.l2hit
assert(!(io.dpath.perf.l2hit && (io.dpath.perf.pte_miss || io.dpath.perf.pte_hit)),
"PTE Cache Hit/Miss Performance Monitor Events are lower priority than L2TLB Hit event")
// l2_refill happens when find the leaf pte
val l2_refill = RegNext(false.B)
l2_refill_wire := l2_refill
io.dpath.perf.l2miss := false.B
io.dpath.perf.l2hit := false.B
// l2tlb
val (l2_hit, l2_error, l2_pte, l2_tlb_ram) = if (coreParams.nL2TLBEntries == 0) (false.B, false.B, WireDefault(0.U.asTypeOf(new PTE)), None) else {
val code = new ParityCode
require(isPow2(coreParams.nL2TLBEntries))
require(isPow2(coreParams.nL2TLBWays))
require(coreParams.nL2TLBEntries >= coreParams.nL2TLBWays)
val nL2TLBSets = coreParams.nL2TLBEntries / coreParams.nL2TLBWays
require(isPow2(nL2TLBSets))
val idxBits = log2Ceil(nL2TLBSets)
val l2_plru = new SetAssocLRU(nL2TLBSets, coreParams.nL2TLBWays, "plru")
val ram = DescribedSRAM(
name = "l2_tlb_ram",
desc = "L2 TLB",
size = nL2TLBSets,
data = Vec(coreParams.nL2TLBWays, UInt(code.width(new L2TLBEntry(nL2TLBSets).getWidth).W))
)
val g = Reg(Vec(coreParams.nL2TLBWays, UInt(nL2TLBSets.W)))
val valid = RegInit(VecInit(Seq.fill(coreParams.nL2TLBWays)(0.U(nL2TLBSets.W))))
// use r_req to construct tag
val (r_tag, r_idx) = Split(Cat(r_req.vstage1, r_req.addr(maxSVAddrBits-pgIdxBits-1, 0)), idxBits)
/** the valid vec for the selected set(including n ways) */
val r_valid_vec = valid.map(_(r_idx)).asUInt
val r_valid_vec_q = Reg(UInt(coreParams.nL2TLBWays.W))
val r_l2_plru_way = Reg(UInt(log2Ceil(coreParams.nL2TLBWays max 1).W))
r_valid_vec_q := r_valid_vec
// replacement way
r_l2_plru_way := (if (coreParams.nL2TLBWays > 1) l2_plru.way(r_idx) else 0.U)
// refill with r_pte(leaf pte)
when (l2_refill && !invalidated) {
val entry = Wire(new L2TLBEntry(nL2TLBSets))
entry.ppn := r_pte.ppn
entry.d := r_pte.d
entry.a := r_pte.a
entry.u := r_pte.u
entry.x := r_pte.x
entry.w := r_pte.w
entry.r := r_pte.r
entry.tag := r_tag
// if all the way are valid, use plru to select one way to be replaced,
// otherwise use PriorityEncoderOH to select one
val wmask = if (coreParams.nL2TLBWays > 1) Mux(r_valid_vec_q.andR, UIntToOH(r_l2_plru_way, coreParams.nL2TLBWays), PriorityEncoderOH(~r_valid_vec_q)) else 1.U(1.W)
ram.write(r_idx, VecInit(Seq.fill(coreParams.nL2TLBWays)(code.encode(entry.asUInt))), wmask.asBools)
val mask = UIntToOH(r_idx)
for (way <- 0 until coreParams.nL2TLBWays) {
when (wmask(way)) {
valid(way) := valid(way) | mask
g(way) := Mux(r_pte.g, g(way) | mask, g(way) & ~mask)
}
}
}
// sfence happens
when (io.dpath.sfence.valid) {
val hg = usingHypervisor.B && io.dpath.sfence.bits.hg
for (way <- 0 until coreParams.nL2TLBWays) {
valid(way) :=
Mux(!hg && io.dpath.sfence.bits.rs1, valid(way) & ~UIntToOH(io.dpath.sfence.bits.addr(idxBits+pgIdxBits-1, pgIdxBits)),
Mux(!hg && io.dpath.sfence.bits.rs2, valid(way) & g(way),
0.U))
}
}
val s0_valid = !l2_refill && arb.io.out.fire
val s0_suitable = arb.io.out.bits.bits.vstage1 === arb.io.out.bits.bits.stage2 && !arb.io.out.bits.bits.need_gpa
val s1_valid = RegNext(s0_valid && s0_suitable && arb.io.out.bits.valid)
val s2_valid = RegNext(s1_valid)
// read from tlb idx
val s1_rdata = ram.read(arb.io.out.bits.bits.addr(idxBits-1, 0), s0_valid)
val s2_rdata = s1_rdata.map(s1_rdway => code.decode(RegEnable(s1_rdway, s1_valid)))
val s2_valid_vec = RegEnable(r_valid_vec, s1_valid)
val s2_g_vec = RegEnable(VecInit(g.map(_(r_idx))), s1_valid)
val s2_error = (0 until coreParams.nL2TLBWays).map(way => s2_valid_vec(way) && s2_rdata(way).error).orR
when (s2_valid && s2_error) { valid.foreach { _ := 0.U }}
// decode
val s2_entry_vec = s2_rdata.map(_.uncorrected.asTypeOf(new L2TLBEntry(nL2TLBSets)))
val s2_hit_vec = (0 until coreParams.nL2TLBWays).map(way => s2_valid_vec(way) && (r_tag === s2_entry_vec(way).tag))
val s2_hit = s2_valid && s2_hit_vec.orR
io.dpath.perf.l2miss := s2_valid && !(s2_hit_vec.orR)
io.dpath.perf.l2hit := s2_hit
when (s2_hit) {
l2_plru.access(r_idx, OHToUInt(s2_hit_vec))
assert((PopCount(s2_hit_vec) === 1.U) || s2_error, "L2 TLB multi-hit")
}
val s2_pte = Wire(new PTE)
val s2_hit_entry = Mux1H(s2_hit_vec, s2_entry_vec)
s2_pte.ppn := s2_hit_entry.ppn
s2_pte.d := s2_hit_entry.d
s2_pte.a := s2_hit_entry.a
s2_pte.g := Mux1H(s2_hit_vec, s2_g_vec)
s2_pte.u := s2_hit_entry.u
s2_pte.x := s2_hit_entry.x
s2_pte.w := s2_hit_entry.w
s2_pte.r := s2_hit_entry.r
s2_pte.v := true.B
s2_pte.reserved_for_future := 0.U
s2_pte.reserved_for_software := 0.U
for (way <- 0 until coreParams.nL2TLBWays) {
ccover(s2_hit && s2_hit_vec(way), s"L2_TLB_HIT_WAY$way", s"L2 TLB hit way$way")
}
(s2_hit, s2_error, s2_pte, Some(ram))
}
// if SFENCE occurs during walk, don't refill PTE cache or L2 TLB until next walk
invalidated := io.dpath.sfence.valid || (invalidated && state =/= s_ready)
// mem request
io.mem.keep_clock_enabled := false.B
io.mem.req.valid := state === s_req || state === s_dummy1
io.mem.req.bits.phys := true.B
io.mem.req.bits.cmd := M_XRD
io.mem.req.bits.size := log2Ceil(xLen/8).U
io.mem.req.bits.signed := false.B
io.mem.req.bits.addr := pte_addr
io.mem.req.bits.idx.foreach(_ := pte_addr)
io.mem.req.bits.dprv := PRV.S.U // PTW accesses are S-mode by definition
io.mem.req.bits.dv := do_both_stages && !stage2
io.mem.req.bits.tag := DontCare
io.mem.req.bits.no_resp := false.B
io.mem.req.bits.no_alloc := DontCare
io.mem.req.bits.no_xcpt := DontCare
io.mem.req.bits.data := DontCare
io.mem.req.bits.mask := DontCare
io.mem.s1_kill := l2_hit || (state =/= s_wait1) || resp_gf
io.mem.s1_data := DontCare
io.mem.s2_kill := false.B
val pageGranularityPMPs = pmpGranularity >= (1 << pgIdxBits)
require(!usingHypervisor || pageGranularityPMPs, s"hypervisor requires pmpGranularity >= ${1<<pgIdxBits}")
val pmaPgLevelHomogeneous = (0 until pgLevels) map { i =>
val pgSize = BigInt(1) << (pgIdxBits + ((pgLevels - 1 - i) * pgLevelBits))
if (pageGranularityPMPs && i == pgLevels - 1) {
require(TLBPageLookup.homogeneous(edge.manager.managers, pgSize), s"All memory regions must be $pgSize-byte aligned")
true.B
} else {
TLBPageLookup(edge.manager.managers, xLen, p(CacheBlockBytes), pgSize, xLen/8)(r_pte.ppn << pgIdxBits).homogeneous
}
}
val pmaHomogeneous = pmaPgLevelHomogeneous(count)
val pmpHomogeneous = new PMPHomogeneityChecker(io.dpath.pmp).apply(r_pte.ppn << pgIdxBits, count)
val homogeneous = pmaHomogeneous && pmpHomogeneous
// response to tlb
for (i <- 0 until io.requestor.size) {
io.requestor(i).resp.valid := resp_valid(i)
io.requestor(i).resp.bits.ae_ptw := resp_ae_ptw
io.requestor(i).resp.bits.ae_final := resp_ae_final
io.requestor(i).resp.bits.pf := resp_pf
io.requestor(i).resp.bits.gf := resp_gf
io.requestor(i).resp.bits.hr := resp_hr
io.requestor(i).resp.bits.hw := resp_hw
io.requestor(i).resp.bits.hx := resp_hx
io.requestor(i).resp.bits.pte := r_pte
io.requestor(i).resp.bits.level := max_count
io.requestor(i).resp.bits.homogeneous := homogeneous || pageGranularityPMPs.B
io.requestor(i).resp.bits.fragmented_superpage := resp_fragmented_superpage && pageGranularityPMPs.B
io.requestor(i).resp.bits.gpa.valid := r_req.need_gpa
io.requestor(i).resp.bits.gpa.bits :=
Cat(Mux(!stage2_final || !r_req.vstage1 || aux_count === (pgLevels - 1).U, aux_pte.ppn, makeFragmentedSuperpagePPN(aux_pte.ppn)(aux_count)), gpa_pgoff)
io.requestor(i).resp.bits.gpa_is_pte := !stage2_final
io.requestor(i).ptbr := io.dpath.ptbr
io.requestor(i).hgatp := io.dpath.hgatp
io.requestor(i).vsatp := io.dpath.vsatp
io.requestor(i).customCSRs <> io.dpath.customCSRs
io.requestor(i).status := io.dpath.status
io.requestor(i).hstatus := io.dpath.hstatus
io.requestor(i).gstatus := io.dpath.gstatus
io.requestor(i).pmp := io.dpath.pmp
}
// control state machine
val next_state = WireDefault(state)
state := OptimizationBarrier(next_state)
val do_switch = WireDefault(false.B)
switch (state) {
is (s_ready) {
when (arb.io.out.fire) {
val satp_initial_count = pgLevels.U - minPgLevels.U - satp.additionalPgLevels
val vsatp_initial_count = pgLevels.U - minPgLevels.U - io.dpath.vsatp.additionalPgLevels
val hgatp_initial_count = pgLevels.U - minPgLevels.U - io.dpath.hgatp.additionalPgLevels
val aux_ppn = Mux(arb.io.out.bits.bits.vstage1, io.dpath.vsatp.ppn, arb.io.out.bits.bits.addr)
r_req := arb.io.out.bits.bits
r_req_dest := arb.io.chosen
next_state := Mux(arb.io.out.bits.valid, s_req, s_ready)
stage2 := arb.io.out.bits.bits.stage2
stage2_final := arb.io.out.bits.bits.stage2 && !arb.io.out.bits.bits.vstage1
count := Mux(arb.io.out.bits.bits.stage2, hgatp_initial_count, satp_initial_count)
aux_count := Mux(arb.io.out.bits.bits.vstage1, vsatp_initial_count, 0.U)
aux_pte.ppn := aux_ppn
aux_pte.reserved_for_future := 0.U
resp_ae_ptw := false.B
resp_ae_final := false.B
resp_pf := false.B
resp_gf := checkInvalidHypervisorGPA(io.dpath.hgatp, aux_ppn) && arb.io.out.bits.bits.stage2
resp_hr := true.B
resp_hw := true.B
resp_hx := true.B
resp_fragmented_superpage := false.B
r_hgatp := io.dpath.hgatp
assert(!arb.io.out.bits.bits.need_gpa || arb.io.out.bits.bits.stage2)
}
}
is (s_req) {
when(stage2 && count === r_hgatp_initial_count) {
gpa_pgoff := Mux(aux_count === (pgLevels-1).U, r_req.addr << (xLen/8).log2, stage2_pte_cache_addr)
}
// pte_cache hit
when (stage2_pte_cache_hit) {
aux_count := aux_count + 1.U
aux_pte.ppn := stage2_pte_cache_data
aux_pte.reserved_for_future := 0.U
pte_hit := true.B
}.elsewhen (pte_cache_hit) {
count := count + 1.U
pte_hit := true.B
}.otherwise {
next_state := Mux(io.mem.req.ready, s_wait1, s_req)
}
when(resp_gf) {
next_state := s_ready
resp_valid(r_req_dest) := true.B
}
}
is (s_wait1) {
// This Mux is for the l2_error case; the l2_hit && !l2_error case is overriden below
next_state := Mux(l2_hit, s_req, s_wait2)
}
is (s_wait2) {
next_state := s_wait3
io.dpath.perf.pte_miss := count < (pgLevels-1).U
when (io.mem.s2_xcpt.ae.ld) {
resp_ae_ptw := true.B
next_state := s_ready
resp_valid(r_req_dest) := true.B
}
}
is (s_fragment_superpage) {
next_state := s_ready
resp_valid(r_req_dest) := true.B
when (!homogeneous) {
count := (pgLevels-1).U
resp_fragmented_superpage := true.B
}
when (do_both_stages) {
resp_fragmented_superpage := true.B
}
}
}
val merged_pte = {
val superpage_masks = (0 until pgLevels).map(i => ((BigInt(1) << pte.ppn.getWidth) - (BigInt(1) << (pgLevels-1-i)*pgLevelBits)).U)
val superpage_mask = superpage_masks(Mux(stage2_final, max_count, (pgLevels-1).U))
val stage1_ppns = (0 until pgLevels-1).map(i => Cat(pte.ppn(pte.ppn.getWidth-1, (pgLevels-i-1)*pgLevelBits), aux_pte.ppn((pgLevels-i-1)*pgLevelBits-1,0))) :+ pte.ppn
val stage1_ppn = stage1_ppns(count)
makePTE(stage1_ppn & superpage_mask, aux_pte)
}
r_pte := OptimizationBarrier(
// l2tlb hit->find a leaf PTE(l2_pte), respond to L1TLB
Mux(l2_hit && !l2_error && !resp_gf, l2_pte,
// S2 PTE cache hit -> proceed to the next level of walking, update the r_pte with hgatp
Mux(state === s_req && stage2_pte_cache_hit, makeHypervisorRootPTE(r_hgatp, stage2_pte_cache_data, l2_pte),
// pte cache hit->find a non-leaf PTE(pte_cache),continue to request mem
Mux(state === s_req && pte_cache_hit, makePTE(pte_cache_data, l2_pte),
// 2-stage translation
Mux(do_switch, makeHypervisorRootPTE(r_hgatp, pte.ppn, r_pte),
// when mem respond, store mem.resp.pte
Mux(mem_resp_valid, Mux(!traverse && r_req.vstage1 && stage2, merged_pte, pte),
// fragment_superpage
Mux(state === s_fragment_superpage && !homogeneous && count =/= (pgLevels - 1).U, makePTE(makeFragmentedSuperpagePPN(r_pte.ppn)(count), r_pte),
// when tlb request come->request mem, use root address in satp(or vsatp,hgatp)
Mux(arb.io.out.fire, Mux(arb.io.out.bits.bits.stage2, makeHypervisorRootPTE(io.dpath.hgatp, io.dpath.vsatp.ppn, r_pte), makePTE(satp.ppn, r_pte)),
r_pte))))))))
when (l2_hit && !l2_error && !resp_gf) {
assert(state === s_req || state === s_wait1)
next_state := s_ready
resp_valid(r_req_dest) := true.B
count := (pgLevels-1).U
}
when (mem_resp_valid) {
assert(state === s_wait3)
next_state := s_req
when (traverse) {
when (do_both_stages && !stage2) { do_switch := true.B }
count := count + 1.U
}.otherwise {
val gf = (stage2 && !stage2_final && !pte.ur()) || (pte.leaf() && pte.reserved_for_future === 0.U && invalid_gpa)
val ae = pte.v && invalid_paddr
val pf = pte.v && pte.reserved_for_future =/= 0.U
val success = pte.v && !ae && !pf && !gf
when (do_both_stages && !stage2_final && success) {
when (stage2) {
stage2 := false.B
count := aux_count
}.otherwise {
stage2_final := true.B
do_switch := true.B
}
}.otherwise {
// find a leaf pte, start l2 refill
l2_refill := success && count === (pgLevels-1).U && !r_req.need_gpa &&
(!r_req.vstage1 && !r_req.stage2 ||
do_both_stages && aux_count === (pgLevels-1).U && pte.isFullPerm())
count := max_count
when (pageGranularityPMPs.B && !(count === (pgLevels-1).U && (!do_both_stages || aux_count === (pgLevels-1).U))) {
next_state := s_fragment_superpage
}.otherwise {
next_state := s_ready
resp_valid(r_req_dest) := true.B
}
resp_ae_ptw := ae && count < (pgLevels-1).U && pte.table()
resp_ae_final := ae && pte.leaf()
resp_pf := pf && !stage2
resp_gf := gf || (pf && stage2)
resp_hr := !stage2 || (!pf && !gf && pte.ur())
resp_hw := !stage2 || (!pf && !gf && pte.uw())
resp_hx := !stage2 || (!pf && !gf && pte.ux())
}
}
}
when (io.mem.s2_nack) {
assert(state === s_wait2)
next_state := s_req
}
when (do_switch) {
aux_count := Mux(traverse, count + 1.U, count)
count := r_hgatp_initial_count
aux_pte := Mux(traverse, pte, {
val s1_ppns = (0 until pgLevels-1).map(i => Cat(pte.ppn(pte.ppn.getWidth-1, (pgLevels-i-1)*pgLevelBits), r_req.addr(((pgLevels-i-1)*pgLevelBits min vpnBits)-1,0).padTo((pgLevels-i-1)*pgLevelBits))) :+ pte.ppn
makePTE(s1_ppns(count), pte)
})
stage2 := true.B
}
for (i <- 0 until pgLevels) {
val leaf = mem_resp_valid && !traverse && count === i.U
ccover(leaf && pte.v && !invalid_paddr && !invalid_gpa && pte.reserved_for_future === 0.U, s"L$i", s"successful page-table access, level $i")
ccover(leaf && pte.v && invalid_paddr, s"L${i}_BAD_PPN_MSB", s"PPN too large, level $i")
ccover(leaf && pte.v && invalid_gpa, s"L${i}_BAD_GPA_MSB", s"GPA too large, level $i")
ccover(leaf && pte.v && pte.reserved_for_future =/= 0.U, s"L${i}_BAD_RSV_MSB", s"reserved MSBs set, level $i")
ccover(leaf && !mem_resp_data(0), s"L${i}_INVALID_PTE", s"page not present, level $i")
if (i != pgLevels-1)
ccover(leaf && !pte.v && mem_resp_data(0), s"L${i}_BAD_PPN_LSB", s"PPN LSBs not zero, level $i")
}
ccover(mem_resp_valid && count === (pgLevels-1).U && pte.table(), s"TOO_DEEP", s"page table too deep")
ccover(io.mem.s2_nack, "NACK", "D$ nacked page-table access")
ccover(state === s_wait2 && io.mem.s2_xcpt.ae.ld, "AE", "access exception while walking page table")
} // leaving gated-clock domain
private def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) =
if (usingVM) property.cover(cond, s"PTW_$label", "MemorySystem;;" + desc)
/** Relace PTE.ppn with ppn */
private def makePTE(ppn: UInt, default: PTE) = {
val pte = WireDefault(default)
pte.ppn := ppn
pte
}
/** use hgatp and vpn to construct a new ppn */
private def makeHypervisorRootPTE(hgatp: PTBR, vpn: UInt, default: PTE) = {
val count = pgLevels.U - minPgLevels.U - hgatp.additionalPgLevels
val idxs = (0 to pgLevels-minPgLevels).map(i => (vpn >> (pgLevels-i)*pgLevelBits))
val lsbs = WireDefault(UInt(maxHypervisorExtraAddrBits.W), idxs(count))
val pte = WireDefault(default)
pte.ppn := Cat(hgatp.ppn >> maxHypervisorExtraAddrBits, lsbs)
pte
}
/** use hgatp and vpn to check for gpa out of range */
private def checkInvalidHypervisorGPA(hgatp: PTBR, vpn: UInt) = {
val count = pgLevels.U - minPgLevels.U - hgatp.additionalPgLevels
val idxs = (0 to pgLevels-minPgLevels).map(i => (vpn >> ((pgLevels-i)*pgLevelBits)+maxHypervisorExtraAddrBits))
idxs.extract(count) =/= 0.U
}
}
/** Mix-ins for constructing tiles that might have a PTW */
trait CanHavePTW extends HasTileParameters with HasHellaCache { this: BaseTile =>
val module: CanHavePTWModule
var nPTWPorts = 1
nDCachePorts += usingPTW.toInt
}
trait CanHavePTWModule extends HasHellaCacheModule {
val outer: CanHavePTW
val ptwPorts = ListBuffer(outer.dcache.module.io.ptw)
val ptw = Module(new PTW(outer.nPTWPorts)(outer.dcache.node.edges.out(0), outer.p))
ptw.io.mem <> DontCare
if (outer.usingPTW) {
dcachePorts += ptw.io.mem
}
}
| module DTLB_2( // @[TLB.scala:318:7]
input clock, // @[TLB.scala:318:7]
input reset, // @[TLB.scala:318:7]
output io_req_ready, // @[TLB.scala:320:14]
input io_req_valid, // @[TLB.scala:320:14]
input [39:0] io_req_bits_vaddr, // @[TLB.scala:320:14]
input [1:0] io_req_bits_size, // @[TLB.scala:320:14]
output io_resp_miss, // @[TLB.scala:320:14]
output [31:0] io_resp_paddr, // @[TLB.scala:320:14]
input io_sfence_valid, // @[TLB.scala:320:14]
input io_ptw_req_ready, // @[TLB.scala:320:14]
output io_ptw_req_valid, // @[TLB.scala:320:14]
output [26:0] io_ptw_req_bits_bits_addr, // @[TLB.scala:320:14]
output io_ptw_req_bits_bits_need_gpa, // @[TLB.scala:320:14]
input io_ptw_resp_valid, // @[TLB.scala:320:14]
input io_ptw_resp_bits_ae_ptw, // @[TLB.scala:320:14]
input io_ptw_resp_bits_ae_final, // @[TLB.scala:320:14]
input io_ptw_resp_bits_pf, // @[TLB.scala:320:14]
input io_ptw_resp_bits_gf, // @[TLB.scala:320:14]
input io_ptw_resp_bits_hr, // @[TLB.scala:320:14]
input io_ptw_resp_bits_hw, // @[TLB.scala:320:14]
input io_ptw_resp_bits_hx, // @[TLB.scala:320:14]
input [9:0] io_ptw_resp_bits_pte_reserved_for_future, // @[TLB.scala:320:14]
input [43:0] io_ptw_resp_bits_pte_ppn, // @[TLB.scala:320:14]
input [1:0] io_ptw_resp_bits_pte_reserved_for_software, // @[TLB.scala:320:14]
input io_ptw_resp_bits_pte_d, // @[TLB.scala:320:14]
input io_ptw_resp_bits_pte_a, // @[TLB.scala:320:14]
input io_ptw_resp_bits_pte_g, // @[TLB.scala:320:14]
input io_ptw_resp_bits_pte_u, // @[TLB.scala:320:14]
input io_ptw_resp_bits_pte_x, // @[TLB.scala:320:14]
input io_ptw_resp_bits_pte_w, // @[TLB.scala:320:14]
input io_ptw_resp_bits_pte_r, // @[TLB.scala:320:14]
input io_ptw_resp_bits_pte_v, // @[TLB.scala:320:14]
input [1:0] io_ptw_resp_bits_level, // @[TLB.scala:320:14]
input io_ptw_resp_bits_homogeneous, // @[TLB.scala:320:14]
input io_ptw_resp_bits_gpa_valid, // @[TLB.scala:320:14]
input [38:0] io_ptw_resp_bits_gpa_bits, // @[TLB.scala:320:14]
input io_ptw_resp_bits_gpa_is_pte, // @[TLB.scala:320:14]
input [3:0] io_ptw_ptbr_mode, // @[TLB.scala:320:14]
input [43:0] io_ptw_ptbr_ppn, // @[TLB.scala:320:14]
input io_ptw_status_debug, // @[TLB.scala:320:14]
input io_ptw_status_cease, // @[TLB.scala:320:14]
input io_ptw_status_wfi, // @[TLB.scala:320:14]
input [31:0] io_ptw_status_isa, // @[TLB.scala:320:14]
input [1:0] io_ptw_status_dprv, // @[TLB.scala:320:14]
input io_ptw_status_dv, // @[TLB.scala:320:14]
input [1:0] io_ptw_status_prv, // @[TLB.scala:320:14]
input io_ptw_status_v, // @[TLB.scala:320:14]
input io_ptw_status_sd, // @[TLB.scala:320:14]
input [22:0] io_ptw_status_zero2, // @[TLB.scala:320:14]
input io_ptw_status_mpv, // @[TLB.scala:320:14]
input io_ptw_status_gva, // @[TLB.scala:320:14]
input io_ptw_status_mbe, // @[TLB.scala:320:14]
input io_ptw_status_sbe, // @[TLB.scala:320:14]
input [1:0] io_ptw_status_sxl, // @[TLB.scala:320:14]
input [1:0] io_ptw_status_uxl, // @[TLB.scala:320:14]
input io_ptw_status_sd_rv32, // @[TLB.scala:320:14]
input [7:0] io_ptw_status_zero1, // @[TLB.scala:320:14]
input io_ptw_status_tsr, // @[TLB.scala:320:14]
input io_ptw_status_tw, // @[TLB.scala:320:14]
input io_ptw_status_tvm, // @[TLB.scala:320:14]
input io_ptw_status_mxr, // @[TLB.scala:320:14]
input io_ptw_status_sum, // @[TLB.scala:320:14]
input io_ptw_status_mprv, // @[TLB.scala:320:14]
input [1:0] io_ptw_status_xs, // @[TLB.scala:320:14]
input [1:0] io_ptw_status_fs, // @[TLB.scala:320:14]
input [1:0] io_ptw_status_mpp, // @[TLB.scala:320:14]
input [1:0] io_ptw_status_vs, // @[TLB.scala:320:14]
input io_ptw_status_spp, // @[TLB.scala:320:14]
input io_ptw_status_mpie, // @[TLB.scala:320:14]
input io_ptw_status_ube, // @[TLB.scala:320:14]
input io_ptw_status_spie, // @[TLB.scala:320:14]
input io_ptw_status_upie, // @[TLB.scala:320:14]
input io_ptw_status_mie, // @[TLB.scala:320:14]
input io_ptw_status_hie, // @[TLB.scala:320:14]
input io_ptw_status_sie, // @[TLB.scala:320:14]
input io_ptw_status_uie, // @[TLB.scala:320:14]
input io_ptw_hstatus_spvp, // @[TLB.scala:320:14]
input io_ptw_hstatus_spv, // @[TLB.scala:320:14]
input io_ptw_hstatus_gva, // @[TLB.scala:320:14]
input io_ptw_gstatus_debug, // @[TLB.scala:320:14]
input io_ptw_gstatus_cease, // @[TLB.scala:320:14]
input io_ptw_gstatus_wfi, // @[TLB.scala:320:14]
input [31:0] io_ptw_gstatus_isa, // @[TLB.scala:320:14]
input [1:0] io_ptw_gstatus_dprv, // @[TLB.scala:320:14]
input io_ptw_gstatus_dv, // @[TLB.scala:320:14]
input [1:0] io_ptw_gstatus_prv, // @[TLB.scala:320:14]
input io_ptw_gstatus_v, // @[TLB.scala:320:14]
input [22:0] io_ptw_gstatus_zero2, // @[TLB.scala:320:14]
input io_ptw_gstatus_mpv, // @[TLB.scala:320:14]
input io_ptw_gstatus_gva, // @[TLB.scala:320:14]
input io_ptw_gstatus_mbe, // @[TLB.scala:320:14]
input io_ptw_gstatus_sbe, // @[TLB.scala:320:14]
input [1:0] io_ptw_gstatus_sxl, // @[TLB.scala:320:14]
input [7:0] io_ptw_gstatus_zero1, // @[TLB.scala:320:14]
input io_ptw_gstatus_tsr, // @[TLB.scala:320:14]
input io_ptw_gstatus_tw, // @[TLB.scala:320:14]
input io_ptw_gstatus_tvm, // @[TLB.scala:320:14]
input io_ptw_gstatus_mxr, // @[TLB.scala:320:14]
input io_ptw_gstatus_sum, // @[TLB.scala:320:14]
input io_ptw_gstatus_mprv, // @[TLB.scala:320:14]
input [1:0] io_ptw_gstatus_fs, // @[TLB.scala:320:14]
input [1:0] io_ptw_gstatus_mpp, // @[TLB.scala:320:14]
input [1:0] io_ptw_gstatus_vs, // @[TLB.scala:320:14]
input io_ptw_gstatus_spp, // @[TLB.scala:320:14]
input io_ptw_gstatus_mpie, // @[TLB.scala:320:14]
input io_ptw_gstatus_ube, // @[TLB.scala:320:14]
input io_ptw_gstatus_spie, // @[TLB.scala:320:14]
input io_ptw_gstatus_upie, // @[TLB.scala:320:14]
input io_ptw_gstatus_mie, // @[TLB.scala:320:14]
input io_ptw_gstatus_hie, // @[TLB.scala:320:14]
input io_ptw_gstatus_sie, // @[TLB.scala:320:14]
input io_ptw_gstatus_uie, // @[TLB.scala:320:14]
input io_ptw_pmp_0_cfg_l, // @[TLB.scala:320:14]
input [1:0] io_ptw_pmp_0_cfg_a, // @[TLB.scala:320:14]
input io_ptw_pmp_0_cfg_x, // @[TLB.scala:320:14]
input io_ptw_pmp_0_cfg_w, // @[TLB.scala:320:14]
input io_ptw_pmp_0_cfg_r, // @[TLB.scala:320:14]
input [29:0] io_ptw_pmp_0_addr, // @[TLB.scala:320:14]
input [31:0] io_ptw_pmp_0_mask, // @[TLB.scala:320:14]
input io_ptw_pmp_1_cfg_l, // @[TLB.scala:320:14]
input [1:0] io_ptw_pmp_1_cfg_a, // @[TLB.scala:320:14]
input io_ptw_pmp_1_cfg_x, // @[TLB.scala:320:14]
input io_ptw_pmp_1_cfg_w, // @[TLB.scala:320:14]
input io_ptw_pmp_1_cfg_r, // @[TLB.scala:320:14]
input [29:0] io_ptw_pmp_1_addr, // @[TLB.scala:320:14]
input [31:0] io_ptw_pmp_1_mask, // @[TLB.scala:320:14]
input io_ptw_pmp_2_cfg_l, // @[TLB.scala:320:14]
input [1:0] io_ptw_pmp_2_cfg_a, // @[TLB.scala:320:14]
input io_ptw_pmp_2_cfg_x, // @[TLB.scala:320:14]
input io_ptw_pmp_2_cfg_w, // @[TLB.scala:320:14]
input io_ptw_pmp_2_cfg_r, // @[TLB.scala:320:14]
input [29:0] io_ptw_pmp_2_addr, // @[TLB.scala:320:14]
input [31:0] io_ptw_pmp_2_mask, // @[TLB.scala:320:14]
input io_ptw_pmp_3_cfg_l, // @[TLB.scala:320:14]
input [1:0] io_ptw_pmp_3_cfg_a, // @[TLB.scala:320:14]
input io_ptw_pmp_3_cfg_x, // @[TLB.scala:320:14]
input io_ptw_pmp_3_cfg_w, // @[TLB.scala:320:14]
input io_ptw_pmp_3_cfg_r, // @[TLB.scala:320:14]
input [29:0] io_ptw_pmp_3_addr, // @[TLB.scala:320:14]
input [31:0] io_ptw_pmp_3_mask, // @[TLB.scala:320:14]
input io_ptw_pmp_4_cfg_l, // @[TLB.scala:320:14]
input [1:0] io_ptw_pmp_4_cfg_a, // @[TLB.scala:320:14]
input io_ptw_pmp_4_cfg_x, // @[TLB.scala:320:14]
input io_ptw_pmp_4_cfg_w, // @[TLB.scala:320:14]
input io_ptw_pmp_4_cfg_r, // @[TLB.scala:320:14]
input [29:0] io_ptw_pmp_4_addr, // @[TLB.scala:320:14]
input [31:0] io_ptw_pmp_4_mask, // @[TLB.scala:320:14]
input io_ptw_pmp_5_cfg_l, // @[TLB.scala:320:14]
input [1:0] io_ptw_pmp_5_cfg_a, // @[TLB.scala:320:14]
input io_ptw_pmp_5_cfg_x, // @[TLB.scala:320:14]
input io_ptw_pmp_5_cfg_w, // @[TLB.scala:320:14]
input io_ptw_pmp_5_cfg_r, // @[TLB.scala:320:14]
input [29:0] io_ptw_pmp_5_addr, // @[TLB.scala:320:14]
input [31:0] io_ptw_pmp_5_mask, // @[TLB.scala:320:14]
input io_ptw_pmp_6_cfg_l, // @[TLB.scala:320:14]
input [1:0] io_ptw_pmp_6_cfg_a, // @[TLB.scala:320:14]
input io_ptw_pmp_6_cfg_x, // @[TLB.scala:320:14]
input io_ptw_pmp_6_cfg_w, // @[TLB.scala:320:14]
input io_ptw_pmp_6_cfg_r, // @[TLB.scala:320:14]
input [29:0] io_ptw_pmp_6_addr, // @[TLB.scala:320:14]
input [31:0] io_ptw_pmp_6_mask, // @[TLB.scala:320:14]
input io_ptw_pmp_7_cfg_l, // @[TLB.scala:320:14]
input [1:0] io_ptw_pmp_7_cfg_a, // @[TLB.scala:320:14]
input io_ptw_pmp_7_cfg_x, // @[TLB.scala:320:14]
input io_ptw_pmp_7_cfg_w, // @[TLB.scala:320:14]
input io_ptw_pmp_7_cfg_r, // @[TLB.scala:320:14]
input [29:0] io_ptw_pmp_7_addr, // @[TLB.scala:320:14]
input [31:0] io_ptw_pmp_7_mask, // @[TLB.scala:320:14]
input io_ptw_customCSRs_csrs_0_ren, // @[TLB.scala:320:14]
input io_ptw_customCSRs_csrs_0_wen, // @[TLB.scala:320:14]
input [63:0] io_ptw_customCSRs_csrs_0_wdata, // @[TLB.scala:320:14]
input [63:0] io_ptw_customCSRs_csrs_0_value, // @[TLB.scala:320:14]
input io_ptw_customCSRs_csrs_1_ren, // @[TLB.scala:320:14]
input io_ptw_customCSRs_csrs_1_wen, // @[TLB.scala:320:14]
input [63:0] io_ptw_customCSRs_csrs_1_wdata, // @[TLB.scala:320:14]
input [63:0] io_ptw_customCSRs_csrs_1_value, // @[TLB.scala:320:14]
input io_ptw_customCSRs_csrs_2_ren, // @[TLB.scala:320:14]
input io_ptw_customCSRs_csrs_2_wen, // @[TLB.scala:320:14]
input [63:0] io_ptw_customCSRs_csrs_2_wdata, // @[TLB.scala:320:14]
input [63:0] io_ptw_customCSRs_csrs_2_value, // @[TLB.scala:320:14]
input io_ptw_customCSRs_csrs_3_ren, // @[TLB.scala:320:14]
input io_ptw_customCSRs_csrs_3_wen, // @[TLB.scala:320:14]
input [63:0] io_ptw_customCSRs_csrs_3_wdata, // @[TLB.scala:320:14]
input [63:0] io_ptw_customCSRs_csrs_3_value // @[TLB.scala:320:14]
);
wire [19:0] _entries_barrier_5_io_y_ppn; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_u; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_ae_ptw; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_ae_final; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_ae_stage2; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_pf; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_gf; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_sw; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_sx; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_sr; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_hw; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_hx; // @[package.scala:267:25]
wire _entries_barrier_5_io_y_hr; // @[package.scala:267:25]
wire [19:0] _entries_barrier_4_io_y_ppn; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_u; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_ae_ptw; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_ae_final; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_ae_stage2; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_pf; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_gf; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_sw; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_sx; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_sr; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_hw; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_hx; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_hr; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_pw; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_px; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_pr; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_ppp; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_pal; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_paa; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_eff; // @[package.scala:267:25]
wire _entries_barrier_4_io_y_c; // @[package.scala:267:25]
wire [19:0] _entries_barrier_3_io_y_ppn; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_u; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_ae_ptw; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_ae_final; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_ae_stage2; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_pf; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_gf; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_sw; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_sx; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_sr; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_hw; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_hx; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_hr; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_pw; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_px; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_pr; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_ppp; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_pal; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_paa; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_eff; // @[package.scala:267:25]
wire _entries_barrier_3_io_y_c; // @[package.scala:267:25]
wire [19:0] _entries_barrier_2_io_y_ppn; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_u; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_ae_ptw; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_ae_final; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_ae_stage2; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_pf; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_gf; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_sw; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_sx; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_sr; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_hw; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_hx; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_hr; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_pw; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_px; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_pr; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_ppp; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_pal; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_paa; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_eff; // @[package.scala:267:25]
wire _entries_barrier_2_io_y_c; // @[package.scala:267:25]
wire [19:0] _entries_barrier_1_io_y_ppn; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_u; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_ae_ptw; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_ae_final; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_ae_stage2; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_pf; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_gf; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_sw; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_sx; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_sr; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_hw; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_hx; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_hr; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_pw; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_px; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_pr; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_ppp; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_pal; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_paa; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_eff; // @[package.scala:267:25]
wire _entries_barrier_1_io_y_c; // @[package.scala:267:25]
wire [19:0] _entries_barrier_io_y_ppn; // @[package.scala:267:25]
wire _entries_barrier_io_y_u; // @[package.scala:267:25]
wire _entries_barrier_io_y_ae_ptw; // @[package.scala:267:25]
wire _entries_barrier_io_y_ae_final; // @[package.scala:267:25]
wire _entries_barrier_io_y_ae_stage2; // @[package.scala:267:25]
wire _entries_barrier_io_y_pf; // @[package.scala:267:25]
wire _entries_barrier_io_y_gf; // @[package.scala:267:25]
wire _entries_barrier_io_y_sw; // @[package.scala:267:25]
wire _entries_barrier_io_y_sx; // @[package.scala:267:25]
wire _entries_barrier_io_y_sr; // @[package.scala:267:25]
wire _entries_barrier_io_y_hw; // @[package.scala:267:25]
wire _entries_barrier_io_y_hx; // @[package.scala:267:25]
wire _entries_barrier_io_y_hr; // @[package.scala:267:25]
wire _entries_barrier_io_y_pw; // @[package.scala:267:25]
wire _entries_barrier_io_y_px; // @[package.scala:267:25]
wire _entries_barrier_io_y_pr; // @[package.scala:267:25]
wire _entries_barrier_io_y_ppp; // @[package.scala:267:25]
wire _entries_barrier_io_y_pal; // @[package.scala:267:25]
wire _entries_barrier_io_y_paa; // @[package.scala:267:25]
wire _entries_barrier_io_y_eff; // @[package.scala:267:25]
wire _entries_barrier_io_y_c; // @[package.scala:267:25]
wire _pma_io_resp_r; // @[TLB.scala:422:19]
wire _pma_io_resp_w; // @[TLB.scala:422:19]
wire _pma_io_resp_pp; // @[TLB.scala:422:19]
wire _pma_io_resp_al; // @[TLB.scala:422:19]
wire _pma_io_resp_aa; // @[TLB.scala:422:19]
wire _pma_io_resp_x; // @[TLB.scala:422:19]
wire _pma_io_resp_eff; // @[TLB.scala:422:19]
wire _pmp_io_r; // @[TLB.scala:416:19]
wire _pmp_io_w; // @[TLB.scala:416:19]
wire _pmp_io_x; // @[TLB.scala:416:19]
wire [19:0] _mpu_ppn_barrier_io_y_ppn; // @[package.scala:267:25]
wire io_req_valid_0 = io_req_valid; // @[TLB.scala:318:7]
wire [39:0] io_req_bits_vaddr_0 = io_req_bits_vaddr; // @[TLB.scala:318:7]
wire [1:0] io_req_bits_size_0 = io_req_bits_size; // @[TLB.scala:318:7]
wire io_sfence_valid_0 = io_sfence_valid; // @[TLB.scala:318:7]
wire io_ptw_req_ready_0 = io_ptw_req_ready; // @[TLB.scala:318:7]
wire io_ptw_resp_valid_0 = io_ptw_resp_valid; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_ae_ptw_0 = io_ptw_resp_bits_ae_ptw; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_ae_final_0 = io_ptw_resp_bits_ae_final; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_pf_0 = io_ptw_resp_bits_pf; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_gf_0 = io_ptw_resp_bits_gf; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_hr_0 = io_ptw_resp_bits_hr; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_hw_0 = io_ptw_resp_bits_hw; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_hx_0 = io_ptw_resp_bits_hx; // @[TLB.scala:318:7]
wire [9:0] io_ptw_resp_bits_pte_reserved_for_future_0 = io_ptw_resp_bits_pte_reserved_for_future; // @[TLB.scala:318:7]
wire [43:0] io_ptw_resp_bits_pte_ppn_0 = io_ptw_resp_bits_pte_ppn; // @[TLB.scala:318:7]
wire [1:0] io_ptw_resp_bits_pte_reserved_for_software_0 = io_ptw_resp_bits_pte_reserved_for_software; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_pte_d_0 = io_ptw_resp_bits_pte_d; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_pte_a_0 = io_ptw_resp_bits_pte_a; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_pte_g_0 = io_ptw_resp_bits_pte_g; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_pte_u_0 = io_ptw_resp_bits_pte_u; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_pte_x_0 = io_ptw_resp_bits_pte_x; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_pte_w_0 = io_ptw_resp_bits_pte_w; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_pte_r_0 = io_ptw_resp_bits_pte_r; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_pte_v_0 = io_ptw_resp_bits_pte_v; // @[TLB.scala:318:7]
wire [1:0] io_ptw_resp_bits_level_0 = io_ptw_resp_bits_level; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_homogeneous_0 = io_ptw_resp_bits_homogeneous; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_gpa_valid_0 = io_ptw_resp_bits_gpa_valid; // @[TLB.scala:318:7]
wire [38:0] io_ptw_resp_bits_gpa_bits_0 = io_ptw_resp_bits_gpa_bits; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_gpa_is_pte_0 = io_ptw_resp_bits_gpa_is_pte; // @[TLB.scala:318:7]
wire [3:0] io_ptw_ptbr_mode_0 = io_ptw_ptbr_mode; // @[TLB.scala:318:7]
wire [43:0] io_ptw_ptbr_ppn_0 = io_ptw_ptbr_ppn; // @[TLB.scala:318:7]
wire io_ptw_status_debug_0 = io_ptw_status_debug; // @[TLB.scala:318:7]
wire io_ptw_status_cease_0 = io_ptw_status_cease; // @[TLB.scala:318:7]
wire io_ptw_status_wfi_0 = io_ptw_status_wfi; // @[TLB.scala:318:7]
wire [31:0] io_ptw_status_isa_0 = io_ptw_status_isa; // @[TLB.scala:318:7]
wire [1:0] io_ptw_status_dprv_0 = io_ptw_status_dprv; // @[TLB.scala:318:7]
wire io_ptw_status_dv_0 = io_ptw_status_dv; // @[TLB.scala:318:7]
wire [1:0] io_ptw_status_prv_0 = io_ptw_status_prv; // @[TLB.scala:318:7]
wire io_ptw_status_v_0 = io_ptw_status_v; // @[TLB.scala:318:7]
wire io_ptw_status_sd_0 = io_ptw_status_sd; // @[TLB.scala:318:7]
wire [22:0] io_ptw_status_zero2_0 = io_ptw_status_zero2; // @[TLB.scala:318:7]
wire io_ptw_status_mpv_0 = io_ptw_status_mpv; // @[TLB.scala:318:7]
wire io_ptw_status_gva_0 = io_ptw_status_gva; // @[TLB.scala:318:7]
wire io_ptw_status_mbe_0 = io_ptw_status_mbe; // @[TLB.scala:318:7]
wire io_ptw_status_sbe_0 = io_ptw_status_sbe; // @[TLB.scala:318:7]
wire [1:0] io_ptw_status_sxl_0 = io_ptw_status_sxl; // @[TLB.scala:318:7]
wire [1:0] io_ptw_status_uxl_0 = io_ptw_status_uxl; // @[TLB.scala:318:7]
wire io_ptw_status_sd_rv32_0 = io_ptw_status_sd_rv32; // @[TLB.scala:318:7]
wire [7:0] io_ptw_status_zero1_0 = io_ptw_status_zero1; // @[TLB.scala:318:7]
wire io_ptw_status_tsr_0 = io_ptw_status_tsr; // @[TLB.scala:318:7]
wire io_ptw_status_tw_0 = io_ptw_status_tw; // @[TLB.scala:318:7]
wire io_ptw_status_tvm_0 = io_ptw_status_tvm; // @[TLB.scala:318:7]
wire io_ptw_status_mxr_0 = io_ptw_status_mxr; // @[TLB.scala:318:7]
wire io_ptw_status_sum_0 = io_ptw_status_sum; // @[TLB.scala:318:7]
wire io_ptw_status_mprv_0 = io_ptw_status_mprv; // @[TLB.scala:318:7]
wire [1:0] io_ptw_status_xs_0 = io_ptw_status_xs; // @[TLB.scala:318:7]
wire [1:0] io_ptw_status_fs_0 = io_ptw_status_fs; // @[TLB.scala:318:7]
wire [1:0] io_ptw_status_mpp_0 = io_ptw_status_mpp; // @[TLB.scala:318:7]
wire [1:0] io_ptw_status_vs_0 = io_ptw_status_vs; // @[TLB.scala:318:7]
wire io_ptw_status_spp_0 = io_ptw_status_spp; // @[TLB.scala:318:7]
wire io_ptw_status_mpie_0 = io_ptw_status_mpie; // @[TLB.scala:318:7]
wire io_ptw_status_ube_0 = io_ptw_status_ube; // @[TLB.scala:318:7]
wire io_ptw_status_spie_0 = io_ptw_status_spie; // @[TLB.scala:318:7]
wire io_ptw_status_upie_0 = io_ptw_status_upie; // @[TLB.scala:318:7]
wire io_ptw_status_mie_0 = io_ptw_status_mie; // @[TLB.scala:318:7]
wire io_ptw_status_hie_0 = io_ptw_status_hie; // @[TLB.scala:318:7]
wire io_ptw_status_sie_0 = io_ptw_status_sie; // @[TLB.scala:318:7]
wire io_ptw_status_uie_0 = io_ptw_status_uie; // @[TLB.scala:318:7]
wire io_ptw_hstatus_spvp_0 = io_ptw_hstatus_spvp; // @[TLB.scala:318:7]
wire io_ptw_hstatus_spv_0 = io_ptw_hstatus_spv; // @[TLB.scala:318:7]
wire io_ptw_hstatus_gva_0 = io_ptw_hstatus_gva; // @[TLB.scala:318:7]
wire io_ptw_gstatus_debug_0 = io_ptw_gstatus_debug; // @[TLB.scala:318:7]
wire io_ptw_gstatus_cease_0 = io_ptw_gstatus_cease; // @[TLB.scala:318:7]
wire io_ptw_gstatus_wfi_0 = io_ptw_gstatus_wfi; // @[TLB.scala:318:7]
wire [31:0] io_ptw_gstatus_isa_0 = io_ptw_gstatus_isa; // @[TLB.scala:318:7]
wire [1:0] io_ptw_gstatus_dprv_0 = io_ptw_gstatus_dprv; // @[TLB.scala:318:7]
wire io_ptw_gstatus_dv_0 = io_ptw_gstatus_dv; // @[TLB.scala:318:7]
wire [1:0] io_ptw_gstatus_prv_0 = io_ptw_gstatus_prv; // @[TLB.scala:318:7]
wire io_ptw_gstatus_v_0 = io_ptw_gstatus_v; // @[TLB.scala:318:7]
wire [22:0] io_ptw_gstatus_zero2_0 = io_ptw_gstatus_zero2; // @[TLB.scala:318:7]
wire io_ptw_gstatus_mpv_0 = io_ptw_gstatus_mpv; // @[TLB.scala:318:7]
wire io_ptw_gstatus_gva_0 = io_ptw_gstatus_gva; // @[TLB.scala:318:7]
wire io_ptw_gstatus_mbe_0 = io_ptw_gstatus_mbe; // @[TLB.scala:318:7]
wire io_ptw_gstatus_sbe_0 = io_ptw_gstatus_sbe; // @[TLB.scala:318:7]
wire [1:0] io_ptw_gstatus_sxl_0 = io_ptw_gstatus_sxl; // @[TLB.scala:318:7]
wire [7:0] io_ptw_gstatus_zero1_0 = io_ptw_gstatus_zero1; // @[TLB.scala:318:7]
wire io_ptw_gstatus_tsr_0 = io_ptw_gstatus_tsr; // @[TLB.scala:318:7]
wire io_ptw_gstatus_tw_0 = io_ptw_gstatus_tw; // @[TLB.scala:318:7]
wire io_ptw_gstatus_tvm_0 = io_ptw_gstatus_tvm; // @[TLB.scala:318:7]
wire io_ptw_gstatus_mxr_0 = io_ptw_gstatus_mxr; // @[TLB.scala:318:7]
wire io_ptw_gstatus_sum_0 = io_ptw_gstatus_sum; // @[TLB.scala:318:7]
wire io_ptw_gstatus_mprv_0 = io_ptw_gstatus_mprv; // @[TLB.scala:318:7]
wire [1:0] io_ptw_gstatus_fs_0 = io_ptw_gstatus_fs; // @[TLB.scala:318:7]
wire [1:0] io_ptw_gstatus_mpp_0 = io_ptw_gstatus_mpp; // @[TLB.scala:318:7]
wire [1:0] io_ptw_gstatus_vs_0 = io_ptw_gstatus_vs; // @[TLB.scala:318:7]
wire io_ptw_gstatus_spp_0 = io_ptw_gstatus_spp; // @[TLB.scala:318:7]
wire io_ptw_gstatus_mpie_0 = io_ptw_gstatus_mpie; // @[TLB.scala:318:7]
wire io_ptw_gstatus_ube_0 = io_ptw_gstatus_ube; // @[TLB.scala:318:7]
wire io_ptw_gstatus_spie_0 = io_ptw_gstatus_spie; // @[TLB.scala:318:7]
wire io_ptw_gstatus_upie_0 = io_ptw_gstatus_upie; // @[TLB.scala:318:7]
wire io_ptw_gstatus_mie_0 = io_ptw_gstatus_mie; // @[TLB.scala:318:7]
wire io_ptw_gstatus_hie_0 = io_ptw_gstatus_hie; // @[TLB.scala:318:7]
wire io_ptw_gstatus_sie_0 = io_ptw_gstatus_sie; // @[TLB.scala:318:7]
wire io_ptw_gstatus_uie_0 = io_ptw_gstatus_uie; // @[TLB.scala:318:7]
wire io_ptw_pmp_0_cfg_l_0 = io_ptw_pmp_0_cfg_l; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_0_cfg_a_0 = io_ptw_pmp_0_cfg_a; // @[TLB.scala:318:7]
wire io_ptw_pmp_0_cfg_x_0 = io_ptw_pmp_0_cfg_x; // @[TLB.scala:318:7]
wire io_ptw_pmp_0_cfg_w_0 = io_ptw_pmp_0_cfg_w; // @[TLB.scala:318:7]
wire io_ptw_pmp_0_cfg_r_0 = io_ptw_pmp_0_cfg_r; // @[TLB.scala:318:7]
wire [29:0] io_ptw_pmp_0_addr_0 = io_ptw_pmp_0_addr; // @[TLB.scala:318:7]
wire [31:0] io_ptw_pmp_0_mask_0 = io_ptw_pmp_0_mask; // @[TLB.scala:318:7]
wire io_ptw_pmp_1_cfg_l_0 = io_ptw_pmp_1_cfg_l; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_1_cfg_a_0 = io_ptw_pmp_1_cfg_a; // @[TLB.scala:318:7]
wire io_ptw_pmp_1_cfg_x_0 = io_ptw_pmp_1_cfg_x; // @[TLB.scala:318:7]
wire io_ptw_pmp_1_cfg_w_0 = io_ptw_pmp_1_cfg_w; // @[TLB.scala:318:7]
wire io_ptw_pmp_1_cfg_r_0 = io_ptw_pmp_1_cfg_r; // @[TLB.scala:318:7]
wire [29:0] io_ptw_pmp_1_addr_0 = io_ptw_pmp_1_addr; // @[TLB.scala:318:7]
wire [31:0] io_ptw_pmp_1_mask_0 = io_ptw_pmp_1_mask; // @[TLB.scala:318:7]
wire io_ptw_pmp_2_cfg_l_0 = io_ptw_pmp_2_cfg_l; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_2_cfg_a_0 = io_ptw_pmp_2_cfg_a; // @[TLB.scala:318:7]
wire io_ptw_pmp_2_cfg_x_0 = io_ptw_pmp_2_cfg_x; // @[TLB.scala:318:7]
wire io_ptw_pmp_2_cfg_w_0 = io_ptw_pmp_2_cfg_w; // @[TLB.scala:318:7]
wire io_ptw_pmp_2_cfg_r_0 = io_ptw_pmp_2_cfg_r; // @[TLB.scala:318:7]
wire [29:0] io_ptw_pmp_2_addr_0 = io_ptw_pmp_2_addr; // @[TLB.scala:318:7]
wire [31:0] io_ptw_pmp_2_mask_0 = io_ptw_pmp_2_mask; // @[TLB.scala:318:7]
wire io_ptw_pmp_3_cfg_l_0 = io_ptw_pmp_3_cfg_l; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_3_cfg_a_0 = io_ptw_pmp_3_cfg_a; // @[TLB.scala:318:7]
wire io_ptw_pmp_3_cfg_x_0 = io_ptw_pmp_3_cfg_x; // @[TLB.scala:318:7]
wire io_ptw_pmp_3_cfg_w_0 = io_ptw_pmp_3_cfg_w; // @[TLB.scala:318:7]
wire io_ptw_pmp_3_cfg_r_0 = io_ptw_pmp_3_cfg_r; // @[TLB.scala:318:7]
wire [29:0] io_ptw_pmp_3_addr_0 = io_ptw_pmp_3_addr; // @[TLB.scala:318:7]
wire [31:0] io_ptw_pmp_3_mask_0 = io_ptw_pmp_3_mask; // @[TLB.scala:318:7]
wire io_ptw_pmp_4_cfg_l_0 = io_ptw_pmp_4_cfg_l; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_4_cfg_a_0 = io_ptw_pmp_4_cfg_a; // @[TLB.scala:318:7]
wire io_ptw_pmp_4_cfg_x_0 = io_ptw_pmp_4_cfg_x; // @[TLB.scala:318:7]
wire io_ptw_pmp_4_cfg_w_0 = io_ptw_pmp_4_cfg_w; // @[TLB.scala:318:7]
wire io_ptw_pmp_4_cfg_r_0 = io_ptw_pmp_4_cfg_r; // @[TLB.scala:318:7]
wire [29:0] io_ptw_pmp_4_addr_0 = io_ptw_pmp_4_addr; // @[TLB.scala:318:7]
wire [31:0] io_ptw_pmp_4_mask_0 = io_ptw_pmp_4_mask; // @[TLB.scala:318:7]
wire io_ptw_pmp_5_cfg_l_0 = io_ptw_pmp_5_cfg_l; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_5_cfg_a_0 = io_ptw_pmp_5_cfg_a; // @[TLB.scala:318:7]
wire io_ptw_pmp_5_cfg_x_0 = io_ptw_pmp_5_cfg_x; // @[TLB.scala:318:7]
wire io_ptw_pmp_5_cfg_w_0 = io_ptw_pmp_5_cfg_w; // @[TLB.scala:318:7]
wire io_ptw_pmp_5_cfg_r_0 = io_ptw_pmp_5_cfg_r; // @[TLB.scala:318:7]
wire [29:0] io_ptw_pmp_5_addr_0 = io_ptw_pmp_5_addr; // @[TLB.scala:318:7]
wire [31:0] io_ptw_pmp_5_mask_0 = io_ptw_pmp_5_mask; // @[TLB.scala:318:7]
wire io_ptw_pmp_6_cfg_l_0 = io_ptw_pmp_6_cfg_l; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_6_cfg_a_0 = io_ptw_pmp_6_cfg_a; // @[TLB.scala:318:7]
wire io_ptw_pmp_6_cfg_x_0 = io_ptw_pmp_6_cfg_x; // @[TLB.scala:318:7]
wire io_ptw_pmp_6_cfg_w_0 = io_ptw_pmp_6_cfg_w; // @[TLB.scala:318:7]
wire io_ptw_pmp_6_cfg_r_0 = io_ptw_pmp_6_cfg_r; // @[TLB.scala:318:7]
wire [29:0] io_ptw_pmp_6_addr_0 = io_ptw_pmp_6_addr; // @[TLB.scala:318:7]
wire [31:0] io_ptw_pmp_6_mask_0 = io_ptw_pmp_6_mask; // @[TLB.scala:318:7]
wire io_ptw_pmp_7_cfg_l_0 = io_ptw_pmp_7_cfg_l; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_7_cfg_a_0 = io_ptw_pmp_7_cfg_a; // @[TLB.scala:318:7]
wire io_ptw_pmp_7_cfg_x_0 = io_ptw_pmp_7_cfg_x; // @[TLB.scala:318:7]
wire io_ptw_pmp_7_cfg_w_0 = io_ptw_pmp_7_cfg_w; // @[TLB.scala:318:7]
wire io_ptw_pmp_7_cfg_r_0 = io_ptw_pmp_7_cfg_r; // @[TLB.scala:318:7]
wire [29:0] io_ptw_pmp_7_addr_0 = io_ptw_pmp_7_addr; // @[TLB.scala:318:7]
wire [31:0] io_ptw_pmp_7_mask_0 = io_ptw_pmp_7_mask; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_0_ren_0 = io_ptw_customCSRs_csrs_0_ren; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_0_wen_0 = io_ptw_customCSRs_csrs_0_wen; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_0_wdata_0 = io_ptw_customCSRs_csrs_0_wdata; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_0_value_0 = io_ptw_customCSRs_csrs_0_value; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_1_ren_0 = io_ptw_customCSRs_csrs_1_ren; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_1_wen_0 = io_ptw_customCSRs_csrs_1_wen; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_1_wdata_0 = io_ptw_customCSRs_csrs_1_wdata; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_1_value_0 = io_ptw_customCSRs_csrs_1_value; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_2_ren_0 = io_ptw_customCSRs_csrs_2_ren; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_2_wen_0 = io_ptw_customCSRs_csrs_2_wen; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_2_wdata_0 = io_ptw_customCSRs_csrs_2_wdata; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_2_value_0 = io_ptw_customCSRs_csrs_2_value; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_3_ren_0 = io_ptw_customCSRs_csrs_3_ren; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_3_wen_0 = io_ptw_customCSRs_csrs_3_wen; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_3_wdata_0 = io_ptw_customCSRs_csrs_3_wdata; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_3_value_0 = io_ptw_customCSRs_csrs_3_value; // @[TLB.scala:318:7]
wire [6:0] hr_array = 7'h7F; // @[TLB.scala:524:21]
wire [6:0] hw_array = 7'h7F; // @[TLB.scala:525:21]
wire [6:0] hx_array = 7'h7F; // @[TLB.scala:526:21]
wire [6:0] _must_alloc_array_T_8 = 7'h7F; // @[TLB.scala:596:19]
wire [6:0] _gf_ld_array_T_1 = 7'h7F; // @[TLB.scala:600:50]
wire [5:0] stage2_bypass = 6'h3F; // @[TLB.scala:523:27]
wire [5:0] _hr_array_T_4 = 6'h3F; // @[TLB.scala:524:111]
wire [5:0] _hw_array_T_1 = 6'h3F; // @[TLB.scala:525:55]
wire [5:0] _hx_array_T_1 = 6'h3F; // @[TLB.scala:526:55]
wire [5:0] _gpa_hits_hit_mask_T_4 = 6'h3F; // @[TLB.scala:606:88]
wire [5:0] gpa_hits_hit_mask = 6'h3F; // @[TLB.scala:606:82]
wire [5:0] _gpa_hits_T_1 = 6'h3F; // @[TLB.scala:607:16]
wire [5:0] gpa_hits = 6'h3F; // @[TLB.scala:607:14]
wire [2:0] _state_vec_WIRE_0 = 3'h0; // @[Replacement.scala:305:25]
wire [2:0] _state_vec_WIRE_1 = 3'h0; // @[Replacement.scala:305:25]
wire [2:0] _state_vec_WIRE_2 = 3'h0; // @[Replacement.scala:305:25]
wire [2:0] _state_vec_WIRE_3 = 3'h0; // @[Replacement.scala:305:25]
wire [6:0] _ae_array_T_2 = 7'h0; // @[TLB.scala:583:8]
wire [6:0] ae_ld_array = 7'h0; // @[TLB.scala:586:24]
wire [6:0] _ae_st_array_T_4 = 7'h0; // @[TLB.scala:589:8]
wire [6:0] _ae_st_array_T_7 = 7'h0; // @[TLB.scala:590:8]
wire [6:0] _ae_st_array_T_10 = 7'h0; // @[TLB.scala:591:8]
wire [6:0] _must_alloc_array_T_1 = 7'h0; // @[TLB.scala:593:8]
wire [6:0] _must_alloc_array_T_3 = 7'h0; // @[TLB.scala:594:8]
wire [6:0] _must_alloc_array_T_4 = 7'h0; // @[TLB.scala:593:43]
wire [6:0] _must_alloc_array_T_6 = 7'h0; // @[TLB.scala:595:8]
wire [6:0] _must_alloc_array_T_7 = 7'h0; // @[TLB.scala:594:43]
wire [6:0] _must_alloc_array_T_9 = 7'h0; // @[TLB.scala:596:8]
wire [6:0] must_alloc_array = 7'h0; // @[TLB.scala:595:46]
wire [6:0] pf_ld_array = 7'h0; // @[TLB.scala:597:24]
wire [6:0] _gf_ld_array_T_2 = 7'h0; // @[TLB.scala:600:46]
wire [6:0] gf_ld_array = 7'h0; // @[TLB.scala:600:24]
wire [6:0] _gf_st_array_T_1 = 7'h0; // @[TLB.scala:601:53]
wire [6:0] gf_st_array = 7'h0; // @[TLB.scala:601:24]
wire [6:0] _gf_inst_array_T = 7'h0; // @[TLB.scala:602:36]
wire [6:0] gf_inst_array = 7'h0; // @[TLB.scala:602:26]
wire [6:0] gpa_hits_need_gpa_mask = 7'h0; // @[TLB.scala:605:73]
wire [6:0] _io_resp_pf_ld_T_1 = 7'h0; // @[TLB.scala:633:57]
wire [6:0] _io_resp_gf_ld_T_1 = 7'h0; // @[TLB.scala:637:58]
wire [6:0] _io_resp_gf_st_T_1 = 7'h0; // @[TLB.scala:638:65]
wire [6:0] _io_resp_gf_inst_T = 7'h0; // @[TLB.scala:639:48]
wire [6:0] _io_resp_ae_ld_T = 7'h0; // @[TLB.scala:641:33]
wire [6:0] _io_resp_must_alloc_T = 7'h0; // @[TLB.scala:649:43]
wire [63:0] io_ptw_customCSRs_csrs_0_sdata = 64'h0; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_1_sdata = 64'h0; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_2_sdata = 64'h0; // @[TLB.scala:318:7]
wire [63:0] io_ptw_customCSRs_csrs_3_sdata = 64'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_hstatus_vsxl = 2'h2; // @[TLB.scala:318:7]
wire [1:0] io_ptw_gstatus_uxl = 2'h2; // @[TLB.scala:318:7]
wire [38:0] io_sfence_bits_addr = 39'h0; // @[TLB.scala:318:7, :320:14]
wire [4:0] io_req_bits_cmd = 5'h1; // @[TLB.scala:318:7, :320:14]
wire [4:0] io_resp_cmd = 5'h1; // @[TLB.scala:318:7, :320:14]
wire [1:0] io_ptw_gstatus_xs = 2'h3; // @[TLB.scala:318:7]
wire io_ptw_req_bits_valid = 1'h1; // @[TLB.scala:318:7]
wire io_ptw_gstatus_sd = 1'h1; // @[TLB.scala:318:7]
wire priv_uses_vm = 1'h1; // @[TLB.scala:372:27]
wire _vm_enabled_T_2 = 1'h1; // @[TLB.scala:399:64]
wire _vsatp_mode_mismatch_T_2 = 1'h1; // @[TLB.scala:403:81]
wire _homogeneous_T_59 = 1'h1; // @[TLBPermissions.scala:87:22]
wire superpage_hits_ignore_2 = 1'h1; // @[TLB.scala:182:34]
wire _superpage_hits_T_13 = 1'h1; // @[TLB.scala:183:40]
wire hitsVec_ignore_2 = 1'h1; // @[TLB.scala:182:34]
wire _hitsVec_T_37 = 1'h1; // @[TLB.scala:183:40]
wire ppn_ignore_1 = 1'h1; // @[TLB.scala:197:34]
wire _priv_rw_ok_T = 1'h1; // @[TLB.scala:513:24]
wire _priv_rw_ok_T_1 = 1'h1; // @[TLB.scala:513:32]
wire _stage2_bypass_T = 1'h1; // @[TLB.scala:523:42]
wire _bad_va_T_1 = 1'h1; // @[TLB.scala:560:26]
wire _cmd_write_T = 1'h1; // @[Consts.scala:90:32]
wire _cmd_write_T_2 = 1'h1; // @[Consts.scala:90:42]
wire _cmd_write_T_4 = 1'h1; // @[Consts.scala:90:59]
wire cmd_write = 1'h1; // @[Consts.scala:90:76]
wire cmd_write_perms = 1'h1; // @[TLB.scala:577:35]
wire _gpa_hits_hit_mask_T_3 = 1'h1; // @[TLB.scala:606:107]
wire _tlb_miss_T = 1'h1; // @[TLB.scala:613:32]
wire _io_resp_gpa_page_T = 1'h1; // @[TLB.scala:657:20]
wire _io_ptw_req_bits_valid_T = 1'h1; // @[TLB.scala:663:28]
wire ignore_2 = 1'h1; // @[TLB.scala:182:34]
wire [4:0] io_ptw_hstatus_zero1 = 5'h0; // @[TLB.scala:318:7]
wire [5:0] io_ptw_hstatus_vgein = 6'h0; // @[TLB.scala:318:7]
wire [5:0] _priv_rw_ok_T_6 = 6'h0; // @[TLB.scala:513:75]
wire [5:0] _stage1_bypass_T = 6'h0; // @[TLB.scala:517:27]
wire [5:0] stage1_bypass = 6'h0; // @[TLB.scala:517:61]
wire [5:0] _gpa_hits_T = 6'h0; // @[TLB.scala:607:30]
wire [1:0] io_req_bits_prv = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_hstatus_zero3 = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_hstatus_zero2 = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_0_cfg_res = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_1_cfg_res = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_2_cfg_res = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_3_cfg_res = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_4_cfg_res = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_5_cfg_res = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_6_cfg_res = 2'h0; // @[TLB.scala:318:7]
wire [1:0] io_ptw_pmp_7_cfg_res = 2'h0; // @[TLB.scala:318:7]
wire [8:0] io_ptw_hstatus_zero5 = 9'h0; // @[TLB.scala:318:7, :320:14]
wire [29:0] io_ptw_hstatus_zero6 = 30'h0; // @[TLB.scala:318:7, :320:14]
wire [43:0] io_ptw_hgatp_ppn = 44'h0; // @[TLB.scala:318:7, :320:14]
wire [43:0] io_ptw_vsatp_ppn = 44'h0; // @[TLB.scala:318:7, :320:14]
wire [3:0] io_ptw_hgatp_mode = 4'h0; // @[TLB.scala:318:7, :320:14]
wire [3:0] io_ptw_vsatp_mode = 4'h0; // @[TLB.scala:318:7, :320:14]
wire [15:0] io_ptw_ptbr_asid = 16'h0; // @[TLB.scala:318:7, :320:14, :373:17]
wire [15:0] io_ptw_hgatp_asid = 16'h0; // @[TLB.scala:318:7, :320:14, :373:17]
wire [15:0] io_ptw_vsatp_asid = 16'h0; // @[TLB.scala:318:7, :320:14, :373:17]
wire [15:0] satp_asid = 16'h0; // @[TLB.scala:318:7, :320:14, :373:17]
wire io_req_bits_passthrough = 1'h0; // @[TLB.scala:318:7]
wire io_req_bits_v = 1'h0; // @[TLB.scala:318:7]
wire io_resp_gpa_is_pte = 1'h0; // @[TLB.scala:318:7]
wire io_resp_pf_ld = 1'h0; // @[TLB.scala:318:7]
wire io_resp_gf_ld = 1'h0; // @[TLB.scala:318:7]
wire io_resp_gf_st = 1'h0; // @[TLB.scala:318:7]
wire io_resp_gf_inst = 1'h0; // @[TLB.scala:318:7]
wire io_resp_ae_ld = 1'h0; // @[TLB.scala:318:7]
wire io_resp_ma_ld = 1'h0; // @[TLB.scala:318:7]
wire io_resp_ma_inst = 1'h0; // @[TLB.scala:318:7]
wire io_resp_must_alloc = 1'h0; // @[TLB.scala:318:7]
wire io_sfence_bits_rs1 = 1'h0; // @[TLB.scala:318:7]
wire io_sfence_bits_rs2 = 1'h0; // @[TLB.scala:318:7]
wire io_sfence_bits_asid = 1'h0; // @[TLB.scala:318:7]
wire io_sfence_bits_hv = 1'h0; // @[TLB.scala:318:7]
wire io_sfence_bits_hg = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_req_bits_bits_vstage1 = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_req_bits_bits_stage2 = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_resp_bits_fragmented_superpage = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_hstatus_vtsr = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_hstatus_vtw = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_hstatus_vtvm = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_hstatus_hu = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_hstatus_vsbe = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_gstatus_sd_rv32 = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_0_stall = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_0_set = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_1_stall = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_1_set = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_2_stall = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_2_set = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_3_stall = 1'h0; // @[TLB.scala:318:7]
wire io_ptw_customCSRs_csrs_3_set = 1'h0; // @[TLB.scala:318:7]
wire io_kill = 1'h0; // @[TLB.scala:318:7]
wire priv_v = 1'h0; // @[TLB.scala:369:34]
wire priv_s = 1'h0; // @[TLB.scala:370:20]
wire _vstage1_en_T = 1'h0; // @[TLB.scala:376:38]
wire _vstage1_en_T_1 = 1'h0; // @[TLB.scala:376:68]
wire vstage1_en = 1'h0; // @[TLB.scala:376:48]
wire _stage2_en_T = 1'h0; // @[TLB.scala:378:38]
wire _stage2_en_T_1 = 1'h0; // @[TLB.scala:378:68]
wire stage2_en = 1'h0; // @[TLB.scala:378:48]
wire _vsatp_mode_mismatch_T = 1'h0; // @[TLB.scala:403:52]
wire _vsatp_mode_mismatch_T_1 = 1'h0; // @[TLB.scala:403:37]
wire vsatp_mode_mismatch = 1'h0; // @[TLB.scala:403:78]
wire _superpage_hits_ignore_T = 1'h0; // @[TLB.scala:182:28]
wire superpage_hits_ignore = 1'h0; // @[TLB.scala:182:34]
wire _hitsVec_ignore_T = 1'h0; // @[TLB.scala:182:28]
wire hitsVec_ignore = 1'h0; // @[TLB.scala:182:34]
wire _hitsVec_ignore_T_3 = 1'h0; // @[TLB.scala:182:28]
wire hitsVec_ignore_3 = 1'h0; // @[TLB.scala:182:34]
wire refill_v = 1'h0; // @[TLB.scala:448:33]
wire newEntry_ae_stage2 = 1'h0; // @[TLB.scala:449:24]
wire newEntry_fragmented_superpage = 1'h0; // @[TLB.scala:449:24]
wire _newEntry_ae_stage2_T_1 = 1'h0; // @[TLB.scala:456:84]
wire _waddr_T = 1'h0; // @[TLB.scala:477:45]
wire _mxr_T = 1'h0; // @[TLB.scala:518:36]
wire _cmd_lrsc_T = 1'h0; // @[package.scala:16:47]
wire _cmd_lrsc_T_1 = 1'h0; // @[package.scala:16:47]
wire _cmd_lrsc_T_2 = 1'h0; // @[package.scala:81:59]
wire cmd_lrsc = 1'h0; // @[TLB.scala:570:33]
wire _cmd_amo_logical_T = 1'h0; // @[package.scala:16:47]
wire _cmd_amo_logical_T_1 = 1'h0; // @[package.scala:16:47]
wire _cmd_amo_logical_T_2 = 1'h0; // @[package.scala:16:47]
wire _cmd_amo_logical_T_3 = 1'h0; // @[package.scala:16:47]
wire _cmd_amo_logical_T_4 = 1'h0; // @[package.scala:81:59]
wire _cmd_amo_logical_T_5 = 1'h0; // @[package.scala:81:59]
wire _cmd_amo_logical_T_6 = 1'h0; // @[package.scala:81:59]
wire cmd_amo_logical = 1'h0; // @[TLB.scala:571:40]
wire _cmd_amo_arithmetic_T = 1'h0; // @[package.scala:16:47]
wire _cmd_amo_arithmetic_T_1 = 1'h0; // @[package.scala:16:47]
wire _cmd_amo_arithmetic_T_2 = 1'h0; // @[package.scala:16:47]
wire _cmd_amo_arithmetic_T_3 = 1'h0; // @[package.scala:16:47]
wire _cmd_amo_arithmetic_T_4 = 1'h0; // @[package.scala:16:47]
wire _cmd_amo_arithmetic_T_5 = 1'h0; // @[package.scala:81:59]
wire _cmd_amo_arithmetic_T_6 = 1'h0; // @[package.scala:81:59]
wire _cmd_amo_arithmetic_T_7 = 1'h0; // @[package.scala:81:59]
wire _cmd_amo_arithmetic_T_8 = 1'h0; // @[package.scala:81:59]
wire cmd_amo_arithmetic = 1'h0; // @[TLB.scala:572:43]
wire cmd_put_partial = 1'h0; // @[TLB.scala:573:41]
wire _cmd_read_T = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_1 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_2 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_3 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_4 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_5 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_6 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_7 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_8 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_9 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_10 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_11 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_12 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_13 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_14 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_15 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_16 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_17 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_18 = 1'h0; // @[package.scala:16:47]
wire _cmd_read_T_19 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_20 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_21 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_22 = 1'h0; // @[package.scala:81:59]
wire _cmd_read_T_23 = 1'h0; // @[Consts.scala:87:44]
wire cmd_read = 1'h0; // @[Consts.scala:89:68]
wire _cmd_readx_T = 1'h0; // @[TLB.scala:575:56]
wire cmd_readx = 1'h0; // @[TLB.scala:575:37]
wire _cmd_write_T_1 = 1'h0; // @[Consts.scala:90:49]
wire _cmd_write_T_3 = 1'h0; // @[Consts.scala:90:66]
wire _cmd_write_T_5 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_T_6 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_T_7 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_T_8 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_T_9 = 1'h0; // @[package.scala:81:59]
wire _cmd_write_T_10 = 1'h0; // @[package.scala:81:59]
wire _cmd_write_T_11 = 1'h0; // @[package.scala:81:59]
wire _cmd_write_T_12 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_T_13 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_T_14 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_T_15 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_T_16 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_T_17 = 1'h0; // @[package.scala:81:59]
wire _cmd_write_T_18 = 1'h0; // @[package.scala:81:59]
wire _cmd_write_T_19 = 1'h0; // @[package.scala:81:59]
wire _cmd_write_T_20 = 1'h0; // @[package.scala:81:59]
wire _cmd_write_T_21 = 1'h0; // @[Consts.scala:87:44]
wire _cmd_write_perms_T = 1'h0; // @[package.scala:16:47]
wire _cmd_write_perms_T_1 = 1'h0; // @[package.scala:16:47]
wire _cmd_write_perms_T_2 = 1'h0; // @[package.scala:81:59]
wire _gf_ld_array_T = 1'h0; // @[TLB.scala:600:32]
wire _gf_st_array_T = 1'h0; // @[TLB.scala:601:32]
wire _multipleHits_T_5 = 1'h0; // @[Misc.scala:183:37]
wire _multipleHits_T_14 = 1'h0; // @[Misc.scala:183:37]
wire _io_req_ready_T; // @[TLB.scala:631:25]
wire _io_resp_pf_ld_T = 1'h0; // @[TLB.scala:633:28]
wire _io_resp_pf_ld_T_2 = 1'h0; // @[TLB.scala:633:65]
wire _io_resp_pf_ld_T_3 = 1'h0; // @[TLB.scala:633:41]
wire _io_resp_gf_ld_T = 1'h0; // @[TLB.scala:637:29]
wire _io_resp_gf_ld_T_2 = 1'h0; // @[TLB.scala:637:66]
wire _io_resp_gf_ld_T_3 = 1'h0; // @[TLB.scala:637:42]
wire _io_resp_gf_st_T = 1'h0; // @[TLB.scala:638:29]
wire _io_resp_gf_st_T_2 = 1'h0; // @[TLB.scala:638:73]
wire _io_resp_gf_st_T_3 = 1'h0; // @[TLB.scala:638:49]
wire _io_resp_gf_inst_T_1 = 1'h0; // @[TLB.scala:639:56]
wire _io_resp_gf_inst_T_2 = 1'h0; // @[TLB.scala:639:30]
wire _io_resp_ae_ld_T_1 = 1'h0; // @[TLB.scala:641:41]
wire _io_resp_ma_ld_T = 1'h0; // @[TLB.scala:645:31]
wire _io_resp_must_alloc_T_1 = 1'h0; // @[TLB.scala:649:51]
wire _io_resp_gpa_is_pte_T = 1'h0; // @[TLB.scala:655:36]
wire _r_superpage_repl_addr_T_3 = 1'h0; // @[TLB.scala:757:8]
wire hv = 1'h0; // @[TLB.scala:721:36]
wire hg = 1'h0; // @[TLB.scala:722:36]
wire hv_1 = 1'h0; // @[TLB.scala:721:36]
wire hg_1 = 1'h0; // @[TLB.scala:722:36]
wire hv_2 = 1'h0; // @[TLB.scala:721:36]
wire hg_2 = 1'h0; // @[TLB.scala:722:36]
wire hv_3 = 1'h0; // @[TLB.scala:721:36]
wire hg_3 = 1'h0; // @[TLB.scala:722:36]
wire hv_4 = 1'h0; // @[TLB.scala:721:36]
wire hg_4 = 1'h0; // @[TLB.scala:722:36]
wire hv_5 = 1'h0; // @[TLB.scala:721:36]
wire hg_5 = 1'h0; // @[TLB.scala:722:36]
wire hv_6 = 1'h0; // @[TLB.scala:721:36]
wire hg_6 = 1'h0; // @[TLB.scala:722:36]
wire hv_7 = 1'h0; // @[TLB.scala:721:36]
wire hg_7 = 1'h0; // @[TLB.scala:722:36]
wire hv_8 = 1'h0; // @[TLB.scala:721:36]
wire hg_8 = 1'h0; // @[TLB.scala:722:36]
wire hv_9 = 1'h0; // @[TLB.scala:721:36]
wire hg_9 = 1'h0; // @[TLB.scala:722:36]
wire hv_10 = 1'h0; // @[TLB.scala:721:36]
wire hg_10 = 1'h0; // @[TLB.scala:722:36]
wire hv_11 = 1'h0; // @[TLB.scala:721:36]
wire hg_11 = 1'h0; // @[TLB.scala:722:36]
wire hv_12 = 1'h0; // @[TLB.scala:721:36]
wire hg_12 = 1'h0; // @[TLB.scala:722:36]
wire hv_13 = 1'h0; // @[TLB.scala:721:36]
wire hg_13 = 1'h0; // @[TLB.scala:722:36]
wire hv_14 = 1'h0; // @[TLB.scala:721:36]
wire hg_14 = 1'h0; // @[TLB.scala:722:36]
wire hv_15 = 1'h0; // @[TLB.scala:721:36]
wire hg_15 = 1'h0; // @[TLB.scala:722:36]
wire hv_16 = 1'h0; // @[TLB.scala:721:36]
wire hg_16 = 1'h0; // @[TLB.scala:722:36]
wire _ignore_T = 1'h0; // @[TLB.scala:182:28]
wire ignore = 1'h0; // @[TLB.scala:182:34]
wire hv_17 = 1'h0; // @[TLB.scala:721:36]
wire hg_17 = 1'h0; // @[TLB.scala:722:36]
wire _ignore_T_3 = 1'h0; // @[TLB.scala:182:28]
wire ignore_3 = 1'h0; // @[TLB.scala:182:34]
wire [1:0] io_resp_size = io_req_bits_size_0; // @[TLB.scala:318:7]
wire _io_resp_miss_T_2; // @[TLB.scala:651:64]
wire [31:0] _io_resp_paddr_T_1; // @[TLB.scala:652:23]
wire [39:0] _io_resp_gpa_T; // @[TLB.scala:659:8]
wire _io_resp_pf_st_T_3; // @[TLB.scala:634:48]
wire _io_resp_pf_inst_T_2; // @[TLB.scala:635:29]
wire _io_resp_ae_st_T_1; // @[TLB.scala:642:41]
wire _io_resp_ae_inst_T_2; // @[TLB.scala:643:41]
wire _io_resp_ma_st_T; // @[TLB.scala:646:31]
wire _io_resp_cacheable_T_1; // @[TLB.scala:648:41]
wire _io_resp_prefetchable_T_2; // @[TLB.scala:650:59]
wire _io_ptw_req_valid_T; // @[TLB.scala:662:29]
wire do_refill = io_ptw_resp_valid_0; // @[TLB.scala:318:7, :408:29]
wire newEntry_ae_ptw = io_ptw_resp_bits_ae_ptw_0; // @[TLB.scala:318:7, :449:24]
wire newEntry_ae_final = io_ptw_resp_bits_ae_final_0; // @[TLB.scala:318:7, :449:24]
wire newEntry_pf = io_ptw_resp_bits_pf_0; // @[TLB.scala:318:7, :449:24]
wire newEntry_gf = io_ptw_resp_bits_gf_0; // @[TLB.scala:318:7, :449:24]
wire newEntry_hr = io_ptw_resp_bits_hr_0; // @[TLB.scala:318:7, :449:24]
wire newEntry_hw = io_ptw_resp_bits_hw_0; // @[TLB.scala:318:7, :449:24]
wire newEntry_hx = io_ptw_resp_bits_hx_0; // @[TLB.scala:318:7, :449:24]
wire newEntry_u = io_ptw_resp_bits_pte_u_0; // @[TLB.scala:318:7, :449:24]
wire [1:0] _special_entry_level_T = io_ptw_resp_bits_level_0; // @[package.scala:163:13]
wire [3:0] satp_mode = io_ptw_ptbr_mode_0; // @[TLB.scala:318:7, :373:17]
wire [43:0] satp_ppn = io_ptw_ptbr_ppn_0; // @[TLB.scala:318:7, :373:17]
wire mxr = io_ptw_status_mxr_0; // @[TLB.scala:318:7, :518:31]
wire sum = io_ptw_status_sum_0; // @[TLB.scala:318:7, :510:16]
wire io_req_ready_0; // @[TLB.scala:318:7]
wire io_resp_pf_st; // @[TLB.scala:318:7]
wire io_resp_pf_inst; // @[TLB.scala:318:7]
wire io_resp_ae_st; // @[TLB.scala:318:7]
wire io_resp_ae_inst; // @[TLB.scala:318:7]
wire io_resp_ma_st; // @[TLB.scala:318:7]
wire io_resp_miss_0; // @[TLB.scala:318:7]
wire [31:0] io_resp_paddr_0; // @[TLB.scala:318:7]
wire [39:0] io_resp_gpa; // @[TLB.scala:318:7]
wire io_resp_cacheable; // @[TLB.scala:318:7]
wire io_resp_prefetchable; // @[TLB.scala:318:7]
wire [26:0] io_ptw_req_bits_bits_addr_0; // @[TLB.scala:318:7]
wire io_ptw_req_bits_bits_need_gpa_0; // @[TLB.scala:318:7]
wire io_ptw_req_valid_0; // @[TLB.scala:318:7]
wire [26:0] vpn = io_req_bits_vaddr_0[38:12]; // @[TLB.scala:318:7, :335:30]
wire [26:0] _ppn_T_5 = vpn; // @[TLB.scala:198:28, :335:30]
wire [1:0] memIdx = vpn[1:0]; // @[package.scala:163:13]
reg [1:0] sectored_entries_0_0_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_0_0_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_0_0_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_0_0_data_0; // @[TLB.scala:339:29]
reg sectored_entries_0_0_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_0_1_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_0_1_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_0_1_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_0_1_data_0; // @[TLB.scala:339:29]
reg sectored_entries_0_1_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_0_2_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_0_2_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_0_2_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_0_2_data_0; // @[TLB.scala:339:29]
reg sectored_entries_0_2_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_0_3_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_0_3_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_0_3_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_0_3_data_0; // @[TLB.scala:339:29]
reg sectored_entries_0_3_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_1_0_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_1_0_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_1_0_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_1_0_data_0; // @[TLB.scala:339:29]
reg sectored_entries_1_0_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_1_1_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_1_1_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_1_1_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_1_1_data_0; // @[TLB.scala:339:29]
reg sectored_entries_1_1_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_1_2_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_1_2_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_1_2_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_1_2_data_0; // @[TLB.scala:339:29]
reg sectored_entries_1_2_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_1_3_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_1_3_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_1_3_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_1_3_data_0; // @[TLB.scala:339:29]
reg sectored_entries_1_3_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_2_0_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_2_0_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_2_0_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_2_0_data_0; // @[TLB.scala:339:29]
reg sectored_entries_2_0_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_2_1_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_2_1_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_2_1_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_2_1_data_0; // @[TLB.scala:339:29]
reg sectored_entries_2_1_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_2_2_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_2_2_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_2_2_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_2_2_data_0; // @[TLB.scala:339:29]
reg sectored_entries_2_2_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_2_3_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_2_3_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_2_3_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_2_3_data_0; // @[TLB.scala:339:29]
reg sectored_entries_2_3_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_3_0_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_3_0_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_3_0_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_3_0_data_0; // @[TLB.scala:339:29]
reg sectored_entries_3_0_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_3_1_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_3_1_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_3_1_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_3_1_data_0; // @[TLB.scala:339:29]
reg sectored_entries_3_1_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_3_2_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_3_2_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_3_2_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_3_2_data_0; // @[TLB.scala:339:29]
reg sectored_entries_3_2_valid_0; // @[TLB.scala:339:29]
reg [1:0] sectored_entries_3_3_level; // @[TLB.scala:339:29]
reg [26:0] sectored_entries_3_3_tag_vpn; // @[TLB.scala:339:29]
reg sectored_entries_3_3_tag_v; // @[TLB.scala:339:29]
reg [41:0] sectored_entries_3_3_data_0; // @[TLB.scala:339:29]
reg sectored_entries_3_3_valid_0; // @[TLB.scala:339:29]
reg [1:0] superpage_entries_0_level; // @[TLB.scala:341:30]
reg [26:0] superpage_entries_0_tag_vpn; // @[TLB.scala:341:30]
reg superpage_entries_0_tag_v; // @[TLB.scala:341:30]
reg [41:0] superpage_entries_0_data_0; // @[TLB.scala:341:30]
wire [41:0] _entries_WIRE_9 = superpage_entries_0_data_0; // @[TLB.scala:170:77, :341:30]
reg superpage_entries_0_valid_0; // @[TLB.scala:341:30]
wire _r_superpage_repl_addr_T = superpage_entries_0_valid_0; // @[TLB.scala:341:30, :757:16]
reg [1:0] special_entry_level; // @[TLB.scala:346:56]
reg [26:0] special_entry_tag_vpn; // @[TLB.scala:346:56]
reg special_entry_tag_v; // @[TLB.scala:346:56]
reg [41:0] special_entry_data_0; // @[TLB.scala:346:56]
wire [41:0] _mpu_ppn_WIRE_1 = special_entry_data_0; // @[TLB.scala:170:77, :346:56]
wire [41:0] _entries_WIRE_11 = special_entry_data_0; // @[TLB.scala:170:77, :346:56]
reg special_entry_valid_0; // @[TLB.scala:346:56]
reg [1:0] state; // @[TLB.scala:352:22]
reg [26:0] r_refill_tag; // @[TLB.scala:354:25]
assign io_ptw_req_bits_bits_addr_0 = r_refill_tag; // @[TLB.scala:318:7, :354:25]
reg [1:0] r_sectored_repl_addr; // @[TLB.scala:356:33]
reg r_sectored_hit_valid; // @[TLB.scala:357:27]
reg [1:0] r_sectored_hit_bits; // @[TLB.scala:357:27]
reg r_superpage_hit_valid; // @[TLB.scala:358:28]
reg r_need_gpa; // @[TLB.scala:361:23]
assign io_ptw_req_bits_bits_need_gpa_0 = r_need_gpa; // @[TLB.scala:318:7, :361:23]
reg r_gpa_valid; // @[TLB.scala:362:24]
reg [38:0] r_gpa; // @[TLB.scala:363:18]
reg [26:0] r_gpa_vpn; // @[TLB.scala:364:22]
reg r_gpa_is_pte; // @[TLB.scala:365:25]
wire _stage1_en_T = satp_mode[3]; // @[TLB.scala:373:17, :374:41]
wire stage1_en = _stage1_en_T; // @[TLB.scala:374:{29,41}]
wire _vm_enabled_T = stage1_en; // @[TLB.scala:374:29, :399:31]
wire _vm_enabled_T_1 = _vm_enabled_T; // @[TLB.scala:399:{31,45}]
wire vm_enabled = _vm_enabled_T_1; // @[TLB.scala:399:{45,61}]
wire _mpu_ppn_T = vm_enabled; // @[TLB.scala:399:61, :413:32]
wire _tlb_miss_T_1 = vm_enabled; // @[TLB.scala:399:61, :613:29]
wire [19:0] refill_ppn = io_ptw_resp_bits_pte_ppn_0[19:0]; // @[TLB.scala:318:7, :406:44]
wire [19:0] newEntry_ppn = io_ptw_resp_bits_pte_ppn_0[19:0]; // @[TLB.scala:318:7, :406:44, :449:24]
wire _mpu_priv_T = do_refill; // @[TLB.scala:408:29, :415:52]
wire _io_resp_miss_T = do_refill; // @[TLB.scala:408:29, :651:29]
wire _T_25 = state == 2'h1; // @[package.scala:16:47]
wire _invalidate_refill_T; // @[package.scala:16:47]
assign _invalidate_refill_T = _T_25; // @[package.scala:16:47]
assign _io_ptw_req_valid_T = _T_25; // @[package.scala:16:47]
wire _invalidate_refill_T_1 = &state; // @[package.scala:16:47]
wire _invalidate_refill_T_2 = _invalidate_refill_T | _invalidate_refill_T_1; // @[package.scala:16:47, :81:59]
wire invalidate_refill = _invalidate_refill_T_2 | io_sfence_valid_0; // @[package.scala:81:59]
wire [19:0] _mpu_ppn_T_23; // @[TLB.scala:170:77]
wire _mpu_ppn_T_22; // @[TLB.scala:170:77]
wire _mpu_ppn_T_21; // @[TLB.scala:170:77]
wire _mpu_ppn_T_20; // @[TLB.scala:170:77]
wire _mpu_ppn_T_19; // @[TLB.scala:170:77]
wire _mpu_ppn_T_18; // @[TLB.scala:170:77]
wire _mpu_ppn_T_17; // @[TLB.scala:170:77]
wire _mpu_ppn_T_16; // @[TLB.scala:170:77]
wire _mpu_ppn_T_15; // @[TLB.scala:170:77]
wire _mpu_ppn_T_14; // @[TLB.scala:170:77]
wire _mpu_ppn_T_13; // @[TLB.scala:170:77]
wire _mpu_ppn_T_12; // @[TLB.scala:170:77]
wire _mpu_ppn_T_11; // @[TLB.scala:170:77]
wire _mpu_ppn_T_10; // @[TLB.scala:170:77]
wire _mpu_ppn_T_9; // @[TLB.scala:170:77]
wire _mpu_ppn_T_8; // @[TLB.scala:170:77]
wire _mpu_ppn_T_7; // @[TLB.scala:170:77]
wire _mpu_ppn_T_6; // @[TLB.scala:170:77]
wire _mpu_ppn_T_5; // @[TLB.scala:170:77]
wire _mpu_ppn_T_4; // @[TLB.scala:170:77]
wire _mpu_ppn_T_3; // @[TLB.scala:170:77]
wire _mpu_ppn_T_2; // @[TLB.scala:170:77]
wire _mpu_ppn_T_1; // @[TLB.scala:170:77]
assign _mpu_ppn_T_1 = _mpu_ppn_WIRE_1[0]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_fragmented_superpage = _mpu_ppn_T_1; // @[TLB.scala:170:77]
assign _mpu_ppn_T_2 = _mpu_ppn_WIRE_1[1]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_c = _mpu_ppn_T_2; // @[TLB.scala:170:77]
assign _mpu_ppn_T_3 = _mpu_ppn_WIRE_1[2]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_eff = _mpu_ppn_T_3; // @[TLB.scala:170:77]
assign _mpu_ppn_T_4 = _mpu_ppn_WIRE_1[3]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_paa = _mpu_ppn_T_4; // @[TLB.scala:170:77]
assign _mpu_ppn_T_5 = _mpu_ppn_WIRE_1[4]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_pal = _mpu_ppn_T_5; // @[TLB.scala:170:77]
assign _mpu_ppn_T_6 = _mpu_ppn_WIRE_1[5]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_ppp = _mpu_ppn_T_6; // @[TLB.scala:170:77]
assign _mpu_ppn_T_7 = _mpu_ppn_WIRE_1[6]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_pr = _mpu_ppn_T_7; // @[TLB.scala:170:77]
assign _mpu_ppn_T_8 = _mpu_ppn_WIRE_1[7]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_px = _mpu_ppn_T_8; // @[TLB.scala:170:77]
assign _mpu_ppn_T_9 = _mpu_ppn_WIRE_1[8]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_pw = _mpu_ppn_T_9; // @[TLB.scala:170:77]
assign _mpu_ppn_T_10 = _mpu_ppn_WIRE_1[9]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_hr = _mpu_ppn_T_10; // @[TLB.scala:170:77]
assign _mpu_ppn_T_11 = _mpu_ppn_WIRE_1[10]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_hx = _mpu_ppn_T_11; // @[TLB.scala:170:77]
assign _mpu_ppn_T_12 = _mpu_ppn_WIRE_1[11]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_hw = _mpu_ppn_T_12; // @[TLB.scala:170:77]
assign _mpu_ppn_T_13 = _mpu_ppn_WIRE_1[12]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_sr = _mpu_ppn_T_13; // @[TLB.scala:170:77]
assign _mpu_ppn_T_14 = _mpu_ppn_WIRE_1[13]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_sx = _mpu_ppn_T_14; // @[TLB.scala:170:77]
assign _mpu_ppn_T_15 = _mpu_ppn_WIRE_1[14]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_sw = _mpu_ppn_T_15; // @[TLB.scala:170:77]
assign _mpu_ppn_T_16 = _mpu_ppn_WIRE_1[15]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_gf = _mpu_ppn_T_16; // @[TLB.scala:170:77]
assign _mpu_ppn_T_17 = _mpu_ppn_WIRE_1[16]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_pf = _mpu_ppn_T_17; // @[TLB.scala:170:77]
assign _mpu_ppn_T_18 = _mpu_ppn_WIRE_1[17]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_ae_stage2 = _mpu_ppn_T_18; // @[TLB.scala:170:77]
assign _mpu_ppn_T_19 = _mpu_ppn_WIRE_1[18]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_ae_final = _mpu_ppn_T_19; // @[TLB.scala:170:77]
assign _mpu_ppn_T_20 = _mpu_ppn_WIRE_1[19]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_ae_ptw = _mpu_ppn_T_20; // @[TLB.scala:170:77]
assign _mpu_ppn_T_21 = _mpu_ppn_WIRE_1[20]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_g = _mpu_ppn_T_21; // @[TLB.scala:170:77]
assign _mpu_ppn_T_22 = _mpu_ppn_WIRE_1[21]; // @[TLB.scala:170:77]
wire _mpu_ppn_WIRE_u = _mpu_ppn_T_22; // @[TLB.scala:170:77]
assign _mpu_ppn_T_23 = _mpu_ppn_WIRE_1[41:22]; // @[TLB.scala:170:77]
wire [19:0] _mpu_ppn_WIRE_ppn = _mpu_ppn_T_23; // @[TLB.scala:170:77]
wire [1:0] mpu_ppn_res = _mpu_ppn_barrier_io_y_ppn[19:18]; // @[package.scala:267:25]
wire _GEN = special_entry_level == 2'h0; // @[TLB.scala:197:28, :346:56]
wire _mpu_ppn_ignore_T; // @[TLB.scala:197:28]
assign _mpu_ppn_ignore_T = _GEN; // @[TLB.scala:197:28]
wire _hitsVec_ignore_T_4; // @[TLB.scala:182:28]
assign _hitsVec_ignore_T_4 = _GEN; // @[TLB.scala:182:28, :197:28]
wire _ppn_ignore_T_2; // @[TLB.scala:197:28]
assign _ppn_ignore_T_2 = _GEN; // @[TLB.scala:197:28]
wire _ignore_T_4; // @[TLB.scala:182:28]
assign _ignore_T_4 = _GEN; // @[TLB.scala:182:28, :197:28]
wire mpu_ppn_ignore = _mpu_ppn_ignore_T; // @[TLB.scala:197:{28,34}]
wire [26:0] _mpu_ppn_T_24 = mpu_ppn_ignore ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30]
wire [26:0] _mpu_ppn_T_25 = {_mpu_ppn_T_24[26:20], _mpu_ppn_T_24[19:0] | _mpu_ppn_barrier_io_y_ppn}; // @[package.scala:267:25]
wire [8:0] _mpu_ppn_T_26 = _mpu_ppn_T_25[17:9]; // @[TLB.scala:198:{47,58}]
wire [10:0] _mpu_ppn_T_27 = {mpu_ppn_res, _mpu_ppn_T_26}; // @[TLB.scala:195:26, :198:{18,58}]
wire _mpu_ppn_ignore_T_1 = ~(special_entry_level[1]); // @[TLB.scala:197:28, :346:56]
wire mpu_ppn_ignore_1 = _mpu_ppn_ignore_T_1; // @[TLB.scala:197:{28,34}]
wire [26:0] _mpu_ppn_T_28 = mpu_ppn_ignore_1 ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30]
wire [26:0] _mpu_ppn_T_29 = {_mpu_ppn_T_28[26:20], _mpu_ppn_T_28[19:0] | _mpu_ppn_barrier_io_y_ppn}; // @[package.scala:267:25]
wire [8:0] _mpu_ppn_T_30 = _mpu_ppn_T_29[8:0]; // @[TLB.scala:198:{47,58}]
wire [19:0] _mpu_ppn_T_31 = {_mpu_ppn_T_27, _mpu_ppn_T_30}; // @[TLB.scala:198:{18,58}]
wire [27:0] _mpu_ppn_T_32 = io_req_bits_vaddr_0[39:12]; // @[TLB.scala:318:7, :413:146]
wire [27:0] _mpu_ppn_T_33 = _mpu_ppn_T ? {8'h0, _mpu_ppn_T_31} : _mpu_ppn_T_32; // @[TLB.scala:198:18, :413:{20,32,146}]
wire [27:0] mpu_ppn = do_refill ? {8'h0, refill_ppn} : _mpu_ppn_T_33; // @[TLB.scala:406:44, :408:29, :412:20, :413:20]
wire [11:0] _mpu_physaddr_T = io_req_bits_vaddr_0[11:0]; // @[TLB.scala:318:7, :414:52]
wire [11:0] _io_resp_paddr_T = io_req_bits_vaddr_0[11:0]; // @[TLB.scala:318:7, :414:52, :652:46]
wire [11:0] _io_resp_gpa_offset_T_1 = io_req_bits_vaddr_0[11:0]; // @[TLB.scala:318:7, :414:52, :658:82]
wire [39:0] mpu_physaddr = {mpu_ppn, _mpu_physaddr_T}; // @[TLB.scala:412:20, :414:{25,52}]
wire [39:0] _homogeneous_T = mpu_physaddr; // @[TLB.scala:414:25]
wire [39:0] _homogeneous_T_67 = mpu_physaddr; // @[TLB.scala:414:25]
wire [39:0] _deny_access_to_debug_T_1 = mpu_physaddr; // @[TLB.scala:414:25]
wire _mpu_priv_T_1 = _mpu_priv_T; // @[TLB.scala:415:{38,52}]
wire [2:0] _mpu_priv_T_2 = {io_ptw_status_debug_0, 2'h0}; // @[TLB.scala:318:7, :415:103]
wire [2:0] mpu_priv = _mpu_priv_T_1 ? 3'h1 : _mpu_priv_T_2; // @[TLB.scala:415:{27,38,103}]
wire cacheable; // @[TLB.scala:425:41]
wire newEntry_c = cacheable; // @[TLB.scala:425:41, :449:24]
wire [40:0] _homogeneous_T_1 = {1'h0, _homogeneous_T}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_2 = _homogeneous_T_1 & 41'h1FFFFFFE000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_3 = _homogeneous_T_2; // @[Parameters.scala:137:46]
wire _homogeneous_T_4 = _homogeneous_T_3 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire _homogeneous_T_50 = _homogeneous_T_4; // @[TLBPermissions.scala:101:65]
wire [39:0] _GEN_0 = {mpu_physaddr[39:14], mpu_physaddr[13:0] ^ 14'h3000}; // @[TLB.scala:414:25]
wire [39:0] _homogeneous_T_5; // @[Parameters.scala:137:31]
assign _homogeneous_T_5 = _GEN_0; // @[Parameters.scala:137:31]
wire [39:0] _homogeneous_T_72; // @[Parameters.scala:137:31]
assign _homogeneous_T_72 = _GEN_0; // @[Parameters.scala:137:31]
wire [40:0] _homogeneous_T_6 = {1'h0, _homogeneous_T_5}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_7 = _homogeneous_T_6 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_8 = _homogeneous_T_7; // @[Parameters.scala:137:46]
wire _homogeneous_T_9 = _homogeneous_T_8 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [39:0] _GEN_1 = {mpu_physaddr[39:17], mpu_physaddr[16:0] ^ 17'h10000}; // @[TLB.scala:414:25]
wire [39:0] _homogeneous_T_10; // @[Parameters.scala:137:31]
assign _homogeneous_T_10 = _GEN_1; // @[Parameters.scala:137:31]
wire [39:0] _homogeneous_T_60; // @[Parameters.scala:137:31]
assign _homogeneous_T_60 = _GEN_1; // @[Parameters.scala:137:31]
wire [39:0] _homogeneous_T_77; // @[Parameters.scala:137:31]
assign _homogeneous_T_77 = _GEN_1; // @[Parameters.scala:137:31]
wire [39:0] _homogeneous_T_109; // @[Parameters.scala:137:31]
assign _homogeneous_T_109 = _GEN_1; // @[Parameters.scala:137:31]
wire [39:0] _homogeneous_T_116; // @[Parameters.scala:137:31]
assign _homogeneous_T_116 = _GEN_1; // @[Parameters.scala:137:31]
wire [40:0] _homogeneous_T_11 = {1'h0, _homogeneous_T_10}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_12 = _homogeneous_T_11 & 41'h1FFFFFF0000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_13 = _homogeneous_T_12; // @[Parameters.scala:137:46]
wire _homogeneous_T_14 = _homogeneous_T_13 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [39:0] _homogeneous_T_15 = {mpu_physaddr[39:21], mpu_physaddr[20:0] ^ 21'h100000}; // @[TLB.scala:414:25]
wire [40:0] _homogeneous_T_16 = {1'h0, _homogeneous_T_15}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_17 = _homogeneous_T_16 & 41'h1FFFFFEF000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_18 = _homogeneous_T_17; // @[Parameters.scala:137:46]
wire _homogeneous_T_19 = _homogeneous_T_18 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [39:0] _homogeneous_T_20 = {mpu_physaddr[39:26], mpu_physaddr[25:0] ^ 26'h2000000}; // @[TLB.scala:414:25]
wire [40:0] _homogeneous_T_21 = {1'h0, _homogeneous_T_20}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_22 = _homogeneous_T_21 & 41'h1FFFFFF0000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_23 = _homogeneous_T_22; // @[Parameters.scala:137:46]
wire _homogeneous_T_24 = _homogeneous_T_23 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [39:0] _homogeneous_T_25 = {mpu_physaddr[39:26], mpu_physaddr[25:0] ^ 26'h2010000}; // @[TLB.scala:414:25]
wire [40:0] _homogeneous_T_26 = {1'h0, _homogeneous_T_25}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_27 = _homogeneous_T_26 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_28 = _homogeneous_T_27; // @[Parameters.scala:137:46]
wire _homogeneous_T_29 = _homogeneous_T_28 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [39:0] _GEN_2 = {mpu_physaddr[39:28], mpu_physaddr[27:0] ^ 28'h8000000}; // @[TLB.scala:414:25]
wire [39:0] _homogeneous_T_30; // @[Parameters.scala:137:31]
assign _homogeneous_T_30 = _GEN_2; // @[Parameters.scala:137:31]
wire [39:0] _homogeneous_T_82; // @[Parameters.scala:137:31]
assign _homogeneous_T_82 = _GEN_2; // @[Parameters.scala:137:31]
wire [39:0] _homogeneous_T_97; // @[Parameters.scala:137:31]
assign _homogeneous_T_97 = _GEN_2; // @[Parameters.scala:137:31]
wire [40:0] _homogeneous_T_31 = {1'h0, _homogeneous_T_30}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_32 = _homogeneous_T_31 & 41'h1FFFFFF0000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_33 = _homogeneous_T_32; // @[Parameters.scala:137:46]
wire _homogeneous_T_34 = _homogeneous_T_33 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [39:0] _homogeneous_T_35 = {mpu_physaddr[39:28], mpu_physaddr[27:0] ^ 28'hC000000}; // @[TLB.scala:414:25]
wire [40:0] _homogeneous_T_36 = {1'h0, _homogeneous_T_35}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_37 = _homogeneous_T_36 & 41'h1FFFC000000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_38 = _homogeneous_T_37; // @[Parameters.scala:137:46]
wire _homogeneous_T_39 = _homogeneous_T_38 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [39:0] _homogeneous_T_40 = {mpu_physaddr[39:29], mpu_physaddr[28:0] ^ 29'h10020000}; // @[TLB.scala:414:25]
wire [40:0] _homogeneous_T_41 = {1'h0, _homogeneous_T_40}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_42 = _homogeneous_T_41 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_43 = _homogeneous_T_42; // @[Parameters.scala:137:46]
wire _homogeneous_T_44 = _homogeneous_T_43 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [39:0] _GEN_3 = {mpu_physaddr[39:32], mpu_physaddr[31:0] ^ 32'h80000000}; // @[TLB.scala:414:25, :417:15]
wire [39:0] _homogeneous_T_45; // @[Parameters.scala:137:31]
assign _homogeneous_T_45 = _GEN_3; // @[Parameters.scala:137:31]
wire [39:0] _homogeneous_T_87; // @[Parameters.scala:137:31]
assign _homogeneous_T_87 = _GEN_3; // @[Parameters.scala:137:31]
wire [39:0] _homogeneous_T_102; // @[Parameters.scala:137:31]
assign _homogeneous_T_102 = _GEN_3; // @[Parameters.scala:137:31]
wire [40:0] _homogeneous_T_46 = {1'h0, _homogeneous_T_45}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_47 = _homogeneous_T_46 & 41'h1FFF0000000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_48 = _homogeneous_T_47; // @[Parameters.scala:137:46]
wire _homogeneous_T_49 = _homogeneous_T_48 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire _homogeneous_T_51 = _homogeneous_T_50 | _homogeneous_T_9; // @[TLBPermissions.scala:101:65]
wire _homogeneous_T_52 = _homogeneous_T_51 | _homogeneous_T_14; // @[TLBPermissions.scala:101:65]
wire _homogeneous_T_53 = _homogeneous_T_52 | _homogeneous_T_19; // @[TLBPermissions.scala:101:65]
wire _homogeneous_T_54 = _homogeneous_T_53 | _homogeneous_T_24; // @[TLBPermissions.scala:101:65]
wire _homogeneous_T_55 = _homogeneous_T_54 | _homogeneous_T_29; // @[TLBPermissions.scala:101:65]
wire _homogeneous_T_56 = _homogeneous_T_55 | _homogeneous_T_34; // @[TLBPermissions.scala:101:65]
wire _homogeneous_T_57 = _homogeneous_T_56 | _homogeneous_T_39; // @[TLBPermissions.scala:101:65]
wire _homogeneous_T_58 = _homogeneous_T_57 | _homogeneous_T_44; // @[TLBPermissions.scala:101:65]
wire homogeneous = _homogeneous_T_58 | _homogeneous_T_49; // @[TLBPermissions.scala:101:65]
wire [40:0] _homogeneous_T_61 = {1'h0, _homogeneous_T_60}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_62 = _homogeneous_T_61 & 41'h8A110000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_63 = _homogeneous_T_62; // @[Parameters.scala:137:46]
wire _homogeneous_T_64 = _homogeneous_T_63 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire _homogeneous_T_65 = _homogeneous_T_64; // @[TLBPermissions.scala:87:66]
wire _homogeneous_T_66 = ~_homogeneous_T_65; // @[TLBPermissions.scala:87:{22,66}]
wire [40:0] _homogeneous_T_68 = {1'h0, _homogeneous_T_67}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_69 = _homogeneous_T_68 & 41'h9E113000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_70 = _homogeneous_T_69; // @[Parameters.scala:137:46]
wire _homogeneous_T_71 = _homogeneous_T_70 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire _homogeneous_T_92 = _homogeneous_T_71; // @[TLBPermissions.scala:85:66]
wire [40:0] _homogeneous_T_73 = {1'h0, _homogeneous_T_72}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_74 = _homogeneous_T_73 & 41'h9E113000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_75 = _homogeneous_T_74; // @[Parameters.scala:137:46]
wire _homogeneous_T_76 = _homogeneous_T_75 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [40:0] _homogeneous_T_78 = {1'h0, _homogeneous_T_77}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_79 = _homogeneous_T_78 & 41'h9E110000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_80 = _homogeneous_T_79; // @[Parameters.scala:137:46]
wire _homogeneous_T_81 = _homogeneous_T_80 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [40:0] _homogeneous_T_83 = {1'h0, _homogeneous_T_82}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_84 = _homogeneous_T_83 & 41'h9E110000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_85 = _homogeneous_T_84; // @[Parameters.scala:137:46]
wire _homogeneous_T_86 = _homogeneous_T_85 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire [40:0] _homogeneous_T_88 = {1'h0, _homogeneous_T_87}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_89 = _homogeneous_T_88 & 41'h90000000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_90 = _homogeneous_T_89; // @[Parameters.scala:137:46]
wire _homogeneous_T_91 = _homogeneous_T_90 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire _homogeneous_T_93 = _homogeneous_T_92 | _homogeneous_T_76; // @[TLBPermissions.scala:85:66]
wire _homogeneous_T_94 = _homogeneous_T_93 | _homogeneous_T_81; // @[TLBPermissions.scala:85:66]
wire _homogeneous_T_95 = _homogeneous_T_94 | _homogeneous_T_86; // @[TLBPermissions.scala:85:66]
wire _homogeneous_T_96 = _homogeneous_T_95 | _homogeneous_T_91; // @[TLBPermissions.scala:85:66]
wire [40:0] _homogeneous_T_98 = {1'h0, _homogeneous_T_97}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_99 = _homogeneous_T_98 & 41'h8E000000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_100 = _homogeneous_T_99; // @[Parameters.scala:137:46]
wire _homogeneous_T_101 = _homogeneous_T_100 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire _homogeneous_T_107 = _homogeneous_T_101; // @[TLBPermissions.scala:85:66]
wire [40:0] _homogeneous_T_103 = {1'h0, _homogeneous_T_102}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_104 = _homogeneous_T_103 & 41'h80000000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_105 = _homogeneous_T_104; // @[Parameters.scala:137:46]
wire _homogeneous_T_106 = _homogeneous_T_105 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire _homogeneous_T_108 = _homogeneous_T_107 | _homogeneous_T_106; // @[TLBPermissions.scala:85:66]
wire [40:0] _homogeneous_T_110 = {1'h0, _homogeneous_T_109}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_111 = _homogeneous_T_110 & 41'h8A110000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_112 = _homogeneous_T_111; // @[Parameters.scala:137:46]
wire _homogeneous_T_113 = _homogeneous_T_112 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire _homogeneous_T_114 = _homogeneous_T_113; // @[TLBPermissions.scala:87:66]
wire _homogeneous_T_115 = ~_homogeneous_T_114; // @[TLBPermissions.scala:87:{22,66}]
wire [40:0] _homogeneous_T_117 = {1'h0, _homogeneous_T_116}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _homogeneous_T_118 = _homogeneous_T_117 & 41'h8A110000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _homogeneous_T_119 = _homogeneous_T_118; // @[Parameters.scala:137:46]
wire _homogeneous_T_120 = _homogeneous_T_119 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire _homogeneous_T_121 = _homogeneous_T_120; // @[TLBPermissions.scala:87:66]
wire _homogeneous_T_122 = ~_homogeneous_T_121; // @[TLBPermissions.scala:87:{22,66}]
wire _deny_access_to_debug_T = ~(mpu_priv[2]); // @[TLB.scala:415:27, :428:39]
wire [40:0] _deny_access_to_debug_T_2 = {1'h0, _deny_access_to_debug_T_1}; // @[Parameters.scala:137:{31,41}]
wire [40:0] _deny_access_to_debug_T_3 = _deny_access_to_debug_T_2 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}]
wire [40:0] _deny_access_to_debug_T_4 = _deny_access_to_debug_T_3; // @[Parameters.scala:137:46]
wire _deny_access_to_debug_T_5 = _deny_access_to_debug_T_4 == 41'h0; // @[Parameters.scala:137:{46,59}]
wire deny_access_to_debug = _deny_access_to_debug_T & _deny_access_to_debug_T_5; // @[TLB.scala:428:{39,50}]
wire _prot_r_T = ~deny_access_to_debug; // @[TLB.scala:428:50, :429:33]
wire _prot_r_T_1 = _pma_io_resp_r & _prot_r_T; // @[TLB.scala:422:19, :429:{30,33}]
wire prot_r = _prot_r_T_1 & _pmp_io_r; // @[TLB.scala:416:19, :429:{30,55}]
wire newEntry_pr = prot_r; // @[TLB.scala:429:55, :449:24]
wire _prot_w_T = ~deny_access_to_debug; // @[TLB.scala:428:50, :429:33, :430:33]
wire _prot_w_T_1 = _pma_io_resp_w & _prot_w_T; // @[TLB.scala:422:19, :430:{30,33}]
wire prot_w = _prot_w_T_1 & _pmp_io_w; // @[TLB.scala:416:19, :430:{30,55}]
wire newEntry_pw = prot_w; // @[TLB.scala:430:55, :449:24]
wire _prot_x_T = ~deny_access_to_debug; // @[TLB.scala:428:50, :429:33, :434:33]
wire _prot_x_T_1 = _pma_io_resp_x & _prot_x_T; // @[TLB.scala:422:19, :434:{30,33}]
wire prot_x = _prot_x_T_1 & _pmp_io_x; // @[TLB.scala:416:19, :434:{30,55}]
wire newEntry_px = prot_x; // @[TLB.scala:434:55, :449:24]
wire [3:0][26:0] _GEN_4 = {{sectored_entries_3_0_tag_vpn}, {sectored_entries_2_0_tag_vpn}, {sectored_entries_1_0_tag_vpn}, {sectored_entries_0_0_tag_vpn}}; // @[TLB.scala:174:61, :339:29]
wire [3:0] _GEN_5 = {{sectored_entries_3_0_tag_v}, {sectored_entries_2_0_tag_v}, {sectored_entries_1_0_tag_v}, {sectored_entries_0_0_tag_v}}; // @[TLB.scala:174:61, :339:29]
wire [3:0][41:0] _GEN_6 = {{sectored_entries_3_0_data_0}, {sectored_entries_2_0_data_0}, {sectored_entries_1_0_data_0}, {sectored_entries_0_0_data_0}}; // @[TLB.scala:174:61, :339:29]
wire [41:0] _entries_WIRE_1 = _GEN_6[memIdx]; // @[package.scala:163:13]
wire [3:0] _GEN_7 = {{sectored_entries_3_0_valid_0}, {sectored_entries_2_0_valid_0}, {sectored_entries_1_0_valid_0}, {sectored_entries_0_0_valid_0}}; // @[TLB.scala:174:61, :339:29]
wire [3:0][26:0] _GEN_8 = {{sectored_entries_3_1_tag_vpn}, {sectored_entries_2_1_tag_vpn}, {sectored_entries_1_1_tag_vpn}, {sectored_entries_0_1_tag_vpn}}; // @[TLB.scala:174:61, :339:29]
wire [3:0] _GEN_9 = {{sectored_entries_3_1_tag_v}, {sectored_entries_2_1_tag_v}, {sectored_entries_1_1_tag_v}, {sectored_entries_0_1_tag_v}}; // @[TLB.scala:174:61, :339:29]
wire [3:0][41:0] _GEN_10 = {{sectored_entries_3_1_data_0}, {sectored_entries_2_1_data_0}, {sectored_entries_1_1_data_0}, {sectored_entries_0_1_data_0}}; // @[TLB.scala:174:61, :339:29]
wire [41:0] _entries_WIRE_3 = _GEN_10[memIdx]; // @[package.scala:163:13]
wire [3:0] _GEN_11 = {{sectored_entries_3_1_valid_0}, {sectored_entries_2_1_valid_0}, {sectored_entries_1_1_valid_0}, {sectored_entries_0_1_valid_0}}; // @[TLB.scala:174:61, :339:29]
wire [3:0][26:0] _GEN_12 = {{sectored_entries_3_2_tag_vpn}, {sectored_entries_2_2_tag_vpn}, {sectored_entries_1_2_tag_vpn}, {sectored_entries_0_2_tag_vpn}}; // @[TLB.scala:174:61, :339:29]
wire [3:0] _GEN_13 = {{sectored_entries_3_2_tag_v}, {sectored_entries_2_2_tag_v}, {sectored_entries_1_2_tag_v}, {sectored_entries_0_2_tag_v}}; // @[TLB.scala:174:61, :339:29]
wire [3:0][41:0] _GEN_14 = {{sectored_entries_3_2_data_0}, {sectored_entries_2_2_data_0}, {sectored_entries_1_2_data_0}, {sectored_entries_0_2_data_0}}; // @[TLB.scala:174:61, :339:29]
wire [41:0] _entries_WIRE_5 = _GEN_14[memIdx]; // @[package.scala:163:13]
wire [3:0] _GEN_15 = {{sectored_entries_3_2_valid_0}, {sectored_entries_2_2_valid_0}, {sectored_entries_1_2_valid_0}, {sectored_entries_0_2_valid_0}}; // @[TLB.scala:174:61, :339:29]
wire [3:0][26:0] _GEN_16 = {{sectored_entries_3_3_tag_vpn}, {sectored_entries_2_3_tag_vpn}, {sectored_entries_1_3_tag_vpn}, {sectored_entries_0_3_tag_vpn}}; // @[TLB.scala:174:61, :339:29]
wire [3:0] _GEN_17 = {{sectored_entries_3_3_tag_v}, {sectored_entries_2_3_tag_v}, {sectored_entries_1_3_tag_v}, {sectored_entries_0_3_tag_v}}; // @[TLB.scala:174:61, :339:29]
wire [3:0][41:0] _GEN_18 = {{sectored_entries_3_3_data_0}, {sectored_entries_2_3_data_0}, {sectored_entries_1_3_data_0}, {sectored_entries_0_3_data_0}}; // @[TLB.scala:174:61, :339:29]
wire [41:0] _entries_WIRE_7 = _GEN_18[memIdx]; // @[package.scala:163:13]
wire [3:0] _GEN_19 = {{sectored_entries_3_3_valid_0}, {sectored_entries_2_3_valid_0}, {sectored_entries_1_3_valid_0}, {sectored_entries_0_3_valid_0}}; // @[TLB.scala:174:61, :339:29]
wire [26:0] _GEN_20 = _GEN_4[memIdx] ^ vpn; // @[package.scala:163:13]
wire [26:0] _sector_hits_T; // @[TLB.scala:174:61]
assign _sector_hits_T = _GEN_20; // @[TLB.scala:174:61]
wire [26:0] _hitsVec_T; // @[TLB.scala:174:61]
assign _hitsVec_T = _GEN_20; // @[TLB.scala:174:61]
wire [26:0] _sector_hits_T_1 = _sector_hits_T; // @[TLB.scala:174:{61,68}]
wire _sector_hits_T_2 = _sector_hits_T_1 == 27'h0; // @[TLB.scala:174:{68,86}]
wire _sector_hits_T_3 = ~_GEN_5[memIdx]; // @[package.scala:163:13]
wire _sector_hits_T_4 = _sector_hits_T_2 & _sector_hits_T_3; // @[TLB.scala:174:{86,95,105}]
wire sector_hits_0 = _GEN_7[memIdx] & _sector_hits_T_4; // @[package.scala:163:13]
wire [26:0] _GEN_21 = _GEN_8[memIdx] ^ vpn; // @[package.scala:163:13]
wire [26:0] _sector_hits_T_5; // @[TLB.scala:174:61]
assign _sector_hits_T_5 = _GEN_21; // @[TLB.scala:174:61]
wire [26:0] _hitsVec_T_6; // @[TLB.scala:174:61]
assign _hitsVec_T_6 = _GEN_21; // @[TLB.scala:174:61]
wire [26:0] _sector_hits_T_6 = _sector_hits_T_5; // @[TLB.scala:174:{61,68}]
wire _sector_hits_T_7 = _sector_hits_T_6 == 27'h0; // @[TLB.scala:174:{68,86}]
wire _sector_hits_T_8 = ~_GEN_9[memIdx]; // @[package.scala:163:13]
wire _sector_hits_T_9 = _sector_hits_T_7 & _sector_hits_T_8; // @[TLB.scala:174:{86,95,105}]
wire sector_hits_1 = _GEN_11[memIdx] & _sector_hits_T_9; // @[package.scala:163:13]
wire [26:0] _GEN_22 = _GEN_12[memIdx] ^ vpn; // @[package.scala:163:13]
wire [26:0] _sector_hits_T_10; // @[TLB.scala:174:61]
assign _sector_hits_T_10 = _GEN_22; // @[TLB.scala:174:61]
wire [26:0] _hitsVec_T_12; // @[TLB.scala:174:61]
assign _hitsVec_T_12 = _GEN_22; // @[TLB.scala:174:61]
wire [26:0] _sector_hits_T_11 = _sector_hits_T_10; // @[TLB.scala:174:{61,68}]
wire _sector_hits_T_12 = _sector_hits_T_11 == 27'h0; // @[TLB.scala:174:{68,86}]
wire _sector_hits_T_13 = ~_GEN_13[memIdx]; // @[package.scala:163:13]
wire _sector_hits_T_14 = _sector_hits_T_12 & _sector_hits_T_13; // @[TLB.scala:174:{86,95,105}]
wire sector_hits_2 = _GEN_15[memIdx] & _sector_hits_T_14; // @[package.scala:163:13]
wire [26:0] _GEN_23 = _GEN_16[memIdx] ^ vpn; // @[package.scala:163:13]
wire [26:0] _sector_hits_T_15; // @[TLB.scala:174:61]
assign _sector_hits_T_15 = _GEN_23; // @[TLB.scala:174:61]
wire [26:0] _hitsVec_T_18; // @[TLB.scala:174:61]
assign _hitsVec_T_18 = _GEN_23; // @[TLB.scala:174:61]
wire [26:0] _sector_hits_T_16 = _sector_hits_T_15; // @[TLB.scala:174:{61,68}]
wire _sector_hits_T_17 = _sector_hits_T_16 == 27'h0; // @[TLB.scala:174:{68,86}]
wire _sector_hits_T_18 = ~_GEN_17[memIdx]; // @[package.scala:163:13]
wire _sector_hits_T_19 = _sector_hits_T_17 & _sector_hits_T_18; // @[TLB.scala:174:{86,95,105}]
wire sector_hits_3 = _GEN_19[memIdx] & _sector_hits_T_19; // @[package.scala:163:13]
wire _superpage_hits_tagMatch_T = ~superpage_entries_0_tag_v; // @[TLB.scala:178:43, :341:30]
wire superpage_hits_tagMatch = superpage_entries_0_valid_0 & _superpage_hits_tagMatch_T; // @[TLB.scala:178:{33,43}, :341:30]
wire [26:0] _T_1876 = superpage_entries_0_tag_vpn ^ vpn; // @[TLB.scala:183:52, :335:30, :341:30]
wire [26:0] _superpage_hits_T; // @[TLB.scala:183:52]
assign _superpage_hits_T = _T_1876; // @[TLB.scala:183:52]
wire [26:0] _superpage_hits_T_5; // @[TLB.scala:183:52]
assign _superpage_hits_T_5 = _T_1876; // @[TLB.scala:183:52]
wire [26:0] _superpage_hits_T_10; // @[TLB.scala:183:52]
assign _superpage_hits_T_10 = _T_1876; // @[TLB.scala:183:52]
wire [26:0] _hitsVec_T_24; // @[TLB.scala:183:52]
assign _hitsVec_T_24 = _T_1876; // @[TLB.scala:183:52]
wire [26:0] _hitsVec_T_29; // @[TLB.scala:183:52]
assign _hitsVec_T_29 = _T_1876; // @[TLB.scala:183:52]
wire [26:0] _hitsVec_T_34; // @[TLB.scala:183:52]
assign _hitsVec_T_34 = _T_1876; // @[TLB.scala:183:52]
wire [8:0] _superpage_hits_T_1 = _superpage_hits_T[26:18]; // @[TLB.scala:183:{52,58}]
wire _superpage_hits_T_2 = _superpage_hits_T_1 == 9'h0; // @[TLB.scala:183:{58,79}, :318:7, :320:14]
wire _superpage_hits_T_3 = _superpage_hits_T_2; // @[TLB.scala:183:{40,79}]
wire _superpage_hits_T_4 = superpage_hits_tagMatch & _superpage_hits_T_3; // @[TLB.scala:178:33, :183:{29,40}]
wire _GEN_24 = superpage_entries_0_level == 2'h0; // @[TLB.scala:182:28, :341:30]
wire _superpage_hits_ignore_T_1; // @[TLB.scala:182:28]
assign _superpage_hits_ignore_T_1 = _GEN_24; // @[TLB.scala:182:28]
wire _hitsVec_ignore_T_1; // @[TLB.scala:182:28]
assign _hitsVec_ignore_T_1 = _GEN_24; // @[TLB.scala:182:28]
wire _ppn_ignore_T; // @[TLB.scala:197:28]
assign _ppn_ignore_T = _GEN_24; // @[TLB.scala:182:28, :197:28]
wire _ignore_T_1; // @[TLB.scala:182:28]
assign _ignore_T_1 = _GEN_24; // @[TLB.scala:182:28]
wire superpage_hits_ignore_1 = _superpage_hits_ignore_T_1; // @[TLB.scala:182:{28,34}]
wire [8:0] _superpage_hits_T_6 = _superpage_hits_T_5[17:9]; // @[TLB.scala:183:{52,58}]
wire _superpage_hits_T_7 = _superpage_hits_T_6 == 9'h0; // @[TLB.scala:183:{58,79}, :318:7, :320:14]
wire _superpage_hits_T_8 = superpage_hits_ignore_1 | _superpage_hits_T_7; // @[TLB.scala:182:34, :183:{40,79}]
wire _superpage_hits_T_9 = _superpage_hits_T_4 & _superpage_hits_T_8; // @[TLB.scala:183:{29,40}]
wire superpage_hits_0 = _superpage_hits_T_9; // @[TLB.scala:183:29]
wire _superpage_hits_ignore_T_2 = ~(superpage_entries_0_level[1]); // @[TLB.scala:182:28, :341:30]
wire [8:0] _superpage_hits_T_11 = _superpage_hits_T_10[8:0]; // @[TLB.scala:183:{52,58}]
wire _superpage_hits_T_12 = _superpage_hits_T_11 == 9'h0; // @[TLB.scala:183:{58,79}, :318:7, :320:14]
wire [26:0] _hitsVec_T_1 = _hitsVec_T; // @[TLB.scala:174:{61,68}]
wire _hitsVec_T_2 = _hitsVec_T_1 == 27'h0; // @[TLB.scala:174:{68,86}]
wire _hitsVec_T_3 = ~_GEN_5[memIdx]; // @[package.scala:163:13]
wire _hitsVec_T_4 = _hitsVec_T_2 & _hitsVec_T_3; // @[TLB.scala:174:{86,95,105}]
wire _hitsVec_T_5 = _GEN_7[memIdx] & _hitsVec_T_4; // @[package.scala:163:13]
wire hitsVec_0 = vm_enabled & _hitsVec_T_5; // @[TLB.scala:188:18, :399:61, :440:44]
wire [26:0] _hitsVec_T_7 = _hitsVec_T_6; // @[TLB.scala:174:{61,68}]
wire _hitsVec_T_8 = _hitsVec_T_7 == 27'h0; // @[TLB.scala:174:{68,86}]
wire _hitsVec_T_9 = ~_GEN_9[memIdx]; // @[package.scala:163:13]
wire _hitsVec_T_10 = _hitsVec_T_8 & _hitsVec_T_9; // @[TLB.scala:174:{86,95,105}]
wire _hitsVec_T_11 = _GEN_11[memIdx] & _hitsVec_T_10; // @[package.scala:163:13]
wire hitsVec_1 = vm_enabled & _hitsVec_T_11; // @[TLB.scala:188:18, :399:61, :440:44]
wire [26:0] _hitsVec_T_13 = _hitsVec_T_12; // @[TLB.scala:174:{61,68}]
wire _hitsVec_T_14 = _hitsVec_T_13 == 27'h0; // @[TLB.scala:174:{68,86}]
wire _hitsVec_T_15 = ~_GEN_13[memIdx]; // @[package.scala:163:13]
wire _hitsVec_T_16 = _hitsVec_T_14 & _hitsVec_T_15; // @[TLB.scala:174:{86,95,105}]
wire _hitsVec_T_17 = _GEN_15[memIdx] & _hitsVec_T_16; // @[package.scala:163:13]
wire hitsVec_2 = vm_enabled & _hitsVec_T_17; // @[TLB.scala:188:18, :399:61, :440:44]
wire [26:0] _hitsVec_T_19 = _hitsVec_T_18; // @[TLB.scala:174:{61,68}]
wire _hitsVec_T_20 = _hitsVec_T_19 == 27'h0; // @[TLB.scala:174:{68,86}]
wire _hitsVec_T_21 = ~_GEN_17[memIdx]; // @[package.scala:163:13]
wire _hitsVec_T_22 = _hitsVec_T_20 & _hitsVec_T_21; // @[TLB.scala:174:{86,95,105}]
wire _hitsVec_T_23 = _GEN_19[memIdx] & _hitsVec_T_22; // @[package.scala:163:13]
wire hitsVec_3 = vm_enabled & _hitsVec_T_23; // @[TLB.scala:188:18, :399:61, :440:44]
wire _hitsVec_tagMatch_T = ~superpage_entries_0_tag_v; // @[TLB.scala:178:43, :341:30]
wire hitsVec_tagMatch = superpage_entries_0_valid_0 & _hitsVec_tagMatch_T; // @[TLB.scala:178:{33,43}, :341:30]
wire [8:0] _hitsVec_T_25 = _hitsVec_T_24[26:18]; // @[TLB.scala:183:{52,58}]
wire _hitsVec_T_26 = _hitsVec_T_25 == 9'h0; // @[TLB.scala:183:{58,79}, :318:7, :320:14]
wire _hitsVec_T_27 = _hitsVec_T_26; // @[TLB.scala:183:{40,79}]
wire _hitsVec_T_28 = hitsVec_tagMatch & _hitsVec_T_27; // @[TLB.scala:178:33, :183:{29,40}]
wire hitsVec_ignore_1 = _hitsVec_ignore_T_1; // @[TLB.scala:182:{28,34}]
wire [8:0] _hitsVec_T_30 = _hitsVec_T_29[17:9]; // @[TLB.scala:183:{52,58}]
wire _hitsVec_T_31 = _hitsVec_T_30 == 9'h0; // @[TLB.scala:183:{58,79}, :318:7, :320:14]
wire _hitsVec_T_32 = hitsVec_ignore_1 | _hitsVec_T_31; // @[TLB.scala:182:34, :183:{40,79}]
wire _hitsVec_T_33 = _hitsVec_T_28 & _hitsVec_T_32; // @[TLB.scala:183:{29,40}]
wire _hitsVec_T_38 = _hitsVec_T_33; // @[TLB.scala:183:29]
wire _hitsVec_ignore_T_2 = ~(superpage_entries_0_level[1]); // @[TLB.scala:182:28, :341:30]
wire [8:0] _hitsVec_T_35 = _hitsVec_T_34[8:0]; // @[TLB.scala:183:{52,58}]
wire _hitsVec_T_36 = _hitsVec_T_35 == 9'h0; // @[TLB.scala:183:{58,79}, :318:7, :320:14]
wire hitsVec_4 = vm_enabled & _hitsVec_T_38; // @[TLB.scala:183:29, :399:61, :440:44]
wire _hitsVec_tagMatch_T_1 = ~special_entry_tag_v; // @[TLB.scala:178:43, :346:56]
wire hitsVec_tagMatch_1 = special_entry_valid_0 & _hitsVec_tagMatch_T_1; // @[TLB.scala:178:{33,43}, :346:56]
wire [26:0] _T_1974 = special_entry_tag_vpn ^ vpn; // @[TLB.scala:183:52, :335:30, :346:56]
wire [26:0] _hitsVec_T_39; // @[TLB.scala:183:52]
assign _hitsVec_T_39 = _T_1974; // @[TLB.scala:183:52]
wire [26:0] _hitsVec_T_44; // @[TLB.scala:183:52]
assign _hitsVec_T_44 = _T_1974; // @[TLB.scala:183:52]
wire [26:0] _hitsVec_T_49; // @[TLB.scala:183:52]
assign _hitsVec_T_49 = _T_1974; // @[TLB.scala:183:52]
wire [8:0] _hitsVec_T_40 = _hitsVec_T_39[26:18]; // @[TLB.scala:183:{52,58}]
wire _hitsVec_T_41 = _hitsVec_T_40 == 9'h0; // @[TLB.scala:183:{58,79}, :318:7, :320:14]
wire _hitsVec_T_42 = _hitsVec_T_41; // @[TLB.scala:183:{40,79}]
wire _hitsVec_T_43 = hitsVec_tagMatch_1 & _hitsVec_T_42; // @[TLB.scala:178:33, :183:{29,40}]
wire hitsVec_ignore_4 = _hitsVec_ignore_T_4; // @[TLB.scala:182:{28,34}]
wire [8:0] _hitsVec_T_45 = _hitsVec_T_44[17:9]; // @[TLB.scala:183:{52,58}]
wire _hitsVec_T_46 = _hitsVec_T_45 == 9'h0; // @[TLB.scala:183:{58,79}, :318:7, :320:14]
wire _hitsVec_T_47 = hitsVec_ignore_4 | _hitsVec_T_46; // @[TLB.scala:182:34, :183:{40,79}]
wire _hitsVec_T_48 = _hitsVec_T_43 & _hitsVec_T_47; // @[TLB.scala:183:{29,40}]
wire _hitsVec_ignore_T_5 = ~(special_entry_level[1]); // @[TLB.scala:182:28, :197:28, :346:56]
wire hitsVec_ignore_5 = _hitsVec_ignore_T_5; // @[TLB.scala:182:{28,34}]
wire [8:0] _hitsVec_T_50 = _hitsVec_T_49[8:0]; // @[TLB.scala:183:{52,58}]
wire _hitsVec_T_51 = _hitsVec_T_50 == 9'h0; // @[TLB.scala:183:{58,79}, :318:7, :320:14]
wire _hitsVec_T_52 = hitsVec_ignore_5 | _hitsVec_T_51; // @[TLB.scala:182:34, :183:{40,79}]
wire _hitsVec_T_53 = _hitsVec_T_48 & _hitsVec_T_52; // @[TLB.scala:183:{29,40}]
wire hitsVec_5 = vm_enabled & _hitsVec_T_53; // @[TLB.scala:183:29, :399:61, :440:44]
wire [1:0] real_hits_lo_hi = {hitsVec_2, hitsVec_1}; // @[package.scala:45:27]
wire [2:0] real_hits_lo = {real_hits_lo_hi, hitsVec_0}; // @[package.scala:45:27]
wire [1:0] real_hits_hi_hi = {hitsVec_5, hitsVec_4}; // @[package.scala:45:27]
wire [2:0] real_hits_hi = {real_hits_hi_hi, hitsVec_3}; // @[package.scala:45:27]
wire [5:0] real_hits = {real_hits_hi, real_hits_lo}; // @[package.scala:45:27]
wire [5:0] _tlb_hit_T = real_hits; // @[package.scala:45:27]
wire _hits_T = ~vm_enabled; // @[TLB.scala:399:61, :442:18]
wire [6:0] hits = {_hits_T, real_hits}; // @[package.scala:45:27]
wire _newEntry_g_T; // @[TLB.scala:453:25]
wire _newEntry_sw_T_6; // @[PTW.scala:151:40]
wire _newEntry_sx_T_5; // @[PTW.scala:153:35]
wire _newEntry_sr_T_5; // @[PTW.scala:149:35]
wire newEntry_g; // @[TLB.scala:449:24]
wire newEntry_sw; // @[TLB.scala:449:24]
wire newEntry_sx; // @[TLB.scala:449:24]
wire newEntry_sr; // @[TLB.scala:449:24]
wire newEntry_ppp; // @[TLB.scala:449:24]
wire newEntry_pal; // @[TLB.scala:449:24]
wire newEntry_paa; // @[TLB.scala:449:24]
wire newEntry_eff; // @[TLB.scala:449:24]
assign _newEntry_g_T = io_ptw_resp_bits_pte_g_0 & io_ptw_resp_bits_pte_v_0; // @[TLB.scala:318:7, :453:25]
assign newEntry_g = _newEntry_g_T; // @[TLB.scala:449:24, :453:25]
wire _newEntry_ae_stage2_T = io_ptw_resp_bits_ae_final_0 & io_ptw_resp_bits_gpa_is_pte_0; // @[TLB.scala:318:7, :456:53]
wire _newEntry_sr_T = ~io_ptw_resp_bits_pte_w_0; // @[TLB.scala:318:7]
wire _newEntry_sr_T_1 = io_ptw_resp_bits_pte_x_0 & _newEntry_sr_T; // @[TLB.scala:318:7]
wire _newEntry_sr_T_2 = io_ptw_resp_bits_pte_r_0 | _newEntry_sr_T_1; // @[TLB.scala:318:7]
wire _newEntry_sr_T_3 = io_ptw_resp_bits_pte_v_0 & _newEntry_sr_T_2; // @[TLB.scala:318:7]
wire _newEntry_sr_T_4 = _newEntry_sr_T_3 & io_ptw_resp_bits_pte_a_0; // @[TLB.scala:318:7]
assign _newEntry_sr_T_5 = _newEntry_sr_T_4 & io_ptw_resp_bits_pte_r_0; // @[TLB.scala:318:7]
assign newEntry_sr = _newEntry_sr_T_5; // @[TLB.scala:449:24]
wire _newEntry_sw_T = ~io_ptw_resp_bits_pte_w_0; // @[TLB.scala:318:7]
wire _newEntry_sw_T_1 = io_ptw_resp_bits_pte_x_0 & _newEntry_sw_T; // @[TLB.scala:318:7]
wire _newEntry_sw_T_2 = io_ptw_resp_bits_pte_r_0 | _newEntry_sw_T_1; // @[TLB.scala:318:7]
wire _newEntry_sw_T_3 = io_ptw_resp_bits_pte_v_0 & _newEntry_sw_T_2; // @[TLB.scala:318:7]
wire _newEntry_sw_T_4 = _newEntry_sw_T_3 & io_ptw_resp_bits_pte_a_0; // @[TLB.scala:318:7]
wire _newEntry_sw_T_5 = _newEntry_sw_T_4 & io_ptw_resp_bits_pte_w_0; // @[TLB.scala:318:7]
assign _newEntry_sw_T_6 = _newEntry_sw_T_5 & io_ptw_resp_bits_pte_d_0; // @[TLB.scala:318:7]
assign newEntry_sw = _newEntry_sw_T_6; // @[TLB.scala:449:24]
wire _newEntry_sx_T = ~io_ptw_resp_bits_pte_w_0; // @[TLB.scala:318:7]
wire _newEntry_sx_T_1 = io_ptw_resp_bits_pte_x_0 & _newEntry_sx_T; // @[TLB.scala:318:7]
wire _newEntry_sx_T_2 = io_ptw_resp_bits_pte_r_0 | _newEntry_sx_T_1; // @[TLB.scala:318:7]
wire _newEntry_sx_T_3 = io_ptw_resp_bits_pte_v_0 & _newEntry_sx_T_2; // @[TLB.scala:318:7]
wire _newEntry_sx_T_4 = _newEntry_sx_T_3 & io_ptw_resp_bits_pte_a_0; // @[TLB.scala:318:7]
assign _newEntry_sx_T_5 = _newEntry_sx_T_4 & io_ptw_resp_bits_pte_x_0; // @[TLB.scala:318:7]
assign newEntry_sx = _newEntry_sx_T_5; // @[TLB.scala:449:24]
wire [1:0] _GEN_25 = {newEntry_c, 1'h0}; // @[TLB.scala:217:24, :449:24]
wire [1:0] special_entry_data_0_lo_lo_lo; // @[TLB.scala:217:24]
assign special_entry_data_0_lo_lo_lo = _GEN_25; // @[TLB.scala:217:24]
wire [1:0] superpage_entries_0_data_0_lo_lo_lo; // @[TLB.scala:217:24]
assign superpage_entries_0_data_0_lo_lo_lo = _GEN_25; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_0_data_0_lo_lo_lo; // @[TLB.scala:217:24]
assign sectored_entries_0_data_0_lo_lo_lo = _GEN_25; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_1_data_0_lo_lo_lo; // @[TLB.scala:217:24]
assign sectored_entries_1_data_0_lo_lo_lo = _GEN_25; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_2_data_0_lo_lo_lo; // @[TLB.scala:217:24]
assign sectored_entries_2_data_0_lo_lo_lo = _GEN_25; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_3_data_0_lo_lo_lo; // @[TLB.scala:217:24]
assign sectored_entries_3_data_0_lo_lo_lo = _GEN_25; // @[TLB.scala:217:24]
wire [1:0] _GEN_26 = {newEntry_pal, newEntry_paa}; // @[TLB.scala:217:24, :449:24]
wire [1:0] special_entry_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24]
assign special_entry_data_0_lo_lo_hi_hi = _GEN_26; // @[TLB.scala:217:24]
wire [1:0] superpage_entries_0_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24]
assign superpage_entries_0_data_0_lo_lo_hi_hi = _GEN_26; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_0_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_0_data_0_lo_lo_hi_hi = _GEN_26; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_1_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_1_data_0_lo_lo_hi_hi = _GEN_26; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_2_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_2_data_0_lo_lo_hi_hi = _GEN_26; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_3_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_3_data_0_lo_lo_hi_hi = _GEN_26; // @[TLB.scala:217:24]
wire [2:0] special_entry_data_0_lo_lo_hi = {special_entry_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24]
wire [4:0] special_entry_data_0_lo_lo = {special_entry_data_0_lo_lo_hi, special_entry_data_0_lo_lo_lo}; // @[TLB.scala:217:24]
wire [1:0] _GEN_27 = {newEntry_px, newEntry_pr}; // @[TLB.scala:217:24, :449:24]
wire [1:0] special_entry_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24]
assign special_entry_data_0_lo_hi_lo_hi = _GEN_27; // @[TLB.scala:217:24]
wire [1:0] superpage_entries_0_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24]
assign superpage_entries_0_data_0_lo_hi_lo_hi = _GEN_27; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_0_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_0_data_0_lo_hi_lo_hi = _GEN_27; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_1_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_1_data_0_lo_hi_lo_hi = _GEN_27; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_2_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_2_data_0_lo_hi_lo_hi = _GEN_27; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_3_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_3_data_0_lo_hi_lo_hi = _GEN_27; // @[TLB.scala:217:24]
wire [2:0] special_entry_data_0_lo_hi_lo = {special_entry_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24]
wire [1:0] _GEN_28 = {newEntry_hx, newEntry_hr}; // @[TLB.scala:217:24, :449:24]
wire [1:0] special_entry_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24]
assign special_entry_data_0_lo_hi_hi_hi = _GEN_28; // @[TLB.scala:217:24]
wire [1:0] superpage_entries_0_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24]
assign superpage_entries_0_data_0_lo_hi_hi_hi = _GEN_28; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_0_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_0_data_0_lo_hi_hi_hi = _GEN_28; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_1_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_1_data_0_lo_hi_hi_hi = _GEN_28; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_2_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_2_data_0_lo_hi_hi_hi = _GEN_28; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_3_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_3_data_0_lo_hi_hi_hi = _GEN_28; // @[TLB.scala:217:24]
wire [2:0] special_entry_data_0_lo_hi_hi = {special_entry_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] special_entry_data_0_lo_hi = {special_entry_data_0_lo_hi_hi, special_entry_data_0_lo_hi_lo}; // @[TLB.scala:217:24]
wire [10:0] special_entry_data_0_lo = {special_entry_data_0_lo_hi, special_entry_data_0_lo_lo}; // @[TLB.scala:217:24]
wire [1:0] _GEN_29 = {newEntry_sx, newEntry_sr}; // @[TLB.scala:217:24, :449:24]
wire [1:0] special_entry_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24]
assign special_entry_data_0_hi_lo_lo_hi = _GEN_29; // @[TLB.scala:217:24]
wire [1:0] superpage_entries_0_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24]
assign superpage_entries_0_data_0_hi_lo_lo_hi = _GEN_29; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_0_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_0_data_0_hi_lo_lo_hi = _GEN_29; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_1_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_1_data_0_hi_lo_lo_hi = _GEN_29; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_2_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_2_data_0_hi_lo_lo_hi = _GEN_29; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_3_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_3_data_0_hi_lo_lo_hi = _GEN_29; // @[TLB.scala:217:24]
wire [2:0] special_entry_data_0_hi_lo_lo = {special_entry_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24]
wire [1:0] _GEN_30 = {newEntry_pf, newEntry_gf}; // @[TLB.scala:217:24, :449:24]
wire [1:0] special_entry_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24]
assign special_entry_data_0_hi_lo_hi_hi = _GEN_30; // @[TLB.scala:217:24]
wire [1:0] superpage_entries_0_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24]
assign superpage_entries_0_data_0_hi_lo_hi_hi = _GEN_30; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_0_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_0_data_0_hi_lo_hi_hi = _GEN_30; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_1_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_1_data_0_hi_lo_hi_hi = _GEN_30; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_2_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_2_data_0_hi_lo_hi_hi = _GEN_30; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_3_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_3_data_0_hi_lo_hi_hi = _GEN_30; // @[TLB.scala:217:24]
wire [2:0] special_entry_data_0_hi_lo_hi = {special_entry_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] special_entry_data_0_hi_lo = {special_entry_data_0_hi_lo_hi, special_entry_data_0_hi_lo_lo}; // @[TLB.scala:217:24]
wire [1:0] _GEN_31 = {newEntry_ae_ptw, newEntry_ae_final}; // @[TLB.scala:217:24, :449:24]
wire [1:0] special_entry_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24]
assign special_entry_data_0_hi_hi_lo_hi = _GEN_31; // @[TLB.scala:217:24]
wire [1:0] superpage_entries_0_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24]
assign superpage_entries_0_data_0_hi_hi_lo_hi = _GEN_31; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_0_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_0_data_0_hi_hi_lo_hi = _GEN_31; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_1_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_1_data_0_hi_hi_lo_hi = _GEN_31; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_2_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_2_data_0_hi_hi_lo_hi = _GEN_31; // @[TLB.scala:217:24]
wire [1:0] sectored_entries_3_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24]
assign sectored_entries_3_data_0_hi_hi_lo_hi = _GEN_31; // @[TLB.scala:217:24]
wire [2:0] special_entry_data_0_hi_hi_lo = {special_entry_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24]
wire [20:0] _GEN_32 = {newEntry_ppn, newEntry_u}; // @[TLB.scala:217:24, :449:24]
wire [20:0] special_entry_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24]
assign special_entry_data_0_hi_hi_hi_hi = _GEN_32; // @[TLB.scala:217:24]
wire [20:0] superpage_entries_0_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24]
assign superpage_entries_0_data_0_hi_hi_hi_hi = _GEN_32; // @[TLB.scala:217:24]
wire [20:0] sectored_entries_0_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_0_data_0_hi_hi_hi_hi = _GEN_32; // @[TLB.scala:217:24]
wire [20:0] sectored_entries_1_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_1_data_0_hi_hi_hi_hi = _GEN_32; // @[TLB.scala:217:24]
wire [20:0] sectored_entries_2_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_2_data_0_hi_hi_hi_hi = _GEN_32; // @[TLB.scala:217:24]
wire [20:0] sectored_entries_3_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24]
assign sectored_entries_3_data_0_hi_hi_hi_hi = _GEN_32; // @[TLB.scala:217:24]
wire [21:0] special_entry_data_0_hi_hi_hi = {special_entry_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24]
wire [24:0] special_entry_data_0_hi_hi = {special_entry_data_0_hi_hi_hi, special_entry_data_0_hi_hi_lo}; // @[TLB.scala:217:24]
wire [30:0] special_entry_data_0_hi = {special_entry_data_0_hi_hi, special_entry_data_0_hi_lo}; // @[TLB.scala:217:24]
wire [41:0] _special_entry_data_0_T = {special_entry_data_0_hi, special_entry_data_0_lo}; // @[TLB.scala:217:24]
wire _superpage_entries_0_level_T = io_ptw_resp_bits_level_0[0]; // @[package.scala:163:13]
wire [2:0] superpage_entries_0_data_0_lo_lo_hi = {superpage_entries_0_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24]
wire [4:0] superpage_entries_0_data_0_lo_lo = {superpage_entries_0_data_0_lo_lo_hi, superpage_entries_0_data_0_lo_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] superpage_entries_0_data_0_lo_hi_lo = {superpage_entries_0_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24]
wire [2:0] superpage_entries_0_data_0_lo_hi_hi = {superpage_entries_0_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] superpage_entries_0_data_0_lo_hi = {superpage_entries_0_data_0_lo_hi_hi, superpage_entries_0_data_0_lo_hi_lo}; // @[TLB.scala:217:24]
wire [10:0] superpage_entries_0_data_0_lo = {superpage_entries_0_data_0_lo_hi, superpage_entries_0_data_0_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] superpage_entries_0_data_0_hi_lo_lo = {superpage_entries_0_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24]
wire [2:0] superpage_entries_0_data_0_hi_lo_hi = {superpage_entries_0_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] superpage_entries_0_data_0_hi_lo = {superpage_entries_0_data_0_hi_lo_hi, superpage_entries_0_data_0_hi_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] superpage_entries_0_data_0_hi_hi_lo = {superpage_entries_0_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24]
wire [21:0] superpage_entries_0_data_0_hi_hi_hi = {superpage_entries_0_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24]
wire [24:0] superpage_entries_0_data_0_hi_hi = {superpage_entries_0_data_0_hi_hi_hi, superpage_entries_0_data_0_hi_hi_lo}; // @[TLB.scala:217:24]
wire [30:0] superpage_entries_0_data_0_hi = {superpage_entries_0_data_0_hi_hi, superpage_entries_0_data_0_hi_lo}; // @[TLB.scala:217:24]
wire [41:0] _superpage_entries_0_data_0_T = {superpage_entries_0_data_0_hi, superpage_entries_0_data_0_lo}; // @[TLB.scala:217:24]
wire [1:0] r_memIdx = r_refill_tag[1:0]; // @[package.scala:163:13]
wire [1:0] waddr_1 = r_sectored_hit_valid ? r_sectored_hit_bits : r_sectored_repl_addr; // @[TLB.scala:356:33, :357:27, :485:22]
wire [2:0] sectored_entries_0_data_0_lo_lo_hi = {sectored_entries_0_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24]
wire [4:0] sectored_entries_0_data_0_lo_lo = {sectored_entries_0_data_0_lo_lo_hi, sectored_entries_0_data_0_lo_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_0_data_0_lo_hi_lo = {sectored_entries_0_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24]
wire [2:0] sectored_entries_0_data_0_lo_hi_hi = {sectored_entries_0_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] sectored_entries_0_data_0_lo_hi = {sectored_entries_0_data_0_lo_hi_hi, sectored_entries_0_data_0_lo_hi_lo}; // @[TLB.scala:217:24]
wire [10:0] sectored_entries_0_data_0_lo = {sectored_entries_0_data_0_lo_hi, sectored_entries_0_data_0_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_0_data_0_hi_lo_lo = {sectored_entries_0_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24]
wire [2:0] sectored_entries_0_data_0_hi_lo_hi = {sectored_entries_0_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] sectored_entries_0_data_0_hi_lo = {sectored_entries_0_data_0_hi_lo_hi, sectored_entries_0_data_0_hi_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_0_data_0_hi_hi_lo = {sectored_entries_0_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24]
wire [21:0] sectored_entries_0_data_0_hi_hi_hi = {sectored_entries_0_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24]
wire [24:0] sectored_entries_0_data_0_hi_hi = {sectored_entries_0_data_0_hi_hi_hi, sectored_entries_0_data_0_hi_hi_lo}; // @[TLB.scala:217:24]
wire [30:0] sectored_entries_0_data_0_hi = {sectored_entries_0_data_0_hi_hi, sectored_entries_0_data_0_hi_lo}; // @[TLB.scala:217:24]
wire [41:0] _sectored_entries_0_data_0_T = {sectored_entries_0_data_0_hi, sectored_entries_0_data_0_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_1_data_0_lo_lo_hi = {sectored_entries_1_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24]
wire [4:0] sectored_entries_1_data_0_lo_lo = {sectored_entries_1_data_0_lo_lo_hi, sectored_entries_1_data_0_lo_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_1_data_0_lo_hi_lo = {sectored_entries_1_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24]
wire [2:0] sectored_entries_1_data_0_lo_hi_hi = {sectored_entries_1_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] sectored_entries_1_data_0_lo_hi = {sectored_entries_1_data_0_lo_hi_hi, sectored_entries_1_data_0_lo_hi_lo}; // @[TLB.scala:217:24]
wire [10:0] sectored_entries_1_data_0_lo = {sectored_entries_1_data_0_lo_hi, sectored_entries_1_data_0_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_1_data_0_hi_lo_lo = {sectored_entries_1_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24]
wire [2:0] sectored_entries_1_data_0_hi_lo_hi = {sectored_entries_1_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] sectored_entries_1_data_0_hi_lo = {sectored_entries_1_data_0_hi_lo_hi, sectored_entries_1_data_0_hi_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_1_data_0_hi_hi_lo = {sectored_entries_1_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24]
wire [21:0] sectored_entries_1_data_0_hi_hi_hi = {sectored_entries_1_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24]
wire [24:0] sectored_entries_1_data_0_hi_hi = {sectored_entries_1_data_0_hi_hi_hi, sectored_entries_1_data_0_hi_hi_lo}; // @[TLB.scala:217:24]
wire [30:0] sectored_entries_1_data_0_hi = {sectored_entries_1_data_0_hi_hi, sectored_entries_1_data_0_hi_lo}; // @[TLB.scala:217:24]
wire [41:0] _sectored_entries_1_data_0_T = {sectored_entries_1_data_0_hi, sectored_entries_1_data_0_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_2_data_0_lo_lo_hi = {sectored_entries_2_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24]
wire [4:0] sectored_entries_2_data_0_lo_lo = {sectored_entries_2_data_0_lo_lo_hi, sectored_entries_2_data_0_lo_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_2_data_0_lo_hi_lo = {sectored_entries_2_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24]
wire [2:0] sectored_entries_2_data_0_lo_hi_hi = {sectored_entries_2_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] sectored_entries_2_data_0_lo_hi = {sectored_entries_2_data_0_lo_hi_hi, sectored_entries_2_data_0_lo_hi_lo}; // @[TLB.scala:217:24]
wire [10:0] sectored_entries_2_data_0_lo = {sectored_entries_2_data_0_lo_hi, sectored_entries_2_data_0_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_2_data_0_hi_lo_lo = {sectored_entries_2_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24]
wire [2:0] sectored_entries_2_data_0_hi_lo_hi = {sectored_entries_2_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] sectored_entries_2_data_0_hi_lo = {sectored_entries_2_data_0_hi_lo_hi, sectored_entries_2_data_0_hi_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_2_data_0_hi_hi_lo = {sectored_entries_2_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24]
wire [21:0] sectored_entries_2_data_0_hi_hi_hi = {sectored_entries_2_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24]
wire [24:0] sectored_entries_2_data_0_hi_hi = {sectored_entries_2_data_0_hi_hi_hi, sectored_entries_2_data_0_hi_hi_lo}; // @[TLB.scala:217:24]
wire [30:0] sectored_entries_2_data_0_hi = {sectored_entries_2_data_0_hi_hi, sectored_entries_2_data_0_hi_lo}; // @[TLB.scala:217:24]
wire [41:0] _sectored_entries_2_data_0_T = {sectored_entries_2_data_0_hi, sectored_entries_2_data_0_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_3_data_0_lo_lo_hi = {sectored_entries_3_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24]
wire [4:0] sectored_entries_3_data_0_lo_lo = {sectored_entries_3_data_0_lo_lo_hi, sectored_entries_3_data_0_lo_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_3_data_0_lo_hi_lo = {sectored_entries_3_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24]
wire [2:0] sectored_entries_3_data_0_lo_hi_hi = {sectored_entries_3_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] sectored_entries_3_data_0_lo_hi = {sectored_entries_3_data_0_lo_hi_hi, sectored_entries_3_data_0_lo_hi_lo}; // @[TLB.scala:217:24]
wire [10:0] sectored_entries_3_data_0_lo = {sectored_entries_3_data_0_lo_hi, sectored_entries_3_data_0_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_3_data_0_hi_lo_lo = {sectored_entries_3_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24]
wire [2:0] sectored_entries_3_data_0_hi_lo_hi = {sectored_entries_3_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24]
wire [5:0] sectored_entries_3_data_0_hi_lo = {sectored_entries_3_data_0_hi_lo_hi, sectored_entries_3_data_0_hi_lo_lo}; // @[TLB.scala:217:24]
wire [2:0] sectored_entries_3_data_0_hi_hi_lo = {sectored_entries_3_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24]
wire [21:0] sectored_entries_3_data_0_hi_hi_hi = {sectored_entries_3_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24]
wire [24:0] sectored_entries_3_data_0_hi_hi = {sectored_entries_3_data_0_hi_hi_hi, sectored_entries_3_data_0_hi_hi_lo}; // @[TLB.scala:217:24]
wire [30:0] sectored_entries_3_data_0_hi = {sectored_entries_3_data_0_hi_hi, sectored_entries_3_data_0_hi_lo}; // @[TLB.scala:217:24]
wire [41:0] _sectored_entries_3_data_0_T = {sectored_entries_3_data_0_hi, sectored_entries_3_data_0_lo}; // @[TLB.scala:217:24]
wire [19:0] _entries_T_22; // @[TLB.scala:170:77]
wire _entries_T_21; // @[TLB.scala:170:77]
wire _entries_T_20; // @[TLB.scala:170:77]
wire _entries_T_19; // @[TLB.scala:170:77]
wire _entries_T_18; // @[TLB.scala:170:77]
wire _entries_T_17; // @[TLB.scala:170:77]
wire _entries_T_16; // @[TLB.scala:170:77]
wire _entries_T_15; // @[TLB.scala:170:77]
wire _entries_T_14; // @[TLB.scala:170:77]
wire _entries_T_13; // @[TLB.scala:170:77]
wire _entries_T_12; // @[TLB.scala:170:77]
wire _entries_T_11; // @[TLB.scala:170:77]
wire _entries_T_10; // @[TLB.scala:170:77]
wire _entries_T_9; // @[TLB.scala:170:77]
wire _entries_T_8; // @[TLB.scala:170:77]
wire _entries_T_7; // @[TLB.scala:170:77]
wire _entries_T_6; // @[TLB.scala:170:77]
wire _entries_T_5; // @[TLB.scala:170:77]
wire _entries_T_4; // @[TLB.scala:170:77]
wire _entries_T_3; // @[TLB.scala:170:77]
wire _entries_T_2; // @[TLB.scala:170:77]
wire _entries_T_1; // @[TLB.scala:170:77]
wire _entries_T; // @[TLB.scala:170:77]
assign _entries_T = _entries_WIRE_1[0]; // @[TLB.scala:170:77]
wire _entries_WIRE_fragmented_superpage = _entries_T; // @[TLB.scala:170:77]
assign _entries_T_1 = _entries_WIRE_1[1]; // @[TLB.scala:170:77]
wire _entries_WIRE_c = _entries_T_1; // @[TLB.scala:170:77]
assign _entries_T_2 = _entries_WIRE_1[2]; // @[TLB.scala:170:77]
wire _entries_WIRE_eff = _entries_T_2; // @[TLB.scala:170:77]
assign _entries_T_3 = _entries_WIRE_1[3]; // @[TLB.scala:170:77]
wire _entries_WIRE_paa = _entries_T_3; // @[TLB.scala:170:77]
assign _entries_T_4 = _entries_WIRE_1[4]; // @[TLB.scala:170:77]
wire _entries_WIRE_pal = _entries_T_4; // @[TLB.scala:170:77]
assign _entries_T_5 = _entries_WIRE_1[5]; // @[TLB.scala:170:77]
wire _entries_WIRE_ppp = _entries_T_5; // @[TLB.scala:170:77]
assign _entries_T_6 = _entries_WIRE_1[6]; // @[TLB.scala:170:77]
wire _entries_WIRE_pr = _entries_T_6; // @[TLB.scala:170:77]
assign _entries_T_7 = _entries_WIRE_1[7]; // @[TLB.scala:170:77]
wire _entries_WIRE_px = _entries_T_7; // @[TLB.scala:170:77]
assign _entries_T_8 = _entries_WIRE_1[8]; // @[TLB.scala:170:77]
wire _entries_WIRE_pw = _entries_T_8; // @[TLB.scala:170:77]
assign _entries_T_9 = _entries_WIRE_1[9]; // @[TLB.scala:170:77]
wire _entries_WIRE_hr = _entries_T_9; // @[TLB.scala:170:77]
assign _entries_T_10 = _entries_WIRE_1[10]; // @[TLB.scala:170:77]
wire _entries_WIRE_hx = _entries_T_10; // @[TLB.scala:170:77]
assign _entries_T_11 = _entries_WIRE_1[11]; // @[TLB.scala:170:77]
wire _entries_WIRE_hw = _entries_T_11; // @[TLB.scala:170:77]
assign _entries_T_12 = _entries_WIRE_1[12]; // @[TLB.scala:170:77]
wire _entries_WIRE_sr = _entries_T_12; // @[TLB.scala:170:77]
assign _entries_T_13 = _entries_WIRE_1[13]; // @[TLB.scala:170:77]
wire _entries_WIRE_sx = _entries_T_13; // @[TLB.scala:170:77]
assign _entries_T_14 = _entries_WIRE_1[14]; // @[TLB.scala:170:77]
wire _entries_WIRE_sw = _entries_T_14; // @[TLB.scala:170:77]
assign _entries_T_15 = _entries_WIRE_1[15]; // @[TLB.scala:170:77]
wire _entries_WIRE_gf = _entries_T_15; // @[TLB.scala:170:77]
assign _entries_T_16 = _entries_WIRE_1[16]; // @[TLB.scala:170:77]
wire _entries_WIRE_pf = _entries_T_16; // @[TLB.scala:170:77]
assign _entries_T_17 = _entries_WIRE_1[17]; // @[TLB.scala:170:77]
wire _entries_WIRE_ae_stage2 = _entries_T_17; // @[TLB.scala:170:77]
assign _entries_T_18 = _entries_WIRE_1[18]; // @[TLB.scala:170:77]
wire _entries_WIRE_ae_final = _entries_T_18; // @[TLB.scala:170:77]
assign _entries_T_19 = _entries_WIRE_1[19]; // @[TLB.scala:170:77]
wire _entries_WIRE_ae_ptw = _entries_T_19; // @[TLB.scala:170:77]
assign _entries_T_20 = _entries_WIRE_1[20]; // @[TLB.scala:170:77]
wire _entries_WIRE_g = _entries_T_20; // @[TLB.scala:170:77]
assign _entries_T_21 = _entries_WIRE_1[21]; // @[TLB.scala:170:77]
wire _entries_WIRE_u = _entries_T_21; // @[TLB.scala:170:77]
assign _entries_T_22 = _entries_WIRE_1[41:22]; // @[TLB.scala:170:77]
wire [19:0] _entries_WIRE_ppn = _entries_T_22; // @[TLB.scala:170:77]
wire [19:0] _entries_T_45; // @[TLB.scala:170:77]
wire _entries_T_44; // @[TLB.scala:170:77]
wire _entries_T_43; // @[TLB.scala:170:77]
wire _entries_T_42; // @[TLB.scala:170:77]
wire _entries_T_41; // @[TLB.scala:170:77]
wire _entries_T_40; // @[TLB.scala:170:77]
wire _entries_T_39; // @[TLB.scala:170:77]
wire _entries_T_38; // @[TLB.scala:170:77]
wire _entries_T_37; // @[TLB.scala:170:77]
wire _entries_T_36; // @[TLB.scala:170:77]
wire _entries_T_35; // @[TLB.scala:170:77]
wire _entries_T_34; // @[TLB.scala:170:77]
wire _entries_T_33; // @[TLB.scala:170:77]
wire _entries_T_32; // @[TLB.scala:170:77]
wire _entries_T_31; // @[TLB.scala:170:77]
wire _entries_T_30; // @[TLB.scala:170:77]
wire _entries_T_29; // @[TLB.scala:170:77]
wire _entries_T_28; // @[TLB.scala:170:77]
wire _entries_T_27; // @[TLB.scala:170:77]
wire _entries_T_26; // @[TLB.scala:170:77]
wire _entries_T_25; // @[TLB.scala:170:77]
wire _entries_T_24; // @[TLB.scala:170:77]
wire _entries_T_23; // @[TLB.scala:170:77]
assign _entries_T_23 = _entries_WIRE_3[0]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_fragmented_superpage = _entries_T_23; // @[TLB.scala:170:77]
assign _entries_T_24 = _entries_WIRE_3[1]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_c = _entries_T_24; // @[TLB.scala:170:77]
assign _entries_T_25 = _entries_WIRE_3[2]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_eff = _entries_T_25; // @[TLB.scala:170:77]
assign _entries_T_26 = _entries_WIRE_3[3]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_paa = _entries_T_26; // @[TLB.scala:170:77]
assign _entries_T_27 = _entries_WIRE_3[4]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_pal = _entries_T_27; // @[TLB.scala:170:77]
assign _entries_T_28 = _entries_WIRE_3[5]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_ppp = _entries_T_28; // @[TLB.scala:170:77]
assign _entries_T_29 = _entries_WIRE_3[6]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_pr = _entries_T_29; // @[TLB.scala:170:77]
assign _entries_T_30 = _entries_WIRE_3[7]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_px = _entries_T_30; // @[TLB.scala:170:77]
assign _entries_T_31 = _entries_WIRE_3[8]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_pw = _entries_T_31; // @[TLB.scala:170:77]
assign _entries_T_32 = _entries_WIRE_3[9]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_hr = _entries_T_32; // @[TLB.scala:170:77]
assign _entries_T_33 = _entries_WIRE_3[10]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_hx = _entries_T_33; // @[TLB.scala:170:77]
assign _entries_T_34 = _entries_WIRE_3[11]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_hw = _entries_T_34; // @[TLB.scala:170:77]
assign _entries_T_35 = _entries_WIRE_3[12]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_sr = _entries_T_35; // @[TLB.scala:170:77]
assign _entries_T_36 = _entries_WIRE_3[13]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_sx = _entries_T_36; // @[TLB.scala:170:77]
assign _entries_T_37 = _entries_WIRE_3[14]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_sw = _entries_T_37; // @[TLB.scala:170:77]
assign _entries_T_38 = _entries_WIRE_3[15]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_gf = _entries_T_38; // @[TLB.scala:170:77]
assign _entries_T_39 = _entries_WIRE_3[16]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_pf = _entries_T_39; // @[TLB.scala:170:77]
assign _entries_T_40 = _entries_WIRE_3[17]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_ae_stage2 = _entries_T_40; // @[TLB.scala:170:77]
assign _entries_T_41 = _entries_WIRE_3[18]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_ae_final = _entries_T_41; // @[TLB.scala:170:77]
assign _entries_T_42 = _entries_WIRE_3[19]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_ae_ptw = _entries_T_42; // @[TLB.scala:170:77]
assign _entries_T_43 = _entries_WIRE_3[20]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_g = _entries_T_43; // @[TLB.scala:170:77]
assign _entries_T_44 = _entries_WIRE_3[21]; // @[TLB.scala:170:77]
wire _entries_WIRE_2_u = _entries_T_44; // @[TLB.scala:170:77]
assign _entries_T_45 = _entries_WIRE_3[41:22]; // @[TLB.scala:170:77]
wire [19:0] _entries_WIRE_2_ppn = _entries_T_45; // @[TLB.scala:170:77]
wire [19:0] _entries_T_68; // @[TLB.scala:170:77]
wire _entries_T_67; // @[TLB.scala:170:77]
wire _entries_T_66; // @[TLB.scala:170:77]
wire _entries_T_65; // @[TLB.scala:170:77]
wire _entries_T_64; // @[TLB.scala:170:77]
wire _entries_T_63; // @[TLB.scala:170:77]
wire _entries_T_62; // @[TLB.scala:170:77]
wire _entries_T_61; // @[TLB.scala:170:77]
wire _entries_T_60; // @[TLB.scala:170:77]
wire _entries_T_59; // @[TLB.scala:170:77]
wire _entries_T_58; // @[TLB.scala:170:77]
wire _entries_T_57; // @[TLB.scala:170:77]
wire _entries_T_56; // @[TLB.scala:170:77]
wire _entries_T_55; // @[TLB.scala:170:77]
wire _entries_T_54; // @[TLB.scala:170:77]
wire _entries_T_53; // @[TLB.scala:170:77]
wire _entries_T_52; // @[TLB.scala:170:77]
wire _entries_T_51; // @[TLB.scala:170:77]
wire _entries_T_50; // @[TLB.scala:170:77]
wire _entries_T_49; // @[TLB.scala:170:77]
wire _entries_T_48; // @[TLB.scala:170:77]
wire _entries_T_47; // @[TLB.scala:170:77]
wire _entries_T_46; // @[TLB.scala:170:77]
assign _entries_T_46 = _entries_WIRE_5[0]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_fragmented_superpage = _entries_T_46; // @[TLB.scala:170:77]
assign _entries_T_47 = _entries_WIRE_5[1]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_c = _entries_T_47; // @[TLB.scala:170:77]
assign _entries_T_48 = _entries_WIRE_5[2]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_eff = _entries_T_48; // @[TLB.scala:170:77]
assign _entries_T_49 = _entries_WIRE_5[3]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_paa = _entries_T_49; // @[TLB.scala:170:77]
assign _entries_T_50 = _entries_WIRE_5[4]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_pal = _entries_T_50; // @[TLB.scala:170:77]
assign _entries_T_51 = _entries_WIRE_5[5]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_ppp = _entries_T_51; // @[TLB.scala:170:77]
assign _entries_T_52 = _entries_WIRE_5[6]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_pr = _entries_T_52; // @[TLB.scala:170:77]
assign _entries_T_53 = _entries_WIRE_5[7]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_px = _entries_T_53; // @[TLB.scala:170:77]
assign _entries_T_54 = _entries_WIRE_5[8]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_pw = _entries_T_54; // @[TLB.scala:170:77]
assign _entries_T_55 = _entries_WIRE_5[9]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_hr = _entries_T_55; // @[TLB.scala:170:77]
assign _entries_T_56 = _entries_WIRE_5[10]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_hx = _entries_T_56; // @[TLB.scala:170:77]
assign _entries_T_57 = _entries_WIRE_5[11]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_hw = _entries_T_57; // @[TLB.scala:170:77]
assign _entries_T_58 = _entries_WIRE_5[12]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_sr = _entries_T_58; // @[TLB.scala:170:77]
assign _entries_T_59 = _entries_WIRE_5[13]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_sx = _entries_T_59; // @[TLB.scala:170:77]
assign _entries_T_60 = _entries_WIRE_5[14]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_sw = _entries_T_60; // @[TLB.scala:170:77]
assign _entries_T_61 = _entries_WIRE_5[15]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_gf = _entries_T_61; // @[TLB.scala:170:77]
assign _entries_T_62 = _entries_WIRE_5[16]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_pf = _entries_T_62; // @[TLB.scala:170:77]
assign _entries_T_63 = _entries_WIRE_5[17]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_ae_stage2 = _entries_T_63; // @[TLB.scala:170:77]
assign _entries_T_64 = _entries_WIRE_5[18]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_ae_final = _entries_T_64; // @[TLB.scala:170:77]
assign _entries_T_65 = _entries_WIRE_5[19]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_ae_ptw = _entries_T_65; // @[TLB.scala:170:77]
assign _entries_T_66 = _entries_WIRE_5[20]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_g = _entries_T_66; // @[TLB.scala:170:77]
assign _entries_T_67 = _entries_WIRE_5[21]; // @[TLB.scala:170:77]
wire _entries_WIRE_4_u = _entries_T_67; // @[TLB.scala:170:77]
assign _entries_T_68 = _entries_WIRE_5[41:22]; // @[TLB.scala:170:77]
wire [19:0] _entries_WIRE_4_ppn = _entries_T_68; // @[TLB.scala:170:77]
wire [19:0] _entries_T_91; // @[TLB.scala:170:77]
wire _entries_T_90; // @[TLB.scala:170:77]
wire _entries_T_89; // @[TLB.scala:170:77]
wire _entries_T_88; // @[TLB.scala:170:77]
wire _entries_T_87; // @[TLB.scala:170:77]
wire _entries_T_86; // @[TLB.scala:170:77]
wire _entries_T_85; // @[TLB.scala:170:77]
wire _entries_T_84; // @[TLB.scala:170:77]
wire _entries_T_83; // @[TLB.scala:170:77]
wire _entries_T_82; // @[TLB.scala:170:77]
wire _entries_T_81; // @[TLB.scala:170:77]
wire _entries_T_80; // @[TLB.scala:170:77]
wire _entries_T_79; // @[TLB.scala:170:77]
wire _entries_T_78; // @[TLB.scala:170:77]
wire _entries_T_77; // @[TLB.scala:170:77]
wire _entries_T_76; // @[TLB.scala:170:77]
wire _entries_T_75; // @[TLB.scala:170:77]
wire _entries_T_74; // @[TLB.scala:170:77]
wire _entries_T_73; // @[TLB.scala:170:77]
wire _entries_T_72; // @[TLB.scala:170:77]
wire _entries_T_71; // @[TLB.scala:170:77]
wire _entries_T_70; // @[TLB.scala:170:77]
wire _entries_T_69; // @[TLB.scala:170:77]
assign _entries_T_69 = _entries_WIRE_7[0]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_fragmented_superpage = _entries_T_69; // @[TLB.scala:170:77]
assign _entries_T_70 = _entries_WIRE_7[1]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_c = _entries_T_70; // @[TLB.scala:170:77]
assign _entries_T_71 = _entries_WIRE_7[2]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_eff = _entries_T_71; // @[TLB.scala:170:77]
assign _entries_T_72 = _entries_WIRE_7[3]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_paa = _entries_T_72; // @[TLB.scala:170:77]
assign _entries_T_73 = _entries_WIRE_7[4]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_pal = _entries_T_73; // @[TLB.scala:170:77]
assign _entries_T_74 = _entries_WIRE_7[5]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_ppp = _entries_T_74; // @[TLB.scala:170:77]
assign _entries_T_75 = _entries_WIRE_7[6]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_pr = _entries_T_75; // @[TLB.scala:170:77]
assign _entries_T_76 = _entries_WIRE_7[7]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_px = _entries_T_76; // @[TLB.scala:170:77]
assign _entries_T_77 = _entries_WIRE_7[8]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_pw = _entries_T_77; // @[TLB.scala:170:77]
assign _entries_T_78 = _entries_WIRE_7[9]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_hr = _entries_T_78; // @[TLB.scala:170:77]
assign _entries_T_79 = _entries_WIRE_7[10]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_hx = _entries_T_79; // @[TLB.scala:170:77]
assign _entries_T_80 = _entries_WIRE_7[11]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_hw = _entries_T_80; // @[TLB.scala:170:77]
assign _entries_T_81 = _entries_WIRE_7[12]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_sr = _entries_T_81; // @[TLB.scala:170:77]
assign _entries_T_82 = _entries_WIRE_7[13]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_sx = _entries_T_82; // @[TLB.scala:170:77]
assign _entries_T_83 = _entries_WIRE_7[14]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_sw = _entries_T_83; // @[TLB.scala:170:77]
assign _entries_T_84 = _entries_WIRE_7[15]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_gf = _entries_T_84; // @[TLB.scala:170:77]
assign _entries_T_85 = _entries_WIRE_7[16]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_pf = _entries_T_85; // @[TLB.scala:170:77]
assign _entries_T_86 = _entries_WIRE_7[17]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_ae_stage2 = _entries_T_86; // @[TLB.scala:170:77]
assign _entries_T_87 = _entries_WIRE_7[18]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_ae_final = _entries_T_87; // @[TLB.scala:170:77]
assign _entries_T_88 = _entries_WIRE_7[19]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_ae_ptw = _entries_T_88; // @[TLB.scala:170:77]
assign _entries_T_89 = _entries_WIRE_7[20]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_g = _entries_T_89; // @[TLB.scala:170:77]
assign _entries_T_90 = _entries_WIRE_7[21]; // @[TLB.scala:170:77]
wire _entries_WIRE_6_u = _entries_T_90; // @[TLB.scala:170:77]
assign _entries_T_91 = _entries_WIRE_7[41:22]; // @[TLB.scala:170:77]
wire [19:0] _entries_WIRE_6_ppn = _entries_T_91; // @[TLB.scala:170:77]
wire [19:0] _entries_T_114; // @[TLB.scala:170:77]
wire _entries_T_113; // @[TLB.scala:170:77]
wire _entries_T_112; // @[TLB.scala:170:77]
wire _entries_T_111; // @[TLB.scala:170:77]
wire _entries_T_110; // @[TLB.scala:170:77]
wire _entries_T_109; // @[TLB.scala:170:77]
wire _entries_T_108; // @[TLB.scala:170:77]
wire _entries_T_107; // @[TLB.scala:170:77]
wire _entries_T_106; // @[TLB.scala:170:77]
wire _entries_T_105; // @[TLB.scala:170:77]
wire _entries_T_104; // @[TLB.scala:170:77]
wire _entries_T_103; // @[TLB.scala:170:77]
wire _entries_T_102; // @[TLB.scala:170:77]
wire _entries_T_101; // @[TLB.scala:170:77]
wire _entries_T_100; // @[TLB.scala:170:77]
wire _entries_T_99; // @[TLB.scala:170:77]
wire _entries_T_98; // @[TLB.scala:170:77]
wire _entries_T_97; // @[TLB.scala:170:77]
wire _entries_T_96; // @[TLB.scala:170:77]
wire _entries_T_95; // @[TLB.scala:170:77]
wire _entries_T_94; // @[TLB.scala:170:77]
wire _entries_T_93; // @[TLB.scala:170:77]
wire _entries_T_92; // @[TLB.scala:170:77]
assign _entries_T_92 = _entries_WIRE_9[0]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_fragmented_superpage = _entries_T_92; // @[TLB.scala:170:77]
assign _entries_T_93 = _entries_WIRE_9[1]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_c = _entries_T_93; // @[TLB.scala:170:77]
assign _entries_T_94 = _entries_WIRE_9[2]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_eff = _entries_T_94; // @[TLB.scala:170:77]
assign _entries_T_95 = _entries_WIRE_9[3]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_paa = _entries_T_95; // @[TLB.scala:170:77]
assign _entries_T_96 = _entries_WIRE_9[4]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_pal = _entries_T_96; // @[TLB.scala:170:77]
assign _entries_T_97 = _entries_WIRE_9[5]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_ppp = _entries_T_97; // @[TLB.scala:170:77]
assign _entries_T_98 = _entries_WIRE_9[6]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_pr = _entries_T_98; // @[TLB.scala:170:77]
assign _entries_T_99 = _entries_WIRE_9[7]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_px = _entries_T_99; // @[TLB.scala:170:77]
assign _entries_T_100 = _entries_WIRE_9[8]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_pw = _entries_T_100; // @[TLB.scala:170:77]
assign _entries_T_101 = _entries_WIRE_9[9]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_hr = _entries_T_101; // @[TLB.scala:170:77]
assign _entries_T_102 = _entries_WIRE_9[10]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_hx = _entries_T_102; // @[TLB.scala:170:77]
assign _entries_T_103 = _entries_WIRE_9[11]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_hw = _entries_T_103; // @[TLB.scala:170:77]
assign _entries_T_104 = _entries_WIRE_9[12]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_sr = _entries_T_104; // @[TLB.scala:170:77]
assign _entries_T_105 = _entries_WIRE_9[13]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_sx = _entries_T_105; // @[TLB.scala:170:77]
assign _entries_T_106 = _entries_WIRE_9[14]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_sw = _entries_T_106; // @[TLB.scala:170:77]
assign _entries_T_107 = _entries_WIRE_9[15]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_gf = _entries_T_107; // @[TLB.scala:170:77]
assign _entries_T_108 = _entries_WIRE_9[16]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_pf = _entries_T_108; // @[TLB.scala:170:77]
assign _entries_T_109 = _entries_WIRE_9[17]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_ae_stage2 = _entries_T_109; // @[TLB.scala:170:77]
assign _entries_T_110 = _entries_WIRE_9[18]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_ae_final = _entries_T_110; // @[TLB.scala:170:77]
assign _entries_T_111 = _entries_WIRE_9[19]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_ae_ptw = _entries_T_111; // @[TLB.scala:170:77]
assign _entries_T_112 = _entries_WIRE_9[20]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_g = _entries_T_112; // @[TLB.scala:170:77]
assign _entries_T_113 = _entries_WIRE_9[21]; // @[TLB.scala:170:77]
wire _entries_WIRE_8_u = _entries_T_113; // @[TLB.scala:170:77]
assign _entries_T_114 = _entries_WIRE_9[41:22]; // @[TLB.scala:170:77]
wire [19:0] _entries_WIRE_8_ppn = _entries_T_114; // @[TLB.scala:170:77]
wire [19:0] _entries_T_137; // @[TLB.scala:170:77]
wire _entries_T_136; // @[TLB.scala:170:77]
wire _entries_T_135; // @[TLB.scala:170:77]
wire _entries_T_134; // @[TLB.scala:170:77]
wire _entries_T_133; // @[TLB.scala:170:77]
wire _entries_T_132; // @[TLB.scala:170:77]
wire _entries_T_131; // @[TLB.scala:170:77]
wire _entries_T_130; // @[TLB.scala:170:77]
wire _entries_T_129; // @[TLB.scala:170:77]
wire _entries_T_128; // @[TLB.scala:170:77]
wire _entries_T_127; // @[TLB.scala:170:77]
wire _entries_T_126; // @[TLB.scala:170:77]
wire _entries_T_125; // @[TLB.scala:170:77]
wire _entries_T_124; // @[TLB.scala:170:77]
wire _entries_T_123; // @[TLB.scala:170:77]
wire _entries_T_122; // @[TLB.scala:170:77]
wire _entries_T_121; // @[TLB.scala:170:77]
wire _entries_T_120; // @[TLB.scala:170:77]
wire _entries_T_119; // @[TLB.scala:170:77]
wire _entries_T_118; // @[TLB.scala:170:77]
wire _entries_T_117; // @[TLB.scala:170:77]
wire _entries_T_116; // @[TLB.scala:170:77]
wire _entries_T_115; // @[TLB.scala:170:77]
assign _entries_T_115 = _entries_WIRE_11[0]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_fragmented_superpage = _entries_T_115; // @[TLB.scala:170:77]
assign _entries_T_116 = _entries_WIRE_11[1]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_c = _entries_T_116; // @[TLB.scala:170:77]
assign _entries_T_117 = _entries_WIRE_11[2]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_eff = _entries_T_117; // @[TLB.scala:170:77]
assign _entries_T_118 = _entries_WIRE_11[3]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_paa = _entries_T_118; // @[TLB.scala:170:77]
assign _entries_T_119 = _entries_WIRE_11[4]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_pal = _entries_T_119; // @[TLB.scala:170:77]
assign _entries_T_120 = _entries_WIRE_11[5]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_ppp = _entries_T_120; // @[TLB.scala:170:77]
assign _entries_T_121 = _entries_WIRE_11[6]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_pr = _entries_T_121; // @[TLB.scala:170:77]
assign _entries_T_122 = _entries_WIRE_11[7]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_px = _entries_T_122; // @[TLB.scala:170:77]
assign _entries_T_123 = _entries_WIRE_11[8]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_pw = _entries_T_123; // @[TLB.scala:170:77]
assign _entries_T_124 = _entries_WIRE_11[9]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_hr = _entries_T_124; // @[TLB.scala:170:77]
assign _entries_T_125 = _entries_WIRE_11[10]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_hx = _entries_T_125; // @[TLB.scala:170:77]
assign _entries_T_126 = _entries_WIRE_11[11]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_hw = _entries_T_126; // @[TLB.scala:170:77]
assign _entries_T_127 = _entries_WIRE_11[12]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_sr = _entries_T_127; // @[TLB.scala:170:77]
assign _entries_T_128 = _entries_WIRE_11[13]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_sx = _entries_T_128; // @[TLB.scala:170:77]
assign _entries_T_129 = _entries_WIRE_11[14]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_sw = _entries_T_129; // @[TLB.scala:170:77]
assign _entries_T_130 = _entries_WIRE_11[15]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_gf = _entries_T_130; // @[TLB.scala:170:77]
assign _entries_T_131 = _entries_WIRE_11[16]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_pf = _entries_T_131; // @[TLB.scala:170:77]
assign _entries_T_132 = _entries_WIRE_11[17]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_ae_stage2 = _entries_T_132; // @[TLB.scala:170:77]
assign _entries_T_133 = _entries_WIRE_11[18]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_ae_final = _entries_T_133; // @[TLB.scala:170:77]
assign _entries_T_134 = _entries_WIRE_11[19]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_ae_ptw = _entries_T_134; // @[TLB.scala:170:77]
assign _entries_T_135 = _entries_WIRE_11[20]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_g = _entries_T_135; // @[TLB.scala:170:77]
assign _entries_T_136 = _entries_WIRE_11[21]; // @[TLB.scala:170:77]
wire _entries_WIRE_10_u = _entries_T_136; // @[TLB.scala:170:77]
assign _entries_T_137 = _entries_WIRE_11[41:22]; // @[TLB.scala:170:77]
wire [19:0] _entries_WIRE_10_ppn = _entries_T_137; // @[TLB.scala:170:77]
wire _ppn_T = ~vm_enabled; // @[TLB.scala:399:61, :442:18, :502:30]
wire [1:0] ppn_res = _entries_barrier_4_io_y_ppn[19:18]; // @[package.scala:267:25]
wire ppn_ignore = _ppn_ignore_T; // @[TLB.scala:197:{28,34}]
wire [26:0] _ppn_T_1 = ppn_ignore ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30]
wire [26:0] _ppn_T_2 = {_ppn_T_1[26:20], _ppn_T_1[19:0] | _entries_barrier_4_io_y_ppn}; // @[package.scala:267:25]
wire [8:0] _ppn_T_3 = _ppn_T_2[17:9]; // @[TLB.scala:198:{47,58}]
wire [10:0] _ppn_T_4 = {ppn_res, _ppn_T_3}; // @[TLB.scala:195:26, :198:{18,58}]
wire _ppn_ignore_T_1 = ~(superpage_entries_0_level[1]); // @[TLB.scala:182:28, :197:28, :341:30]
wire [26:0] _ppn_T_6 = {_ppn_T_5[26:20], _ppn_T_5[19:0] | _entries_barrier_4_io_y_ppn}; // @[package.scala:267:25]
wire [8:0] _ppn_T_7 = _ppn_T_6[8:0]; // @[TLB.scala:198:{47,58}]
wire [19:0] _ppn_T_8 = {_ppn_T_4, _ppn_T_7}; // @[TLB.scala:198:{18,58}]
wire [1:0] ppn_res_1 = _entries_barrier_5_io_y_ppn[19:18]; // @[package.scala:267:25]
wire ppn_ignore_2 = _ppn_ignore_T_2; // @[TLB.scala:197:{28,34}]
wire [26:0] _ppn_T_9 = ppn_ignore_2 ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30]
wire [26:0] _ppn_T_10 = {_ppn_T_9[26:20], _ppn_T_9[19:0] | _entries_barrier_5_io_y_ppn}; // @[package.scala:267:25]
wire [8:0] _ppn_T_11 = _ppn_T_10[17:9]; // @[TLB.scala:198:{47,58}]
wire [10:0] _ppn_T_12 = {ppn_res_1, _ppn_T_11}; // @[TLB.scala:195:26, :198:{18,58}]
wire _ppn_ignore_T_3 = ~(special_entry_level[1]); // @[TLB.scala:197:28, :346:56]
wire ppn_ignore_3 = _ppn_ignore_T_3; // @[TLB.scala:197:{28,34}]
wire [26:0] _ppn_T_13 = ppn_ignore_3 ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30]
wire [26:0] _ppn_T_14 = {_ppn_T_13[26:20], _ppn_T_13[19:0] | _entries_barrier_5_io_y_ppn}; // @[package.scala:267:25]
wire [8:0] _ppn_T_15 = _ppn_T_14[8:0]; // @[TLB.scala:198:{47,58}]
wire [19:0] _ppn_T_16 = {_ppn_T_12, _ppn_T_15}; // @[TLB.scala:198:{18,58}]
wire [19:0] _ppn_T_17 = vpn[19:0]; // @[TLB.scala:335:30, :502:125]
wire [19:0] _ppn_T_18 = hitsVec_0 ? _entries_barrier_io_y_ppn : 20'h0; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_19 = hitsVec_1 ? _entries_barrier_1_io_y_ppn : 20'h0; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_20 = hitsVec_2 ? _entries_barrier_2_io_y_ppn : 20'h0; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_21 = hitsVec_3 ? _entries_barrier_3_io_y_ppn : 20'h0; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_22 = hitsVec_4 ? _ppn_T_8 : 20'h0; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_23 = hitsVec_5 ? _ppn_T_16 : 20'h0; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_24 = _ppn_T ? _ppn_T_17 : 20'h0; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_25 = _ppn_T_18 | _ppn_T_19; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_26 = _ppn_T_25 | _ppn_T_20; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_27 = _ppn_T_26 | _ppn_T_21; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_28 = _ppn_T_27 | _ppn_T_22; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_29 = _ppn_T_28 | _ppn_T_23; // @[Mux.scala:30:73]
wire [19:0] _ppn_T_30 = _ppn_T_29 | _ppn_T_24; // @[Mux.scala:30:73]
wire [19:0] ppn = _ppn_T_30; // @[Mux.scala:30:73]
wire [1:0] ptw_ae_array_lo_hi = {_entries_barrier_2_io_y_ae_ptw, _entries_barrier_1_io_y_ae_ptw}; // @[package.scala:45:27, :267:25]
wire [2:0] ptw_ae_array_lo = {ptw_ae_array_lo_hi, _entries_barrier_io_y_ae_ptw}; // @[package.scala:45:27, :267:25]
wire [1:0] ptw_ae_array_hi_hi = {_entries_barrier_5_io_y_ae_ptw, _entries_barrier_4_io_y_ae_ptw}; // @[package.scala:45:27, :267:25]
wire [2:0] ptw_ae_array_hi = {ptw_ae_array_hi_hi, _entries_barrier_3_io_y_ae_ptw}; // @[package.scala:45:27, :267:25]
wire [5:0] _ptw_ae_array_T = {ptw_ae_array_hi, ptw_ae_array_lo}; // @[package.scala:45:27]
wire [6:0] ptw_ae_array = {1'h0, _ptw_ae_array_T}; // @[package.scala:45:27]
wire [1:0] final_ae_array_lo_hi = {_entries_barrier_2_io_y_ae_final, _entries_barrier_1_io_y_ae_final}; // @[package.scala:45:27, :267:25]
wire [2:0] final_ae_array_lo = {final_ae_array_lo_hi, _entries_barrier_io_y_ae_final}; // @[package.scala:45:27, :267:25]
wire [1:0] final_ae_array_hi_hi = {_entries_barrier_5_io_y_ae_final, _entries_barrier_4_io_y_ae_final}; // @[package.scala:45:27, :267:25]
wire [2:0] final_ae_array_hi = {final_ae_array_hi_hi, _entries_barrier_3_io_y_ae_final}; // @[package.scala:45:27, :267:25]
wire [5:0] _final_ae_array_T = {final_ae_array_hi, final_ae_array_lo}; // @[package.scala:45:27]
wire [6:0] final_ae_array = {1'h0, _final_ae_array_T}; // @[package.scala:45:27]
wire [1:0] ptw_pf_array_lo_hi = {_entries_barrier_2_io_y_pf, _entries_barrier_1_io_y_pf}; // @[package.scala:45:27, :267:25]
wire [2:0] ptw_pf_array_lo = {ptw_pf_array_lo_hi, _entries_barrier_io_y_pf}; // @[package.scala:45:27, :267:25]
wire [1:0] ptw_pf_array_hi_hi = {_entries_barrier_5_io_y_pf, _entries_barrier_4_io_y_pf}; // @[package.scala:45:27, :267:25]
wire [2:0] ptw_pf_array_hi = {ptw_pf_array_hi_hi, _entries_barrier_3_io_y_pf}; // @[package.scala:45:27, :267:25]
wire [5:0] _ptw_pf_array_T = {ptw_pf_array_hi, ptw_pf_array_lo}; // @[package.scala:45:27]
wire [6:0] ptw_pf_array = {1'h0, _ptw_pf_array_T}; // @[package.scala:45:27]
wire [1:0] ptw_gf_array_lo_hi = {_entries_barrier_2_io_y_gf, _entries_barrier_1_io_y_gf}; // @[package.scala:45:27, :267:25]
wire [2:0] ptw_gf_array_lo = {ptw_gf_array_lo_hi, _entries_barrier_io_y_gf}; // @[package.scala:45:27, :267:25]
wire [1:0] ptw_gf_array_hi_hi = {_entries_barrier_5_io_y_gf, _entries_barrier_4_io_y_gf}; // @[package.scala:45:27, :267:25]
wire [2:0] ptw_gf_array_hi = {ptw_gf_array_hi_hi, _entries_barrier_3_io_y_gf}; // @[package.scala:45:27, :267:25]
wire [5:0] _ptw_gf_array_T = {ptw_gf_array_hi, ptw_gf_array_lo}; // @[package.scala:45:27]
wire [6:0] ptw_gf_array = {1'h0, _ptw_gf_array_T}; // @[package.scala:45:27]
wire [6:0] _gf_ld_array_T_3 = ptw_gf_array; // @[TLB.scala:509:25, :600:82]
wire [6:0] _gf_st_array_T_2 = ptw_gf_array; // @[TLB.scala:509:25, :601:63]
wire [6:0] _gf_inst_array_T_1 = ptw_gf_array; // @[TLB.scala:509:25, :602:46]
wire [1:0] _GEN_33 = {_entries_barrier_2_io_y_u, _entries_barrier_1_io_y_u}; // @[package.scala:45:27, :267:25]
wire [1:0] priv_rw_ok_lo_hi; // @[package.scala:45:27]
assign priv_rw_ok_lo_hi = _GEN_33; // @[package.scala:45:27]
wire [1:0] priv_rw_ok_lo_hi_1; // @[package.scala:45:27]
assign priv_rw_ok_lo_hi_1 = _GEN_33; // @[package.scala:45:27]
wire [1:0] priv_x_ok_lo_hi; // @[package.scala:45:27]
assign priv_x_ok_lo_hi = _GEN_33; // @[package.scala:45:27]
wire [1:0] priv_x_ok_lo_hi_1; // @[package.scala:45:27]
assign priv_x_ok_lo_hi_1 = _GEN_33; // @[package.scala:45:27]
wire [2:0] priv_rw_ok_lo = {priv_rw_ok_lo_hi, _entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25]
wire [1:0] _GEN_34 = {_entries_barrier_5_io_y_u, _entries_barrier_4_io_y_u}; // @[package.scala:45:27, :267:25]
wire [1:0] priv_rw_ok_hi_hi; // @[package.scala:45:27]
assign priv_rw_ok_hi_hi = _GEN_34; // @[package.scala:45:27]
wire [1:0] priv_rw_ok_hi_hi_1; // @[package.scala:45:27]
assign priv_rw_ok_hi_hi_1 = _GEN_34; // @[package.scala:45:27]
wire [1:0] priv_x_ok_hi_hi; // @[package.scala:45:27]
assign priv_x_ok_hi_hi = _GEN_34; // @[package.scala:45:27]
wire [1:0] priv_x_ok_hi_hi_1; // @[package.scala:45:27]
assign priv_x_ok_hi_hi_1 = _GEN_34; // @[package.scala:45:27]
wire [2:0] priv_rw_ok_hi = {priv_rw_ok_hi_hi, _entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25]
wire [5:0] _priv_rw_ok_T_2 = {priv_rw_ok_hi, priv_rw_ok_lo}; // @[package.scala:45:27]
wire [5:0] _priv_rw_ok_T_3 = _priv_rw_ok_T_2; // @[package.scala:45:27]
wire [5:0] priv_rw_ok = _priv_rw_ok_T_3; // @[TLB.scala:513:{23,70}]
wire [2:0] priv_rw_ok_lo_1 = {priv_rw_ok_lo_hi_1, _entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25]
wire [2:0] priv_rw_ok_hi_1 = {priv_rw_ok_hi_hi_1, _entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25]
wire [5:0] _priv_rw_ok_T_4 = {priv_rw_ok_hi_1, priv_rw_ok_lo_1}; // @[package.scala:45:27]
wire [5:0] _priv_rw_ok_T_5 = ~_priv_rw_ok_T_4; // @[package.scala:45:27]
wire [2:0] priv_x_ok_lo = {priv_x_ok_lo_hi, _entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25]
wire [2:0] priv_x_ok_hi = {priv_x_ok_hi_hi, _entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25]
wire [5:0] _priv_x_ok_T = {priv_x_ok_hi, priv_x_ok_lo}; // @[package.scala:45:27]
wire [5:0] _priv_x_ok_T_1 = ~_priv_x_ok_T; // @[package.scala:45:27]
wire [2:0] priv_x_ok_lo_1 = {priv_x_ok_lo_hi_1, _entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25]
wire [2:0] priv_x_ok_hi_1 = {priv_x_ok_hi_hi_1, _entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25]
wire [5:0] _priv_x_ok_T_2 = {priv_x_ok_hi_1, priv_x_ok_lo_1}; // @[package.scala:45:27]
wire [5:0] priv_x_ok = _priv_x_ok_T_2; // @[package.scala:45:27]
wire _stage1_bypass_T_1 = ~stage1_en; // @[TLB.scala:374:29, :517:83]
wire [5:0] _stage1_bypass_T_2 = {6{_stage1_bypass_T_1}}; // @[TLB.scala:517:{68,83}]
wire [1:0] stage1_bypass_lo_hi = {_entries_barrier_2_io_y_ae_stage2, _entries_barrier_1_io_y_ae_stage2}; // @[package.scala:45:27, :267:25]
wire [2:0] stage1_bypass_lo = {stage1_bypass_lo_hi, _entries_barrier_io_y_ae_stage2}; // @[package.scala:45:27, :267:25]
wire [1:0] stage1_bypass_hi_hi = {_entries_barrier_5_io_y_ae_stage2, _entries_barrier_4_io_y_ae_stage2}; // @[package.scala:45:27, :267:25]
wire [2:0] stage1_bypass_hi = {stage1_bypass_hi_hi, _entries_barrier_3_io_y_ae_stage2}; // @[package.scala:45:27, :267:25]
wire [5:0] _stage1_bypass_T_3 = {stage1_bypass_hi, stage1_bypass_lo}; // @[package.scala:45:27]
wire [5:0] _stage1_bypass_T_4 = _stage1_bypass_T_2 | _stage1_bypass_T_3; // @[package.scala:45:27]
wire [1:0] r_array_lo_hi = {_entries_barrier_2_io_y_sr, _entries_barrier_1_io_y_sr}; // @[package.scala:45:27, :267:25]
wire [2:0] r_array_lo = {r_array_lo_hi, _entries_barrier_io_y_sr}; // @[package.scala:45:27, :267:25]
wire [1:0] r_array_hi_hi = {_entries_barrier_5_io_y_sr, _entries_barrier_4_io_y_sr}; // @[package.scala:45:27, :267:25]
wire [2:0] r_array_hi = {r_array_hi_hi, _entries_barrier_3_io_y_sr}; // @[package.scala:45:27, :267:25]
wire [5:0] _r_array_T = {r_array_hi, r_array_lo}; // @[package.scala:45:27]
wire [1:0] _GEN_35 = {_entries_barrier_2_io_y_sx, _entries_barrier_1_io_y_sx}; // @[package.scala:45:27, :267:25]
wire [1:0] r_array_lo_hi_1; // @[package.scala:45:27]
assign r_array_lo_hi_1 = _GEN_35; // @[package.scala:45:27]
wire [1:0] x_array_lo_hi; // @[package.scala:45:27]
assign x_array_lo_hi = _GEN_35; // @[package.scala:45:27]
wire [2:0] r_array_lo_1 = {r_array_lo_hi_1, _entries_barrier_io_y_sx}; // @[package.scala:45:27, :267:25]
wire [1:0] _GEN_36 = {_entries_barrier_5_io_y_sx, _entries_barrier_4_io_y_sx}; // @[package.scala:45:27, :267:25]
wire [1:0] r_array_hi_hi_1; // @[package.scala:45:27]
assign r_array_hi_hi_1 = _GEN_36; // @[package.scala:45:27]
wire [1:0] x_array_hi_hi; // @[package.scala:45:27]
assign x_array_hi_hi = _GEN_36; // @[package.scala:45:27]
wire [2:0] r_array_hi_1 = {r_array_hi_hi_1, _entries_barrier_3_io_y_sx}; // @[package.scala:45:27, :267:25]
wire [5:0] _r_array_T_1 = {r_array_hi_1, r_array_lo_1}; // @[package.scala:45:27]
wire [5:0] _r_array_T_2 = mxr ? _r_array_T_1 : 6'h0; // @[package.scala:45:27]
wire [5:0] _r_array_T_3 = _r_array_T | _r_array_T_2; // @[package.scala:45:27]
wire [5:0] _r_array_T_4 = priv_rw_ok & _r_array_T_3; // @[TLB.scala:513:70, :520:{41,69}]
wire [5:0] _r_array_T_5 = _r_array_T_4; // @[TLB.scala:520:{41,113}]
wire [6:0] r_array = {1'h1, _r_array_T_5}; // @[TLB.scala:520:{20,113}]
wire [6:0] _pf_ld_array_T = r_array; // @[TLB.scala:520:20, :597:41]
wire [1:0] w_array_lo_hi = {_entries_barrier_2_io_y_sw, _entries_barrier_1_io_y_sw}; // @[package.scala:45:27, :267:25]
wire [2:0] w_array_lo = {w_array_lo_hi, _entries_barrier_io_y_sw}; // @[package.scala:45:27, :267:25]
wire [1:0] w_array_hi_hi = {_entries_barrier_5_io_y_sw, _entries_barrier_4_io_y_sw}; // @[package.scala:45:27, :267:25]
wire [2:0] w_array_hi = {w_array_hi_hi, _entries_barrier_3_io_y_sw}; // @[package.scala:45:27, :267:25]
wire [5:0] _w_array_T = {w_array_hi, w_array_lo}; // @[package.scala:45:27]
wire [5:0] _w_array_T_1 = priv_rw_ok & _w_array_T; // @[package.scala:45:27]
wire [5:0] _w_array_T_2 = _w_array_T_1; // @[TLB.scala:521:{41,69}]
wire [6:0] w_array = {1'h1, _w_array_T_2}; // @[TLB.scala:521:{20,69}]
wire [2:0] x_array_lo = {x_array_lo_hi, _entries_barrier_io_y_sx}; // @[package.scala:45:27, :267:25]
wire [2:0] x_array_hi = {x_array_hi_hi, _entries_barrier_3_io_y_sx}; // @[package.scala:45:27, :267:25]
wire [5:0] _x_array_T = {x_array_hi, x_array_lo}; // @[package.scala:45:27]
wire [5:0] _x_array_T_1 = priv_x_ok & _x_array_T; // @[package.scala:45:27]
wire [5:0] _x_array_T_2 = _x_array_T_1; // @[TLB.scala:522:{40,68}]
wire [6:0] x_array = {1'h1, _x_array_T_2}; // @[TLB.scala:522:{20,68}]
wire [1:0] hr_array_lo_hi = {_entries_barrier_2_io_y_hr, _entries_barrier_1_io_y_hr}; // @[package.scala:45:27, :267:25]
wire [2:0] hr_array_lo = {hr_array_lo_hi, _entries_barrier_io_y_hr}; // @[package.scala:45:27, :267:25]
wire [1:0] hr_array_hi_hi = {_entries_barrier_5_io_y_hr, _entries_barrier_4_io_y_hr}; // @[package.scala:45:27, :267:25]
wire [2:0] hr_array_hi = {hr_array_hi_hi, _entries_barrier_3_io_y_hr}; // @[package.scala:45:27, :267:25]
wire [5:0] _hr_array_T = {hr_array_hi, hr_array_lo}; // @[package.scala:45:27]
wire [1:0] _GEN_37 = {_entries_barrier_2_io_y_hx, _entries_barrier_1_io_y_hx}; // @[package.scala:45:27, :267:25]
wire [1:0] hr_array_lo_hi_1; // @[package.scala:45:27]
assign hr_array_lo_hi_1 = _GEN_37; // @[package.scala:45:27]
wire [1:0] hx_array_lo_hi; // @[package.scala:45:27]
assign hx_array_lo_hi = _GEN_37; // @[package.scala:45:27]
wire [2:0] hr_array_lo_1 = {hr_array_lo_hi_1, _entries_barrier_io_y_hx}; // @[package.scala:45:27, :267:25]
wire [1:0] _GEN_38 = {_entries_barrier_5_io_y_hx, _entries_barrier_4_io_y_hx}; // @[package.scala:45:27, :267:25]
wire [1:0] hr_array_hi_hi_1; // @[package.scala:45:27]
assign hr_array_hi_hi_1 = _GEN_38; // @[package.scala:45:27]
wire [1:0] hx_array_hi_hi; // @[package.scala:45:27]
assign hx_array_hi_hi = _GEN_38; // @[package.scala:45:27]
wire [2:0] hr_array_hi_1 = {hr_array_hi_hi_1, _entries_barrier_3_io_y_hx}; // @[package.scala:45:27, :267:25]
wire [5:0] _hr_array_T_1 = {hr_array_hi_1, hr_array_lo_1}; // @[package.scala:45:27]
wire [5:0] _hr_array_T_2 = io_ptw_status_mxr_0 ? _hr_array_T_1 : 6'h0; // @[package.scala:45:27]
wire [5:0] _hr_array_T_3 = _hr_array_T | _hr_array_T_2; // @[package.scala:45:27]
wire [1:0] hw_array_lo_hi = {_entries_barrier_2_io_y_hw, _entries_barrier_1_io_y_hw}; // @[package.scala:45:27, :267:25]
wire [2:0] hw_array_lo = {hw_array_lo_hi, _entries_barrier_io_y_hw}; // @[package.scala:45:27, :267:25]
wire [1:0] hw_array_hi_hi = {_entries_barrier_5_io_y_hw, _entries_barrier_4_io_y_hw}; // @[package.scala:45:27, :267:25]
wire [2:0] hw_array_hi = {hw_array_hi_hi, _entries_barrier_3_io_y_hw}; // @[package.scala:45:27, :267:25]
wire [5:0] _hw_array_T = {hw_array_hi, hw_array_lo}; // @[package.scala:45:27]
wire [2:0] hx_array_lo = {hx_array_lo_hi, _entries_barrier_io_y_hx}; // @[package.scala:45:27, :267:25]
wire [2:0] hx_array_hi = {hx_array_hi_hi, _entries_barrier_3_io_y_hx}; // @[package.scala:45:27, :267:25]
wire [5:0] _hx_array_T = {hx_array_hi, hx_array_lo}; // @[package.scala:45:27]
wire [1:0] _pr_array_T = {2{prot_r}}; // @[TLB.scala:429:55, :529:26]
wire [1:0] pr_array_lo = {_entries_barrier_1_io_y_pr, _entries_barrier_io_y_pr}; // @[package.scala:45:27, :267:25]
wire [1:0] pr_array_hi_hi = {_entries_barrier_4_io_y_pr, _entries_barrier_3_io_y_pr}; // @[package.scala:45:27, :267:25]
wire [2:0] pr_array_hi = {pr_array_hi_hi, _entries_barrier_2_io_y_pr}; // @[package.scala:45:27, :267:25]
wire [4:0] _pr_array_T_1 = {pr_array_hi, pr_array_lo}; // @[package.scala:45:27]
wire [6:0] _pr_array_T_2 = {_pr_array_T, _pr_array_T_1}; // @[package.scala:45:27]
wire [6:0] _GEN_39 = ptw_ae_array | final_ae_array; // @[TLB.scala:506:25, :507:27, :529:104]
wire [6:0] _pr_array_T_3; // @[TLB.scala:529:104]
assign _pr_array_T_3 = _GEN_39; // @[TLB.scala:529:104]
wire [6:0] _pw_array_T_3; // @[TLB.scala:531:104]
assign _pw_array_T_3 = _GEN_39; // @[TLB.scala:529:104, :531:104]
wire [6:0] _px_array_T_3; // @[TLB.scala:533:104]
assign _px_array_T_3 = _GEN_39; // @[TLB.scala:529:104, :533:104]
wire [6:0] _pr_array_T_4 = ~_pr_array_T_3; // @[TLB.scala:529:{89,104}]
wire [6:0] pr_array = _pr_array_T_2 & _pr_array_T_4; // @[TLB.scala:529:{21,87,89}]
wire [1:0] _pw_array_T = {2{prot_w}}; // @[TLB.scala:430:55, :531:26]
wire [1:0] pw_array_lo = {_entries_barrier_1_io_y_pw, _entries_barrier_io_y_pw}; // @[package.scala:45:27, :267:25]
wire [1:0] pw_array_hi_hi = {_entries_barrier_4_io_y_pw, _entries_barrier_3_io_y_pw}; // @[package.scala:45:27, :267:25]
wire [2:0] pw_array_hi = {pw_array_hi_hi, _entries_barrier_2_io_y_pw}; // @[package.scala:45:27, :267:25]
wire [4:0] _pw_array_T_1 = {pw_array_hi, pw_array_lo}; // @[package.scala:45:27]
wire [6:0] _pw_array_T_2 = {_pw_array_T, _pw_array_T_1}; // @[package.scala:45:27]
wire [6:0] _pw_array_T_4 = ~_pw_array_T_3; // @[TLB.scala:531:{89,104}]
wire [6:0] pw_array = _pw_array_T_2 & _pw_array_T_4; // @[TLB.scala:531:{21,87,89}]
wire [1:0] _px_array_T = {2{prot_x}}; // @[TLB.scala:434:55, :533:26]
wire [1:0] px_array_lo = {_entries_barrier_1_io_y_px, _entries_barrier_io_y_px}; // @[package.scala:45:27, :267:25]
wire [1:0] px_array_hi_hi = {_entries_barrier_4_io_y_px, _entries_barrier_3_io_y_px}; // @[package.scala:45:27, :267:25]
wire [2:0] px_array_hi = {px_array_hi_hi, _entries_barrier_2_io_y_px}; // @[package.scala:45:27, :267:25]
wire [4:0] _px_array_T_1 = {px_array_hi, px_array_lo}; // @[package.scala:45:27]
wire [6:0] _px_array_T_2 = {_px_array_T, _px_array_T_1}; // @[package.scala:45:27]
wire [6:0] _px_array_T_4 = ~_px_array_T_3; // @[TLB.scala:533:{89,104}]
wire [6:0] px_array = _px_array_T_2 & _px_array_T_4; // @[TLB.scala:533:{21,87,89}]
wire [1:0] _eff_array_T = {2{_pma_io_resp_eff}}; // @[TLB.scala:422:19, :535:27]
wire [1:0] eff_array_lo = {_entries_barrier_1_io_y_eff, _entries_barrier_io_y_eff}; // @[package.scala:45:27, :267:25]
wire [1:0] eff_array_hi_hi = {_entries_barrier_4_io_y_eff, _entries_barrier_3_io_y_eff}; // @[package.scala:45:27, :267:25]
wire [2:0] eff_array_hi = {eff_array_hi_hi, _entries_barrier_2_io_y_eff}; // @[package.scala:45:27, :267:25]
wire [4:0] _eff_array_T_1 = {eff_array_hi, eff_array_lo}; // @[package.scala:45:27]
wire [6:0] eff_array = {_eff_array_T, _eff_array_T_1}; // @[package.scala:45:27]
wire [1:0] _c_array_T = {2{cacheable}}; // @[TLB.scala:425:41, :537:25]
wire [1:0] _GEN_40 = {_entries_barrier_1_io_y_c, _entries_barrier_io_y_c}; // @[package.scala:45:27, :267:25]
wire [1:0] c_array_lo; // @[package.scala:45:27]
assign c_array_lo = _GEN_40; // @[package.scala:45:27]
wire [1:0] prefetchable_array_lo; // @[package.scala:45:27]
assign prefetchable_array_lo = _GEN_40; // @[package.scala:45:27]
wire [1:0] _GEN_41 = {_entries_barrier_4_io_y_c, _entries_barrier_3_io_y_c}; // @[package.scala:45:27, :267:25]
wire [1:0] c_array_hi_hi; // @[package.scala:45:27]
assign c_array_hi_hi = _GEN_41; // @[package.scala:45:27]
wire [1:0] prefetchable_array_hi_hi; // @[package.scala:45:27]
assign prefetchable_array_hi_hi = _GEN_41; // @[package.scala:45:27]
wire [2:0] c_array_hi = {c_array_hi_hi, _entries_barrier_2_io_y_c}; // @[package.scala:45:27, :267:25]
wire [4:0] _c_array_T_1 = {c_array_hi, c_array_lo}; // @[package.scala:45:27]
wire [6:0] c_array = {_c_array_T, _c_array_T_1}; // @[package.scala:45:27]
wire [6:0] lrscAllowed = c_array; // @[TLB.scala:537:20, :580:24]
wire [1:0] _ppp_array_T = {2{_pma_io_resp_pp}}; // @[TLB.scala:422:19, :539:27]
wire [1:0] ppp_array_lo = {_entries_barrier_1_io_y_ppp, _entries_barrier_io_y_ppp}; // @[package.scala:45:27, :267:25]
wire [1:0] ppp_array_hi_hi = {_entries_barrier_4_io_y_ppp, _entries_barrier_3_io_y_ppp}; // @[package.scala:45:27, :267:25]
wire [2:0] ppp_array_hi = {ppp_array_hi_hi, _entries_barrier_2_io_y_ppp}; // @[package.scala:45:27, :267:25]
wire [4:0] _ppp_array_T_1 = {ppp_array_hi, ppp_array_lo}; // @[package.scala:45:27]
wire [6:0] ppp_array = {_ppp_array_T, _ppp_array_T_1}; // @[package.scala:45:27]
wire [1:0] _paa_array_T = {2{_pma_io_resp_aa}}; // @[TLB.scala:422:19, :541:27]
wire [1:0] paa_array_lo = {_entries_barrier_1_io_y_paa, _entries_barrier_io_y_paa}; // @[package.scala:45:27, :267:25]
wire [1:0] paa_array_hi_hi = {_entries_barrier_4_io_y_paa, _entries_barrier_3_io_y_paa}; // @[package.scala:45:27, :267:25]
wire [2:0] paa_array_hi = {paa_array_hi_hi, _entries_barrier_2_io_y_paa}; // @[package.scala:45:27, :267:25]
wire [4:0] _paa_array_T_1 = {paa_array_hi, paa_array_lo}; // @[package.scala:45:27]
wire [6:0] paa_array = {_paa_array_T, _paa_array_T_1}; // @[package.scala:45:27]
wire [1:0] _pal_array_T = {2{_pma_io_resp_al}}; // @[TLB.scala:422:19, :543:27]
wire [1:0] pal_array_lo = {_entries_barrier_1_io_y_pal, _entries_barrier_io_y_pal}; // @[package.scala:45:27, :267:25]
wire [1:0] pal_array_hi_hi = {_entries_barrier_4_io_y_pal, _entries_barrier_3_io_y_pal}; // @[package.scala:45:27, :267:25]
wire [2:0] pal_array_hi = {pal_array_hi_hi, _entries_barrier_2_io_y_pal}; // @[package.scala:45:27, :267:25]
wire [4:0] _pal_array_T_1 = {pal_array_hi, pal_array_lo}; // @[package.scala:45:27]
wire [6:0] pal_array = {_pal_array_T, _pal_array_T_1}; // @[package.scala:45:27]
wire [6:0] ppp_array_if_cached = ppp_array | c_array; // @[TLB.scala:537:20, :539:22, :544:39]
wire [6:0] paa_array_if_cached = paa_array | c_array; // @[TLB.scala:537:20, :541:22, :545:39]
wire [6:0] pal_array_if_cached = pal_array | c_array; // @[TLB.scala:537:20, :543:22, :546:39]
wire _prefetchable_array_T = cacheable & homogeneous; // @[TLBPermissions.scala:101:65]
wire [1:0] _prefetchable_array_T_1 = {_prefetchable_array_T, 1'h0}; // @[TLB.scala:547:{43,59}]
wire [2:0] prefetchable_array_hi = {prefetchable_array_hi_hi, _entries_barrier_2_io_y_c}; // @[package.scala:45:27, :267:25]
wire [4:0] _prefetchable_array_T_2 = {prefetchable_array_hi, prefetchable_array_lo}; // @[package.scala:45:27]
wire [6:0] prefetchable_array = {_prefetchable_array_T_1, _prefetchable_array_T_2}; // @[package.scala:45:27]
wire [3:0] _misaligned_T = 4'h1 << io_req_bits_size_0; // @[OneHot.scala:58:35]
wire [4:0] _misaligned_T_1 = {1'h0, _misaligned_T} - 5'h1; // @[OneHot.scala:58:35]
wire [3:0] _misaligned_T_2 = _misaligned_T_1[3:0]; // @[TLB.scala:550:69]
wire [39:0] _misaligned_T_3 = {36'h0, io_req_bits_vaddr_0[3:0] & _misaligned_T_2}; // @[TLB.scala:318:7, :550:{39,69}]
wire misaligned = |_misaligned_T_3; // @[TLB.scala:550:{39,77}]
assign _io_resp_ma_st_T = misaligned; // @[TLB.scala:550:77, :646:31]
wire _bad_va_T = vm_enabled & stage1_en; // @[TLB.scala:374:29, :399:61, :568:21]
wire [39:0] bad_va_maskedVAddr = io_req_bits_vaddr_0 & 40'hC000000000; // @[TLB.scala:318:7, :559:43]
wire _bad_va_T_2 = bad_va_maskedVAddr == 40'h0; // @[TLB.scala:550:77, :559:43, :560:51]
wire _bad_va_T_3 = bad_va_maskedVAddr == 40'hC000000000; // @[TLB.scala:559:43, :560:86]
wire _bad_va_T_4 = _bad_va_T_3; // @[TLB.scala:560:{71,86}]
wire _bad_va_T_5 = _bad_va_T_2 | _bad_va_T_4; // @[TLB.scala:560:{51,59,71}]
wire _bad_va_T_6 = ~_bad_va_T_5; // @[TLB.scala:560:{37,59}]
wire _bad_va_T_7 = _bad_va_T_6; // @[TLB.scala:560:{34,37}]
wire bad_va = _bad_va_T & _bad_va_T_7; // @[TLB.scala:560:34, :568:{21,34}]
wire _io_resp_pf_st_T = bad_va; // @[TLB.scala:568:34, :634:28]
wire [6:0] _ae_array_T = misaligned ? eff_array : 7'h0; // @[TLB.scala:535:22, :550:77, :582:8]
wire [6:0] ae_array = _ae_array_T; // @[TLB.scala:582:{8,37}]
wire [6:0] _ae_array_T_1 = ~lrscAllowed; // @[TLB.scala:580:24, :583:19]
wire [6:0] _ae_ld_array_T = ~pr_array; // @[TLB.scala:529:87, :586:46]
wire [6:0] _ae_ld_array_T_1 = ae_array | _ae_ld_array_T; // @[TLB.scala:582:37, :586:{44,46}]
wire [6:0] _ae_st_array_T = ~pw_array; // @[TLB.scala:531:87, :588:37]
wire [6:0] _ae_st_array_T_1 = ae_array | _ae_st_array_T; // @[TLB.scala:582:37, :588:{35,37}]
wire [6:0] _ae_st_array_T_2 = _ae_st_array_T_1; // @[TLB.scala:588:{8,35}]
wire [6:0] _ae_st_array_T_5 = _ae_st_array_T_2; // @[TLB.scala:588:{8,53}]
wire [6:0] _ae_st_array_T_3 = ~ppp_array_if_cached; // @[TLB.scala:544:39, :589:26]
wire [6:0] _ae_st_array_T_8 = _ae_st_array_T_5; // @[TLB.scala:588:53, :589:53]
wire [6:0] _ae_st_array_T_6 = ~pal_array_if_cached; // @[TLB.scala:546:39, :590:26]
wire [6:0] ae_st_array = _ae_st_array_T_8; // @[TLB.scala:589:53, :590:53]
wire [6:0] _ae_st_array_T_9 = ~paa_array_if_cached; // @[TLB.scala:545:39, :591:29]
wire [6:0] _must_alloc_array_T = ~ppp_array; // @[TLB.scala:539:22, :593:26]
wire [6:0] _must_alloc_array_T_2 = ~pal_array; // @[TLB.scala:543:22, :594:26]
wire [6:0] _must_alloc_array_T_5 = ~paa_array; // @[TLB.scala:541:22, :595:29]
wire [6:0] _pf_ld_array_T_1 = ~_pf_ld_array_T; // @[TLB.scala:597:{37,41}]
wire [6:0] _pf_ld_array_T_2 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73]
wire [6:0] _pf_ld_array_T_3 = _pf_ld_array_T_1 & _pf_ld_array_T_2; // @[TLB.scala:597:{37,71,73}]
wire [6:0] _pf_ld_array_T_4 = _pf_ld_array_T_3 | ptw_pf_array; // @[TLB.scala:508:25, :597:{71,88}]
wire [6:0] _pf_ld_array_T_5 = ~ptw_gf_array; // @[TLB.scala:509:25, :597:106]
wire [6:0] _pf_ld_array_T_6 = _pf_ld_array_T_4 & _pf_ld_array_T_5; // @[TLB.scala:597:{88,104,106}]
wire [6:0] _pf_st_array_T = ~w_array; // @[TLB.scala:521:20, :598:44]
wire [6:0] _pf_st_array_T_1 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :598:55]
wire [6:0] _pf_st_array_T_2 = _pf_st_array_T & _pf_st_array_T_1; // @[TLB.scala:598:{44,53,55}]
wire [6:0] _pf_st_array_T_3 = _pf_st_array_T_2 | ptw_pf_array; // @[TLB.scala:508:25, :598:{53,70}]
wire [6:0] _pf_st_array_T_4 = ~ptw_gf_array; // @[TLB.scala:509:25, :597:106, :598:88]
wire [6:0] _pf_st_array_T_5 = _pf_st_array_T_3 & _pf_st_array_T_4; // @[TLB.scala:598:{70,86,88}]
wire [6:0] pf_st_array = _pf_st_array_T_5; // @[TLB.scala:598:{24,86}]
wire [6:0] _pf_inst_array_T = ~x_array; // @[TLB.scala:522:20, :599:25]
wire [6:0] _pf_inst_array_T_1 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :599:36]
wire [6:0] _pf_inst_array_T_2 = _pf_inst_array_T & _pf_inst_array_T_1; // @[TLB.scala:599:{25,34,36}]
wire [6:0] _pf_inst_array_T_3 = _pf_inst_array_T_2 | ptw_pf_array; // @[TLB.scala:508:25, :599:{34,51}]
wire [6:0] _pf_inst_array_T_4 = ~ptw_gf_array; // @[TLB.scala:509:25, :597:106, :599:69]
wire [6:0] pf_inst_array = _pf_inst_array_T_3 & _pf_inst_array_T_4; // @[TLB.scala:599:{51,67,69}]
wire [6:0] _gf_ld_array_T_4 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :600:100]
wire [6:0] _gf_ld_array_T_5 = _gf_ld_array_T_3 & _gf_ld_array_T_4; // @[TLB.scala:600:{82,98,100}]
wire [6:0] _gf_st_array_T_3 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :601:81]
wire [6:0] _gf_st_array_T_4 = _gf_st_array_T_2 & _gf_st_array_T_3; // @[TLB.scala:601:{63,79,81}]
wire [6:0] _gf_inst_array_T_2 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :602:64]
wire [6:0] _gf_inst_array_T_3 = _gf_inst_array_T_1 & _gf_inst_array_T_2; // @[TLB.scala:602:{46,62,64}]
wire _gpa_hits_hit_mask_T = r_gpa_vpn == vpn; // @[TLB.scala:335:30, :364:22, :606:73]
wire _gpa_hits_hit_mask_T_1 = r_gpa_valid & _gpa_hits_hit_mask_T; // @[TLB.scala:362:24, :606:{60,73}]
wire [4:0] _gpa_hits_hit_mask_T_2 = {5{_gpa_hits_hit_mask_T_1}}; // @[TLB.scala:606:{24,60}]
wire tlb_hit_if_not_gpa_miss = |real_hits; // @[package.scala:45:27]
wire tlb_hit = |_tlb_hit_T; // @[TLB.scala:611:{28,40}]
wire _tlb_miss_T_2 = ~bad_va; // @[TLB.scala:568:34, :613:56]
wire _tlb_miss_T_3 = _tlb_miss_T_1 & _tlb_miss_T_2; // @[TLB.scala:613:{29,53,56}]
wire _tlb_miss_T_4 = ~tlb_hit; // @[TLB.scala:611:40, :613:67]
wire tlb_miss = _tlb_miss_T_3 & _tlb_miss_T_4; // @[TLB.scala:613:{53,64,67}]
reg [2:0] state_vec_0; // @[Replacement.scala:305:17]
reg [2:0] state_vec_1; // @[Replacement.scala:305:17]
reg [2:0] state_vec_2; // @[Replacement.scala:305:17]
reg [2:0] state_vec_3; // @[Replacement.scala:305:17]
wire [1:0] _GEN_42 = {sector_hits_1, sector_hits_0}; // @[OneHot.scala:21:45]
wire [1:0] lo; // @[OneHot.scala:21:45]
assign lo = _GEN_42; // @[OneHot.scala:21:45]
wire [1:0] r_sectored_hit_bits_lo; // @[OneHot.scala:21:45]
assign r_sectored_hit_bits_lo = _GEN_42; // @[OneHot.scala:21:45]
wire [1:0] lo_1 = lo; // @[OneHot.scala:21:45, :31:18]
wire [1:0] _GEN_43 = {sector_hits_3, sector_hits_2}; // @[OneHot.scala:21:45]
wire [1:0] hi; // @[OneHot.scala:21:45]
assign hi = _GEN_43; // @[OneHot.scala:21:45]
wire [1:0] r_sectored_hit_bits_hi; // @[OneHot.scala:21:45]
assign r_sectored_hit_bits_hi = _GEN_43; // @[OneHot.scala:21:45]
wire [1:0] hi_1 = hi; // @[OneHot.scala:21:45, :30:18]
wire [1:0] state_vec_touch_way_sized = {|hi_1, hi_1[1] | lo_1[1]}; // @[OneHot.scala:30:18, :31:18, :32:{10,14,28}]
wire _state_vec_set_left_older_T = state_vec_touch_way_sized[1]; // @[package.scala:163:13]
wire state_vec_set_left_older = ~_state_vec_set_left_older_T; // @[Replacement.scala:196:{33,43}]
wire [3:0][2:0] _GEN_44 = {{state_vec_3}, {state_vec_2}, {state_vec_1}, {state_vec_0}}; // @[package.scala:163:13]
wire state_vec_left_subtree_state = _GEN_44[memIdx][1]; // @[package.scala:163:13]
wire r_sectored_repl_addr_left_subtree_state = _GEN_44[memIdx][1]; // @[package.scala:163:13]
wire state_vec_right_subtree_state = _GEN_44[memIdx][0]; // @[package.scala:163:13]
wire r_sectored_repl_addr_right_subtree_state = _GEN_44[memIdx][0]; // @[package.scala:163:13]
wire _state_vec_T = state_vec_touch_way_sized[0]; // @[package.scala:163:13]
wire _state_vec_T_4 = state_vec_touch_way_sized[0]; // @[package.scala:163:13]
wire _state_vec_T_1 = _state_vec_T; // @[package.scala:163:13]
wire _state_vec_T_2 = ~_state_vec_T_1; // @[Replacement.scala:218:{7,17}]
wire _state_vec_T_3 = state_vec_set_left_older ? state_vec_left_subtree_state : _state_vec_T_2; // @[package.scala:163:13]
wire _state_vec_T_5 = _state_vec_T_4; // @[Replacement.scala:207:62, :218:17]
wire _state_vec_T_6 = ~_state_vec_T_5; // @[Replacement.scala:218:{7,17}]
wire _state_vec_T_7 = state_vec_set_left_older ? _state_vec_T_6 : state_vec_right_subtree_state; // @[Replacement.scala:196:33, :198:38, :206:16, :218:7]
wire [1:0] state_vec_hi = {state_vec_set_left_older, _state_vec_T_3}; // @[Replacement.scala:196:33, :202:12, :203:16]
wire [2:0] _state_vec_T_8 = {state_vec_hi, _state_vec_T_7}; // @[Replacement.scala:202:12, :206:16]
wire [2:0] _multipleHits_T = real_hits[2:0]; // @[package.scala:45:27]
wire _multipleHits_T_1 = _multipleHits_T[0]; // @[Misc.scala:181:37]
wire multipleHits_leftOne = _multipleHits_T_1; // @[Misc.scala:178:18, :181:37]
wire [1:0] _multipleHits_T_2 = _multipleHits_T[2:1]; // @[Misc.scala:181:37, :182:39]
wire _multipleHits_T_3 = _multipleHits_T_2[0]; // @[Misc.scala:181:37, :182:39]
wire multipleHits_leftOne_1 = _multipleHits_T_3; // @[Misc.scala:178:18, :181:37]
wire _multipleHits_T_4 = _multipleHits_T_2[1]; // @[Misc.scala:182:39]
wire multipleHits_rightOne = _multipleHits_T_4; // @[Misc.scala:178:18, :182:39]
wire multipleHits_rightOne_1 = multipleHits_leftOne_1 | multipleHits_rightOne; // @[Misc.scala:178:18, :183:16]
wire _multipleHits_T_6 = multipleHits_leftOne_1 & multipleHits_rightOne; // @[Misc.scala:178:18, :183:61]
wire multipleHits_rightTwo = _multipleHits_T_6; // @[Misc.scala:183:{49,61}]
wire _multipleHits_T_7 = multipleHits_rightTwo; // @[Misc.scala:183:{37,49}]
wire multipleHits_leftOne_2 = multipleHits_leftOne | multipleHits_rightOne_1; // @[Misc.scala:178:18, :183:16]
wire _multipleHits_T_8 = multipleHits_leftOne & multipleHits_rightOne_1; // @[Misc.scala:178:18, :183:{16,61}]
wire multipleHits_leftTwo = _multipleHits_T_7 | _multipleHits_T_8; // @[Misc.scala:183:{37,49,61}]
wire [2:0] _multipleHits_T_9 = real_hits[5:3]; // @[package.scala:45:27]
wire _multipleHits_T_10 = _multipleHits_T_9[0]; // @[Misc.scala:181:37, :182:39]
wire multipleHits_leftOne_3 = _multipleHits_T_10; // @[Misc.scala:178:18, :181:37]
wire [1:0] _multipleHits_T_11 = _multipleHits_T_9[2:1]; // @[Misc.scala:182:39]
wire _multipleHits_T_12 = _multipleHits_T_11[0]; // @[Misc.scala:181:37, :182:39]
wire multipleHits_leftOne_4 = _multipleHits_T_12; // @[Misc.scala:178:18, :181:37]
wire _multipleHits_T_13 = _multipleHits_T_11[1]; // @[Misc.scala:182:39]
wire multipleHits_rightOne_2 = _multipleHits_T_13; // @[Misc.scala:178:18, :182:39]
wire multipleHits_rightOne_3 = multipleHits_leftOne_4 | multipleHits_rightOne_2; // @[Misc.scala:178:18, :183:16]
wire _multipleHits_T_15 = multipleHits_leftOne_4 & multipleHits_rightOne_2; // @[Misc.scala:178:18, :183:61]
wire multipleHits_rightTwo_1 = _multipleHits_T_15; // @[Misc.scala:183:{49,61}]
wire _multipleHits_T_16 = multipleHits_rightTwo_1; // @[Misc.scala:183:{37,49}]
wire multipleHits_rightOne_4 = multipleHits_leftOne_3 | multipleHits_rightOne_3; // @[Misc.scala:178:18, :183:16]
wire _multipleHits_T_17 = multipleHits_leftOne_3 & multipleHits_rightOne_3; // @[Misc.scala:178:18, :183:{16,61}]
wire multipleHits_rightTwo_2 = _multipleHits_T_16 | _multipleHits_T_17; // @[Misc.scala:183:{37,49,61}]
wire _multipleHits_T_18 = multipleHits_leftOne_2 | multipleHits_rightOne_4; // @[Misc.scala:183:16]
wire _multipleHits_T_19 = multipleHits_leftTwo | multipleHits_rightTwo_2; // @[Misc.scala:183:{37,49}]
wire _multipleHits_T_20 = multipleHits_leftOne_2 & multipleHits_rightOne_4; // @[Misc.scala:183:{16,61}]
wire multipleHits = _multipleHits_T_19 | _multipleHits_T_20; // @[Misc.scala:183:{37,49,61}]
assign _io_req_ready_T = state == 2'h0; // @[TLB.scala:352:22, :631:25]
assign io_req_ready_0 = _io_req_ready_T; // @[TLB.scala:318:7, :631:25]
wire [6:0] _io_resp_pf_st_T_1 = pf_st_array & hits; // @[TLB.scala:442:17, :598:24, :634:64]
wire _io_resp_pf_st_T_2 = |_io_resp_pf_st_T_1; // @[TLB.scala:634:{64,72}]
assign _io_resp_pf_st_T_3 = _io_resp_pf_st_T | _io_resp_pf_st_T_2; // @[TLB.scala:634:{28,48,72}]
assign io_resp_pf_st = _io_resp_pf_st_T_3; // @[TLB.scala:318:7, :634:48]
wire [6:0] _io_resp_pf_inst_T = pf_inst_array & hits; // @[TLB.scala:442:17, :599:67, :635:47]
wire _io_resp_pf_inst_T_1 = |_io_resp_pf_inst_T; // @[TLB.scala:635:{47,55}]
assign _io_resp_pf_inst_T_2 = bad_va | _io_resp_pf_inst_T_1; // @[TLB.scala:568:34, :635:{29,55}]
assign io_resp_pf_inst = _io_resp_pf_inst_T_2; // @[TLB.scala:318:7, :635:29]
wire [6:0] _io_resp_ae_st_T = ae_st_array & hits; // @[TLB.scala:442:17, :590:53, :642:33]
assign _io_resp_ae_st_T_1 = |_io_resp_ae_st_T; // @[TLB.scala:642:{33,41}]
assign io_resp_ae_st = _io_resp_ae_st_T_1; // @[TLB.scala:318:7, :642:41]
wire [6:0] _io_resp_ae_inst_T = ~px_array; // @[TLB.scala:533:87, :643:23]
wire [6:0] _io_resp_ae_inst_T_1 = _io_resp_ae_inst_T & hits; // @[TLB.scala:442:17, :643:{23,33}]
assign _io_resp_ae_inst_T_2 = |_io_resp_ae_inst_T_1; // @[TLB.scala:643:{33,41}]
assign io_resp_ae_inst = _io_resp_ae_inst_T_2; // @[TLB.scala:318:7, :643:41]
assign io_resp_ma_st = _io_resp_ma_st_T; // @[TLB.scala:318:7, :646:31]
wire [6:0] _io_resp_cacheable_T = c_array & hits; // @[TLB.scala:442:17, :537:20, :648:33]
assign _io_resp_cacheable_T_1 = |_io_resp_cacheable_T; // @[TLB.scala:648:{33,41}]
assign io_resp_cacheable = _io_resp_cacheable_T_1; // @[TLB.scala:318:7, :648:41]
wire [6:0] _io_resp_prefetchable_T = prefetchable_array & hits; // @[TLB.scala:442:17, :547:31, :650:47]
wire _io_resp_prefetchable_T_1 = |_io_resp_prefetchable_T; // @[TLB.scala:650:{47,55}]
assign _io_resp_prefetchable_T_2 = _io_resp_prefetchable_T_1; // @[TLB.scala:650:{55,59}]
assign io_resp_prefetchable = _io_resp_prefetchable_T_2; // @[TLB.scala:318:7, :650:59]
wire _io_resp_miss_T_1 = _io_resp_miss_T | tlb_miss; // @[TLB.scala:613:64, :651:{29,52}]
assign _io_resp_miss_T_2 = _io_resp_miss_T_1 | multipleHits; // @[Misc.scala:183:49]
assign io_resp_miss_0 = _io_resp_miss_T_2; // @[TLB.scala:318:7, :651:64]
assign _io_resp_paddr_T_1 = {ppn, _io_resp_paddr_T}; // @[Mux.scala:30:73]
assign io_resp_paddr_0 = _io_resp_paddr_T_1; // @[TLB.scala:318:7, :652:23]
wire [27:0] _io_resp_gpa_page_T_1 = {1'h0, vpn}; // @[TLB.scala:335:30, :657:36]
wire [27:0] io_resp_gpa_page = _io_resp_gpa_page_T_1; // @[TLB.scala:657:{19,36}]
wire [26:0] _io_resp_gpa_page_T_2 = r_gpa[38:12]; // @[TLB.scala:363:18, :657:58]
wire [11:0] _io_resp_gpa_offset_T = r_gpa[11:0]; // @[TLB.scala:363:18, :658:47]
wire [11:0] io_resp_gpa_offset = _io_resp_gpa_offset_T_1; // @[TLB.scala:658:{21,82}]
assign _io_resp_gpa_T = {io_resp_gpa_page, io_resp_gpa_offset}; // @[TLB.scala:657:19, :658:21, :659:8]
assign io_resp_gpa = _io_resp_gpa_T; // @[TLB.scala:318:7, :659:8]
assign io_ptw_req_valid_0 = _io_ptw_req_valid_T; // @[TLB.scala:318:7, :662:29]
wire _r_superpage_repl_addr_T_1 = ~superpage_entries_0_valid_0; // @[TLB.scala:341:30, :757:43]
wire _r_superpage_repl_addr_T_2 = _r_superpage_repl_addr_T_1; // @[OneHot.scala:48:45]
wire r_sectored_repl_addr_left_subtree_older = _GEN_44[memIdx][2]; // @[package.scala:163:13]
wire _r_sectored_repl_addr_T = r_sectored_repl_addr_left_subtree_state; // @[package.scala:163:13]
wire _r_sectored_repl_addr_T_1 = r_sectored_repl_addr_right_subtree_state; // @[Replacement.scala:245:38, :262:12]
wire _r_sectored_repl_addr_T_2 = r_sectored_repl_addr_left_subtree_older ? _r_sectored_repl_addr_T : _r_sectored_repl_addr_T_1; // @[Replacement.scala:243:38, :250:16, :262:12]
wire [1:0] _r_sectored_repl_addr_T_3 = {r_sectored_repl_addr_left_subtree_older, _r_sectored_repl_addr_T_2}; // @[Replacement.scala:243:38, :249:12, :250:16]
wire [1:0] r_sectored_repl_addr_valids_lo = {_GEN_11[memIdx], _GEN_7[memIdx]}; // @[package.scala:45:27, :163:13]
wire [1:0] r_sectored_repl_addr_valids_hi = {_GEN_19[memIdx], _GEN_15[memIdx]}; // @[package.scala:45:27, :163:13]
wire [3:0] r_sectored_repl_addr_valids = {r_sectored_repl_addr_valids_hi, r_sectored_repl_addr_valids_lo}; // @[package.scala:45:27]
wire _r_sectored_repl_addr_T_4 = &r_sectored_repl_addr_valids; // @[package.scala:45:27]
wire [3:0] _r_sectored_repl_addr_T_5 = ~r_sectored_repl_addr_valids; // @[package.scala:45:27]
wire _r_sectored_repl_addr_T_6 = _r_sectored_repl_addr_T_5[0]; // @[OneHot.scala:48:45]
wire _r_sectored_repl_addr_T_7 = _r_sectored_repl_addr_T_5[1]; // @[OneHot.scala:48:45]
wire _r_sectored_repl_addr_T_8 = _r_sectored_repl_addr_T_5[2]; // @[OneHot.scala:48:45]
wire _r_sectored_repl_addr_T_9 = _r_sectored_repl_addr_T_5[3]; // @[OneHot.scala:48:45]
wire [1:0] _r_sectored_repl_addr_T_10 = {1'h1, ~_r_sectored_repl_addr_T_8}; // @[OneHot.scala:48:45]
wire [1:0] _r_sectored_repl_addr_T_11 = _r_sectored_repl_addr_T_7 ? 2'h1 : _r_sectored_repl_addr_T_10; // @[OneHot.scala:48:45]
wire [1:0] _r_sectored_repl_addr_T_12 = _r_sectored_repl_addr_T_6 ? 2'h0 : _r_sectored_repl_addr_T_11; // @[OneHot.scala:48:45]
wire [1:0] _r_sectored_repl_addr_T_13 = _r_sectored_repl_addr_T_4 ? _r_sectored_repl_addr_T_3 : _r_sectored_repl_addr_T_12; // @[Mux.scala:50:70]
wire _r_sectored_hit_valid_T = sector_hits_0 | sector_hits_1; // @[package.scala:81:59]
wire _r_sectored_hit_valid_T_1 = _r_sectored_hit_valid_T | sector_hits_2; // @[package.scala:81:59]
wire _r_sectored_hit_valid_T_2 = _r_sectored_hit_valid_T_1 | sector_hits_3; // @[package.scala:81:59]
wire [3:0] _r_sectored_hit_bits_T = {r_sectored_hit_bits_hi, r_sectored_hit_bits_lo}; // @[OneHot.scala:21:45]
wire [1:0] r_sectored_hit_bits_hi_1 = _r_sectored_hit_bits_T[3:2]; // @[OneHot.scala:21:45, :30:18]
wire [1:0] r_sectored_hit_bits_lo_1 = _r_sectored_hit_bits_T[1:0]; // @[OneHot.scala:21:45, :31:18]
wire _r_sectored_hit_bits_T_1 = |r_sectored_hit_bits_hi_1; // @[OneHot.scala:30:18, :32:14]
wire [1:0] _r_sectored_hit_bits_T_2 = r_sectored_hit_bits_hi_1 | r_sectored_hit_bits_lo_1; // @[OneHot.scala:30:18, :31:18, :32:28]
wire _r_sectored_hit_bits_T_3 = _r_sectored_hit_bits_T_2[1]; // @[OneHot.scala:32:28]
wire [1:0] _r_sectored_hit_bits_T_4 = {_r_sectored_hit_bits_T_1, _r_sectored_hit_bits_T_3}; // @[OneHot.scala:32:{10,14}]
wire [1:0] _state_T = {1'h1, io_sfence_valid_0}; // @[TLB.scala:318:7, :704:45]
wire _tagMatch_T = ~superpage_entries_0_tag_v; // @[TLB.scala:178:43, :341:30]
wire tagMatch = superpage_entries_0_valid_0 & _tagMatch_T; // @[TLB.scala:178:{33,43}, :341:30]
wire ignore_1 = _ignore_T_1; // @[TLB.scala:182:{28,34}]
wire _ignore_T_2 = ~(superpage_entries_0_level[1]); // @[TLB.scala:182:28, :341:30]
wire _tagMatch_T_1 = ~special_entry_tag_v; // @[TLB.scala:178:43, :346:56]
wire tagMatch_1 = special_entry_valid_0 & _tagMatch_T_1; // @[TLB.scala:178:{33,43}, :346:56]
wire ignore_4 = _ignore_T_4; // @[TLB.scala:182:{28,34}]
wire _ignore_T_5 = ~(special_entry_level[1]); // @[TLB.scala:182:28, :197:28, :346:56]
wire ignore_5 = _ignore_T_5; // @[TLB.scala:182:{28,34}]
wire _T_12 = io_req_valid_0 & vm_enabled; // @[TLB.scala:318:7, :399:61, :617:22]
wire _T_15 = sector_hits_0 | sector_hits_1 | sector_hits_2 | sector_hits_3; // @[package.scala:81:59]
wire _GEN_45 = do_refill & ~io_ptw_resp_bits_homogeneous_0; // @[TLB.scala:211:18, :318:7, :346:56, :408:29, :446:20, :474:{39,70}]
wire _GEN_46 = ~do_refill | ~io_ptw_resp_bits_homogeneous_0 | io_ptw_resp_bits_level_0[1]; // @[TLB.scala:318:7, :341:30, :408:29, :446:20, :474:70, :476:{40,58}]
wire _T_4 = waddr_1 == 2'h0; // @[TLB.scala:485:22, :486:75]
wire _GEN_47 = r_memIdx == 2'h0; // @[package.scala:163:13]
wire _GEN_48 = r_memIdx == 2'h1; // @[package.scala:163:13]
wire _GEN_49 = r_memIdx == 2'h2; // @[package.scala:163:13]
wire _GEN_50 = ~io_ptw_resp_bits_homogeneous_0 | ~(io_ptw_resp_bits_level_0[1]); // @[TLB.scala:318:7, :339:29, :474:{39,70}, :476:{40,58}, :486:84]
wire _GEN_51 = ~do_refill | _GEN_50 | ~(_T_4 & _GEN_47); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_52 = ~do_refill | _GEN_50 | ~(_T_4 & _GEN_48); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_53 = ~do_refill | _GEN_50 | ~(_T_4 & _GEN_49); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_54 = ~do_refill | _GEN_50 | ~(_T_4 & (&r_memIdx)); // @[package.scala:163:13]
wire _GEN_55 = invalidate_refill & _GEN_47; // @[TLB.scala:216:16, :220:46, :410:88, :489:34]
wire _GEN_56 = ~do_refill | _GEN_50 | ~_T_4; // @[TLB.scala:339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_57 = invalidate_refill & _GEN_48; // @[TLB.scala:216:16, :220:46, :410:88, :489:34]
wire _GEN_58 = invalidate_refill & _GEN_49; // @[TLB.scala:216:16, :220:46, :410:88, :489:34]
wire _GEN_59 = invalidate_refill & (&r_memIdx); // @[package.scala:163:13]
wire _T_6 = waddr_1 == 2'h1; // @[TLB.scala:197:28, :485:22, :486:75]
wire _GEN_60 = ~do_refill | _GEN_50 | ~(_T_6 & _GEN_47); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_61 = ~do_refill | _GEN_50 | ~(_T_6 & _GEN_48); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_62 = ~do_refill | _GEN_50 | ~(_T_6 & _GEN_49); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_63 = ~do_refill | _GEN_50 | ~(_T_6 & (&r_memIdx)); // @[package.scala:163:13]
wire _GEN_64 = ~do_refill | _GEN_50 | ~_T_6; // @[TLB.scala:339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _T_8 = waddr_1 == 2'h2; // @[TLB.scala:485:22, :486:75]
wire _GEN_65 = ~do_refill | _GEN_50 | ~(_T_8 & _GEN_47); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_66 = ~do_refill | _GEN_50 | ~(_T_8 & _GEN_48); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_67 = ~do_refill | _GEN_50 | ~(_T_8 & _GEN_49); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_68 = ~do_refill | _GEN_50 | ~(_T_8 & (&r_memIdx)); // @[package.scala:163:13]
wire _GEN_69 = ~do_refill | _GEN_50 | ~_T_8; // @[TLB.scala:339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :486:{75,84}]
wire _GEN_70 = ~do_refill | _GEN_50 | ~((&waddr_1) & _GEN_47); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :485:22, :486:{75,84}]
wire _GEN_71 = ~do_refill | _GEN_50 | ~((&waddr_1) & _GEN_48); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :485:22, :486:{75,84}]
wire _GEN_72 = ~do_refill | _GEN_50 | ~((&waddr_1) & _GEN_49); // @[TLB.scala:211:18, :220:46, :339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :485:22, :486:{75,84}]
wire _GEN_73 = ~do_refill | _GEN_50 | ~((&waddr_1) & (&r_memIdx)); // @[package.scala:163:13]
wire _GEN_74 = ~do_refill | _GEN_50 | ~(&waddr_1); // @[TLB.scala:339:29, :341:30, :408:29, :446:20, :474:70, :476:58, :485:22, :486:{75,84}]
wire _T_2491 = io_ptw_req_ready_0 & io_ptw_req_valid_0; // @[Decoupled.scala:51:35]
wire _T_24 = io_req_ready_0 & io_req_valid_0 & tlb_miss; // @[Decoupled.scala:51:35]
wire _T_2490 = multipleHits | reset; // @[Misc.scala:183:49]
always @(posedge clock) begin // @[TLB.scala:318:7]
if (_GEN_51) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_0_0_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_0_0_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_0_0_tag_v <= _GEN_51 & sectored_entries_0_0_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_51) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_0_0_data_0 <= _sectored_entries_0_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_0_0_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_0_0_tag_v) & (_GEN_56 ? sectored_entries_0_0_valid_0 : ~_GEN_55 & (_GEN_47 | ~(~r_sectored_hit_valid & _GEN_47) & sectored_entries_0_0_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_60) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_0_1_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_0_1_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_0_1_tag_v <= _GEN_60 & sectored_entries_0_1_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_60) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_0_1_data_0 <= _sectored_entries_1_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_0_1_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_0_1_tag_v) & (_GEN_64 ? sectored_entries_0_1_valid_0 : ~_GEN_55 & (_GEN_47 | ~(~r_sectored_hit_valid & _GEN_47) & sectored_entries_0_1_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_65) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_0_2_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_0_2_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_0_2_tag_v <= _GEN_65 & sectored_entries_0_2_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_65) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_0_2_data_0 <= _sectored_entries_2_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_0_2_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_0_2_tag_v) & (_GEN_69 ? sectored_entries_0_2_valid_0 : ~_GEN_55 & (_GEN_47 | ~(~r_sectored_hit_valid & _GEN_47) & sectored_entries_0_2_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_70) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_0_3_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_0_3_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_0_3_tag_v <= _GEN_70 & sectored_entries_0_3_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_70) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_0_3_data_0 <= _sectored_entries_3_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_0_3_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_0_3_tag_v) & (_GEN_74 ? sectored_entries_0_3_valid_0 : ~_GEN_55 & (_GEN_47 | ~(~r_sectored_hit_valid & _GEN_47) & sectored_entries_0_3_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_52) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_1_0_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_1_0_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_1_0_tag_v <= _GEN_52 & sectored_entries_1_0_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_52) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_1_0_data_0 <= _sectored_entries_0_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_1_0_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_1_0_tag_v) & (_GEN_56 ? sectored_entries_1_0_valid_0 : ~_GEN_57 & (_GEN_48 | ~(~r_sectored_hit_valid & _GEN_48) & sectored_entries_1_0_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_61) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_1_1_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_1_1_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_1_1_tag_v <= _GEN_61 & sectored_entries_1_1_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_61) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_1_1_data_0 <= _sectored_entries_1_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_1_1_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_1_1_tag_v) & (_GEN_64 ? sectored_entries_1_1_valid_0 : ~_GEN_57 & (_GEN_48 | ~(~r_sectored_hit_valid & _GEN_48) & sectored_entries_1_1_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_66) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_1_2_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_1_2_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_1_2_tag_v <= _GEN_66 & sectored_entries_1_2_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_66) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_1_2_data_0 <= _sectored_entries_2_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_1_2_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_1_2_tag_v) & (_GEN_69 ? sectored_entries_1_2_valid_0 : ~_GEN_57 & (_GEN_48 | ~(~r_sectored_hit_valid & _GEN_48) & sectored_entries_1_2_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_71) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_1_3_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_1_3_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_1_3_tag_v <= _GEN_71 & sectored_entries_1_3_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_71) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_1_3_data_0 <= _sectored_entries_3_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_1_3_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_1_3_tag_v) & (_GEN_74 ? sectored_entries_1_3_valid_0 : ~_GEN_57 & (_GEN_48 | ~(~r_sectored_hit_valid & _GEN_48) & sectored_entries_1_3_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_53) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_2_0_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_2_0_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_2_0_tag_v <= _GEN_53 & sectored_entries_2_0_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_53) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_2_0_data_0 <= _sectored_entries_0_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_2_0_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_2_0_tag_v) & (_GEN_56 ? sectored_entries_2_0_valid_0 : ~_GEN_58 & (_GEN_49 | ~(~r_sectored_hit_valid & _GEN_49) & sectored_entries_2_0_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_62) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_2_1_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_2_1_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_2_1_tag_v <= _GEN_62 & sectored_entries_2_1_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_62) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_2_1_data_0 <= _sectored_entries_1_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_2_1_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_2_1_tag_v) & (_GEN_64 ? sectored_entries_2_1_valid_0 : ~_GEN_58 & (_GEN_49 | ~(~r_sectored_hit_valid & _GEN_49) & sectored_entries_2_1_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_67) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_2_2_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_2_2_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_2_2_tag_v <= _GEN_67 & sectored_entries_2_2_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_67) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_2_2_data_0 <= _sectored_entries_2_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_2_2_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_2_2_tag_v) & (_GEN_69 ? sectored_entries_2_2_valid_0 : ~_GEN_58 & (_GEN_49 | ~(~r_sectored_hit_valid & _GEN_49) & sectored_entries_2_2_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_72) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_2_3_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_2_3_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_2_3_tag_v <= _GEN_72 & sectored_entries_2_3_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_72) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_2_3_data_0 <= _sectored_entries_3_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_2_3_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_2_3_tag_v) & (_GEN_74 ? sectored_entries_2_3_valid_0 : ~_GEN_58 & (_GEN_49 | ~(~r_sectored_hit_valid & _GEN_49) & sectored_entries_2_3_valid_0)); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :339:29, :357:27, :446:20, :474:70, :476:58, :486:84, :487:{15,38}, :489:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_54) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_3_0_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_3_0_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_3_0_tag_v <= _GEN_54 & sectored_entries_3_0_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_54) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_3_0_data_0 <= _sectored_entries_0_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_3_0_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_3_0_tag_v) & (_GEN_56 ? sectored_entries_3_0_valid_0 : ~_GEN_59 & ((&r_memIdx) | ~(~r_sectored_hit_valid & (&r_memIdx)) & sectored_entries_3_0_valid_0)); // @[package.scala:163:13]
if (_GEN_63) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_3_1_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_3_1_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_3_1_tag_v <= _GEN_63 & sectored_entries_3_1_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_63) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_3_1_data_0 <= _sectored_entries_1_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_3_1_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_3_1_tag_v) & (_GEN_64 ? sectored_entries_3_1_valid_0 : ~_GEN_59 & ((&r_memIdx) | ~(~r_sectored_hit_valid & (&r_memIdx)) & sectored_entries_3_1_valid_0)); // @[package.scala:163:13]
if (_GEN_68) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_3_2_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_3_2_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_3_2_tag_v <= _GEN_68 & sectored_entries_3_2_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_68) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_3_2_data_0 <= _sectored_entries_2_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_3_2_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_3_2_tag_v) & (_GEN_69 ? sectored_entries_3_2_valid_0 : ~_GEN_59 & ((&r_memIdx) | ~(~r_sectored_hit_valid & (&r_memIdx)) & sectored_entries_3_2_valid_0)); // @[package.scala:163:13]
if (_GEN_73) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_3_3_level <= 2'h0; // @[TLB.scala:339:29]
sectored_entries_3_3_tag_vpn <= r_refill_tag; // @[TLB.scala:339:29, :354:25]
end
sectored_entries_3_3_tag_v <= _GEN_73 & sectored_entries_3_3_tag_v; // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
if (_GEN_73) begin // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
end
else // @[TLB.scala:339:29, :446:20, :474:70, :476:58, :486:84]
sectored_entries_3_3_data_0 <= _sectored_entries_3_data_0_T; // @[TLB.scala:217:24, :339:29]
sectored_entries_3_3_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~sectored_entries_3_3_tag_v) & (_GEN_74 ? sectored_entries_3_3_valid_0 : ~_GEN_59 & ((&r_memIdx) | ~(~r_sectored_hit_valid & (&r_memIdx)) & sectored_entries_3_3_valid_0)); // @[package.scala:163:13]
if (_GEN_46) begin // @[TLB.scala:341:30, :446:20, :474:70, :476:58]
end
else begin // @[TLB.scala:341:30, :446:20, :474:70, :476:58]
superpage_entries_0_level <= {1'h0, _superpage_entries_0_level_T}; // @[package.scala:163:13]
superpage_entries_0_tag_vpn <= r_refill_tag; // @[TLB.scala:341:30, :354:25]
end
superpage_entries_0_tag_v <= _GEN_46 & superpage_entries_0_tag_v; // @[TLB.scala:341:30, :446:20, :474:70, :476:58]
if (_GEN_46) begin // @[TLB.scala:341:30, :446:20, :474:70, :476:58]
end
else // @[TLB.scala:341:30, :446:20, :474:70, :476:58]
superpage_entries_0_data_0 <= _superpage_entries_0_data_0_T; // @[TLB.scala:217:24, :341:30]
superpage_entries_0_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~superpage_entries_0_tag_v) & (_GEN_46 ? superpage_entries_0_valid_0 : ~invalidate_refill); // @[TLB.scala:216:16, :220:46, :223:{19,32,36}, :318:7, :341:30, :410:88, :446:20, :474:70, :476:58, :480:34, :718:19, :723:42, :728:46, :732:{24,41}]
if (_GEN_45) begin // @[TLB.scala:211:18, :346:56, :446:20, :474:70]
special_entry_level <= _special_entry_level_T; // @[package.scala:163:13]
special_entry_tag_vpn <= r_refill_tag; // @[TLB.scala:346:56, :354:25]
special_entry_data_0 <= _special_entry_data_0_T; // @[TLB.scala:217:24, :346:56]
end
special_entry_tag_v <= ~_GEN_45 & special_entry_tag_v; // @[TLB.scala:211:18, :212:16, :346:56, :446:20, :474:70]
special_entry_valid_0 <= ~(_T_2490 | io_sfence_valid_0 & ~special_entry_tag_v) & (_GEN_45 | special_entry_valid_0); // @[TLB.scala:211:18, :216:16, :220:46, :223:{19,32,36}, :318:7, :346:56, :446:20, :474:70, :718:19, :723:42, :728:46, :732:{24,41}]
if (_T_24) begin // @[Decoupled.scala:51:35]
r_refill_tag <= vpn; // @[TLB.scala:335:30, :354:25]
r_sectored_repl_addr <= _r_sectored_repl_addr_T_13; // @[TLB.scala:356:33, :757:8]
r_sectored_hit_valid <= _r_sectored_hit_valid_T_2; // @[package.scala:81:59]
r_sectored_hit_bits <= _r_sectored_hit_bits_T_4; // @[OneHot.scala:32:10]
r_superpage_hit_valid <= superpage_hits_0; // @[TLB.scala:183:29, :358:28]
r_need_gpa <= tlb_hit_if_not_gpa_miss; // @[TLB.scala:361:23, :610:43]
end
r_gpa_valid <= ~_T_2491 & (do_refill ? io_ptw_resp_bits_gpa_valid_0 : r_gpa_valid); // @[Decoupled.scala:51:35]
if (do_refill) begin // @[TLB.scala:408:29]
r_gpa <= io_ptw_resp_bits_gpa_bits_0; // @[TLB.scala:318:7, :363:18]
r_gpa_is_pte <= io_ptw_resp_bits_gpa_is_pte_0; // @[TLB.scala:318:7, :365:25]
end
if (_T_2491) // @[Decoupled.scala:51:35]
r_gpa_vpn <= r_refill_tag; // @[TLB.scala:354:25, :364:22]
if (reset) begin // @[TLB.scala:318:7]
state <= 2'h0; // @[TLB.scala:352:22]
state_vec_0 <= 3'h0; // @[Replacement.scala:305:17]
state_vec_1 <= 3'h0; // @[Replacement.scala:305:17]
state_vec_2 <= 3'h0; // @[Replacement.scala:305:17]
state_vec_3 <= 3'h0; // @[Replacement.scala:305:17]
end
else begin // @[TLB.scala:318:7]
if (io_ptw_resp_valid_0) // @[TLB.scala:318:7]
state <= 2'h0; // @[TLB.scala:352:22]
else if (state == 2'h2 & io_sfence_valid_0) // @[TLB.scala:318:7, :352:22, :709:{17,28}]
state <= 2'h3; // @[TLB.scala:352:22]
else if (_T_25) begin // @[package.scala:16:47]
if (io_ptw_req_ready_0) // @[TLB.scala:318:7]
state <= _state_T; // @[TLB.scala:352:22, :704:45]
else if (io_sfence_valid_0) // @[TLB.scala:318:7]
state <= 2'h0; // @[TLB.scala:352:22]
else if (_T_24) // @[Decoupled.scala:51:35]
state <= 2'h1; // @[TLB.scala:197:28, :352:22]
end
else if (_T_24) // @[Decoupled.scala:51:35]
state <= 2'h1; // @[TLB.scala:197:28, :352:22]
if (_T_12 & _T_15 & memIdx == 2'h0) // @[package.scala:81:59, :163:13]
state_vec_0 <= _state_vec_T_8; // @[Replacement.scala:202:12, :305:17]
if (_T_12 & _T_15 & memIdx == 2'h1) // @[package.scala:81:59, :163:13]
state_vec_1 <= _state_vec_T_8; // @[Replacement.scala:202:12, :305:17]
if (_T_12 & _T_15 & memIdx == 2'h2) // @[package.scala:81:59, :163:13]
state_vec_2 <= _state_vec_T_8; // @[Replacement.scala:202:12, :305:17]
if (_T_12 & _T_15 & (&memIdx)) // @[package.scala:81:59, :163:13]
state_vec_3 <= _state_vec_T_8; // @[Replacement.scala:202:12, :305:17]
end
always @(posedge)
OptimizationBarrier_TLBEntryData_28 mpu_ppn_barrier ( // @[package.scala:267:25]
.clock (clock),
.reset (reset),
.io_x_ppn (_mpu_ppn_WIRE_ppn), // @[TLB.scala:170:77]
.io_x_u (_mpu_ppn_WIRE_u), // @[TLB.scala:170:77]
.io_x_g (_mpu_ppn_WIRE_g), // @[TLB.scala:170:77]
.io_x_ae_ptw (_mpu_ppn_WIRE_ae_ptw), // @[TLB.scala:170:77]
.io_x_ae_final (_mpu_ppn_WIRE_ae_final), // @[TLB.scala:170:77]
.io_x_ae_stage2 (_mpu_ppn_WIRE_ae_stage2), // @[TLB.scala:170:77]
.io_x_pf (_mpu_ppn_WIRE_pf), // @[TLB.scala:170:77]
.io_x_gf (_mpu_ppn_WIRE_gf), // @[TLB.scala:170:77]
.io_x_sw (_mpu_ppn_WIRE_sw), // @[TLB.scala:170:77]
.io_x_sx (_mpu_ppn_WIRE_sx), // @[TLB.scala:170:77]
.io_x_sr (_mpu_ppn_WIRE_sr), // @[TLB.scala:170:77]
.io_x_hw (_mpu_ppn_WIRE_hw), // @[TLB.scala:170:77]
.io_x_hx (_mpu_ppn_WIRE_hx), // @[TLB.scala:170:77]
.io_x_hr (_mpu_ppn_WIRE_hr), // @[TLB.scala:170:77]
.io_x_pw (_mpu_ppn_WIRE_pw), // @[TLB.scala:170:77]
.io_x_px (_mpu_ppn_WIRE_px), // @[TLB.scala:170:77]
.io_x_pr (_mpu_ppn_WIRE_pr), // @[TLB.scala:170:77]
.io_x_ppp (_mpu_ppn_WIRE_ppp), // @[TLB.scala:170:77]
.io_x_pal (_mpu_ppn_WIRE_pal), // @[TLB.scala:170:77]
.io_x_paa (_mpu_ppn_WIRE_paa), // @[TLB.scala:170:77]
.io_x_eff (_mpu_ppn_WIRE_eff), // @[TLB.scala:170:77]
.io_x_c (_mpu_ppn_WIRE_c), // @[TLB.scala:170:77]
.io_x_fragmented_superpage (_mpu_ppn_WIRE_fragmented_superpage), // @[TLB.scala:170:77]
.io_y_ppn (_mpu_ppn_barrier_io_y_ppn)
); // @[package.scala:267:25]
PMPChecker_s3_2 pmp ( // @[TLB.scala:416:19]
.clock (clock),
.reset (reset),
.io_prv (mpu_priv[1:0]), // @[TLB.scala:415:27, :420:14]
.io_pmp_0_cfg_l (io_ptw_pmp_0_cfg_l_0), // @[TLB.scala:318:7]
.io_pmp_0_cfg_a (io_ptw_pmp_0_cfg_a_0), // @[TLB.scala:318:7]
.io_pmp_0_cfg_x (io_ptw_pmp_0_cfg_x_0), // @[TLB.scala:318:7]
.io_pmp_0_cfg_w (io_ptw_pmp_0_cfg_w_0), // @[TLB.scala:318:7]
.io_pmp_0_cfg_r (io_ptw_pmp_0_cfg_r_0), // @[TLB.scala:318:7]
.io_pmp_0_addr (io_ptw_pmp_0_addr_0), // @[TLB.scala:318:7]
.io_pmp_0_mask (io_ptw_pmp_0_mask_0), // @[TLB.scala:318:7]
.io_pmp_1_cfg_l (io_ptw_pmp_1_cfg_l_0), // @[TLB.scala:318:7]
.io_pmp_1_cfg_a (io_ptw_pmp_1_cfg_a_0), // @[TLB.scala:318:7]
.io_pmp_1_cfg_x (io_ptw_pmp_1_cfg_x_0), // @[TLB.scala:318:7]
.io_pmp_1_cfg_w (io_ptw_pmp_1_cfg_w_0), // @[TLB.scala:318:7]
.io_pmp_1_cfg_r (io_ptw_pmp_1_cfg_r_0), // @[TLB.scala:318:7]
.io_pmp_1_addr (io_ptw_pmp_1_addr_0), // @[TLB.scala:318:7]
.io_pmp_1_mask (io_ptw_pmp_1_mask_0), // @[TLB.scala:318:7]
.io_pmp_2_cfg_l (io_ptw_pmp_2_cfg_l_0), // @[TLB.scala:318:7]
.io_pmp_2_cfg_a (io_ptw_pmp_2_cfg_a_0), // @[TLB.scala:318:7]
.io_pmp_2_cfg_x (io_ptw_pmp_2_cfg_x_0), // @[TLB.scala:318:7]
.io_pmp_2_cfg_w (io_ptw_pmp_2_cfg_w_0), // @[TLB.scala:318:7]
.io_pmp_2_cfg_r (io_ptw_pmp_2_cfg_r_0), // @[TLB.scala:318:7]
.io_pmp_2_addr (io_ptw_pmp_2_addr_0), // @[TLB.scala:318:7]
.io_pmp_2_mask (io_ptw_pmp_2_mask_0), // @[TLB.scala:318:7]
.io_pmp_3_cfg_l (io_ptw_pmp_3_cfg_l_0), // @[TLB.scala:318:7]
.io_pmp_3_cfg_a (io_ptw_pmp_3_cfg_a_0), // @[TLB.scala:318:7]
.io_pmp_3_cfg_x (io_ptw_pmp_3_cfg_x_0), // @[TLB.scala:318:7]
.io_pmp_3_cfg_w (io_ptw_pmp_3_cfg_w_0), // @[TLB.scala:318:7]
.io_pmp_3_cfg_r (io_ptw_pmp_3_cfg_r_0), // @[TLB.scala:318:7]
.io_pmp_3_addr (io_ptw_pmp_3_addr_0), // @[TLB.scala:318:7]
.io_pmp_3_mask (io_ptw_pmp_3_mask_0), // @[TLB.scala:318:7]
.io_pmp_4_cfg_l (io_ptw_pmp_4_cfg_l_0), // @[TLB.scala:318:7]
.io_pmp_4_cfg_a (io_ptw_pmp_4_cfg_a_0), // @[TLB.scala:318:7]
.io_pmp_4_cfg_x (io_ptw_pmp_4_cfg_x_0), // @[TLB.scala:318:7]
.io_pmp_4_cfg_w (io_ptw_pmp_4_cfg_w_0), // @[TLB.scala:318:7]
.io_pmp_4_cfg_r (io_ptw_pmp_4_cfg_r_0), // @[TLB.scala:318:7]
.io_pmp_4_addr (io_ptw_pmp_4_addr_0), // @[TLB.scala:318:7]
.io_pmp_4_mask (io_ptw_pmp_4_mask_0), // @[TLB.scala:318:7]
.io_pmp_5_cfg_l (io_ptw_pmp_5_cfg_l_0), // @[TLB.scala:318:7]
.io_pmp_5_cfg_a (io_ptw_pmp_5_cfg_a_0), // @[TLB.scala:318:7]
.io_pmp_5_cfg_x (io_ptw_pmp_5_cfg_x_0), // @[TLB.scala:318:7]
.io_pmp_5_cfg_w (io_ptw_pmp_5_cfg_w_0), // @[TLB.scala:318:7]
.io_pmp_5_cfg_r (io_ptw_pmp_5_cfg_r_0), // @[TLB.scala:318:7]
.io_pmp_5_addr (io_ptw_pmp_5_addr_0), // @[TLB.scala:318:7]
.io_pmp_5_mask (io_ptw_pmp_5_mask_0), // @[TLB.scala:318:7]
.io_pmp_6_cfg_l (io_ptw_pmp_6_cfg_l_0), // @[TLB.scala:318:7]
.io_pmp_6_cfg_a (io_ptw_pmp_6_cfg_a_0), // @[TLB.scala:318:7]
.io_pmp_6_cfg_x (io_ptw_pmp_6_cfg_x_0), // @[TLB.scala:318:7]
.io_pmp_6_cfg_w (io_ptw_pmp_6_cfg_w_0), // @[TLB.scala:318:7]
.io_pmp_6_cfg_r (io_ptw_pmp_6_cfg_r_0), // @[TLB.scala:318:7]
.io_pmp_6_addr (io_ptw_pmp_6_addr_0), // @[TLB.scala:318:7]
.io_pmp_6_mask (io_ptw_pmp_6_mask_0), // @[TLB.scala:318:7]
.io_pmp_7_cfg_l (io_ptw_pmp_7_cfg_l_0), // @[TLB.scala:318:7]
.io_pmp_7_cfg_a (io_ptw_pmp_7_cfg_a_0), // @[TLB.scala:318:7]
.io_pmp_7_cfg_x (io_ptw_pmp_7_cfg_x_0), // @[TLB.scala:318:7]
.io_pmp_7_cfg_w (io_ptw_pmp_7_cfg_w_0), // @[TLB.scala:318:7]
.io_pmp_7_cfg_r (io_ptw_pmp_7_cfg_r_0), // @[TLB.scala:318:7]
.io_pmp_7_addr (io_ptw_pmp_7_addr_0), // @[TLB.scala:318:7]
.io_pmp_7_mask (io_ptw_pmp_7_mask_0), // @[TLB.scala:318:7]
.io_addr (mpu_physaddr[31:0]), // @[TLB.scala:414:25, :417:15]
.io_size (io_req_bits_size_0), // @[TLB.scala:318:7]
.io_r (_pmp_io_r),
.io_w (_pmp_io_w),
.io_x (_pmp_io_x)
); // @[TLB.scala:416:19]
PMAChecker_2 pma ( // @[TLB.scala:422:19]
.clock (clock),
.reset (reset),
.io_paddr (mpu_physaddr), // @[TLB.scala:414:25]
.io_resp_cacheable (cacheable),
.io_resp_r (_pma_io_resp_r),
.io_resp_w (_pma_io_resp_w),
.io_resp_pp (_pma_io_resp_pp),
.io_resp_al (_pma_io_resp_al),
.io_resp_aa (_pma_io_resp_aa),
.io_resp_x (_pma_io_resp_x),
.io_resp_eff (_pma_io_resp_eff)
); // @[TLB.scala:422:19]
assign newEntry_ppp = _pma_io_resp_pp; // @[TLB.scala:422:19, :449:24]
assign newEntry_pal = _pma_io_resp_al; // @[TLB.scala:422:19, :449:24]
assign newEntry_paa = _pma_io_resp_aa; // @[TLB.scala:422:19, :449:24]
assign newEntry_eff = _pma_io_resp_eff; // @[TLB.scala:422:19, :449:24]
OptimizationBarrier_TLBEntryData_29 entries_barrier ( // @[package.scala:267:25]
.clock (clock),
.reset (reset),
.io_x_ppn (_entries_WIRE_ppn), // @[TLB.scala:170:77]
.io_x_u (_entries_WIRE_u), // @[TLB.scala:170:77]
.io_x_g (_entries_WIRE_g), // @[TLB.scala:170:77]
.io_x_ae_ptw (_entries_WIRE_ae_ptw), // @[TLB.scala:170:77]
.io_x_ae_final (_entries_WIRE_ae_final), // @[TLB.scala:170:77]
.io_x_ae_stage2 (_entries_WIRE_ae_stage2), // @[TLB.scala:170:77]
.io_x_pf (_entries_WIRE_pf), // @[TLB.scala:170:77]
.io_x_gf (_entries_WIRE_gf), // @[TLB.scala:170:77]
.io_x_sw (_entries_WIRE_sw), // @[TLB.scala:170:77]
.io_x_sx (_entries_WIRE_sx), // @[TLB.scala:170:77]
.io_x_sr (_entries_WIRE_sr), // @[TLB.scala:170:77]
.io_x_hw (_entries_WIRE_hw), // @[TLB.scala:170:77]
.io_x_hx (_entries_WIRE_hx), // @[TLB.scala:170:77]
.io_x_hr (_entries_WIRE_hr), // @[TLB.scala:170:77]
.io_x_pw (_entries_WIRE_pw), // @[TLB.scala:170:77]
.io_x_px (_entries_WIRE_px), // @[TLB.scala:170:77]
.io_x_pr (_entries_WIRE_pr), // @[TLB.scala:170:77]
.io_x_ppp (_entries_WIRE_ppp), // @[TLB.scala:170:77]
.io_x_pal (_entries_WIRE_pal), // @[TLB.scala:170:77]
.io_x_paa (_entries_WIRE_paa), // @[TLB.scala:170:77]
.io_x_eff (_entries_WIRE_eff), // @[TLB.scala:170:77]
.io_x_c (_entries_WIRE_c), // @[TLB.scala:170:77]
.io_x_fragmented_superpage (_entries_WIRE_fragmented_superpage), // @[TLB.scala:170:77]
.io_y_ppn (_entries_barrier_io_y_ppn),
.io_y_u (_entries_barrier_io_y_u),
.io_y_ae_ptw (_entries_barrier_io_y_ae_ptw),
.io_y_ae_final (_entries_barrier_io_y_ae_final),
.io_y_ae_stage2 (_entries_barrier_io_y_ae_stage2),
.io_y_pf (_entries_barrier_io_y_pf),
.io_y_gf (_entries_barrier_io_y_gf),
.io_y_sw (_entries_barrier_io_y_sw),
.io_y_sx (_entries_barrier_io_y_sx),
.io_y_sr (_entries_barrier_io_y_sr),
.io_y_hw (_entries_barrier_io_y_hw),
.io_y_hx (_entries_barrier_io_y_hx),
.io_y_hr (_entries_barrier_io_y_hr),
.io_y_pw (_entries_barrier_io_y_pw),
.io_y_px (_entries_barrier_io_y_px),
.io_y_pr (_entries_barrier_io_y_pr),
.io_y_ppp (_entries_barrier_io_y_ppp),
.io_y_pal (_entries_barrier_io_y_pal),
.io_y_paa (_entries_barrier_io_y_paa),
.io_y_eff (_entries_barrier_io_y_eff),
.io_y_c (_entries_barrier_io_y_c)
); // @[package.scala:267:25]
OptimizationBarrier_TLBEntryData_30 entries_barrier_1 ( // @[package.scala:267:25]
.clock (clock),
.reset (reset),
.io_x_ppn (_entries_WIRE_2_ppn), // @[TLB.scala:170:77]
.io_x_u (_entries_WIRE_2_u), // @[TLB.scala:170:77]
.io_x_g (_entries_WIRE_2_g), // @[TLB.scala:170:77]
.io_x_ae_ptw (_entries_WIRE_2_ae_ptw), // @[TLB.scala:170:77]
.io_x_ae_final (_entries_WIRE_2_ae_final), // @[TLB.scala:170:77]
.io_x_ae_stage2 (_entries_WIRE_2_ae_stage2), // @[TLB.scala:170:77]
.io_x_pf (_entries_WIRE_2_pf), // @[TLB.scala:170:77]
.io_x_gf (_entries_WIRE_2_gf), // @[TLB.scala:170:77]
.io_x_sw (_entries_WIRE_2_sw), // @[TLB.scala:170:77]
.io_x_sx (_entries_WIRE_2_sx), // @[TLB.scala:170:77]
.io_x_sr (_entries_WIRE_2_sr), // @[TLB.scala:170:77]
.io_x_hw (_entries_WIRE_2_hw), // @[TLB.scala:170:77]
.io_x_hx (_entries_WIRE_2_hx), // @[TLB.scala:170:77]
.io_x_hr (_entries_WIRE_2_hr), // @[TLB.scala:170:77]
.io_x_pw (_entries_WIRE_2_pw), // @[TLB.scala:170:77]
.io_x_px (_entries_WIRE_2_px), // @[TLB.scala:170:77]
.io_x_pr (_entries_WIRE_2_pr), // @[TLB.scala:170:77]
.io_x_ppp (_entries_WIRE_2_ppp), // @[TLB.scala:170:77]
.io_x_pal (_entries_WIRE_2_pal), // @[TLB.scala:170:77]
.io_x_paa (_entries_WIRE_2_paa), // @[TLB.scala:170:77]
.io_x_eff (_entries_WIRE_2_eff), // @[TLB.scala:170:77]
.io_x_c (_entries_WIRE_2_c), // @[TLB.scala:170:77]
.io_x_fragmented_superpage (_entries_WIRE_2_fragmented_superpage), // @[TLB.scala:170:77]
.io_y_ppn (_entries_barrier_1_io_y_ppn),
.io_y_u (_entries_barrier_1_io_y_u),
.io_y_ae_ptw (_entries_barrier_1_io_y_ae_ptw),
.io_y_ae_final (_entries_barrier_1_io_y_ae_final),
.io_y_ae_stage2 (_entries_barrier_1_io_y_ae_stage2),
.io_y_pf (_entries_barrier_1_io_y_pf),
.io_y_gf (_entries_barrier_1_io_y_gf),
.io_y_sw (_entries_barrier_1_io_y_sw),
.io_y_sx (_entries_barrier_1_io_y_sx),
.io_y_sr (_entries_barrier_1_io_y_sr),
.io_y_hw (_entries_barrier_1_io_y_hw),
.io_y_hx (_entries_barrier_1_io_y_hx),
.io_y_hr (_entries_barrier_1_io_y_hr),
.io_y_pw (_entries_barrier_1_io_y_pw),
.io_y_px (_entries_barrier_1_io_y_px),
.io_y_pr (_entries_barrier_1_io_y_pr),
.io_y_ppp (_entries_barrier_1_io_y_ppp),
.io_y_pal (_entries_barrier_1_io_y_pal),
.io_y_paa (_entries_barrier_1_io_y_paa),
.io_y_eff (_entries_barrier_1_io_y_eff),
.io_y_c (_entries_barrier_1_io_y_c)
); // @[package.scala:267:25]
OptimizationBarrier_TLBEntryData_31 entries_barrier_2 ( // @[package.scala:267:25]
.clock (clock),
.reset (reset),
.io_x_ppn (_entries_WIRE_4_ppn), // @[TLB.scala:170:77]
.io_x_u (_entries_WIRE_4_u), // @[TLB.scala:170:77]
.io_x_g (_entries_WIRE_4_g), // @[TLB.scala:170:77]
.io_x_ae_ptw (_entries_WIRE_4_ae_ptw), // @[TLB.scala:170:77]
.io_x_ae_final (_entries_WIRE_4_ae_final), // @[TLB.scala:170:77]
.io_x_ae_stage2 (_entries_WIRE_4_ae_stage2), // @[TLB.scala:170:77]
.io_x_pf (_entries_WIRE_4_pf), // @[TLB.scala:170:77]
.io_x_gf (_entries_WIRE_4_gf), // @[TLB.scala:170:77]
.io_x_sw (_entries_WIRE_4_sw), // @[TLB.scala:170:77]
.io_x_sx (_entries_WIRE_4_sx), // @[TLB.scala:170:77]
.io_x_sr (_entries_WIRE_4_sr), // @[TLB.scala:170:77]
.io_x_hw (_entries_WIRE_4_hw), // @[TLB.scala:170:77]
.io_x_hx (_entries_WIRE_4_hx), // @[TLB.scala:170:77]
.io_x_hr (_entries_WIRE_4_hr), // @[TLB.scala:170:77]
.io_x_pw (_entries_WIRE_4_pw), // @[TLB.scala:170:77]
.io_x_px (_entries_WIRE_4_px), // @[TLB.scala:170:77]
.io_x_pr (_entries_WIRE_4_pr), // @[TLB.scala:170:77]
.io_x_ppp (_entries_WIRE_4_ppp), // @[TLB.scala:170:77]
.io_x_pal (_entries_WIRE_4_pal), // @[TLB.scala:170:77]
.io_x_paa (_entries_WIRE_4_paa), // @[TLB.scala:170:77]
.io_x_eff (_entries_WIRE_4_eff), // @[TLB.scala:170:77]
.io_x_c (_entries_WIRE_4_c), // @[TLB.scala:170:77]
.io_x_fragmented_superpage (_entries_WIRE_4_fragmented_superpage), // @[TLB.scala:170:77]
.io_y_ppn (_entries_barrier_2_io_y_ppn),
.io_y_u (_entries_barrier_2_io_y_u),
.io_y_ae_ptw (_entries_barrier_2_io_y_ae_ptw),
.io_y_ae_final (_entries_barrier_2_io_y_ae_final),
.io_y_ae_stage2 (_entries_barrier_2_io_y_ae_stage2),
.io_y_pf (_entries_barrier_2_io_y_pf),
.io_y_gf (_entries_barrier_2_io_y_gf),
.io_y_sw (_entries_barrier_2_io_y_sw),
.io_y_sx (_entries_barrier_2_io_y_sx),
.io_y_sr (_entries_barrier_2_io_y_sr),
.io_y_hw (_entries_barrier_2_io_y_hw),
.io_y_hx (_entries_barrier_2_io_y_hx),
.io_y_hr (_entries_barrier_2_io_y_hr),
.io_y_pw (_entries_barrier_2_io_y_pw),
.io_y_px (_entries_barrier_2_io_y_px),
.io_y_pr (_entries_barrier_2_io_y_pr),
.io_y_ppp (_entries_barrier_2_io_y_ppp),
.io_y_pal (_entries_barrier_2_io_y_pal),
.io_y_paa (_entries_barrier_2_io_y_paa),
.io_y_eff (_entries_barrier_2_io_y_eff),
.io_y_c (_entries_barrier_2_io_y_c)
); // @[package.scala:267:25]
OptimizationBarrier_TLBEntryData_32 entries_barrier_3 ( // @[package.scala:267:25]
.clock (clock),
.reset (reset),
.io_x_ppn (_entries_WIRE_6_ppn), // @[TLB.scala:170:77]
.io_x_u (_entries_WIRE_6_u), // @[TLB.scala:170:77]
.io_x_g (_entries_WIRE_6_g), // @[TLB.scala:170:77]
.io_x_ae_ptw (_entries_WIRE_6_ae_ptw), // @[TLB.scala:170:77]
.io_x_ae_final (_entries_WIRE_6_ae_final), // @[TLB.scala:170:77]
.io_x_ae_stage2 (_entries_WIRE_6_ae_stage2), // @[TLB.scala:170:77]
.io_x_pf (_entries_WIRE_6_pf), // @[TLB.scala:170:77]
.io_x_gf (_entries_WIRE_6_gf), // @[TLB.scala:170:77]
.io_x_sw (_entries_WIRE_6_sw), // @[TLB.scala:170:77]
.io_x_sx (_entries_WIRE_6_sx), // @[TLB.scala:170:77]
.io_x_sr (_entries_WIRE_6_sr), // @[TLB.scala:170:77]
.io_x_hw (_entries_WIRE_6_hw), // @[TLB.scala:170:77]
.io_x_hx (_entries_WIRE_6_hx), // @[TLB.scala:170:77]
.io_x_hr (_entries_WIRE_6_hr), // @[TLB.scala:170:77]
.io_x_pw (_entries_WIRE_6_pw), // @[TLB.scala:170:77]
.io_x_px (_entries_WIRE_6_px), // @[TLB.scala:170:77]
.io_x_pr (_entries_WIRE_6_pr), // @[TLB.scala:170:77]
.io_x_ppp (_entries_WIRE_6_ppp), // @[TLB.scala:170:77]
.io_x_pal (_entries_WIRE_6_pal), // @[TLB.scala:170:77]
.io_x_paa (_entries_WIRE_6_paa), // @[TLB.scala:170:77]
.io_x_eff (_entries_WIRE_6_eff), // @[TLB.scala:170:77]
.io_x_c (_entries_WIRE_6_c), // @[TLB.scala:170:77]
.io_x_fragmented_superpage (_entries_WIRE_6_fragmented_superpage), // @[TLB.scala:170:77]
.io_y_ppn (_entries_barrier_3_io_y_ppn),
.io_y_u (_entries_barrier_3_io_y_u),
.io_y_ae_ptw (_entries_barrier_3_io_y_ae_ptw),
.io_y_ae_final (_entries_barrier_3_io_y_ae_final),
.io_y_ae_stage2 (_entries_barrier_3_io_y_ae_stage2),
.io_y_pf (_entries_barrier_3_io_y_pf),
.io_y_gf (_entries_barrier_3_io_y_gf),
.io_y_sw (_entries_barrier_3_io_y_sw),
.io_y_sx (_entries_barrier_3_io_y_sx),
.io_y_sr (_entries_barrier_3_io_y_sr),
.io_y_hw (_entries_barrier_3_io_y_hw),
.io_y_hx (_entries_barrier_3_io_y_hx),
.io_y_hr (_entries_barrier_3_io_y_hr),
.io_y_pw (_entries_barrier_3_io_y_pw),
.io_y_px (_entries_barrier_3_io_y_px),
.io_y_pr (_entries_barrier_3_io_y_pr),
.io_y_ppp (_entries_barrier_3_io_y_ppp),
.io_y_pal (_entries_barrier_3_io_y_pal),
.io_y_paa (_entries_barrier_3_io_y_paa),
.io_y_eff (_entries_barrier_3_io_y_eff),
.io_y_c (_entries_barrier_3_io_y_c)
); // @[package.scala:267:25]
OptimizationBarrier_TLBEntryData_33 entries_barrier_4 ( // @[package.scala:267:25]
.clock (clock),
.reset (reset),
.io_x_ppn (_entries_WIRE_8_ppn), // @[TLB.scala:170:77]
.io_x_u (_entries_WIRE_8_u), // @[TLB.scala:170:77]
.io_x_g (_entries_WIRE_8_g), // @[TLB.scala:170:77]
.io_x_ae_ptw (_entries_WIRE_8_ae_ptw), // @[TLB.scala:170:77]
.io_x_ae_final (_entries_WIRE_8_ae_final), // @[TLB.scala:170:77]
.io_x_ae_stage2 (_entries_WIRE_8_ae_stage2), // @[TLB.scala:170:77]
.io_x_pf (_entries_WIRE_8_pf), // @[TLB.scala:170:77]
.io_x_gf (_entries_WIRE_8_gf), // @[TLB.scala:170:77]
.io_x_sw (_entries_WIRE_8_sw), // @[TLB.scala:170:77]
.io_x_sx (_entries_WIRE_8_sx), // @[TLB.scala:170:77]
.io_x_sr (_entries_WIRE_8_sr), // @[TLB.scala:170:77]
.io_x_hw (_entries_WIRE_8_hw), // @[TLB.scala:170:77]
.io_x_hx (_entries_WIRE_8_hx), // @[TLB.scala:170:77]
.io_x_hr (_entries_WIRE_8_hr), // @[TLB.scala:170:77]
.io_x_pw (_entries_WIRE_8_pw), // @[TLB.scala:170:77]
.io_x_px (_entries_WIRE_8_px), // @[TLB.scala:170:77]
.io_x_pr (_entries_WIRE_8_pr), // @[TLB.scala:170:77]
.io_x_ppp (_entries_WIRE_8_ppp), // @[TLB.scala:170:77]
.io_x_pal (_entries_WIRE_8_pal), // @[TLB.scala:170:77]
.io_x_paa (_entries_WIRE_8_paa), // @[TLB.scala:170:77]
.io_x_eff (_entries_WIRE_8_eff), // @[TLB.scala:170:77]
.io_x_c (_entries_WIRE_8_c), // @[TLB.scala:170:77]
.io_x_fragmented_superpage (_entries_WIRE_8_fragmented_superpage), // @[TLB.scala:170:77]
.io_y_ppn (_entries_barrier_4_io_y_ppn),
.io_y_u (_entries_barrier_4_io_y_u),
.io_y_ae_ptw (_entries_barrier_4_io_y_ae_ptw),
.io_y_ae_final (_entries_barrier_4_io_y_ae_final),
.io_y_ae_stage2 (_entries_barrier_4_io_y_ae_stage2),
.io_y_pf (_entries_barrier_4_io_y_pf),
.io_y_gf (_entries_barrier_4_io_y_gf),
.io_y_sw (_entries_barrier_4_io_y_sw),
.io_y_sx (_entries_barrier_4_io_y_sx),
.io_y_sr (_entries_barrier_4_io_y_sr),
.io_y_hw (_entries_barrier_4_io_y_hw),
.io_y_hx (_entries_barrier_4_io_y_hx),
.io_y_hr (_entries_barrier_4_io_y_hr),
.io_y_pw (_entries_barrier_4_io_y_pw),
.io_y_px (_entries_barrier_4_io_y_px),
.io_y_pr (_entries_barrier_4_io_y_pr),
.io_y_ppp (_entries_barrier_4_io_y_ppp),
.io_y_pal (_entries_barrier_4_io_y_pal),
.io_y_paa (_entries_barrier_4_io_y_paa),
.io_y_eff (_entries_barrier_4_io_y_eff),
.io_y_c (_entries_barrier_4_io_y_c)
); // @[package.scala:267:25]
OptimizationBarrier_TLBEntryData_34 entries_barrier_5 ( // @[package.scala:267:25]
.clock (clock),
.reset (reset),
.io_x_ppn (_entries_WIRE_10_ppn), // @[TLB.scala:170:77]
.io_x_u (_entries_WIRE_10_u), // @[TLB.scala:170:77]
.io_x_g (_entries_WIRE_10_g), // @[TLB.scala:170:77]
.io_x_ae_ptw (_entries_WIRE_10_ae_ptw), // @[TLB.scala:170:77]
.io_x_ae_final (_entries_WIRE_10_ae_final), // @[TLB.scala:170:77]
.io_x_ae_stage2 (_entries_WIRE_10_ae_stage2), // @[TLB.scala:170:77]
.io_x_pf (_entries_WIRE_10_pf), // @[TLB.scala:170:77]
.io_x_gf (_entries_WIRE_10_gf), // @[TLB.scala:170:77]
.io_x_sw (_entries_WIRE_10_sw), // @[TLB.scala:170:77]
.io_x_sx (_entries_WIRE_10_sx), // @[TLB.scala:170:77]
.io_x_sr (_entries_WIRE_10_sr), // @[TLB.scala:170:77]
.io_x_hw (_entries_WIRE_10_hw), // @[TLB.scala:170:77]
.io_x_hx (_entries_WIRE_10_hx), // @[TLB.scala:170:77]
.io_x_hr (_entries_WIRE_10_hr), // @[TLB.scala:170:77]
.io_x_pw (_entries_WIRE_10_pw), // @[TLB.scala:170:77]
.io_x_px (_entries_WIRE_10_px), // @[TLB.scala:170:77]
.io_x_pr (_entries_WIRE_10_pr), // @[TLB.scala:170:77]
.io_x_ppp (_entries_WIRE_10_ppp), // @[TLB.scala:170:77]
.io_x_pal (_entries_WIRE_10_pal), // @[TLB.scala:170:77]
.io_x_paa (_entries_WIRE_10_paa), // @[TLB.scala:170:77]
.io_x_eff (_entries_WIRE_10_eff), // @[TLB.scala:170:77]
.io_x_c (_entries_WIRE_10_c), // @[TLB.scala:170:77]
.io_x_fragmented_superpage (_entries_WIRE_10_fragmented_superpage), // @[TLB.scala:170:77]
.io_y_ppn (_entries_barrier_5_io_y_ppn),
.io_y_u (_entries_barrier_5_io_y_u),
.io_y_ae_ptw (_entries_barrier_5_io_y_ae_ptw),
.io_y_ae_final (_entries_barrier_5_io_y_ae_final),
.io_y_ae_stage2 (_entries_barrier_5_io_y_ae_stage2),
.io_y_pf (_entries_barrier_5_io_y_pf),
.io_y_gf (_entries_barrier_5_io_y_gf),
.io_y_sw (_entries_barrier_5_io_y_sw),
.io_y_sx (_entries_barrier_5_io_y_sx),
.io_y_sr (_entries_barrier_5_io_y_sr),
.io_y_hw (_entries_barrier_5_io_y_hw),
.io_y_hx (_entries_barrier_5_io_y_hx),
.io_y_hr (_entries_barrier_5_io_y_hr)
); // @[package.scala:267:25]
assign io_req_ready = io_req_ready_0; // @[TLB.scala:318:7]
assign io_resp_miss = io_resp_miss_0; // @[TLB.scala:318:7]
assign io_resp_paddr = io_resp_paddr_0; // @[TLB.scala:318:7]
assign io_ptw_req_valid = io_ptw_req_valid_0; // @[TLB.scala:318:7]
assign io_ptw_req_bits_bits_addr = io_ptw_req_bits_bits_addr_0; // @[TLB.scala:318:7]
assign io_ptw_req_bits_bits_need_gpa = io_ptw_req_bits_bits_need_gpa_0; // @[TLB.scala:318:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_62( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [1:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input io_in_a_bits_source, // @[Monitor.scala:20:14]
input [8:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input io_in_d_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_d_bits_data // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [1:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [8:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [31:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire a_first_beats1_decode = 1'h0; // @[Edges.scala:220:59]
wire a_first_beats1 = 1'h0; // @[Edges.scala:221:14]
wire a_first_count = 1'h0; // @[Edges.scala:234:25]
wire d_first_beats1_decode = 1'h0; // @[Edges.scala:220:59]
wire d_first_beats1 = 1'h0; // @[Edges.scala:221:14]
wire d_first_count = 1'h0; // @[Edges.scala:234:25]
wire a_first_beats1_decode_1 = 1'h0; // @[Edges.scala:220:59]
wire a_first_beats1_1 = 1'h0; // @[Edges.scala:221:14]
wire a_first_count_1 = 1'h0; // @[Edges.scala:234:25]
wire d_first_beats1_decode_1 = 1'h0; // @[Edges.scala:220:59]
wire d_first_beats1_1 = 1'h0; // @[Edges.scala:221:14]
wire d_first_count_1 = 1'h0; // @[Edges.scala:234:25]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_decode = 1'h0; // @[Edges.scala:220:59]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire c_first_beats1 = 1'h0; // @[Edges.scala:221:14]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_first_count_T = 1'h0; // @[Edges.scala:234:27]
wire c_first_count = 1'h0; // @[Edges.scala:234:25]
wire _c_first_counter_T = 1'h0; // @[Edges.scala:236:21]
wire d_first_beats1_decode_2 = 1'h0; // @[Edges.scala:220:59]
wire d_first_beats1_2 = 1'h0; // @[Edges.scala:221:14]
wire d_first_count_2 = 1'h0; // @[Edges.scala:234:25]
wire c_set = 1'h0; // @[Monitor.scala:738:34]
wire c_set_wo_ready = 1'h0; // @[Monitor.scala:739:34]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_source = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_source = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire _a_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire a_first_last = 1'h1; // @[Edges.scala:232:33]
wire _d_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire d_first_last = 1'h1; // @[Edges.scala:232:33]
wire _a_first_last_T_3 = 1'h1; // @[Edges.scala:232:43]
wire a_first_last_1 = 1'h1; // @[Edges.scala:232:33]
wire _d_first_last_T_3 = 1'h1; // @[Edges.scala:232:43]
wire d_first_last_1 = 1'h1; // @[Edges.scala:232:33]
wire c_first_counter1 = 1'h1; // @[Edges.scala:230:28]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire _d_first_last_T_5 = 1'h1; // @[Edges.scala:232:43]
wire d_first_last_2 = 1'h1; // @[Edges.scala:232:33]
wire [1:0] _c_first_beats1_decode_T_1 = 2'h3; // @[package.scala:243:76]
wire [1:0] _c_first_counter1_T = 2'h3; // @[Edges.scala:230:28]
wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7]
wire [1:0] _c_first_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_first_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _c_first_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_first_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _c_first_beats1_decode_T_2 = 2'h0; // @[package.scala:243:46]
wire [1:0] _c_set_wo_ready_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_set_wo_ready_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _c_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _c_opcodes_set_interm_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_opcodes_set_interm_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _c_sizes_set_interm_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_sizes_set_interm_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _c_opcodes_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_opcodes_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _c_sizes_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_sizes_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _c_probe_ack_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_probe_ack_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _c_probe_ack_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _c_probe_ack_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _same_cycle_resp_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _same_cycle_resp_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _same_cycle_resp_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _same_cycle_resp_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [1:0] _same_cycle_resp_WIRE_4_bits_size = 2'h0; // @[Bundles.scala:265:74]
wire [1:0] _same_cycle_resp_WIRE_5_bits_size = 2'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_first_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_first_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_first_WIRE_2_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_first_WIRE_3_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_set_wo_ready_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_set_wo_ready_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_set_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_set_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_opcodes_set_interm_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_opcodes_set_interm_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_sizes_set_interm_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_sizes_set_interm_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_opcodes_set_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_opcodes_set_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_sizes_set_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_sizes_set_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_probe_ack_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_probe_ack_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_probe_ack_WIRE_2_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_probe_ack_WIRE_3_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_2_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_3_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_4_bits_data = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_5_bits_data = 32'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_first_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_first_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_first_WIRE_2_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_first_WIRE_3_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_set_wo_ready_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_set_wo_ready_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_set_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_set_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_opcodes_set_interm_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_opcodes_set_interm_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_sizes_set_interm_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_sizes_set_interm_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_opcodes_set_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_opcodes_set_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_sizes_set_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_sizes_set_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_probe_ack_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_probe_ack_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _c_probe_ack_WIRE_2_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _c_probe_ack_WIRE_3_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _same_cycle_resp_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _same_cycle_resp_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _same_cycle_resp_WIRE_2_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _same_cycle_resp_WIRE_3_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [8:0] _same_cycle_resp_WIRE_4_bits_address = 9'h0; // @[Bundles.scala:265:74]
wire [8:0] _same_cycle_resp_WIRE_5_bits_address = 9'h0; // @[Bundles.scala:265:61]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_sizes_set_interm = 3'h0; // @[Monitor.scala:755:40]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_T = 3'h0; // @[Monitor.scala:766:51]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [17:0] _c_sizes_set_T_1 = 18'h0; // @[Monitor.scala:768:52]
wire [3:0] c_opcodes_set = 4'h0; // @[Monitor.scala:740:34]
wire [3:0] c_sizes_set = 4'h0; // @[Monitor.scala:741:34]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_opcodes_set_T = 4'h0; // @[Monitor.scala:767:79]
wire [3:0] _c_sizes_set_T = 4'h0; // @[Monitor.scala:768:77]
wire [18:0] _c_opcodes_set_T_1 = 19'h0; // @[Monitor.scala:767:54]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] _c_sizes_set_interm_T_1 = 3'h1; // @[Monitor.scala:766:59]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [1:0] _c_set_wo_ready_T = 2'h1; // @[OneHot.scala:58:35]
wire [1:0] _c_set_T = 2'h1; // @[OneHot.scala:58:35]
wire [4:0] _c_first_beats1_decode_T = 5'h3; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [1:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire _source_ok_T = ~io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire [4:0] _GEN = 5'h3 << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [4:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [4:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [4:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [1:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[1:0]; // @[package.scala:243:{71,76}]
wire [1:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [8:0] _is_aligned_T = {7'h0, io_in_a_bits_address_0[1:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 9'h0; // @[Edges.scala:21:{16,24}]
wire mask_sizeOH_shiftAmount = _mask_sizeOH_T[0]; // @[OneHot.scala:64:49]
wire [1:0] _mask_sizeOH_T_1 = 2'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [1:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1; // @[OneHot.scala:65:{12,27}]
wire [1:0] mask_sizeOH = {_mask_sizeOH_T_2[1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_0_1 = io_in_a_bits_size_0[1]; // @[Misc.scala:206:21]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_1_2 = mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire _source_ok_T_1 = ~io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_1; // @[Parameters.scala:1138:31]
wire _T_898 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_898; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_898; // @[Decoupled.scala:51:35]
wire a_first_done = _a_first_T; // @[Decoupled.scala:51:35]
wire [1:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[1:0]; // @[package.scala:243:{71,76}]
wire [1:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
reg a_first_counter; // @[Edges.scala:229:27]
wire _a_first_last_T = a_first_counter; // @[Edges.scala:229:27, :232:25]
wire [1:0] _a_first_counter1_T = {1'h0, a_first_counter} - 2'h1; // @[Edges.scala:229:27, :230:28]
wire a_first_counter1 = _a_first_counter1_T[0]; // @[Edges.scala:230:28]
wire a_first = ~a_first_counter; // @[Edges.scala:229:27, :231:25]
wire _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire _a_first_counter_T = ~a_first & a_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [1:0] size; // @[Monitor.scala:389:22]
reg source; // @[Monitor.scala:390:22]
reg [8:0] address; // @[Monitor.scala:391:22]
wire _T_966 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_966; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_966; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_966; // @[Decoupled.scala:51:35]
wire d_first_done = _d_first_T; // @[Decoupled.scala:51:35]
wire [4:0] _GEN_0 = 5'h3 << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [4:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [4:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [4:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [1:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[1:0]; // @[package.scala:243:{71,76}]
wire [1:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
reg d_first_counter; // @[Edges.scala:229:27]
wire _d_first_last_T = d_first_counter; // @[Edges.scala:229:27, :232:25]
wire [1:0] _d_first_counter1_T = {1'h0, d_first_counter} - 2'h1; // @[Edges.scala:229:27, :230:28]
wire d_first_counter1 = _d_first_counter1_T[0]; // @[Edges.scala:230:28]
wire d_first = ~d_first_counter; // @[Edges.scala:229:27, :231:25]
wire _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire _d_first_counter_T = ~d_first & d_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] size_1; // @[Monitor.scala:540:22]
reg source_1; // @[Monitor.scala:541:22]
reg [1:0] inflight; // @[Monitor.scala:614:27]
reg [3:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [3:0] inflight_sizes; // @[Monitor.scala:618:33]
wire a_first_done_1 = _a_first_T_1; // @[Decoupled.scala:51:35]
wire [1:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[1:0]; // @[package.scala:243:{71,76}]
wire [1:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
reg a_first_counter_1; // @[Edges.scala:229:27]
wire _a_first_last_T_2 = a_first_counter_1; // @[Edges.scala:229:27, :232:25]
wire [1:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 2'h1; // @[Edges.scala:229:27, :230:28]
wire a_first_counter1_1 = _a_first_counter1_T_1[0]; // @[Edges.scala:230:28]
wire a_first_1 = ~a_first_counter_1; // @[Edges.scala:229:27, :231:25]
wire _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire _a_first_counter_T_1 = ~a_first_1 & a_first_counter1_1; // @[Edges.scala:230:28, :231:25, :236:21]
wire d_first_done_1 = _d_first_T_1; // @[Decoupled.scala:51:35]
wire [1:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[1:0]; // @[package.scala:243:{71,76}]
wire [1:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
reg d_first_counter_1; // @[Edges.scala:229:27]
wire _d_first_last_T_2 = d_first_counter_1; // @[Edges.scala:229:27, :232:25]
wire [1:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 2'h1; // @[Edges.scala:229:27, :230:28]
wire d_first_counter1_1 = _d_first_counter1_T_1[0]; // @[Edges.scala:230:28]
wire d_first_1 = ~d_first_counter_1; // @[Edges.scala:229:27, :231:25]
wire _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire _d_first_counter_T_1 = ~d_first_1 & d_first_counter1_1; // @[Edges.scala:230:28, :231:25, :236:21]
wire a_set; // @[Monitor.scala:626:34]
wire a_set_wo_ready; // @[Monitor.scala:627:34]
wire [3:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [3:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [3:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [3:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [3:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [3:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [3:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [3:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [3:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [3:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [3:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [3:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [15:0] _a_opcode_lookup_T_6 = {12'h0, _a_opcode_lookup_T_1}; // @[Monitor.scala:637:{44,97}]
wire [15:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [3:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [15:0] _a_size_lookup_T_6 = {12'h0, _a_size_lookup_T_1}; // @[Monitor.scala:637:97, :641:{40,91}]
wire [15:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[15:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [2:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [1:0] _GEN_2 = {1'h0, io_in_a_bits_source_0}; // @[OneHot.scala:58:35]
wire [1:0] _GEN_3 = 2'h1 << _GEN_2; // @[OneHot.scala:58:35]
wire [1:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_3; // @[OneHot.scala:58:35]
wire [1:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_3; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T & _a_set_wo_ready_T[0]; // @[OneHot.scala:58:35]
wire _T_831 = _T_898 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_831 & _a_set_T[0]; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_831 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [2:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [2:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[2:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_831 ? _a_sizes_set_interm_T_1 : 3'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [3:0] _GEN_4 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [3:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_4; // @[Monitor.scala:659:79]
wire [3:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_4; // @[Monitor.scala:659:79, :660:77]
wire [18:0] _a_opcodes_set_T_1 = {15'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_831 ? _a_opcodes_set_T_1[3:0] : 4'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [17:0] _a_sizes_set_T_1 = {15'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_831 ? _a_sizes_set_T_1[3:0] : 4'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire d_clr; // @[Monitor.scala:664:34]
wire d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [3:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [3:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_5 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_5; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_5; // @[Monitor.scala:673:46, :783:46]
wire _T_877 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [1:0] _GEN_6 = {1'h0, io_in_d_bits_source_0}; // @[OneHot.scala:58:35]
wire [1:0] _GEN_7 = 2'h1 << _GEN_6; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_7; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_7; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_7; // @[OneHot.scala:58:35]
wire [1:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_7; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_877 & ~d_release_ack & _d_clr_wo_ready_T[0]; // @[OneHot.scala:58:35]
wire _T_846 = _T_966 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_846 & _d_clr_T[0]; // @[OneHot.scala:58:35]
wire [30:0] _d_opcodes_clr_T_5 = 31'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_846 ? _d_opcodes_clr_T_5[3:0] : 4'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [30:0] _d_sizes_clr_T_5 = 31'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_846 ? _d_sizes_clr_T_5[3:0] : 4'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [1:0] _inflight_T = {inflight[1], inflight[0] | a_set}; // @[Monitor.scala:614:27, :626:34, :705:27]
wire _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [1:0] _inflight_T_2 = {1'h0, _inflight_T[0] & _inflight_T_1}; // @[Monitor.scala:705:{27,36,38}]
wire [3:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [3:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [3:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [3:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [3:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [3:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [1:0] inflight_1; // @[Monitor.scala:726:35]
wire [1:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [3:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [3:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [3:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [3:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire d_first_done_2 = _d_first_T_2; // @[Decoupled.scala:51:35]
wire [1:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[1:0]; // @[package.scala:243:{71,76}]
wire [1:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
reg d_first_counter_2; // @[Edges.scala:229:27]
wire _d_first_last_T_4 = d_first_counter_2; // @[Edges.scala:229:27, :232:25]
wire [1:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 2'h1; // @[Edges.scala:229:27, :230:28]
wire d_first_counter1_2 = _d_first_counter1_T_2[0]; // @[Edges.scala:230:28]
wire d_first_2 = ~d_first_counter_2; // @[Edges.scala:229:27, :231:25]
wire _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire _d_first_counter_T_2 = ~d_first_2 & d_first_counter1_2; // @[Edges.scala:230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [3:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [15:0] _c_opcode_lookup_T_6 = {12'h0, _c_opcode_lookup_T_1}; // @[Monitor.scala:637:97, :749:{44,97}]
wire [15:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [3:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [15:0] _c_size_lookup_T_6 = {12'h0, _c_size_lookup_T_1}; // @[Monitor.scala:637:97, :750:{42,93}]
wire [15:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[15:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire d_clr_1; // @[Monitor.scala:774:34]
wire d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [3:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [3:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_942 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_942 & d_release_ack_1 & _d_clr_wo_ready_T_1[0]; // @[OneHot.scala:58:35]
wire _T_924 = _T_966 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_924 & _d_clr_T_1[0]; // @[OneHot.scala:58:35]
wire [30:0] _d_opcodes_clr_T_11 = 31'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_924 ? _d_opcodes_clr_T_11[3:0] : 4'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [30:0] _d_sizes_clr_T_11 = 31'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_924 ? _d_sizes_clr_T_11[3:0] : 4'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = ~io_in_d_bits_source_0; // @[Monitor.scala:36:7, :795:113]
wire _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [1:0] _inflight_T_5 = {1'h0, _inflight_T_3[0] & _inflight_T_4}; // @[Monitor.scala:814:{35,44,46}]
wire [3:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [3:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [3:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [3:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File RegisterRouter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes}
import freechips.rocketchip.resources.{Device, Resource, ResourceBindings}
import freechips.rocketchip.prci.{NoCrossing}
import freechips.rocketchip.regmapper.{RegField, RegMapper, RegMapperParams, RegMapperInput, RegisterRouter}
import freechips.rocketchip.util.{BundleField, ControlKey, ElaborationArtefacts, GenRegDescsAnno}
import scala.math.min
class TLRegisterRouterExtraBundle(val sourceBits: Int, val sizeBits: Int) extends Bundle {
val source = UInt((sourceBits max 1).W)
val size = UInt((sizeBits max 1).W)
}
case object TLRegisterRouterExtra extends ControlKey[TLRegisterRouterExtraBundle]("tlrr_extra")
case class TLRegisterRouterExtraField(sourceBits: Int, sizeBits: Int) extends BundleField[TLRegisterRouterExtraBundle](TLRegisterRouterExtra, Output(new TLRegisterRouterExtraBundle(sourceBits, sizeBits)), x => {
x.size := 0.U
x.source := 0.U
})
/** TLRegisterNode is a specialized TL SinkNode that encapsulates MMIO registers.
* It provides functionality for describing and outputting metdata about the registers in several formats.
* It also provides a concrete implementation of a regmap function that will be used
* to wire a map of internal registers associated with this node to the node's interconnect port.
*/
case class TLRegisterNode(
address: Seq[AddressSet],
device: Device,
deviceKey: String = "reg/control",
concurrency: Int = 0,
beatBytes: Int = 4,
undefZero: Boolean = true,
executable: Boolean = false)(
implicit valName: ValName)
extends SinkNode(TLImp)(Seq(TLSlavePortParameters.v1(
Seq(TLSlaveParameters.v1(
address = address,
resources = Seq(Resource(device, deviceKey)),
executable = executable,
supportsGet = TransferSizes(1, beatBytes),
supportsPutPartial = TransferSizes(1, beatBytes),
supportsPutFull = TransferSizes(1, beatBytes),
fifoId = Some(0))), // requests are handled in order
beatBytes = beatBytes,
minLatency = min(concurrency, 1)))) with TLFormatNode // the Queue adds at most one cycle
{
val size = 1 << log2Ceil(1 + address.map(_.max).max - address.map(_.base).min)
require (size >= beatBytes)
address.foreach { case a =>
require (a.widen(size-1).base == address.head.widen(size-1).base,
s"TLRegisterNode addresses (${address}) must be aligned to its size ${size}")
}
// Calling this method causes the matching TL2 bundle to be
// configured to route all requests to the listed RegFields.
def regmap(mapping: RegField.Map*) = {
val (bundleIn, edge) = this.in(0)
val a = bundleIn.a
val d = bundleIn.d
val fields = TLRegisterRouterExtraField(edge.bundle.sourceBits, edge.bundle.sizeBits) +: a.bits.params.echoFields
val params = RegMapperParams(log2Up(size/beatBytes), beatBytes, fields)
val in = Wire(Decoupled(new RegMapperInput(params)))
in.bits.read := a.bits.opcode === TLMessages.Get
in.bits.index := edge.addr_hi(a.bits)
in.bits.data := a.bits.data
in.bits.mask := a.bits.mask
Connectable.waiveUnmatched(in.bits.extra, a.bits.echo) match {
case (lhs, rhs) => lhs :<= rhs
}
val a_extra = in.bits.extra(TLRegisterRouterExtra)
a_extra.source := a.bits.source
a_extra.size := a.bits.size
// Invoke the register map builder
val out = RegMapper(beatBytes, concurrency, undefZero, in, mapping:_*)
// No flow control needed
in.valid := a.valid
a.ready := in.ready
d.valid := out.valid
out.ready := d.ready
// We must restore the size to enable width adapters to work
val d_extra = out.bits.extra(TLRegisterRouterExtra)
d.bits := edge.AccessAck(toSource = d_extra.source, lgSize = d_extra.size)
// avoid a Mux on the data bus by manually overriding two fields
d.bits.data := out.bits.data
Connectable.waiveUnmatched(d.bits.echo, out.bits.extra) match {
case (lhs, rhs) => lhs :<= rhs
}
d.bits.opcode := Mux(out.bits.read, TLMessages.AccessAckData, TLMessages.AccessAck)
// Tie off unused channels
bundleIn.b.valid := false.B
bundleIn.c.ready := true.B
bundleIn.e.ready := true.B
genRegDescsJson(mapping:_*)
}
def genRegDescsJson(mapping: RegField.Map*): Unit = {
// Dump out the register map for documentation purposes.
val base = address.head.base
val baseHex = s"0x${base.toInt.toHexString}"
val name = s"${device.describe(ResourceBindings()).name}.At${baseHex}"
val json = GenRegDescsAnno.serialize(base, name, mapping:_*)
var suffix = 0
while( ElaborationArtefacts.contains(s"${baseHex}.${suffix}.regmap.json")) {
suffix = suffix + 1
}
ElaborationArtefacts.add(s"${baseHex}.${suffix}.regmap.json", json)
val module = Module.currentModule.get.asInstanceOf[RawModule]
GenRegDescsAnno.anno(
module,
base,
mapping:_*)
}
}
/** Mix HasTLControlRegMap into any subclass of RegisterRouter to gain helper functions for attaching a device control register map to TileLink.
* - The intended use case is that controlNode will diplomatically publish a SW-visible device's memory-mapped control registers.
* - Use the clock crossing helper controlXing to externally connect controlNode to a TileLink interconnect.
* - Use the mapping helper function regmap to internally fill out the space of device control registers.
*/
trait HasTLControlRegMap { this: RegisterRouter =>
protected val controlNode = TLRegisterNode(
address = address,
device = device,
deviceKey = "reg/control",
concurrency = concurrency,
beatBytes = beatBytes,
undefZero = undefZero,
executable = executable)
// Externally, this helper should be used to connect the register control port to a bus
val controlXing: TLInwardClockCrossingHelper = this.crossIn(controlNode)
// Backwards-compatibility default node accessor with no clock crossing
lazy val node: TLInwardNode = controlXing(NoCrossing)
// Internally, this function should be used to populate the control port with registers
protected def regmap(mapping: RegField.Map*): Unit = { controlNode.regmap(mapping:_*) }
}
File RegField.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.regmapper
import chisel3._
import chisel3.util.{DecoupledIO, ReadyValidIO}
import org.json4s.JsonDSL._
import org.json4s.JsonAST.JValue
import freechips.rocketchip.util.{SimpleRegIO}
case class RegReadFn private(combinational: Boolean, fn: (Bool, Bool) => (Bool, Bool, UInt))
object RegReadFn
{
// (ivalid: Bool, oready: Bool) => (iready: Bool, ovalid: Bool, data: UInt)
// iready may combinationally depend on oready
// all other combinational dependencies forbidden (e.g. ovalid <= ivalid)
// effects must become visible on the cycle after ovalid && oready
// data is only inspected when ovalid && oready
implicit def apply(x: (Bool, Bool) => (Bool, Bool, UInt)) =
new RegReadFn(false, x)
implicit def apply(x: RegisterReadIO[UInt]): RegReadFn =
RegReadFn((ivalid, oready) => {
x.request.valid := ivalid
x.response.ready := oready
(x.request.ready, x.response.valid, x.response.bits)
})
// (ready: Bool) => (valid: Bool, data: UInt)
// valid must not combinationally depend on ready
// effects must become visible on the cycle after valid && ready
implicit def apply(x: Bool => (Bool, UInt)) =
new RegReadFn(true, { case (_, oready) =>
val (ovalid, data) = x(oready)
(true.B, ovalid, data)
})
// read from a ReadyValidIO (only safe if there is a consistent source of data)
implicit def apply(x: ReadyValidIO[UInt]):RegReadFn = RegReadFn(ready => { x.ready := ready; (x.valid, x.bits) })
// read from a register
implicit def apply(x: UInt):RegReadFn = RegReadFn(ready => (true.B, x))
// noop
implicit def apply(x: Unit):RegReadFn = RegReadFn(0.U)
}
case class RegWriteFn private(combinational: Boolean, fn: (Bool, Bool, UInt) => (Bool, Bool))
object RegWriteFn
{
// (ivalid: Bool, oready: Bool, data: UInt) => (iready: Bool, ovalid: Bool)
// iready may combinationally depend on both oready and data
// all other combinational dependencies forbidden (e.g. ovalid <= ivalid)
// effects must become visible on the cycle after ovalid && oready
// data should only be used for an effect when ivalid && iready
implicit def apply(x: (Bool, Bool, UInt) => (Bool, Bool)) =
new RegWriteFn(false, x)
implicit def apply(x: RegisterWriteIO[UInt]): RegWriteFn =
RegWriteFn((ivalid, oready, data) => {
x.request.valid := ivalid
x.request.bits := data
x.response.ready := oready
(x.request.ready, x.response.valid)
})
// (valid: Bool, data: UInt) => (ready: Bool)
// ready may combinationally depend on data (but not valid)
// effects must become visible on the cycle after valid && ready
implicit def apply(x: (Bool, UInt) => Bool) =
// combinational => data valid on oready
new RegWriteFn(true, { case (_, oready, data) =>
(true.B, x(oready, data))
})
// write to a DecoupledIO (only safe if there is a consistent sink draining data)
// NOTE: this is not an IrrevocableIO (even on TL2) because other fields could cause a lowered valid
implicit def apply(x: DecoupledIO[UInt]): RegWriteFn = RegWriteFn((valid, data) => { x.valid := valid; x.bits := data; x.ready })
// updates a register (or adds a mux to a wire)
implicit def apply(x: UInt): RegWriteFn = RegWriteFn((valid, data) => { when (valid) { x := data }; true.B })
// noop
implicit def apply(x: Unit): RegWriteFn = RegWriteFn((valid, data) => { true.B })
}
case class RegField(width: Int, read: RegReadFn, write: RegWriteFn, desc: Option[RegFieldDesc])
{
require (width >= 0, s"RegField width must be >= 0, not $width")
def pipelined = !read.combinational || !write.combinational
def readOnly = this.copy(write = (), desc = this.desc.map(_.copy(access = RegFieldAccessType.R)))
def toJson(byteOffset: Int, bitOffset: Int): JValue = {
( ("byteOffset" -> s"0x${byteOffset.toHexString}") ~
("bitOffset" -> bitOffset) ~
("bitWidth" -> width) ~
("name" -> desc.map(_.name)) ~
("description" -> desc.map{ d=> if (d.desc == "") None else Some(d.desc)}) ~
("resetValue" -> desc.map{_.reset}) ~
("group" -> desc.map{_.group}) ~
("groupDesc" -> desc.map{_.groupDesc}) ~
("accessType" -> desc.map {d => d.access.toString}) ~
("writeType" -> desc.map {d => d.wrType.map(_.toString)}) ~
("readAction" -> desc.map {d => d.rdAction.map(_.toString)}) ~
("volatile" -> desc.map {d => if (d.volatile) Some(true) else None}) ~
("enumerations" -> desc.map {d =>
Option(d.enumerations.map { case (key, (name, edesc)) =>
(("value" -> key) ~ ("name" -> name) ~ ("description" -> edesc))
}).filter(_.nonEmpty)}) )
}
}
object RegField
{
// Byte address => sequence of bitfields, lowest index => lowest address
type Map = (Int, Seq[RegField])
def apply(n: Int) : RegField = apply(n, (), (), Some(RegFieldDesc.reserved))
def apply(n: Int, desc: RegFieldDesc) : RegField = apply(n, (), (), Some(desc))
def apply(n: Int, r: RegReadFn, w: RegWriteFn) : RegField = apply(n, r, w, None)
def apply(n: Int, r: RegReadFn, w: RegWriteFn, desc: RegFieldDesc) : RegField = apply(n, r, w, Some(desc))
def apply(n: Int, rw: UInt) : RegField = apply(n, rw, rw, None)
def apply(n: Int, rw: UInt, desc: RegFieldDesc) : RegField = apply(n, rw, rw, Some(desc))
def r(n: Int, r: RegReadFn) : RegField = apply(n, r, (), None)
def r(n: Int, r: RegReadFn, desc: RegFieldDesc) : RegField = apply(n, r, (), Some(desc.copy(access = RegFieldAccessType.R)))
def w(n: Int, w: RegWriteFn) : RegField = apply(n, (), w, None)
def w(n: Int, w: RegWriteFn, desc: RegFieldDesc) : RegField = apply(n, (), w, Some(desc.copy(access = RegFieldAccessType.W)))
// This RegField allows 'set' to set bits in 'reg'.
// and to clear bits when the bus writes bits of value 1.
// Setting takes priority over clearing.
def w1ToClear(n: Int, reg: UInt, set: UInt, desc: Option[RegFieldDesc] = None): RegField =
RegField(n, reg, RegWriteFn((valid, data) => { reg := (~((~reg) | Mux(valid, data, 0.U))) | set; true.B }),
desc.map{_.copy(access = RegFieldAccessType.RW, wrType=Some(RegFieldWrType.ONE_TO_CLEAR), volatile = true)})
// This RegField wraps an explicit register
// (e.g. Black-Boxed Register) to create a R/W register.
def rwReg(n: Int, bb: SimpleRegIO, desc: Option[RegFieldDesc] = None) : RegField =
RegField(n, bb.q, RegWriteFn((valid, data) => {
bb.en := valid
bb.d := data
true.B
}), desc)
// Create byte-sized read-write RegFields out of a large UInt register.
// It is updated when any of the (implemented) bytes are written, the non-written
// bytes are just copied over from their current value.
// Because the RegField are all byte-sized, this is also suitable when a register is larger
// than the intended bus width of the device (atomic updates are impossible).
def bytes(reg: UInt, numBytes: Int, desc: Option[RegFieldDesc]): Seq[RegField] = {
require(reg.getWidth * 8 >= numBytes, "Can't break a ${reg.getWidth}-bit-wide register into only ${numBytes} bytes.")
val numFullBytes = reg.getWidth/8
val numPartialBytes = if ((reg.getWidth % 8) > 0) 1 else 0
val numPadBytes = numBytes - numFullBytes - numPartialBytes
val pad = reg | 0.U((8*numBytes).W)
val oldBytes = VecInit.tabulate(numBytes) { i => pad(8*(i+1)-1, 8*i) }
val newBytes = WireDefault(oldBytes)
val valids = WireDefault(VecInit.fill(numBytes) { false.B })
when (valids.reduce(_ || _)) { reg := newBytes.asUInt }
def wrFn(i: Int): RegWriteFn = RegWriteFn((valid, data) => {
valids(i) := valid
when (valid) {newBytes(i) := data}
true.B
})
val fullBytes = Seq.tabulate(numFullBytes) { i =>
val newDesc = desc.map {d => d.copy(name = d.name + s"_$i")}
RegField(8, oldBytes(i), wrFn(i), newDesc)}
val partialBytes = if (numPartialBytes > 0) {
val newDesc = desc.map {d => d.copy(name = d.name + s"_$numFullBytes")}
Seq(RegField(reg.getWidth % 8, oldBytes(numFullBytes), wrFn(numFullBytes), newDesc),
RegField(8 - (reg.getWidth % 8)))
} else Nil
val padBytes = Seq.fill(numPadBytes){RegField(8)}
fullBytes ++ partialBytes ++ padBytes
}
def bytes(reg: UInt, desc: Option[RegFieldDesc]): Seq[RegField] = {
val width = reg.getWidth
require (width % 8 == 0, s"RegField.bytes must be called on byte-sized reg, not ${width} bits")
bytes(reg, width/8, desc)
}
def bytes(reg: UInt, numBytes: Int): Seq[RegField] = bytes(reg, numBytes, None)
def bytes(reg: UInt): Seq[RegField] = bytes(reg, None)
}
trait HasRegMap
{
def regmap(mapping: RegField.Map*): Unit
val interrupts: Vec[Bool]
}
// See Example.scala for an example of how to use regmap
File MuxLiteral.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.log2Ceil
import scala.reflect.ClassTag
/* MuxLiteral creates a lookup table from a key to a list of values.
* Unlike MuxLookup, the table keys must be exclusive literals.
*/
object MuxLiteral
{
def apply[T <: Data:ClassTag](index: UInt, default: T, first: (UInt, T), rest: (UInt, T)*): T =
apply(index, default, first :: rest.toList)
def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(UInt, T)]): T =
MuxTable(index, default, cases.map { case (k, v) => (k.litValue, v) })
}
object MuxSeq
{
def apply[T <: Data:ClassTag](index: UInt, default: T, first: T, rest: T*): T =
apply(index, default, first :: rest.toList)
def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[T]): T =
MuxTable(index, default, cases.zipWithIndex.map { case (v, i) => (BigInt(i), v) })
}
object MuxTable
{
def apply[T <: Data:ClassTag](index: UInt, default: T, first: (BigInt, T), rest: (BigInt, T)*): T =
apply(index, default, first :: rest.toList)
def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(BigInt, T)]): T = {
/* All keys must be >= 0 and distinct */
cases.foreach { case (k, _) => require (k >= 0) }
require (cases.map(_._1).distinct.size == cases.size)
/* Filter out any cases identical to the default */
val simple = cases.filter { case (k, v) => !default.isLit || !v.isLit || v.litValue != default.litValue }
val maxKey = (BigInt(0) +: simple.map(_._1)).max
val endIndex = BigInt(1) << log2Ceil(maxKey+1)
if (simple.isEmpty) {
default
} else if (endIndex <= 2*simple.size) {
/* The dense encoding case uses a Vec */
val table = Array.fill(endIndex.toInt) { default }
simple.foreach { case (k, v) => table(k.toInt) = v }
Mux(index >= endIndex.U, default, VecInit(table)(index))
} else {
/* The sparse encoding case uses switch */
val out = WireDefault(default)
simple.foldLeft(new chisel3.util.SwitchContext(index, None, Set.empty)) { case (acc, (k, v)) =>
acc.is (k.U) { out := v }
}
out
}
}
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
File CLINT.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.devices.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet}
import freechips.rocketchip.resources.{Resource, SimpleDevice}
import freechips.rocketchip.interrupts.{IntNexusNode, IntSinkParameters, IntSinkPortParameters, IntSourceParameters, IntSourcePortParameters}
import freechips.rocketchip.regmapper.{RegField, RegFieldDesc, RegFieldGroup}
import freechips.rocketchip.subsystem.{BaseSubsystem, CBUS, TLBusWrapperLocation}
import freechips.rocketchip.tilelink.{TLFragmenter, TLRegisterNode}
import freechips.rocketchip.util.Annotated
object CLINTConsts
{
def msipOffset(hart: Int) = hart * msipBytes
def timecmpOffset(hart: Int) = 0x4000 + hart * timecmpBytes
def timeOffset = 0xbff8
def msipBytes = 4
def timecmpBytes = 8
def size = 0x10000
def timeWidth = 64
def ipiWidth = 32
def ints = 2
}
case class CLINTParams(baseAddress: BigInt = 0x02000000, intStages: Int = 0)
{
def address = AddressSet(baseAddress, CLINTConsts.size-1)
}
case object CLINTKey extends Field[Option[CLINTParams]](None)
case class CLINTAttachParams(
slaveWhere: TLBusWrapperLocation = CBUS
)
case object CLINTAttachKey extends Field(CLINTAttachParams())
class CLINT(params: CLINTParams, beatBytes: Int)(implicit p: Parameters) extends LazyModule
{
import CLINTConsts._
// clint0 => at most 4095 devices
val device = new SimpleDevice("clint", Seq("riscv,clint0")) {
override val alwaysExtended = true
}
val node: TLRegisterNode = TLRegisterNode(
address = Seq(params.address),
device = device,
beatBytes = beatBytes)
val intnode : IntNexusNode = IntNexusNode(
sourceFn = { _ => IntSourcePortParameters(Seq(IntSourceParameters(ints, Seq(Resource(device, "int"))))) },
sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) },
outputRequiresInput = false)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
Annotated.params(this, params)
require (intnode.edges.in.size == 0, "CLINT only produces interrupts; it does not accept them")
val io = IO(new Bundle {
val rtcTick = Input(Bool())
})
val time = RegInit(0.U(timeWidth.W))
when (io.rtcTick) { time := time + 1.U }
val nTiles = intnode.out.size
val timecmp = Seq.fill(nTiles) { Reg(UInt(timeWidth.W)) }
val ipi = Seq.fill(nTiles) { RegInit(0.U(1.W)) }
val (intnode_out, _) = intnode.out.unzip
intnode_out.zipWithIndex.foreach { case (int, i) =>
int(0) := ShiftRegister(ipi(i)(0), params.intStages) // msip
int(1) := ShiftRegister(time.asUInt >= timecmp(i).asUInt, params.intStages) // mtip
}
/* 0000 msip hart 0
* 0004 msip hart 1
* 4000 mtimecmp hart 0 lo
* 4004 mtimecmp hart 0 hi
* 4008 mtimecmp hart 1 lo
* 400c mtimecmp hart 1 hi
* bff8 mtime lo
* bffc mtime hi
*/
node.regmap(
0 -> RegFieldGroup ("msip", Some("MSIP Bits"), ipi.zipWithIndex.flatMap{ case (r, i) =>
RegField(1, r, RegFieldDesc(s"msip_$i", s"MSIP bit for Hart $i", reset=Some(0))) :: RegField(ipiWidth - 1) :: Nil }),
timecmpOffset(0) -> timecmp.zipWithIndex.flatMap{ case (t, i) => RegFieldGroup(s"mtimecmp_$i", Some(s"MTIMECMP for hart $i"),
RegField.bytes(t, Some(RegFieldDesc(s"mtimecmp_$i", "", reset=None))))},
timeOffset -> RegFieldGroup("mtime", Some("Timer Register"),
RegField.bytes(time, Some(RegFieldDesc("mtime", "", reset=Some(0), volatile=true))))
)
}
}
/** Trait that will connect a CLINT to a subsystem */
trait CanHavePeripheryCLINT { this: BaseSubsystem =>
val (clintOpt, clintDomainOpt, clintTickOpt) = p(CLINTKey).map { params =>
val tlbus = locateTLBusWrapper(p(CLINTAttachKey).slaveWhere)
val clintDomainWrapper = tlbus.generateSynchronousDomain("CLINT").suggestName("clint_domain")
val clint = clintDomainWrapper { LazyModule(new CLINT(params, tlbus.beatBytes)) }
clintDomainWrapper { clint.node := tlbus.coupleTo("clint") { TLFragmenter(tlbus, Some("CLINT")) := _ } }
val clintTick = clintDomainWrapper { InModuleBody {
val tick = IO(Input(Bool()))
clint.module.io.rtcTick := tick
tick
}}
(clint, clintDomainWrapper, clintTick)
}.unzip3
}
| module CLINT( // @[CLINT.scala:65:9]
input clock, // @[CLINT.scala:65:9]
input reset, // @[CLINT.scala:65:9]
output auto_int_out_0, // @[LazyModuleImp.scala:107:25]
output auto_int_out_1, // @[LazyModuleImp.scala:107:25]
output auto_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [10:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [25:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [10:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
input io_rtcTick // @[CLINT.scala:69:16]
);
wire out_front_valid; // @[RegisterRouter.scala:87:24]
wire out_front_ready; // @[RegisterRouter.scala:87:24]
wire out_bits_read; // @[RegisterRouter.scala:87:24]
wire [10:0] out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24]
wire [12:0] in_bits_index; // @[RegisterRouter.scala:73:18]
wire in_bits_read; // @[RegisterRouter.scala:73:18]
wire auto_in_a_valid_0 = auto_in_a_valid; // @[CLINT.scala:65:9]
wire [2:0] auto_in_a_bits_opcode_0 = auto_in_a_bits_opcode; // @[CLINT.scala:65:9]
wire [2:0] auto_in_a_bits_param_0 = auto_in_a_bits_param; // @[CLINT.scala:65:9]
wire [1:0] auto_in_a_bits_size_0 = auto_in_a_bits_size; // @[CLINT.scala:65:9]
wire [10:0] auto_in_a_bits_source_0 = auto_in_a_bits_source; // @[CLINT.scala:65:9]
wire [25:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[CLINT.scala:65:9]
wire [7:0] auto_in_a_bits_mask_0 = auto_in_a_bits_mask; // @[CLINT.scala:65:9]
wire [63:0] auto_in_a_bits_data_0 = auto_in_a_bits_data; // @[CLINT.scala:65:9]
wire auto_in_a_bits_corrupt_0 = auto_in_a_bits_corrupt; // @[CLINT.scala:65:9]
wire auto_in_d_ready_0 = auto_in_d_ready; // @[CLINT.scala:65:9]
wire io_rtcTick_0 = io_rtcTick; // @[CLINT.scala:65:9]
wire [12:0] out_maskMatch = 13'h7FF; // @[RegisterRouter.scala:87:24]
wire [2:0] nodeIn_d_bits_d_opcode = 3'h0; // @[Edges.scala:792:17]
wire [63:0] _out_out_bits_data_WIRE_1_3 = 64'h0; // @[MuxLiteral.scala:49:48]
wire [63:0] nodeIn_d_bits_d_data = 64'h0; // @[Edges.scala:792:17]
wire auto_in_d_bits_sink = 1'h0; // @[CLINT.scala:65:9]
wire auto_in_d_bits_denied = 1'h0; // @[CLINT.scala:65:9]
wire auto_in_d_bits_corrupt = 1'h0; // @[CLINT.scala:65:9]
wire nodeIn_d_bits_sink = 1'h0; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_denied = 1'h0; // @[MixedNode.scala:551:17]
wire nodeIn_d_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17]
wire _valids_WIRE_0 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_2 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_3 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_4 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_5 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_6 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_7 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1_0 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1_1 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1_2 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1_3 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1_4 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1_5 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1_6 = 1'h0; // @[RegField.scala:153:53]
wire _valids_WIRE_1_7 = 1'h0; // @[RegField.scala:153:53]
wire _out_rifireMux_T_16 = 1'h0; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_18 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_wifireMux_T_17 = 1'h0; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_19 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_rofireMux_T_16 = 1'h0; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_18 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_wofireMux_T_17 = 1'h0; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_19 = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_out_bits_data_T = 1'h0; // @[MuxLiteral.scala:49:17]
wire _out_out_bits_data_T_2 = 1'h0; // @[MuxLiteral.scala:49:17]
wire nodeIn_d_bits_d_sink = 1'h0; // @[Edges.scala:792:17]
wire nodeIn_d_bits_d_denied = 1'h0; // @[Edges.scala:792:17]
wire nodeIn_d_bits_d_corrupt = 1'h0; // @[Edges.scala:792:17]
wire [1:0] auto_in_d_bits_param = 2'h0; // @[CLINT.scala:65:9]
wire [1:0] nodeIn_d_bits_param = 2'h0; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_d_bits_d_param = 2'h0; // @[Edges.scala:792:17]
wire intnodeOut_0; // @[MixedNode.scala:542:17]
wire out_rifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_rifireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_9 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_rifireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_13 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_rifireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_17 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_rifireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_rifireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_rifireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_rifireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_wifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_wifireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_10 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_wifireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_14 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_wifireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_18 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_wifireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_wifireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_wifireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_wifireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_rofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_rofireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_9 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_rofireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_13 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_rofireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_17 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_rofireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_rofireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_rofireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_rofireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_wofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_wofireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_10 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_wofireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_14 = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_wofireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_18 = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_wofireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_wofireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48]
wire _out_wofireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48]
wire out_wofireMux = 1'h1; // @[MuxLiteral.scala:49:10]
wire out_iready = 1'h1; // @[RegisterRouter.scala:87:24]
wire out_oready = 1'h1; // @[RegisterRouter.scala:87:24]
wire _out_out_bits_data_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48]
wire intnodeOut_1; // @[MixedNode.scala:542:17]
wire nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire nodeIn_a_valid = auto_in_a_valid_0; // @[CLINT.scala:65:9]
wire [2:0] nodeIn_a_bits_opcode = auto_in_a_bits_opcode_0; // @[CLINT.scala:65:9]
wire [2:0] nodeIn_a_bits_param = auto_in_a_bits_param_0; // @[CLINT.scala:65:9]
wire [1:0] nodeIn_a_bits_size = auto_in_a_bits_size_0; // @[CLINT.scala:65:9]
wire [10:0] nodeIn_a_bits_source = auto_in_a_bits_source_0; // @[CLINT.scala:65:9]
wire [25:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[CLINT.scala:65:9]
wire [7:0] nodeIn_a_bits_mask = auto_in_a_bits_mask_0; // @[CLINT.scala:65:9]
wire [63:0] nodeIn_a_bits_data = auto_in_a_bits_data_0; // @[CLINT.scala:65:9]
wire nodeIn_a_bits_corrupt = auto_in_a_bits_corrupt_0; // @[CLINT.scala:65:9]
wire nodeIn_d_ready = auto_in_d_ready_0; // @[CLINT.scala:65:9]
wire nodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [10:0] nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire auto_int_out_0_0; // @[CLINT.scala:65:9]
wire auto_int_out_1_0; // @[CLINT.scala:65:9]
wire auto_in_a_ready_0; // @[CLINT.scala:65:9]
wire [2:0] auto_in_d_bits_opcode_0; // @[CLINT.scala:65:9]
wire [1:0] auto_in_d_bits_size_0; // @[CLINT.scala:65:9]
wire [10:0] auto_in_d_bits_source_0; // @[CLINT.scala:65:9]
wire [63:0] auto_in_d_bits_data_0; // @[CLINT.scala:65:9]
wire auto_in_d_valid_0; // @[CLINT.scala:65:9]
wire in_ready; // @[RegisterRouter.scala:73:18]
assign auto_in_a_ready_0 = nodeIn_a_ready; // @[CLINT.scala:65:9]
wire in_valid = nodeIn_a_valid; // @[RegisterRouter.scala:73:18]
wire [1:0] in_bits_extra_tlrr_extra_size = nodeIn_a_bits_size; // @[RegisterRouter.scala:73:18]
wire [10:0] in_bits_extra_tlrr_extra_source = nodeIn_a_bits_source; // @[RegisterRouter.scala:73:18]
wire [7:0] in_bits_mask = nodeIn_a_bits_mask; // @[RegisterRouter.scala:73:18]
wire [63:0] in_bits_data = nodeIn_a_bits_data; // @[RegisterRouter.scala:73:18]
wire out_ready = nodeIn_d_ready; // @[RegisterRouter.scala:87:24]
wire out_valid; // @[RegisterRouter.scala:87:24]
assign auto_in_d_valid_0 = nodeIn_d_valid; // @[CLINT.scala:65:9]
assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[CLINT.scala:65:9]
wire [1:0] nodeIn_d_bits_d_size; // @[Edges.scala:792:17]
assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[CLINT.scala:65:9]
wire [10:0] nodeIn_d_bits_d_source; // @[Edges.scala:792:17]
assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[CLINT.scala:65:9]
wire [63:0] out_bits_data; // @[RegisterRouter.scala:87:24]
assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[CLINT.scala:65:9]
wire _intnodeOut_0_T; // @[CLINT.scala:82:37]
assign auto_int_out_0_0 = intnodeOut_0; // @[CLINT.scala:65:9]
wire _intnodeOut_1_T; // @[CLINT.scala:83:43]
assign auto_int_out_1_0 = intnodeOut_1; // @[CLINT.scala:65:9]
reg [63:0] time_0; // @[CLINT.scala:73:23]
wire [63:0] pad_1 = time_0; // @[RegField.scala:150:19]
wire [64:0] _time_T = {1'h0, time_0} + 65'h1; // @[CLINT.scala:73:23, :74:38]
wire [63:0] _time_T_1 = _time_T[63:0]; // @[CLINT.scala:74:38]
reg [63:0] timecmp_0; // @[CLINT.scala:77:41]
wire [63:0] pad = timecmp_0; // @[RegField.scala:150:19]
reg ipi_0; // @[CLINT.scala:78:41]
assign _intnodeOut_0_T = ipi_0; // @[CLINT.scala:78:41, :82:37]
wire _out_T_15 = ipi_0; // @[RegisterRouter.scala:87:24]
assign intnodeOut_0 = _intnodeOut_0_T; // @[CLINT.scala:82:37]
assign _intnodeOut_1_T = time_0 >= timecmp_0; // @[CLINT.scala:73:23, :77:41, :83:43]
assign intnodeOut_1 = _intnodeOut_1_T; // @[CLINT.scala:83:43]
wire [7:0] _oldBytes_T = pad[7:0]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_0 = _oldBytes_T; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_1 = pad[15:8]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1 = _oldBytes_T_1; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_2 = pad[23:16]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_2 = _oldBytes_T_2; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_3 = pad[31:24]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_3 = _oldBytes_T_3; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_4 = pad[39:32]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_4 = _oldBytes_T_4; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_5 = pad[47:40]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_5 = _oldBytes_T_5; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_6 = pad[55:48]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_6 = _oldBytes_T_6; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_7 = pad[63:56]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_7 = _oldBytes_T_7; // @[RegField.scala:151:{47,57}]
wire [7:0] _out_T_123 = oldBytes_0; // @[RegisterRouter.scala:87:24]
wire [7:0] newBytes_0; // @[RegField.scala:152:31]
wire [7:0] newBytes_1; // @[RegField.scala:152:31]
wire [7:0] newBytes_2; // @[RegField.scala:152:31]
wire [7:0] newBytes_3; // @[RegField.scala:152:31]
wire [7:0] newBytes_4; // @[RegField.scala:152:31]
wire [7:0] newBytes_5; // @[RegField.scala:152:31]
wire [7:0] newBytes_6; // @[RegField.scala:152:31]
wire [7:0] newBytes_7; // @[RegField.scala:152:31]
wire out_f_woready_10; // @[RegisterRouter.scala:87:24]
wire out_f_woready_11; // @[RegisterRouter.scala:87:24]
wire out_f_woready_12; // @[RegisterRouter.scala:87:24]
wire out_f_woready_13; // @[RegisterRouter.scala:87:24]
wire out_f_woready_14; // @[RegisterRouter.scala:87:24]
wire out_f_woready_15; // @[RegisterRouter.scala:87:24]
wire out_f_woready_16; // @[RegisterRouter.scala:87:24]
wire out_f_woready_17; // @[RegisterRouter.scala:87:24]
wire valids_0; // @[RegField.scala:153:29]
wire valids_1; // @[RegField.scala:153:29]
wire valids_2; // @[RegField.scala:153:29]
wire valids_3; // @[RegField.scala:153:29]
wire valids_4; // @[RegField.scala:153:29]
wire valids_5; // @[RegField.scala:153:29]
wire valids_6; // @[RegField.scala:153:29]
wire valids_7; // @[RegField.scala:153:29]
wire [15:0] timecmp_0_lo_lo = {newBytes_1, newBytes_0}; // @[RegField.scala:152:31, :154:52]
wire [15:0] timecmp_0_lo_hi = {newBytes_3, newBytes_2}; // @[RegField.scala:152:31, :154:52]
wire [31:0] timecmp_0_lo = {timecmp_0_lo_hi, timecmp_0_lo_lo}; // @[RegField.scala:154:52]
wire [15:0] timecmp_0_hi_lo = {newBytes_5, newBytes_4}; // @[RegField.scala:152:31, :154:52]
wire [15:0] timecmp_0_hi_hi = {newBytes_7, newBytes_6}; // @[RegField.scala:152:31, :154:52]
wire [31:0] timecmp_0_hi = {timecmp_0_hi_hi, timecmp_0_hi_lo}; // @[RegField.scala:154:52]
wire [63:0] _timecmp_0_T = {timecmp_0_hi, timecmp_0_lo}; // @[RegField.scala:154:52]
wire [7:0] _oldBytes_T_8 = pad_1[7:0]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1_0 = _oldBytes_T_8; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_9 = pad_1[15:8]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1_1 = _oldBytes_T_9; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_10 = pad_1[23:16]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1_2 = _oldBytes_T_10; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_11 = pad_1[31:24]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1_3 = _oldBytes_T_11; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_12 = pad_1[39:32]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1_4 = _oldBytes_T_12; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_13 = pad_1[47:40]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1_5 = _oldBytes_T_13; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_14 = pad_1[55:48]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1_6 = _oldBytes_T_14; // @[RegField.scala:151:{47,57}]
wire [7:0] _oldBytes_T_15 = pad_1[63:56]; // @[RegField.scala:150:19, :151:57]
wire [7:0] oldBytes_1_7 = _oldBytes_T_15; // @[RegField.scala:151:{47,57}]
wire [7:0] _out_T_35 = oldBytes_1_0; // @[RegisterRouter.scala:87:24]
wire [7:0] newBytes_1_0; // @[RegField.scala:152:31]
wire [7:0] newBytes_1_1; // @[RegField.scala:152:31]
wire [7:0] newBytes_1_2; // @[RegField.scala:152:31]
wire [7:0] newBytes_1_3; // @[RegField.scala:152:31]
wire [7:0] newBytes_1_4; // @[RegField.scala:152:31]
wire [7:0] newBytes_1_5; // @[RegField.scala:152:31]
wire [7:0] newBytes_1_6; // @[RegField.scala:152:31]
wire [7:0] newBytes_1_7; // @[RegField.scala:152:31]
wire out_f_woready_2; // @[RegisterRouter.scala:87:24]
wire out_f_woready_3; // @[RegisterRouter.scala:87:24]
wire out_f_woready_4; // @[RegisterRouter.scala:87:24]
wire out_f_woready_5; // @[RegisterRouter.scala:87:24]
wire out_f_woready_6; // @[RegisterRouter.scala:87:24]
wire out_f_woready_7; // @[RegisterRouter.scala:87:24]
wire out_f_woready_8; // @[RegisterRouter.scala:87:24]
wire out_f_woready_9; // @[RegisterRouter.scala:87:24]
wire valids_1_0; // @[RegField.scala:153:29]
wire valids_1_1; // @[RegField.scala:153:29]
wire valids_1_2; // @[RegField.scala:153:29]
wire valids_1_3; // @[RegField.scala:153:29]
wire valids_1_4; // @[RegField.scala:153:29]
wire valids_1_5; // @[RegField.scala:153:29]
wire valids_1_6; // @[RegField.scala:153:29]
wire valids_1_7; // @[RegField.scala:153:29]
wire [15:0] time_lo_lo = {newBytes_1_1, newBytes_1_0}; // @[RegField.scala:152:31, :154:52]
wire [15:0] time_lo_hi = {newBytes_1_3, newBytes_1_2}; // @[RegField.scala:152:31, :154:52]
wire [31:0] time_lo = {time_lo_hi, time_lo_lo}; // @[RegField.scala:154:52]
wire [15:0] time_hi_lo = {newBytes_1_5, newBytes_1_4}; // @[RegField.scala:152:31, :154:52]
wire [15:0] time_hi_hi = {newBytes_1_7, newBytes_1_6}; // @[RegField.scala:152:31, :154:52]
wire [31:0] time_hi = {time_hi_hi, time_hi_lo}; // @[RegField.scala:154:52]
wire [63:0] _time_T_2 = {time_hi, time_lo}; // @[RegField.scala:154:52]
wire _out_in_ready_T; // @[RegisterRouter.scala:87:24]
assign nodeIn_a_ready = in_ready; // @[RegisterRouter.scala:73:18]
wire _in_bits_read_T; // @[RegisterRouter.scala:74:36]
wire _out_front_valid_T = in_valid; // @[RegisterRouter.scala:73:18, :87:24]
wire out_front_bits_read = in_bits_read; // @[RegisterRouter.scala:73:18, :87:24]
wire [12:0] out_front_bits_index = in_bits_index; // @[RegisterRouter.scala:73:18, :87:24]
wire [63:0] out_front_bits_data = in_bits_data; // @[RegisterRouter.scala:73:18, :87:24]
wire [7:0] out_front_bits_mask = in_bits_mask; // @[RegisterRouter.scala:73:18, :87:24]
wire [10:0] out_front_bits_extra_tlrr_extra_source = in_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:73:18, :87:24]
wire [1:0] out_front_bits_extra_tlrr_extra_size = in_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:73:18, :87:24]
assign _in_bits_read_T = nodeIn_a_bits_opcode == 3'h4; // @[RegisterRouter.scala:74:36]
assign in_bits_read = _in_bits_read_T; // @[RegisterRouter.scala:73:18, :74:36]
wire [22:0] _in_bits_index_T = nodeIn_a_bits_address[25:3]; // @[Edges.scala:192:34]
assign in_bits_index = _in_bits_index_T[12:0]; // @[RegisterRouter.scala:73:18, :75:19]
wire _out_front_ready_T = out_ready; // @[RegisterRouter.scala:87:24]
wire _out_out_valid_T; // @[RegisterRouter.scala:87:24]
assign nodeIn_d_valid = out_valid; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_out_bits_data_T_4; // @[RegisterRouter.scala:87:24]
wire _nodeIn_d_bits_opcode_T = out_bits_read; // @[RegisterRouter.scala:87:24, :105:25]
assign nodeIn_d_bits_data = out_bits_data; // @[RegisterRouter.scala:87:24]
assign nodeIn_d_bits_d_source = out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24]
wire [1:0] out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24]
assign nodeIn_d_bits_d_size = out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24]
assign _out_in_ready_T = out_front_ready; // @[RegisterRouter.scala:87:24]
assign _out_out_valid_T = out_front_valid; // @[RegisterRouter.scala:87:24]
assign out_bits_read = out_front_bits_read; // @[RegisterRouter.scala:87:24]
assign out_bits_extra_tlrr_extra_source = out_front_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24]
assign out_bits_extra_tlrr_extra_size = out_front_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24]
wire [12:0] _GEN = out_front_bits_index & 13'h7FF; // @[RegisterRouter.scala:87:24]
wire [12:0] out_findex; // @[RegisterRouter.scala:87:24]
assign out_findex = _GEN; // @[RegisterRouter.scala:87:24]
wire [12:0] out_bindex; // @[RegisterRouter.scala:87:24]
assign out_bindex = _GEN; // @[RegisterRouter.scala:87:24]
wire _GEN_0 = out_findex == 13'h0; // @[RegisterRouter.scala:87:24]
wire _out_T; // @[RegisterRouter.scala:87:24]
assign _out_T = _GEN_0; // @[RegisterRouter.scala:87:24]
wire _out_T_4; // @[RegisterRouter.scala:87:24]
assign _out_T_4 = _GEN_0; // @[RegisterRouter.scala:87:24]
wire _GEN_1 = out_bindex == 13'h0; // @[RegisterRouter.scala:87:24]
wire _out_T_1; // @[RegisterRouter.scala:87:24]
assign _out_T_1 = _GEN_1; // @[RegisterRouter.scala:87:24]
wire _out_T_5; // @[RegisterRouter.scala:87:24]
assign _out_T_5 = _GEN_1; // @[RegisterRouter.scala:87:24]
wire _out_out_bits_data_WIRE_0 = _out_T_1; // @[MuxLiteral.scala:49:48]
wire _out_T_2 = out_findex == 13'h7FF; // @[RegisterRouter.scala:87:24]
wire _out_T_3 = out_bindex == 13'h7FF; // @[RegisterRouter.scala:87:24]
wire _out_out_bits_data_WIRE_2 = _out_T_3; // @[MuxLiteral.scala:49:48]
wire _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_out_bits_data_WIRE_1 = _out_T_5; // @[MuxLiteral.scala:49:48]
wire _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24]
wire out_rivalid_0; // @[RegisterRouter.scala:87:24]
wire out_rivalid_1; // @[RegisterRouter.scala:87:24]
wire out_rivalid_2; // @[RegisterRouter.scala:87:24]
wire out_rivalid_3; // @[RegisterRouter.scala:87:24]
wire out_rivalid_4; // @[RegisterRouter.scala:87:24]
wire out_rivalid_5; // @[RegisterRouter.scala:87:24]
wire out_rivalid_6; // @[RegisterRouter.scala:87:24]
wire out_rivalid_7; // @[RegisterRouter.scala:87:24]
wire out_rivalid_8; // @[RegisterRouter.scala:87:24]
wire out_rivalid_9; // @[RegisterRouter.scala:87:24]
wire out_rivalid_10; // @[RegisterRouter.scala:87:24]
wire out_rivalid_11; // @[RegisterRouter.scala:87:24]
wire out_rivalid_12; // @[RegisterRouter.scala:87:24]
wire out_rivalid_13; // @[RegisterRouter.scala:87:24]
wire out_rivalid_14; // @[RegisterRouter.scala:87:24]
wire out_rivalid_15; // @[RegisterRouter.scala:87:24]
wire out_rivalid_16; // @[RegisterRouter.scala:87:24]
wire out_rivalid_17; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24]
wire out_wivalid_0; // @[RegisterRouter.scala:87:24]
wire out_wivalid_1; // @[RegisterRouter.scala:87:24]
wire out_wivalid_2; // @[RegisterRouter.scala:87:24]
wire out_wivalid_3; // @[RegisterRouter.scala:87:24]
wire out_wivalid_4; // @[RegisterRouter.scala:87:24]
wire out_wivalid_5; // @[RegisterRouter.scala:87:24]
wire out_wivalid_6; // @[RegisterRouter.scala:87:24]
wire out_wivalid_7; // @[RegisterRouter.scala:87:24]
wire out_wivalid_8; // @[RegisterRouter.scala:87:24]
wire out_wivalid_9; // @[RegisterRouter.scala:87:24]
wire out_wivalid_10; // @[RegisterRouter.scala:87:24]
wire out_wivalid_11; // @[RegisterRouter.scala:87:24]
wire out_wivalid_12; // @[RegisterRouter.scala:87:24]
wire out_wivalid_13; // @[RegisterRouter.scala:87:24]
wire out_wivalid_14; // @[RegisterRouter.scala:87:24]
wire out_wivalid_15; // @[RegisterRouter.scala:87:24]
wire out_wivalid_16; // @[RegisterRouter.scala:87:24]
wire out_wivalid_17; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24]
wire out_roready_0; // @[RegisterRouter.scala:87:24]
wire out_roready_1; // @[RegisterRouter.scala:87:24]
wire out_roready_2; // @[RegisterRouter.scala:87:24]
wire out_roready_3; // @[RegisterRouter.scala:87:24]
wire out_roready_4; // @[RegisterRouter.scala:87:24]
wire out_roready_5; // @[RegisterRouter.scala:87:24]
wire out_roready_6; // @[RegisterRouter.scala:87:24]
wire out_roready_7; // @[RegisterRouter.scala:87:24]
wire out_roready_8; // @[RegisterRouter.scala:87:24]
wire out_roready_9; // @[RegisterRouter.scala:87:24]
wire out_roready_10; // @[RegisterRouter.scala:87:24]
wire out_roready_11; // @[RegisterRouter.scala:87:24]
wire out_roready_12; // @[RegisterRouter.scala:87:24]
wire out_roready_13; // @[RegisterRouter.scala:87:24]
wire out_roready_14; // @[RegisterRouter.scala:87:24]
wire out_roready_15; // @[RegisterRouter.scala:87:24]
wire out_roready_16; // @[RegisterRouter.scala:87:24]
wire out_roready_17; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24]
wire out_woready_0; // @[RegisterRouter.scala:87:24]
wire out_woready_1; // @[RegisterRouter.scala:87:24]
wire out_woready_2; // @[RegisterRouter.scala:87:24]
wire out_woready_3; // @[RegisterRouter.scala:87:24]
wire out_woready_4; // @[RegisterRouter.scala:87:24]
wire out_woready_5; // @[RegisterRouter.scala:87:24]
wire out_woready_6; // @[RegisterRouter.scala:87:24]
wire out_woready_7; // @[RegisterRouter.scala:87:24]
wire out_woready_8; // @[RegisterRouter.scala:87:24]
wire out_woready_9; // @[RegisterRouter.scala:87:24]
wire out_woready_10; // @[RegisterRouter.scala:87:24]
wire out_woready_11; // @[RegisterRouter.scala:87:24]
wire out_woready_12; // @[RegisterRouter.scala:87:24]
wire out_woready_13; // @[RegisterRouter.scala:87:24]
wire out_woready_14; // @[RegisterRouter.scala:87:24]
wire out_woready_15; // @[RegisterRouter.scala:87:24]
wire out_woready_16; // @[RegisterRouter.scala:87:24]
wire out_woready_17; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T = out_front_bits_mask[0]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T = out_front_bits_mask[0]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_1 = out_front_bits_mask[1]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_1 = out_front_bits_mask[1]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_2 = out_front_bits_mask[2]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_2 = out_front_bits_mask[2]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_3 = out_front_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_3 = out_front_bits_mask[3]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_4 = out_front_bits_mask[4]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_4 = out_front_bits_mask[4]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_5 = out_front_bits_mask[5]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_5 = out_front_bits_mask[5]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_6 = out_front_bits_mask[6]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_6 = out_front_bits_mask[6]; // @[RegisterRouter.scala:87:24]
wire _out_frontMask_T_7 = out_front_bits_mask[7]; // @[RegisterRouter.scala:87:24]
wire _out_backMask_T_7 = out_front_bits_mask[7]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_8 = {8{_out_frontMask_T}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_9 = {8{_out_frontMask_T_1}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_10 = {8{_out_frontMask_T_2}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_11 = {8{_out_frontMask_T_3}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_12 = {8{_out_frontMask_T_4}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_13 = {8{_out_frontMask_T_5}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_14 = {8{_out_frontMask_T_6}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_frontMask_T_15 = {8{_out_frontMask_T_7}}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_lo_lo = {_out_frontMask_T_9, _out_frontMask_T_8}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_lo_hi = {_out_frontMask_T_11, _out_frontMask_T_10}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_frontMask_lo = {out_frontMask_lo_hi, out_frontMask_lo_lo}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_hi_lo = {_out_frontMask_T_13, _out_frontMask_T_12}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_frontMask_hi_hi = {_out_frontMask_T_15, _out_frontMask_T_14}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_frontMask_hi = {out_frontMask_hi_hi, out_frontMask_hi_lo}; // @[RegisterRouter.scala:87:24]
wire [63:0] out_frontMask = {out_frontMask_hi, out_frontMask_lo}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_8 = {8{_out_backMask_T}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_9 = {8{_out_backMask_T_1}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_10 = {8{_out_backMask_T_2}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_11 = {8{_out_backMask_T_3}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_12 = {8{_out_backMask_T_4}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_13 = {8{_out_backMask_T_5}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_14 = {8{_out_backMask_T_6}}; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_backMask_T_15 = {8{_out_backMask_T_7}}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_lo_lo = {_out_backMask_T_9, _out_backMask_T_8}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_lo_hi = {_out_backMask_T_11, _out_backMask_T_10}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_backMask_lo = {out_backMask_lo_hi, out_backMask_lo_lo}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_hi_lo = {_out_backMask_T_13, _out_backMask_T_12}; // @[RegisterRouter.scala:87:24]
wire [15:0] out_backMask_hi_hi = {_out_backMask_T_15, _out_backMask_T_14}; // @[RegisterRouter.scala:87:24]
wire [31:0] out_backMask_hi = {out_backMask_hi_hi, out_backMask_hi_lo}; // @[RegisterRouter.scala:87:24]
wire [63:0] out_backMask = {out_backMask_hi, out_backMask_lo}; // @[RegisterRouter.scala:87:24]
wire _out_rimask_T = out_frontMask[0]; // @[RegisterRouter.scala:87:24]
wire _out_wimask_T = out_frontMask[0]; // @[RegisterRouter.scala:87:24]
wire out_rimask = _out_rimask_T; // @[RegisterRouter.scala:87:24]
wire out_wimask = _out_wimask_T; // @[RegisterRouter.scala:87:24]
wire _out_romask_T = out_backMask[0]; // @[RegisterRouter.scala:87:24]
wire _out_womask_T = out_backMask[0]; // @[RegisterRouter.scala:87:24]
wire out_romask = _out_romask_T; // @[RegisterRouter.scala:87:24]
wire out_womask = _out_womask_T; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid = out_rivalid_0 & out_rimask; // @[RegisterRouter.scala:87:24]
wire _out_T_7 = out_f_rivalid; // @[RegisterRouter.scala:87:24]
wire out_f_roready = out_roready_0 & out_romask; // @[RegisterRouter.scala:87:24]
wire _out_T_8 = out_f_roready; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid = out_wivalid_0 & out_wimask; // @[RegisterRouter.scala:87:24]
wire _out_T_9 = out_f_wivalid; // @[RegisterRouter.scala:87:24]
wire out_f_woready = out_woready_0 & out_womask; // @[RegisterRouter.scala:87:24]
wire _out_T_10 = out_f_woready; // @[RegisterRouter.scala:87:24]
wire _out_T_6 = out_front_bits_data[0]; // @[RegisterRouter.scala:87:24]
wire _out_T_11 = ~out_rimask; // @[RegisterRouter.scala:87:24]
wire _out_T_12 = ~out_wimask; // @[RegisterRouter.scala:87:24]
wire _out_T_13 = ~out_romask; // @[RegisterRouter.scala:87:24]
wire _out_T_14 = ~out_womask; // @[RegisterRouter.scala:87:24]
wire _out_T_16 = _out_T_15; // @[RegisterRouter.scala:87:24]
wire _out_prepend_T = _out_T_16; // @[RegisterRouter.scala:87:24]
wire [30:0] _out_rimask_T_1 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24]
wire [30:0] _out_wimask_T_1 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24]
wire out_rimask_1 = |_out_rimask_T_1; // @[RegisterRouter.scala:87:24]
wire out_wimask_1 = &_out_wimask_T_1; // @[RegisterRouter.scala:87:24]
wire [30:0] _out_romask_T_1 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24]
wire [30:0] _out_womask_T_1 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24]
wire out_romask_1 = |_out_romask_T_1; // @[RegisterRouter.scala:87:24]
wire out_womask_1 = &_out_womask_T_1; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_1 = out_rivalid_1 & out_rimask_1; // @[RegisterRouter.scala:87:24]
wire _out_T_18 = out_f_rivalid_1; // @[RegisterRouter.scala:87:24]
wire out_f_roready_1 = out_roready_1 & out_romask_1; // @[RegisterRouter.scala:87:24]
wire _out_T_19 = out_f_roready_1; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_1 = out_wivalid_1 & out_wimask_1; // @[RegisterRouter.scala:87:24]
wire out_f_woready_1 = out_woready_1 & out_womask_1; // @[RegisterRouter.scala:87:24]
wire [30:0] _out_T_17 = out_front_bits_data[31:1]; // @[RegisterRouter.scala:87:24]
wire _out_T_20 = ~out_rimask_1; // @[RegisterRouter.scala:87:24]
wire _out_T_21 = ~out_wimask_1; // @[RegisterRouter.scala:87:24]
wire _out_T_22 = ~out_romask_1; // @[RegisterRouter.scala:87:24]
wire _out_T_23 = ~out_womask_1; // @[RegisterRouter.scala:87:24]
wire [1:0] out_prepend = {1'h0, _out_prepend_T}; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_T_24 = {30'h0, out_prepend}; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_T_25 = _out_T_24; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_2 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_2 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_10 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_10 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24]
wire out_rimask_2 = |_out_rimask_T_2; // @[RegisterRouter.scala:87:24]
wire out_wimask_2 = &_out_wimask_T_2; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_2 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_2 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_10 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_10 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24]
wire out_romask_2 = |_out_romask_T_2; // @[RegisterRouter.scala:87:24]
wire out_womask_2 = &_out_womask_T_2; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_2 = out_rivalid_2 & out_rimask_2; // @[RegisterRouter.scala:87:24]
wire _out_T_27 = out_f_rivalid_2; // @[RegisterRouter.scala:87:24]
wire out_f_roready_2 = out_roready_2 & out_romask_2; // @[RegisterRouter.scala:87:24]
wire _out_T_28 = out_f_roready_2; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_2 = out_wivalid_2 & out_wimask_2; // @[RegisterRouter.scala:87:24]
wire _out_T_29 = out_f_wivalid_2; // @[RegisterRouter.scala:87:24]
assign out_f_woready_2 = out_woready_2 & out_womask_2; // @[RegisterRouter.scala:87:24]
assign valids_1_0 = out_f_woready_2; // @[RegisterRouter.scala:87:24]
wire _out_T_30 = out_f_woready_2; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_26 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_114 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24]
assign newBytes_1_0 = out_f_woready_2 ? _out_T_26 : oldBytes_1_0; // @[RegisterRouter.scala:87:24]
wire _out_T_31 = ~out_rimask_2; // @[RegisterRouter.scala:87:24]
wire _out_T_32 = ~out_wimask_2; // @[RegisterRouter.scala:87:24]
wire _out_T_33 = ~out_romask_2; // @[RegisterRouter.scala:87:24]
wire _out_T_34 = ~out_womask_2; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_36 = _out_T_35; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_prepend_T_1 = _out_T_36; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_3 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_3 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_11 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_11 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24]
wire out_rimask_3 = |_out_rimask_T_3; // @[RegisterRouter.scala:87:24]
wire out_wimask_3 = &_out_wimask_T_3; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_3 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_3 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_11 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_11 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24]
wire out_romask_3 = |_out_romask_T_3; // @[RegisterRouter.scala:87:24]
wire out_womask_3 = &_out_womask_T_3; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_3 = out_rivalid_3 & out_rimask_3; // @[RegisterRouter.scala:87:24]
wire _out_T_38 = out_f_rivalid_3; // @[RegisterRouter.scala:87:24]
wire out_f_roready_3 = out_roready_3 & out_romask_3; // @[RegisterRouter.scala:87:24]
wire _out_T_39 = out_f_roready_3; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_3 = out_wivalid_3 & out_wimask_3; // @[RegisterRouter.scala:87:24]
wire _out_T_40 = out_f_wivalid_3; // @[RegisterRouter.scala:87:24]
assign out_f_woready_3 = out_woready_3 & out_womask_3; // @[RegisterRouter.scala:87:24]
assign valids_1_1 = out_f_woready_3; // @[RegisterRouter.scala:87:24]
wire _out_T_41 = out_f_woready_3; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_37 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_125 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24]
assign newBytes_1_1 = out_f_woready_3 ? _out_T_37 : oldBytes_1_1; // @[RegisterRouter.scala:87:24]
wire _out_T_42 = ~out_rimask_3; // @[RegisterRouter.scala:87:24]
wire _out_T_43 = ~out_wimask_3; // @[RegisterRouter.scala:87:24]
wire _out_T_44 = ~out_romask_3; // @[RegisterRouter.scala:87:24]
wire _out_T_45 = ~out_womask_3; // @[RegisterRouter.scala:87:24]
wire [15:0] out_prepend_1 = {oldBytes_1_1, _out_prepend_T_1}; // @[RegisterRouter.scala:87:24]
wire [15:0] _out_T_46 = out_prepend_1; // @[RegisterRouter.scala:87:24]
wire [15:0] _out_T_47 = _out_T_46; // @[RegisterRouter.scala:87:24]
wire [15:0] _out_prepend_T_2 = _out_T_47; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_4 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_4 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_12 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_12 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24]
wire out_rimask_4 = |_out_rimask_T_4; // @[RegisterRouter.scala:87:24]
wire out_wimask_4 = &_out_wimask_T_4; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_4 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_4 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_12 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_12 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24]
wire out_romask_4 = |_out_romask_T_4; // @[RegisterRouter.scala:87:24]
wire out_womask_4 = &_out_womask_T_4; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_4 = out_rivalid_4 & out_rimask_4; // @[RegisterRouter.scala:87:24]
wire _out_T_49 = out_f_rivalid_4; // @[RegisterRouter.scala:87:24]
wire out_f_roready_4 = out_roready_4 & out_romask_4; // @[RegisterRouter.scala:87:24]
wire _out_T_50 = out_f_roready_4; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_4 = out_wivalid_4 & out_wimask_4; // @[RegisterRouter.scala:87:24]
wire _out_T_51 = out_f_wivalid_4; // @[RegisterRouter.scala:87:24]
assign out_f_woready_4 = out_woready_4 & out_womask_4; // @[RegisterRouter.scala:87:24]
assign valids_1_2 = out_f_woready_4; // @[RegisterRouter.scala:87:24]
wire _out_T_52 = out_f_woready_4; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_48 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_136 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24]
assign newBytes_1_2 = out_f_woready_4 ? _out_T_48 : oldBytes_1_2; // @[RegisterRouter.scala:87:24]
wire _out_T_53 = ~out_rimask_4; // @[RegisterRouter.scala:87:24]
wire _out_T_54 = ~out_wimask_4; // @[RegisterRouter.scala:87:24]
wire _out_T_55 = ~out_romask_4; // @[RegisterRouter.scala:87:24]
wire _out_T_56 = ~out_womask_4; // @[RegisterRouter.scala:87:24]
wire [23:0] out_prepend_2 = {oldBytes_1_2, _out_prepend_T_2}; // @[RegisterRouter.scala:87:24]
wire [23:0] _out_T_57 = out_prepend_2; // @[RegisterRouter.scala:87:24]
wire [23:0] _out_T_58 = _out_T_57; // @[RegisterRouter.scala:87:24]
wire [23:0] _out_prepend_T_3 = _out_T_58; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_5 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_5 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_13 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_13 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24]
wire out_rimask_5 = |_out_rimask_T_5; // @[RegisterRouter.scala:87:24]
wire out_wimask_5 = &_out_wimask_T_5; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_5 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_5 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_13 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_13 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24]
wire out_romask_5 = |_out_romask_T_5; // @[RegisterRouter.scala:87:24]
wire out_womask_5 = &_out_womask_T_5; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_5 = out_rivalid_5 & out_rimask_5; // @[RegisterRouter.scala:87:24]
wire _out_T_60 = out_f_rivalid_5; // @[RegisterRouter.scala:87:24]
wire out_f_roready_5 = out_roready_5 & out_romask_5; // @[RegisterRouter.scala:87:24]
wire _out_T_61 = out_f_roready_5; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_5 = out_wivalid_5 & out_wimask_5; // @[RegisterRouter.scala:87:24]
wire _out_T_62 = out_f_wivalid_5; // @[RegisterRouter.scala:87:24]
assign out_f_woready_5 = out_woready_5 & out_womask_5; // @[RegisterRouter.scala:87:24]
assign valids_1_3 = out_f_woready_5; // @[RegisterRouter.scala:87:24]
wire _out_T_63 = out_f_woready_5; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_59 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_147 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24]
assign newBytes_1_3 = out_f_woready_5 ? _out_T_59 : oldBytes_1_3; // @[RegisterRouter.scala:87:24]
wire _out_T_64 = ~out_rimask_5; // @[RegisterRouter.scala:87:24]
wire _out_T_65 = ~out_wimask_5; // @[RegisterRouter.scala:87:24]
wire _out_T_66 = ~out_romask_5; // @[RegisterRouter.scala:87:24]
wire _out_T_67 = ~out_womask_5; // @[RegisterRouter.scala:87:24]
wire [31:0] out_prepend_3 = {oldBytes_1_3, _out_prepend_T_3}; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_T_68 = out_prepend_3; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_T_69 = _out_T_68; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_prepend_T_4 = _out_T_69; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_6 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_6 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_14 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_14 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24]
wire out_rimask_6 = |_out_rimask_T_6; // @[RegisterRouter.scala:87:24]
wire out_wimask_6 = &_out_wimask_T_6; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_6 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_6 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_14 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_14 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24]
wire out_romask_6 = |_out_romask_T_6; // @[RegisterRouter.scala:87:24]
wire out_womask_6 = &_out_womask_T_6; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_6 = out_rivalid_6 & out_rimask_6; // @[RegisterRouter.scala:87:24]
wire _out_T_71 = out_f_rivalid_6; // @[RegisterRouter.scala:87:24]
wire out_f_roready_6 = out_roready_6 & out_romask_6; // @[RegisterRouter.scala:87:24]
wire _out_T_72 = out_f_roready_6; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_6 = out_wivalid_6 & out_wimask_6; // @[RegisterRouter.scala:87:24]
wire _out_T_73 = out_f_wivalid_6; // @[RegisterRouter.scala:87:24]
assign out_f_woready_6 = out_woready_6 & out_womask_6; // @[RegisterRouter.scala:87:24]
assign valids_1_4 = out_f_woready_6; // @[RegisterRouter.scala:87:24]
wire _out_T_74 = out_f_woready_6; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_70 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_158 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24]
assign newBytes_1_4 = out_f_woready_6 ? _out_T_70 : oldBytes_1_4; // @[RegisterRouter.scala:87:24]
wire _out_T_75 = ~out_rimask_6; // @[RegisterRouter.scala:87:24]
wire _out_T_76 = ~out_wimask_6; // @[RegisterRouter.scala:87:24]
wire _out_T_77 = ~out_romask_6; // @[RegisterRouter.scala:87:24]
wire _out_T_78 = ~out_womask_6; // @[RegisterRouter.scala:87:24]
wire [39:0] out_prepend_4 = {oldBytes_1_4, _out_prepend_T_4}; // @[RegisterRouter.scala:87:24]
wire [39:0] _out_T_79 = out_prepend_4; // @[RegisterRouter.scala:87:24]
wire [39:0] _out_T_80 = _out_T_79; // @[RegisterRouter.scala:87:24]
wire [39:0] _out_prepend_T_5 = _out_T_80; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_7 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_7 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_15 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_15 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24]
wire out_rimask_7 = |_out_rimask_T_7; // @[RegisterRouter.scala:87:24]
wire out_wimask_7 = &_out_wimask_T_7; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_7 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_7 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_15 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_15 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24]
wire out_romask_7 = |_out_romask_T_7; // @[RegisterRouter.scala:87:24]
wire out_womask_7 = &_out_womask_T_7; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_7 = out_rivalid_7 & out_rimask_7; // @[RegisterRouter.scala:87:24]
wire _out_T_82 = out_f_rivalid_7; // @[RegisterRouter.scala:87:24]
wire out_f_roready_7 = out_roready_7 & out_romask_7; // @[RegisterRouter.scala:87:24]
wire _out_T_83 = out_f_roready_7; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_7 = out_wivalid_7 & out_wimask_7; // @[RegisterRouter.scala:87:24]
wire _out_T_84 = out_f_wivalid_7; // @[RegisterRouter.scala:87:24]
assign out_f_woready_7 = out_woready_7 & out_womask_7; // @[RegisterRouter.scala:87:24]
assign valids_1_5 = out_f_woready_7; // @[RegisterRouter.scala:87:24]
wire _out_T_85 = out_f_woready_7; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_81 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_169 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24]
assign newBytes_1_5 = out_f_woready_7 ? _out_T_81 : oldBytes_1_5; // @[RegisterRouter.scala:87:24]
wire _out_T_86 = ~out_rimask_7; // @[RegisterRouter.scala:87:24]
wire _out_T_87 = ~out_wimask_7; // @[RegisterRouter.scala:87:24]
wire _out_T_88 = ~out_romask_7; // @[RegisterRouter.scala:87:24]
wire _out_T_89 = ~out_womask_7; // @[RegisterRouter.scala:87:24]
wire [47:0] out_prepend_5 = {oldBytes_1_5, _out_prepend_T_5}; // @[RegisterRouter.scala:87:24]
wire [47:0] _out_T_90 = out_prepend_5; // @[RegisterRouter.scala:87:24]
wire [47:0] _out_T_91 = _out_T_90; // @[RegisterRouter.scala:87:24]
wire [47:0] _out_prepend_T_6 = _out_T_91; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_8 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_8 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_16 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_16 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24]
wire out_rimask_8 = |_out_rimask_T_8; // @[RegisterRouter.scala:87:24]
wire out_wimask_8 = &_out_wimask_T_8; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_8 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_8 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_16 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_16 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24]
wire out_romask_8 = |_out_romask_T_8; // @[RegisterRouter.scala:87:24]
wire out_womask_8 = &_out_womask_T_8; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_8 = out_rivalid_8 & out_rimask_8; // @[RegisterRouter.scala:87:24]
wire _out_T_93 = out_f_rivalid_8; // @[RegisterRouter.scala:87:24]
wire out_f_roready_8 = out_roready_8 & out_romask_8; // @[RegisterRouter.scala:87:24]
wire _out_T_94 = out_f_roready_8; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_8 = out_wivalid_8 & out_wimask_8; // @[RegisterRouter.scala:87:24]
wire _out_T_95 = out_f_wivalid_8; // @[RegisterRouter.scala:87:24]
assign out_f_woready_8 = out_woready_8 & out_womask_8; // @[RegisterRouter.scala:87:24]
assign valids_1_6 = out_f_woready_8; // @[RegisterRouter.scala:87:24]
wire _out_T_96 = out_f_woready_8; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_92 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_180 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24]
assign newBytes_1_6 = out_f_woready_8 ? _out_T_92 : oldBytes_1_6; // @[RegisterRouter.scala:87:24]
wire _out_T_97 = ~out_rimask_8; // @[RegisterRouter.scala:87:24]
wire _out_T_98 = ~out_wimask_8; // @[RegisterRouter.scala:87:24]
wire _out_T_99 = ~out_romask_8; // @[RegisterRouter.scala:87:24]
wire _out_T_100 = ~out_womask_8; // @[RegisterRouter.scala:87:24]
wire [55:0] out_prepend_6 = {oldBytes_1_6, _out_prepend_T_6}; // @[RegisterRouter.scala:87:24]
wire [55:0] _out_T_101 = out_prepend_6; // @[RegisterRouter.scala:87:24]
wire [55:0] _out_T_102 = _out_T_101; // @[RegisterRouter.scala:87:24]
wire [55:0] _out_prepend_T_7 = _out_T_102; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_9 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_9 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_rimask_T_17 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_wimask_T_17 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24]
wire out_rimask_9 = |_out_rimask_T_9; // @[RegisterRouter.scala:87:24]
wire out_wimask_9 = &_out_wimask_T_9; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_9 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_9 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_romask_T_17 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_womask_T_17 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24]
wire out_romask_9 = |_out_romask_T_9; // @[RegisterRouter.scala:87:24]
wire out_womask_9 = &_out_womask_T_9; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_9 = out_rivalid_9 & out_rimask_9; // @[RegisterRouter.scala:87:24]
wire _out_T_104 = out_f_rivalid_9; // @[RegisterRouter.scala:87:24]
wire out_f_roready_9 = out_roready_9 & out_romask_9; // @[RegisterRouter.scala:87:24]
wire _out_T_105 = out_f_roready_9; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_9 = out_wivalid_9 & out_wimask_9; // @[RegisterRouter.scala:87:24]
wire _out_T_106 = out_f_wivalid_9; // @[RegisterRouter.scala:87:24]
assign out_f_woready_9 = out_woready_9 & out_womask_9; // @[RegisterRouter.scala:87:24]
assign valids_1_7 = out_f_woready_9; // @[RegisterRouter.scala:87:24]
wire _out_T_107 = out_f_woready_9; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_103 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_191 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24]
assign newBytes_1_7 = out_f_woready_9 ? _out_T_103 : oldBytes_1_7; // @[RegisterRouter.scala:87:24]
wire _out_T_108 = ~out_rimask_9; // @[RegisterRouter.scala:87:24]
wire _out_T_109 = ~out_wimask_9; // @[RegisterRouter.scala:87:24]
wire _out_T_110 = ~out_romask_9; // @[RegisterRouter.scala:87:24]
wire _out_T_111 = ~out_womask_9; // @[RegisterRouter.scala:87:24]
wire [63:0] out_prepend_7 = {oldBytes_1_7, _out_prepend_T_7}; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_T_112 = out_prepend_7; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_T_113 = _out_T_112; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_out_bits_data_WIRE_1_2 = _out_T_113; // @[MuxLiteral.scala:49:48]
wire out_rimask_10 = |_out_rimask_T_10; // @[RegisterRouter.scala:87:24]
wire out_wimask_10 = &_out_wimask_T_10; // @[RegisterRouter.scala:87:24]
wire out_romask_10 = |_out_romask_T_10; // @[RegisterRouter.scala:87:24]
wire out_womask_10 = &_out_womask_T_10; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_10 = out_rivalid_10 & out_rimask_10; // @[RegisterRouter.scala:87:24]
wire _out_T_115 = out_f_rivalid_10; // @[RegisterRouter.scala:87:24]
wire out_f_roready_10 = out_roready_10 & out_romask_10; // @[RegisterRouter.scala:87:24]
wire _out_T_116 = out_f_roready_10; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_10 = out_wivalid_10 & out_wimask_10; // @[RegisterRouter.scala:87:24]
wire _out_T_117 = out_f_wivalid_10; // @[RegisterRouter.scala:87:24]
assign out_f_woready_10 = out_woready_10 & out_womask_10; // @[RegisterRouter.scala:87:24]
assign valids_0 = out_f_woready_10; // @[RegisterRouter.scala:87:24]
wire _out_T_118 = out_f_woready_10; // @[RegisterRouter.scala:87:24]
assign newBytes_0 = out_f_woready_10 ? _out_T_114 : oldBytes_0; // @[RegisterRouter.scala:87:24]
wire _out_T_119 = ~out_rimask_10; // @[RegisterRouter.scala:87:24]
wire _out_T_120 = ~out_wimask_10; // @[RegisterRouter.scala:87:24]
wire _out_T_121 = ~out_romask_10; // @[RegisterRouter.scala:87:24]
wire _out_T_122 = ~out_womask_10; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_T_124 = _out_T_123; // @[RegisterRouter.scala:87:24]
wire [7:0] _out_prepend_T_8 = _out_T_124; // @[RegisterRouter.scala:87:24]
wire out_rimask_11 = |_out_rimask_T_11; // @[RegisterRouter.scala:87:24]
wire out_wimask_11 = &_out_wimask_T_11; // @[RegisterRouter.scala:87:24]
wire out_romask_11 = |_out_romask_T_11; // @[RegisterRouter.scala:87:24]
wire out_womask_11 = &_out_womask_T_11; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_11 = out_rivalid_11 & out_rimask_11; // @[RegisterRouter.scala:87:24]
wire _out_T_126 = out_f_rivalid_11; // @[RegisterRouter.scala:87:24]
wire out_f_roready_11 = out_roready_11 & out_romask_11; // @[RegisterRouter.scala:87:24]
wire _out_T_127 = out_f_roready_11; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_11 = out_wivalid_11 & out_wimask_11; // @[RegisterRouter.scala:87:24]
wire _out_T_128 = out_f_wivalid_11; // @[RegisterRouter.scala:87:24]
assign out_f_woready_11 = out_woready_11 & out_womask_11; // @[RegisterRouter.scala:87:24]
assign valids_1 = out_f_woready_11; // @[RegisterRouter.scala:87:24]
wire _out_T_129 = out_f_woready_11; // @[RegisterRouter.scala:87:24]
assign newBytes_1 = out_f_woready_11 ? _out_T_125 : oldBytes_1; // @[RegisterRouter.scala:87:24]
wire _out_T_130 = ~out_rimask_11; // @[RegisterRouter.scala:87:24]
wire _out_T_131 = ~out_wimask_11; // @[RegisterRouter.scala:87:24]
wire _out_T_132 = ~out_romask_11; // @[RegisterRouter.scala:87:24]
wire _out_T_133 = ~out_womask_11; // @[RegisterRouter.scala:87:24]
wire [15:0] out_prepend_8 = {oldBytes_1, _out_prepend_T_8}; // @[RegisterRouter.scala:87:24]
wire [15:0] _out_T_134 = out_prepend_8; // @[RegisterRouter.scala:87:24]
wire [15:0] _out_T_135 = _out_T_134; // @[RegisterRouter.scala:87:24]
wire [15:0] _out_prepend_T_9 = _out_T_135; // @[RegisterRouter.scala:87:24]
wire out_rimask_12 = |_out_rimask_T_12; // @[RegisterRouter.scala:87:24]
wire out_wimask_12 = &_out_wimask_T_12; // @[RegisterRouter.scala:87:24]
wire out_romask_12 = |_out_romask_T_12; // @[RegisterRouter.scala:87:24]
wire out_womask_12 = &_out_womask_T_12; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_12 = out_rivalid_12 & out_rimask_12; // @[RegisterRouter.scala:87:24]
wire _out_T_137 = out_f_rivalid_12; // @[RegisterRouter.scala:87:24]
wire out_f_roready_12 = out_roready_12 & out_romask_12; // @[RegisterRouter.scala:87:24]
wire _out_T_138 = out_f_roready_12; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_12 = out_wivalid_12 & out_wimask_12; // @[RegisterRouter.scala:87:24]
wire _out_T_139 = out_f_wivalid_12; // @[RegisterRouter.scala:87:24]
assign out_f_woready_12 = out_woready_12 & out_womask_12; // @[RegisterRouter.scala:87:24]
assign valids_2 = out_f_woready_12; // @[RegisterRouter.scala:87:24]
wire _out_T_140 = out_f_woready_12; // @[RegisterRouter.scala:87:24]
assign newBytes_2 = out_f_woready_12 ? _out_T_136 : oldBytes_2; // @[RegisterRouter.scala:87:24]
wire _out_T_141 = ~out_rimask_12; // @[RegisterRouter.scala:87:24]
wire _out_T_142 = ~out_wimask_12; // @[RegisterRouter.scala:87:24]
wire _out_T_143 = ~out_romask_12; // @[RegisterRouter.scala:87:24]
wire _out_T_144 = ~out_womask_12; // @[RegisterRouter.scala:87:24]
wire [23:0] out_prepend_9 = {oldBytes_2, _out_prepend_T_9}; // @[RegisterRouter.scala:87:24]
wire [23:0] _out_T_145 = out_prepend_9; // @[RegisterRouter.scala:87:24]
wire [23:0] _out_T_146 = _out_T_145; // @[RegisterRouter.scala:87:24]
wire [23:0] _out_prepend_T_10 = _out_T_146; // @[RegisterRouter.scala:87:24]
wire out_rimask_13 = |_out_rimask_T_13; // @[RegisterRouter.scala:87:24]
wire out_wimask_13 = &_out_wimask_T_13; // @[RegisterRouter.scala:87:24]
wire out_romask_13 = |_out_romask_T_13; // @[RegisterRouter.scala:87:24]
wire out_womask_13 = &_out_womask_T_13; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_13 = out_rivalid_13 & out_rimask_13; // @[RegisterRouter.scala:87:24]
wire _out_T_148 = out_f_rivalid_13; // @[RegisterRouter.scala:87:24]
wire out_f_roready_13 = out_roready_13 & out_romask_13; // @[RegisterRouter.scala:87:24]
wire _out_T_149 = out_f_roready_13; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_13 = out_wivalid_13 & out_wimask_13; // @[RegisterRouter.scala:87:24]
wire _out_T_150 = out_f_wivalid_13; // @[RegisterRouter.scala:87:24]
assign out_f_woready_13 = out_woready_13 & out_womask_13; // @[RegisterRouter.scala:87:24]
assign valids_3 = out_f_woready_13; // @[RegisterRouter.scala:87:24]
wire _out_T_151 = out_f_woready_13; // @[RegisterRouter.scala:87:24]
assign newBytes_3 = out_f_woready_13 ? _out_T_147 : oldBytes_3; // @[RegisterRouter.scala:87:24]
wire _out_T_152 = ~out_rimask_13; // @[RegisterRouter.scala:87:24]
wire _out_T_153 = ~out_wimask_13; // @[RegisterRouter.scala:87:24]
wire _out_T_154 = ~out_romask_13; // @[RegisterRouter.scala:87:24]
wire _out_T_155 = ~out_womask_13; // @[RegisterRouter.scala:87:24]
wire [31:0] out_prepend_10 = {oldBytes_3, _out_prepend_T_10}; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_T_156 = out_prepend_10; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_T_157 = _out_T_156; // @[RegisterRouter.scala:87:24]
wire [31:0] _out_prepend_T_11 = _out_T_157; // @[RegisterRouter.scala:87:24]
wire out_rimask_14 = |_out_rimask_T_14; // @[RegisterRouter.scala:87:24]
wire out_wimask_14 = &_out_wimask_T_14; // @[RegisterRouter.scala:87:24]
wire out_romask_14 = |_out_romask_T_14; // @[RegisterRouter.scala:87:24]
wire out_womask_14 = &_out_womask_T_14; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_14 = out_rivalid_14 & out_rimask_14; // @[RegisterRouter.scala:87:24]
wire _out_T_159 = out_f_rivalid_14; // @[RegisterRouter.scala:87:24]
wire out_f_roready_14 = out_roready_14 & out_romask_14; // @[RegisterRouter.scala:87:24]
wire _out_T_160 = out_f_roready_14; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_14 = out_wivalid_14 & out_wimask_14; // @[RegisterRouter.scala:87:24]
wire _out_T_161 = out_f_wivalid_14; // @[RegisterRouter.scala:87:24]
assign out_f_woready_14 = out_woready_14 & out_womask_14; // @[RegisterRouter.scala:87:24]
assign valids_4 = out_f_woready_14; // @[RegisterRouter.scala:87:24]
wire _out_T_162 = out_f_woready_14; // @[RegisterRouter.scala:87:24]
assign newBytes_4 = out_f_woready_14 ? _out_T_158 : oldBytes_4; // @[RegisterRouter.scala:87:24]
wire _out_T_163 = ~out_rimask_14; // @[RegisterRouter.scala:87:24]
wire _out_T_164 = ~out_wimask_14; // @[RegisterRouter.scala:87:24]
wire _out_T_165 = ~out_romask_14; // @[RegisterRouter.scala:87:24]
wire _out_T_166 = ~out_womask_14; // @[RegisterRouter.scala:87:24]
wire [39:0] out_prepend_11 = {oldBytes_4, _out_prepend_T_11}; // @[RegisterRouter.scala:87:24]
wire [39:0] _out_T_167 = out_prepend_11; // @[RegisterRouter.scala:87:24]
wire [39:0] _out_T_168 = _out_T_167; // @[RegisterRouter.scala:87:24]
wire [39:0] _out_prepend_T_12 = _out_T_168; // @[RegisterRouter.scala:87:24]
wire out_rimask_15 = |_out_rimask_T_15; // @[RegisterRouter.scala:87:24]
wire out_wimask_15 = &_out_wimask_T_15; // @[RegisterRouter.scala:87:24]
wire out_romask_15 = |_out_romask_T_15; // @[RegisterRouter.scala:87:24]
wire out_womask_15 = &_out_womask_T_15; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_15 = out_rivalid_15 & out_rimask_15; // @[RegisterRouter.scala:87:24]
wire _out_T_170 = out_f_rivalid_15; // @[RegisterRouter.scala:87:24]
wire out_f_roready_15 = out_roready_15 & out_romask_15; // @[RegisterRouter.scala:87:24]
wire _out_T_171 = out_f_roready_15; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_15 = out_wivalid_15 & out_wimask_15; // @[RegisterRouter.scala:87:24]
wire _out_T_172 = out_f_wivalid_15; // @[RegisterRouter.scala:87:24]
assign out_f_woready_15 = out_woready_15 & out_womask_15; // @[RegisterRouter.scala:87:24]
assign valids_5 = out_f_woready_15; // @[RegisterRouter.scala:87:24]
wire _out_T_173 = out_f_woready_15; // @[RegisterRouter.scala:87:24]
assign newBytes_5 = out_f_woready_15 ? _out_T_169 : oldBytes_5; // @[RegisterRouter.scala:87:24]
wire _out_T_174 = ~out_rimask_15; // @[RegisterRouter.scala:87:24]
wire _out_T_175 = ~out_wimask_15; // @[RegisterRouter.scala:87:24]
wire _out_T_176 = ~out_romask_15; // @[RegisterRouter.scala:87:24]
wire _out_T_177 = ~out_womask_15; // @[RegisterRouter.scala:87:24]
wire [47:0] out_prepend_12 = {oldBytes_5, _out_prepend_T_12}; // @[RegisterRouter.scala:87:24]
wire [47:0] _out_T_178 = out_prepend_12; // @[RegisterRouter.scala:87:24]
wire [47:0] _out_T_179 = _out_T_178; // @[RegisterRouter.scala:87:24]
wire [47:0] _out_prepend_T_13 = _out_T_179; // @[RegisterRouter.scala:87:24]
wire out_rimask_16 = |_out_rimask_T_16; // @[RegisterRouter.scala:87:24]
wire out_wimask_16 = &_out_wimask_T_16; // @[RegisterRouter.scala:87:24]
wire out_romask_16 = |_out_romask_T_16; // @[RegisterRouter.scala:87:24]
wire out_womask_16 = &_out_womask_T_16; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_16 = out_rivalid_16 & out_rimask_16; // @[RegisterRouter.scala:87:24]
wire _out_T_181 = out_f_rivalid_16; // @[RegisterRouter.scala:87:24]
wire out_f_roready_16 = out_roready_16 & out_romask_16; // @[RegisterRouter.scala:87:24]
wire _out_T_182 = out_f_roready_16; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_16 = out_wivalid_16 & out_wimask_16; // @[RegisterRouter.scala:87:24]
wire _out_T_183 = out_f_wivalid_16; // @[RegisterRouter.scala:87:24]
assign out_f_woready_16 = out_woready_16 & out_womask_16; // @[RegisterRouter.scala:87:24]
assign valids_6 = out_f_woready_16; // @[RegisterRouter.scala:87:24]
wire _out_T_184 = out_f_woready_16; // @[RegisterRouter.scala:87:24]
assign newBytes_6 = out_f_woready_16 ? _out_T_180 : oldBytes_6; // @[RegisterRouter.scala:87:24]
wire _out_T_185 = ~out_rimask_16; // @[RegisterRouter.scala:87:24]
wire _out_T_186 = ~out_wimask_16; // @[RegisterRouter.scala:87:24]
wire _out_T_187 = ~out_romask_16; // @[RegisterRouter.scala:87:24]
wire _out_T_188 = ~out_womask_16; // @[RegisterRouter.scala:87:24]
wire [55:0] out_prepend_13 = {oldBytes_6, _out_prepend_T_13}; // @[RegisterRouter.scala:87:24]
wire [55:0] _out_T_189 = out_prepend_13; // @[RegisterRouter.scala:87:24]
wire [55:0] _out_T_190 = _out_T_189; // @[RegisterRouter.scala:87:24]
wire [55:0] _out_prepend_T_14 = _out_T_190; // @[RegisterRouter.scala:87:24]
wire out_rimask_17 = |_out_rimask_T_17; // @[RegisterRouter.scala:87:24]
wire out_wimask_17 = &_out_wimask_T_17; // @[RegisterRouter.scala:87:24]
wire out_romask_17 = |_out_romask_T_17; // @[RegisterRouter.scala:87:24]
wire out_womask_17 = &_out_womask_T_17; // @[RegisterRouter.scala:87:24]
wire out_f_rivalid_17 = out_rivalid_17 & out_rimask_17; // @[RegisterRouter.scala:87:24]
wire _out_T_192 = out_f_rivalid_17; // @[RegisterRouter.scala:87:24]
wire out_f_roready_17 = out_roready_17 & out_romask_17; // @[RegisterRouter.scala:87:24]
wire _out_T_193 = out_f_roready_17; // @[RegisterRouter.scala:87:24]
wire out_f_wivalid_17 = out_wivalid_17 & out_wimask_17; // @[RegisterRouter.scala:87:24]
wire _out_T_194 = out_f_wivalid_17; // @[RegisterRouter.scala:87:24]
assign out_f_woready_17 = out_woready_17 & out_womask_17; // @[RegisterRouter.scala:87:24]
assign valids_7 = out_f_woready_17; // @[RegisterRouter.scala:87:24]
wire _out_T_195 = out_f_woready_17; // @[RegisterRouter.scala:87:24]
assign newBytes_7 = out_f_woready_17 ? _out_T_191 : oldBytes_7; // @[RegisterRouter.scala:87:24]
wire _out_T_196 = ~out_rimask_17; // @[RegisterRouter.scala:87:24]
wire _out_T_197 = ~out_wimask_17; // @[RegisterRouter.scala:87:24]
wire _out_T_198 = ~out_romask_17; // @[RegisterRouter.scala:87:24]
wire _out_T_199 = ~out_womask_17; // @[RegisterRouter.scala:87:24]
wire [63:0] out_prepend_14 = {oldBytes_7, _out_prepend_T_14}; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_T_200 = out_prepend_14; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_T_201 = _out_T_200; // @[RegisterRouter.scala:87:24]
wire [63:0] _out_out_bits_data_WIRE_1_1 = _out_T_201; // @[MuxLiteral.scala:49:48]
wire _out_iindex_T = out_front_bits_index[0]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T = out_front_bits_index[0]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_1 = out_front_bits_index[1]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_1 = out_front_bits_index[1]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_2 = out_front_bits_index[2]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_2 = out_front_bits_index[2]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_3 = out_front_bits_index[3]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_3 = out_front_bits_index[3]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_4 = out_front_bits_index[4]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_4 = out_front_bits_index[4]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_5 = out_front_bits_index[5]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_5 = out_front_bits_index[5]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_6 = out_front_bits_index[6]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_6 = out_front_bits_index[6]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_7 = out_front_bits_index[7]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_7 = out_front_bits_index[7]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_8 = out_front_bits_index[8]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_8 = out_front_bits_index[8]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_9 = out_front_bits_index[9]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_9 = out_front_bits_index[9]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_10 = out_front_bits_index[10]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_10 = out_front_bits_index[10]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_11 = out_front_bits_index[11]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_11 = out_front_bits_index[11]; // @[RegisterRouter.scala:87:24]
wire _out_iindex_T_12 = out_front_bits_index[12]; // @[RegisterRouter.scala:87:24]
wire _out_oindex_T_12 = out_front_bits_index[12]; // @[RegisterRouter.scala:87:24]
wire [1:0] out_iindex = {_out_iindex_T_12, _out_iindex_T_11}; // @[RegisterRouter.scala:87:24]
wire [1:0] out_oindex = {_out_oindex_T_12, _out_oindex_T_11}; // @[RegisterRouter.scala:87:24]
wire [3:0] _out_frontSel_T = 4'h1 << out_iindex; // @[OneHot.scala:58:35]
wire out_frontSel_0 = _out_frontSel_T[0]; // @[OneHot.scala:58:35]
wire out_frontSel_1 = _out_frontSel_T[1]; // @[OneHot.scala:58:35]
wire out_frontSel_2 = _out_frontSel_T[2]; // @[OneHot.scala:58:35]
wire out_frontSel_3 = _out_frontSel_T[3]; // @[OneHot.scala:58:35]
wire [3:0] _out_backSel_T = 4'h1 << out_oindex; // @[OneHot.scala:58:35]
wire out_backSel_0 = _out_backSel_T[0]; // @[OneHot.scala:58:35]
wire out_backSel_1 = _out_backSel_T[1]; // @[OneHot.scala:58:35]
wire out_backSel_2 = _out_backSel_T[2]; // @[OneHot.scala:58:35]
wire out_backSel_3 = _out_backSel_T[3]; // @[OneHot.scala:58:35]
wire _GEN_2 = in_valid & out_front_ready; // @[RegisterRouter.scala:73:18, :87:24]
wire _out_rifireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_rifireMux_T = _GEN_2; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_wifireMux_T = _GEN_2; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_1 = _out_rifireMux_T & out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_2 = _out_rifireMux_T_1 & out_frontSel_0; // @[RegisterRouter.scala:87:24]
assign _out_rifireMux_T_3 = _out_rifireMux_T_2 & _out_T; // @[RegisterRouter.scala:87:24]
assign out_rivalid_0 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_rivalid_1 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_4 = ~_out_T; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_6 = _out_rifireMux_T_1 & out_frontSel_1; // @[RegisterRouter.scala:87:24]
assign _out_rifireMux_T_7 = _out_rifireMux_T_6 & _out_T_4; // @[RegisterRouter.scala:87:24]
assign out_rivalid_10 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_rivalid_11 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_rivalid_12 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_rivalid_13 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_rivalid_14 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_rivalid_15 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_rivalid_16 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_rivalid_17 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_8 = ~_out_T_4; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_10 = _out_rifireMux_T_1 & out_frontSel_2; // @[RegisterRouter.scala:87:24]
assign _out_rifireMux_T_11 = _out_rifireMux_T_10 & _out_T_2; // @[RegisterRouter.scala:87:24]
assign out_rivalid_2 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_rivalid_3 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_rivalid_4 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_rivalid_5 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_rivalid_6 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_rivalid_7 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_rivalid_8 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_rivalid_9 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_12 = ~_out_T_2; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_14 = _out_rifireMux_T_1 & out_frontSel_3; // @[RegisterRouter.scala:87:24]
wire _out_rifireMux_T_15 = _out_rifireMux_T_14; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_1 = ~out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_2 = _out_wifireMux_T & _out_wifireMux_T_1; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_3 = _out_wifireMux_T_2 & out_frontSel_0; // @[RegisterRouter.scala:87:24]
assign _out_wifireMux_T_4 = _out_wifireMux_T_3 & _out_T; // @[RegisterRouter.scala:87:24]
assign out_wivalid_0 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_wivalid_1 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_5 = ~_out_T; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_7 = _out_wifireMux_T_2 & out_frontSel_1; // @[RegisterRouter.scala:87:24]
assign _out_wifireMux_T_8 = _out_wifireMux_T_7 & _out_T_4; // @[RegisterRouter.scala:87:24]
assign out_wivalid_10 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_wivalid_11 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_wivalid_12 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_wivalid_13 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_wivalid_14 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_wivalid_15 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_wivalid_16 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_wivalid_17 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_9 = ~_out_T_4; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_11 = _out_wifireMux_T_2 & out_frontSel_2; // @[RegisterRouter.scala:87:24]
assign _out_wifireMux_T_12 = _out_wifireMux_T_11 & _out_T_2; // @[RegisterRouter.scala:87:24]
assign out_wivalid_2 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_wivalid_3 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_wivalid_4 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_wivalid_5 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_wivalid_6 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_wivalid_7 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_wivalid_8 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_wivalid_9 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_13 = ~_out_T_2; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_15 = _out_wifireMux_T_2 & out_frontSel_3; // @[RegisterRouter.scala:87:24]
wire _out_wifireMux_T_16 = _out_wifireMux_T_15; // @[RegisterRouter.scala:87:24]
wire _GEN_3 = out_front_valid & out_ready; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_rofireMux_T = _GEN_3; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T; // @[RegisterRouter.scala:87:24]
assign _out_wofireMux_T = _GEN_3; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_1 = _out_rofireMux_T & out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_2 = _out_rofireMux_T_1 & out_backSel_0; // @[RegisterRouter.scala:87:24]
assign _out_rofireMux_T_3 = _out_rofireMux_T_2 & _out_T_1; // @[RegisterRouter.scala:87:24]
assign out_roready_0 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
assign out_roready_1 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_4 = ~_out_T_1; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_6 = _out_rofireMux_T_1 & out_backSel_1; // @[RegisterRouter.scala:87:24]
assign _out_rofireMux_T_7 = _out_rofireMux_T_6 & _out_T_5; // @[RegisterRouter.scala:87:24]
assign out_roready_10 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_roready_11 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_roready_12 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_roready_13 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_roready_14 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_roready_15 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_roready_16 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24]
assign out_roready_17 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_8 = ~_out_T_5; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_10 = _out_rofireMux_T_1 & out_backSel_2; // @[RegisterRouter.scala:87:24]
assign _out_rofireMux_T_11 = _out_rofireMux_T_10 & _out_T_3; // @[RegisterRouter.scala:87:24]
assign out_roready_2 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_roready_3 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_roready_4 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_roready_5 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_roready_6 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_roready_7 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_roready_8 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24]
assign out_roready_9 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_12 = ~_out_T_3; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_14 = _out_rofireMux_T_1 & out_backSel_3; // @[RegisterRouter.scala:87:24]
wire _out_rofireMux_T_15 = _out_rofireMux_T_14; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_1 = ~out_front_bits_read; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_2 = _out_wofireMux_T & _out_wofireMux_T_1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_3 = _out_wofireMux_T_2 & out_backSel_0; // @[RegisterRouter.scala:87:24]
assign _out_wofireMux_T_4 = _out_wofireMux_T_3 & _out_T_1; // @[RegisterRouter.scala:87:24]
assign out_woready_0 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
assign out_woready_1 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_5 = ~_out_T_1; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_7 = _out_wofireMux_T_2 & out_backSel_1; // @[RegisterRouter.scala:87:24]
assign _out_wofireMux_T_8 = _out_wofireMux_T_7 & _out_T_5; // @[RegisterRouter.scala:87:24]
assign out_woready_10 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_woready_11 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_woready_12 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_woready_13 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_woready_14 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_woready_15 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_woready_16 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24]
assign out_woready_17 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_9 = ~_out_T_5; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_11 = _out_wofireMux_T_2 & out_backSel_2; // @[RegisterRouter.scala:87:24]
assign _out_wofireMux_T_12 = _out_wofireMux_T_11 & _out_T_3; // @[RegisterRouter.scala:87:24]
assign out_woready_2 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_woready_3 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_woready_4 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_woready_5 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_woready_6 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_woready_7 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_woready_8 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24]
assign out_woready_9 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_13 = ~_out_T_3; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_15 = _out_wofireMux_T_2 & out_backSel_3; // @[RegisterRouter.scala:87:24]
wire _out_wofireMux_T_16 = _out_wofireMux_T_15; // @[RegisterRouter.scala:87:24]
assign in_ready = _out_in_ready_T; // @[RegisterRouter.scala:73:18, :87:24]
assign out_front_valid = _out_front_valid_T; // @[RegisterRouter.scala:87:24]
assign out_front_ready = _out_front_ready_T; // @[RegisterRouter.scala:87:24]
assign out_valid = _out_out_valid_T; // @[RegisterRouter.scala:87:24]
wire [3:0] _GEN_4 = {{1'h1}, {_out_out_bits_data_WIRE_2}, {_out_out_bits_data_WIRE_1}, {_out_out_bits_data_WIRE_0}}; // @[MuxLiteral.scala:49:{10,48}]
wire _out_out_bits_data_T_1 = _GEN_4[out_oindex]; // @[MuxLiteral.scala:49:10]
wire [63:0] _out_out_bits_data_WIRE_1_0 = {32'h0, _out_T_25}; // @[MuxLiteral.scala:49:48]
wire [3:0][63:0] _GEN_5 = {{64'h0}, {_out_out_bits_data_WIRE_1_2}, {_out_out_bits_data_WIRE_1_1}, {_out_out_bits_data_WIRE_1_0}}; // @[MuxLiteral.scala:49:{10,48}]
wire [63:0] _out_out_bits_data_T_3 = _GEN_5[out_oindex]; // @[MuxLiteral.scala:49:10]
assign _out_out_bits_data_T_4 = _out_out_bits_data_T_1 ? _out_out_bits_data_T_3 : 64'h0; // @[MuxLiteral.scala:49:10]
assign out_bits_data = _out_out_bits_data_T_4; // @[RegisterRouter.scala:87:24]
assign nodeIn_d_bits_size = nodeIn_d_bits_d_size; // @[Edges.scala:792:17]
assign nodeIn_d_bits_source = nodeIn_d_bits_d_source; // @[Edges.scala:792:17]
assign nodeIn_d_bits_opcode = {2'h0, _nodeIn_d_bits_opcode_T}; // @[RegisterRouter.scala:105:{19,25}]
always @(posedge clock) begin // @[CLINT.scala:65:9]
if (reset) begin // @[CLINT.scala:65:9]
time_0 <= 64'h0; // @[CLINT.scala:73:23]
ipi_0 <= 1'h0; // @[CLINT.scala:78:41]
end
else begin // @[CLINT.scala:65:9]
if (valids_1_0 | valids_1_1 | valids_1_2 | valids_1_3 | valids_1_4 | valids_1_5 | valids_1_6 | valids_1_7) // @[RegField.scala:153:29, :154:27]
time_0 <= _time_T_2; // @[RegField.scala:154:52]
else if (io_rtcTick_0) // @[CLINT.scala:65:9]
time_0 <= _time_T_1; // @[CLINT.scala:73:23, :74:38]
if (out_f_woready) // @[RegisterRouter.scala:87:24]
ipi_0 <= _out_T_6; // @[RegisterRouter.scala:87:24]
end
if (valids_0 | valids_1 | valids_2 | valids_3 | valids_4 | valids_5 | valids_6 | valids_7) // @[RegField.scala:153:29, :154:27]
timecmp_0 <= _timecmp_0_T; // @[RegField.scala:154:52]
always @(posedge)
TLMonitor_48 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17]
.io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17]
.io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17]
.io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17]
.io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17]
.io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17]
.io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17]
.io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17]
.io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17]
.io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17]
.io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17]
.io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17]
.io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17]
.io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17]
.io_in_d_bits_data (nodeIn_d_bits_data) // @[MixedNode.scala:551:17]
); // @[Nodes.scala:27:25]
assign auto_int_out_0 = auto_int_out_0_0; // @[CLINT.scala:65:9]
assign auto_int_out_1 = auto_int_out_1_0; // @[CLINT.scala:65:9]
assign auto_in_a_ready = auto_in_a_ready_0; // @[CLINT.scala:65:9]
assign auto_in_d_valid = auto_in_d_valid_0; // @[CLINT.scala:65:9]
assign auto_in_d_bits_opcode = auto_in_d_bits_opcode_0; // @[CLINT.scala:65:9]
assign auto_in_d_bits_size = auto_in_d_bits_size_0; // @[CLINT.scala:65:9]
assign auto_in_d_bits_source = auto_in_d_bits_source_0; // @[CLINT.scala:65:9]
assign auto_in_d_bits_data = auto_in_d_bits_data_0; // @[CLINT.scala:65:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Arithmetic.scala:
// A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own:
// implicit MyTypeArithmetic extends Arithmetic[MyType] { ... }
package gemmini
import chisel3._
import chisel3.util._
import hardfloat._
// Bundles that represent the raw bits of custom datatypes
case class Float(expWidth: Int, sigWidth: Int) extends Bundle {
val bits = UInt((expWidth + sigWidth).W)
val bias: Int = (1 << (expWidth-1)) - 1
}
case class DummySInt(w: Int) extends Bundle {
val bits = UInt(w.W)
def dontCare: DummySInt = {
val o = Wire(new DummySInt(w))
o.bits := 0.U
o
}
}
// The Arithmetic typeclass which implements various arithmetic operations on custom datatypes
abstract class Arithmetic[T <: Data] {
implicit def cast(t: T): ArithmeticOps[T]
}
abstract class ArithmeticOps[T <: Data](self: T) {
def *(t: T): T
def mac(m1: T, m2: T): T // Returns (m1 * m2 + self)
def +(t: T): T
def -(t: T): T
def >>(u: UInt): T // This is a rounding shift! Rounds away from 0
def >(t: T): Bool
def identity: T
def withWidthOf(t: T): T
def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates
def relu: T
def zero: T
def minimum: T
// Optional parameters, which only need to be defined if you want to enable various optimizations for transformers
def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None
def mult_with_reciprocal[U <: Data](reciprocal: U) = self
}
object Arithmetic {
implicit object UIntArithmetic extends Arithmetic[UInt] {
override implicit def cast(self: UInt) = new ArithmeticOps(self) {
override def *(t: UInt) = self * t
override def mac(m1: UInt, m2: UInt) = m1 * m2 + self
override def +(t: UInt) = self + t
override def -(t: UInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = point_five & (zeros | ones_digit)
(self >> u).asUInt + r
}
override def >(t: UInt): Bool = self > t
override def withWidthOf(t: UInt) = self.asTypeOf(t)
override def clippedToWidthOf(t: UInt) = {
val sat = ((1 << (t.getWidth-1))-1).U
Mux(self > sat, sat, self)(t.getWidth-1, 0)
}
override def relu: UInt = self
override def zero: UInt = 0.U
override def identity: UInt = 1.U
override def minimum: UInt = 0.U
}
}
implicit object SIntArithmetic extends Arithmetic[SInt] {
override implicit def cast(self: SInt) = new ArithmeticOps(self) {
override def *(t: SInt) = self * t
override def mac(m1: SInt, m2: SInt) = m1 * m2 + self
override def +(t: SInt) = self + t
override def -(t: SInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = (point_five & (zeros | ones_digit)).asBool
(self >> u).asSInt + Mux(r, 1.S, 0.S)
}
override def >(t: SInt): Bool = self > t
override def withWidthOf(t: SInt) = {
if (self.getWidth >= t.getWidth)
self(t.getWidth-1, 0).asSInt
else {
val sign_bits = t.getWidth - self.getWidth
val sign = self(self.getWidth-1)
Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t)
}
}
override def clippedToWidthOf(t: SInt): SInt = {
val maxsat = ((1 << (t.getWidth-1))-1).S
val minsat = (-(1 << (t.getWidth-1))).S
MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt
}
override def relu: SInt = Mux(self >= 0.S, self, 0.S)
override def zero: SInt = 0.S
override def identity: SInt = 1.S
override def minimum: SInt = (-(1 << (self.getWidth-1))).S
override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(denom_t.cloneType))
val output = Wire(Decoupled(self.cloneType))
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def sin_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def uin_to_float(x: UInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := x
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = sin_to_float(self)
val denom_rec = uin_to_float(input.bits)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := self_rec
divider.io.b := denom_rec
divider.io.roundingMode := consts.round_minMag
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := float_to_in(divider.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(self.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
// Instantiate the hardloat sqrt
val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0))
input.ready := sqrter.io.inReady
sqrter.io.inValid := input.valid
sqrter.io.sqrtOp := true.B
sqrter.io.a := self_rec
sqrter.io.b := DontCare
sqrter.io.roundingMode := consts.round_minMag
sqrter.io.detectTininess := consts.tininess_afterRounding
output.valid := sqrter.io.outValid_sqrt
output.bits := float_to_in(sqrter.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match {
case Float(expWidth, sigWidth) =>
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(u.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
val self_rec = in_to_float(self)
val one_rec = in_to_float(1.S)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := one_rec
divider.io.b := self_rec
divider.io.roundingMode := consts.round_near_even
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u)
assert(!output.valid || output.ready)
Some((input, output))
case _ => None
}
override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match {
case recip @ Float(expWidth, sigWidth) =>
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits)
// Instantiate the hardloat divider
val muladder = Module(new MulRecFN(expWidth, sigWidth))
muladder.io.roundingMode := consts.round_near_even
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := reciprocal_rec
float_to_in(muladder.io.out)
case _ => self
}
}
}
implicit object FloatArithmetic extends Arithmetic[Float] {
// TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array
override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) {
override def *(t: Float): Float = {
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := t_rec_resized
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def mac(m1: Float, m2: Float): Float = {
// Recode all operands
val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits)
val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize m1 to self's width
val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth))
m1_resizer.io.in := m1_rec
m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m1_resizer.io.detectTininess := consts.tininess_afterRounding
val m1_rec_resized = m1_resizer.io.out
// Resize m2 to self's width
val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth))
m2_resizer.io.in := m2_rec
m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m2_resizer.io.detectTininess := consts.tininess_afterRounding
val m2_rec_resized = m2_resizer.io.out
// Perform multiply-add
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := m1_rec_resized
muladder.io.b := m2_rec_resized
muladder.io.c := self_rec
// Convert result to standard format // TODO remove these intermediate recodings
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def +(t: Float): Float = {
require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Generate 1 as a float
val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := 1.U
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
val one_rec = in_to_rec_fn.io.out
// Resize t
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
// Perform addition
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := t_rec_resized
muladder.io.b := one_rec
muladder.io.c := self_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def -(t: Float): Float = {
val t_sgn = t.bits(t.getWidth-1)
val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t)
self + neg_t
}
override def >>(u: UInt): Float = {
// Recode self
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Get 2^(-u) as a recoded float
val shift_exp = Wire(UInt(self.expWidth.W))
shift_exp := self.bias.U - u
val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W))
val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn)
assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported")
// Multiply self and 2^(-u)
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := shift_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def >(t: Float): Bool = {
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize t to self's width
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth))
comparator.io.a := self_rec
comparator.io.b := t_rec_resized
comparator.io.signaling := false.B
comparator.io.gt
}
override def withWidthOf(t: Float): Float = {
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def clippedToWidthOf(t: Float): Float = {
// TODO check for overflow. Right now, we just assume that overflow doesn't happen
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def relu: Float = {
val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits)
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits)
result
}
override def zero: Float = 0.U.asTypeOf(self)
override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
}
}
implicit object DummySIntArithmetic extends Arithmetic[DummySInt] {
override implicit def cast(self: DummySInt) = new ArithmeticOps(self) {
override def *(t: DummySInt) = self.dontCare
override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare
override def +(t: DummySInt) = self.dontCare
override def -(t: DummySInt) = self.dontCare
override def >>(t: UInt) = self.dontCare
override def >(t: DummySInt): Bool = false.B
override def identity = self.dontCare
override def withWidthOf(t: DummySInt) = self.dontCare
override def clippedToWidthOf(t: DummySInt) = self.dontCare
override def relu = self.dontCare
override def zero = self.dontCare
override def minimum: DummySInt = self.dontCare
}
}
}
File AccumulatorMem.scala:
package gemmini
import chisel3._
import chisel3.util._
import Util._
class AccumulatorReadReq[T <: Data: Arithmetic, U <: Data](n: Int, acc_t: T, scale_t: U) extends Bundle {
val addr = UInt(log2Ceil(n).W)
val scale = scale_t
val igelu_qb = acc_t.cloneType
val igelu_qc = acc_t.cloneType
val iexp_qln2 = acc_t.cloneType
val iexp_qln2_inv = acc_t.cloneType
val act = UInt(Activation.bitwidth.W) // TODO magic number
val full = Bool() // Whether or not we return the full bitwidth output
val fromDMA = Bool()
}
class AccumulatorReadResp[T <: Data: Arithmetic, U <: Data](fullDataType: Vec[Vec[T]], scale_t: U) extends Bundle {
val data = fullDataType.cloneType
val fromDMA = Bool()
val scale = scale_t.cloneType
val igelu_qb = fullDataType.head.head.cloneType
val igelu_qc = fullDataType.head.head.cloneType
val iexp_qln2 = fullDataType.head.head.cloneType
val iexp_qln2_inv = fullDataType.head.head.cloneType
val act = UInt(Activation.bitwidth.W) // TODO magic number
val acc_bank_id = UInt(2.W) // TODO magic number
}
class AccumulatorReadIO[T <: Data: Arithmetic, U <: Data](n: Int, fullDataType: Vec[Vec[T]], scale_t: U) extends Bundle {
val req = Decoupled(new AccumulatorReadReq[T, U](n, fullDataType.head.head.cloneType, scale_t))
val resp = Flipped(Decoupled(new AccumulatorReadResp[T, U](fullDataType, scale_t)))
}
class AccumulatorWriteReq[T <: Data: Arithmetic](n: Int, t: Vec[Vec[T]]) extends Bundle {
val addr = UInt(log2Up(n).W)
val data = t.cloneType
val acc = Bool()
val mask = Vec(t.getWidth / 8, Bool()) // TODO Use aligned_to here
}
class AccumulatorMemIO [T <: Data: Arithmetic, U <: Data](n: Int, t: Vec[Vec[T]], scale_t: U,
acc_sub_banks: Int, use_shared_ext_mem: Boolean
) extends Bundle {
val read = Flipped(new AccumulatorReadIO(n, t, scale_t))
val write = Flipped(Decoupled(new AccumulatorWriteReq(n, t)))
val ext_mem = if (use_shared_ext_mem) Some(Vec(acc_sub_banks, new ExtMemIO)) else None
val adder = new Bundle {
val valid = Output(Bool())
val op1 = Output(t.cloneType)
val op2 = Output(t.cloneType)
val sum = Input(t.cloneType)
}
}
class AccPipe[T <: Data : Arithmetic](latency: Int, t: T)(implicit ev: Arithmetic[T]) extends Module {
val io = IO(new Bundle {
val op1 = Input(t.cloneType)
val op2 = Input(t.cloneType)
val sum = Output(t.cloneType)
})
import ev._
io.sum := ShiftRegister(io.op1 + io.op2, latency)
}
class AccPipeShared[T <: Data : Arithmetic](latency: Int, t: Vec[Vec[T]], banks: Int) extends Module {
val io = IO(new Bundle {
val in_sel = Input(Vec(banks, Bool()))
val ina = Input(Vec(banks, t.cloneType))
val inb = Input(Vec(banks, t.cloneType))
val out = Output(t.cloneType)
})
val ina = Mux1H(io.in_sel, io.ina)
val inb = Mux1H(io.in_sel, io.inb)
io.out := VecInit((ina zip inb).map { case (rv, wv) =>
VecInit((rv zip wv).map { case (re, we) =>
val m = Module(new AccPipe(latency, t.head.head.cloneType))
m.io.op1 := re
m.io.op2 := we
m.io.sum
})
})
}
class AccumulatorMem[T <: Data, U <: Data](
n: Int, t: Vec[Vec[T]], scale_func: (T, U) => T, scale_t: U,
acc_singleported: Boolean, acc_sub_banks: Int,
use_shared_ext_mem: Boolean,
acc_latency: Int, acc_type: T, is_dummy: Boolean
)
(implicit ev: Arithmetic[T]) extends Module {
// TODO Do writes in this module work with matrices of size 2? If we try to read from an address right after writing
// to it, then we might not get the written data. We might need some kind of cooldown counter after addresses in the
// accumulator have been written to for configurations with such small matrices
// TODO make a new aligned_to variable specifically for AccumulatorMem. We should assume that inputs are at least
// accType.getWidth/8 aligned, because it won't make sense to do matrix additions directly in the DMA otherwise.
import ev._
// TODO unify this with TwoPortSyncMemIO
val io = IO(new AccumulatorMemIO(n, t, scale_t, acc_sub_banks, use_shared_ext_mem))
require (acc_latency >= 2)
val pipelined_writes = Reg(Vec(acc_latency, Valid(new AccumulatorWriteReq(n, t))))
val oldest_pipelined_write = pipelined_writes(acc_latency-1)
pipelined_writes(0).valid := io.write.fire
pipelined_writes(0).bits := io.write.bits
for (i <- 1 until acc_latency) {
pipelined_writes(i) := pipelined_writes(i-1)
}
val rdata_for_adder = Wire(t)
rdata_for_adder := DontCare
val rdata_for_read_resp = Wire(t)
rdata_for_read_resp := DontCare
val adder_sum = io.adder.sum
io.adder.valid := pipelined_writes(0).valid && pipelined_writes(0).bits.acc
io.adder.op1 := rdata_for_adder
io.adder.op2 := pipelined_writes(0).bits.data
val block_read_req = WireInit(false.B)
val block_write_req = WireInit(false.B)
val mask_len = t.getWidth / 8
val mask_elem = UInt((t.getWidth / mask_len).W)
if (!acc_singleported && !is_dummy) {
require(!use_shared_ext_mem)
val mem = TwoPortSyncMem(n, t, mask_len) // TODO We assume byte-alignment here. Use aligned_to instead
mem.io.waddr := oldest_pipelined_write.bits.addr
mem.io.wen := oldest_pipelined_write.valid
mem.io.wdata := Mux(oldest_pipelined_write.bits.acc, adder_sum, oldest_pipelined_write.bits.data)
mem.io.mask := oldest_pipelined_write.bits.mask
rdata_for_adder := mem.io.rdata
rdata_for_read_resp := mem.io.rdata
mem.io.raddr := Mux(io.write.fire && io.write.bits.acc, io.write.bits.addr, io.read.req.bits.addr)
mem.io.ren := io.read.req.fire || (io.write.fire && io.write.bits.acc)
} else if (!is_dummy) {
val rmw_req = Wire(Decoupled(UInt()))
rmw_req.valid := io.write.valid && io.write.bits.acc
rmw_req.bits := io.write.bits.addr
rmw_req.ready := true.B
block_write_req := !rmw_req.ready
val only_read_req = Wire(Decoupled(UInt()))
only_read_req.valid := io.read.req.valid
only_read_req.bits := io.read.req.bits.addr
only_read_req.ready := true.B
block_read_req := !only_read_req.ready
for (i <- 0 until acc_sub_banks) {
def isThisBank(addr: UInt) = addr(log2Ceil(acc_sub_banks)-1,0) === i.U
def getBankIdx(addr: UInt) = addr >> log2Ceil(acc_sub_banks)
val (read, write) = if (use_shared_ext_mem) {
def read(addr: UInt, ren: Bool): Data = {
io.ext_mem.get(i).read_en := ren
io.ext_mem.get(i).read_addr := addr
io.ext_mem.get(i).read_data
}
io.ext_mem.get(i).write_en := false.B
io.ext_mem.get(i).write_addr := DontCare
io.ext_mem.get(i).write_data := DontCare
io.ext_mem.get(i).write_mask := DontCare
def write(addr: UInt, wdata: Vec[UInt], wmask: Vec[Bool]) = {
io.ext_mem.get(i).write_en := true.B
io.ext_mem.get(i).write_addr := addr
io.ext_mem.get(i).write_data := wdata.asUInt
io.ext_mem.get(i).write_mask := wmask.asUInt
}
(read _, write _)
} else {
val mem = SyncReadMem(n / acc_sub_banks, Vec(mask_len, mask_elem))
def read(addr: UInt, ren: Bool): Data = mem.read(addr, ren)
def write(addr: UInt, wdata: Vec[UInt], wmask: Vec[Bool]) = mem.write(addr, wdata, wmask)
(read _, write _)
}
val ren = WireInit(false.B)
val raddr = WireInit(getBankIdx(rmw_req.bits))
val nEntries = 3
// Writes coming 2 cycles after read leads to bad bank behavior
// Add another buffer here
class W_Q_Entry[T <: Data](mask_len: Int, mask_elem: T) extends Bundle {
val valid = Bool()
val data = Vec(mask_len, mask_elem)
val mask = Vec(mask_len, Bool())
val addr = UInt(log2Ceil(n/acc_sub_banks).W)
}
val w_q = Reg(Vec(nEntries, new W_Q_Entry(mask_len, mask_elem)))
for (e <- w_q) {
when (e.valid) {
assert(!(
io.write.fire && io.write.bits.acc &&
isThisBank(io.write.bits.addr) && getBankIdx(io.write.bits.addr) === e.addr &&
((io.write.bits.mask.asUInt & e.mask.asUInt) =/= 0.U)
), "you cannot accumulate to an AccumulatorMem address until previous writes to that address have completed")
when (io.write.bits.acc && isThisBank(io.write.bits.addr) && getBankIdx(io.write.bits.addr) === e.addr) {
rmw_req.ready := false.B
}
when (isThisBank(io.read.req.bits.addr) && getBankIdx(io.read.req.bits.addr) === e.addr) {
only_read_req.ready := false.B
}
}
}
val w_q_head = RegInit(1.U(nEntries.W))
val w_q_tail = RegInit(1.U(nEntries.W))
val w_q_full = (w_q_tail.asBools zip w_q.map(_.valid)).map({ case (h,v) => h && v }).reduce(_||_)
val w_q_empty = !(w_q_head.asBools zip w_q.map(_.valid)).map({ case (h,v) => h && v }).reduce(_||_)
val wen = WireInit(false.B)
val wdata = Mux1H(w_q_head.asBools, w_q.map(_.data))
val wmask = Mux1H(w_q_head.asBools, w_q.map(_.mask))
val waddr = Mux1H(w_q_head.asBools, w_q.map(_.addr))
when (wen) {
w_q_head := (w_q_head << 1).asUInt | w_q_head(nEntries-1)
for (i <- 0 until nEntries) {
when (w_q_head(i)) {
w_q(i).valid := false.B
}
}
}
val w_q_push = oldest_pipelined_write.valid && isThisBank(oldest_pipelined_write.bits.addr)
when (w_q_push) {
assert(!w_q_full || wen, "we ran out of acc-sub-bank write q entries")
w_q_tail := (w_q_tail << 1).asUInt | w_q_tail(nEntries-1)
for (i <- 0 until nEntries) {
when (w_q_tail(i)) {
w_q(i).valid := true.B
w_q(i).data := Mux(oldest_pipelined_write.bits.acc, adder_sum, oldest_pipelined_write.bits.data).asTypeOf(Vec(mask_len, mask_elem))
w_q(i).mask := oldest_pipelined_write.bits.mask
w_q(i).addr := getBankIdx(oldest_pipelined_write.bits.addr)
}
}
}
val bank_rdata = read(raddr, ren && !wen).asTypeOf(t)
when (RegNext(ren && rmw_req.valid && isThisBank(rmw_req.bits))) {
rdata_for_adder := bank_rdata
} .elsewhen (RegNext(ren)) {
rdata_for_read_resp := bank_rdata
}
when (wen) {
write(waddr, wdata, wmask)
}
// Three requestors, 1 slot
// Priority is (in descending order):
// 1. incoming reads for RMW
// 2. writes from RMW
// 3. incoming reads
when (rmw_req.fire && isThisBank(rmw_req.bits)) {
ren := true.B
when (isThisBank(only_read_req.bits)) {
only_read_req.ready := false.B
}
} .elsewhen (!w_q_empty) {
wen := true.B
when (isThisBank(only_read_req.bits)) {
only_read_req.ready := false.B
}
} .otherwise {
ren := isThisBank(only_read_req.bits) && only_read_req.fire
raddr := getBankIdx(only_read_req.bits)
}
when (reset.asBool) {
w_q.foreach(_.valid := false.B)
}
}
}
val q = Module(new Queue(new AccumulatorReadResp(t, scale_t), 1, true, true))
q.io.enq.bits.data := rdata_for_read_resp
if (is_dummy) {
rdata_for_read_resp := DontCare
rdata_for_adder := DontCare
}
q.io.enq.bits.scale := RegNext(io.read.req.bits.scale)
q.io.enq.bits.igelu_qb := RegNext(io.read.req.bits.igelu_qb)
q.io.enq.bits.igelu_qc := RegNext(io.read.req.bits.igelu_qc)
q.io.enq.bits.iexp_qln2 := RegNext(io.read.req.bits.iexp_qln2)
q.io.enq.bits.iexp_qln2_inv := RegNext(io.read.req.bits.iexp_qln2_inv)
q.io.enq.bits.act := RegNext(io.read.req.bits.act)
q.io.enq.bits.fromDMA := RegNext(io.read.req.bits.fromDMA)
q.io.enq.bits.acc_bank_id := DontCare
q.io.enq.valid := RegNext(io.read.req.fire)
val p = q.io.deq
io.read.resp.bits.data := p.bits.data
io.read.resp.bits.fromDMA := p.bits.fromDMA
io.read.resp.bits.igelu_qb := p.bits.igelu_qb
io.read.resp.bits.igelu_qc := p.bits.igelu_qc
io.read.resp.bits.iexp_qln2 := p.bits.iexp_qln2
io.read.resp.bits.iexp_qln2_inv := p.bits.iexp_qln2_inv
io.read.resp.bits.act := p.bits.act
io.read.resp.bits.scale := p.bits.scale
io.read.resp.bits.acc_bank_id := DontCare // This is set in Scratchpad
io.read.resp.valid := p.valid
p.ready := io.read.resp.ready
val q_will_be_empty = (q.io.count +& q.io.enq.fire) - q.io.deq.fire === 0.U
io.read.req.ready := q_will_be_empty && (
// Make sure we aren't accumulating, which would take over both ports
!(io.write.valid && io.write.bits.acc) &&
!pipelined_writes.map(r => r.valid && r.bits.addr === io.read.req.bits.addr).reduce(_||_) &&
!block_read_req
)
io.write.ready := !block_write_req &&
!pipelined_writes.map(r => r.valid && r.bits.addr === io.write.bits.addr && io.write.bits.acc).reduce(_||_)
when (reset.asBool) {
pipelined_writes.foreach(_.valid := false.B)
}
// assert(!(io.read.req.valid && io.write.en && io.write.acc), "reading and accumulating simultaneously is not supported")
assert(!(io.read.req.fire && io.write.fire && io.read.req.bits.addr === io.write.bits.addr), "reading from and writing to same address is not supported")
}
| module AccPipe_4( // @[AccumulatorMem.scala:63:7]
input clock, // @[AccumulatorMem.scala:63:7]
input reset, // @[AccumulatorMem.scala:63:7]
input [31:0] io_op1, // @[AccumulatorMem.scala:64:14]
input [31:0] io_op2, // @[AccumulatorMem.scala:64:14]
output [31:0] io_sum // @[AccumulatorMem.scala:64:14]
);
wire [31:0] io_op1_0 = io_op1; // @[AccumulatorMem.scala:63:7]
wire [31:0] io_op2_0 = io_op2; // @[AccumulatorMem.scala:63:7]
wire [31:0] io_sum_0; // @[AccumulatorMem.scala:63:7]
wire [32:0] _io_sum_T = {io_op1_0[31], io_op1_0} + {io_op2_0[31], io_op2_0}; // @[Arithmetic.scala:94:38]
wire [31:0] _io_sum_T_1 = _io_sum_T[31:0]; // @[Arithmetic.scala:94:38]
wire [31:0] _io_sum_T_2 = _io_sum_T_1; // @[Arithmetic.scala:94:38]
reg [31:0] io_sum_r; // @[AccumulatorMem.scala:70:26]
assign io_sum_0 = io_sum_r; // @[AccumulatorMem.scala:63:7, :70:26]
always @(posedge clock) // @[AccumulatorMem.scala:63:7]
io_sum_r <= _io_sum_T_2; // @[Arithmetic.scala:94:38]
assign io_sum = io_sum_0; // @[AccumulatorMem.scala:63:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_58( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_c_ready, // @[Monitor.scala:20:14]
input io_in_c_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_c_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_c_bits_address, // @[Monitor.scala:20:14]
input io_in_c_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_e_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_e_bits_sink // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire [12:0] _GEN = {10'h0, io_in_a_bits_size}; // @[package.scala:243:71]
wire [12:0] _GEN_0 = {10'h0, io_in_c_bits_size}; // @[package.scala:243:71]
wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [3:0] source; // @[Monitor.scala:390:22]
reg [31:0] address; // @[Monitor.scala:391:22]
wire _d_first_T_3 = io_in_d_ready & io_in_d_valid; // @[Decoupled.scala:51:35]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [3:0] source_1; // @[Monitor.scala:541:22]
reg [2:0] sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
wire _c_first_T_1 = io_in_c_ready & io_in_c_valid; // @[Decoupled.scala:51:35]
reg [2:0] c_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_3; // @[Monitor.scala:515:22]
reg [2:0] param_3; // @[Monitor.scala:516:22]
reg [2:0] size_3; // @[Monitor.scala:517:22]
reg [3:0] source_3; // @[Monitor.scala:518:22]
reg [31:0] address_2; // @[Monitor.scala:519:22]
reg [9:0] inflight; // @[Monitor.scala:614:27]
reg [39:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [39:0] inflight_sizes; // @[Monitor.scala:618:33]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire [15:0] _GEN_1 = {12'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35]
wire _GEN_2 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35]
wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46]
wire _GEN_3 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74]
wire [15:0] _GEN_4 = {12'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
reg [9:0] inflight_1; // @[Monitor.scala:726:35]
reg [39:0] inflight_sizes_1; // @[Monitor.scala:728:35]
reg [2:0] c_first_counter_1; // @[Edges.scala:229:27]
wire c_first_1 = c_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _GEN_5 = io_in_c_bits_opcode[2] & io_in_c_bits_opcode[1]; // @[Edges.scala:68:{36,40,51}]
wire [15:0] _GEN_6 = {12'h0, io_in_c_bits_source}; // @[OneHot.scala:58:35]
wire _GEN_7 = _c_first_T_1 & c_first_1 & _GEN_5; // @[Decoupled.scala:51:35]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
reg [7:0] inflight_2; // @[Monitor.scala:828:27]
reg [2:0] d_first_counter_3; // @[Edges.scala:229:27]
wire d_first_3 = d_first_counter_3 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _GEN_8 = _d_first_T_3 & d_first_3 & io_in_d_bits_opcode[2] & ~(io_in_d_bits_opcode[1]); // @[Decoupled.scala:51:35]
wire [7:0] _GEN_9 = {5'h0, io_in_d_bits_sink}; // @[OneHot.scala:58:35]
wire [7:0] d_set = _GEN_8 ? 8'h1 << _GEN_9 : 8'h0; // @[OneHot.scala:58:35]
wire [7:0] _GEN_10 = {5'h0, io_in_e_bits_sink}; // @[OneHot.scala:58:35] |
Generate the Verilog code corresponding to the following Chisel files.
File RoundAnyRawFNToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util.Fill
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundAnyRawFNToRecFN(
inExpWidth: Int,
inSigWidth: Int,
outExpWidth: Int,
outSigWidth: Int,
options: Int
)
extends RawModule
{
override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(inExpWidth, inSigWidth))
// (allowed exponent range has limits)
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((outExpWidth + outSigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0)
val effectiveInSigWidth =
if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1
val neverUnderflows =
((options &
(flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact)
) != 0) ||
(inExpWidth < outExpWidth)
val neverOverflows =
((options & flRoundOpt_neverOverflows) != 0) ||
(inExpWidth < outExpWidth)
val outNaNExp = BigInt(7)<<(outExpWidth - 2)
val outInfExp = BigInt(6)<<(outExpWidth - 2)
val outMaxFiniteExp = outInfExp - 1
val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2
val outMinNonzeroExp = outMinNormExp - outSigWidth + 1
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundingMode_near_even = (io.roundingMode === round_near_even)
val roundingMode_minMag = (io.roundingMode === round_minMag)
val roundingMode_min = (io.roundingMode === round_min)
val roundingMode_max = (io.roundingMode === round_max)
val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag)
val roundingMode_odd = (io.roundingMode === round_odd)
val roundMagUp =
(roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sAdjustedExp =
if (inExpWidth < outExpWidth)
(io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
)(outExpWidth, 0).zext
else if (inExpWidth == outExpWidth)
io.in.sExp
else
io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
val adjustedSig =
if (inSigWidth <= outSigWidth + 2)
io.in.sig<<(outSigWidth - inSigWidth + 2)
else
(io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ##
io.in.sig(inSigWidth - outSigWidth - 2, 0).orR
)
val doShiftSigDown1 =
if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2)
val common_expOut = Wire(UInt((outExpWidth + 1).W))
val common_fractOut = Wire(UInt((outSigWidth - 1).W))
val common_overflow = Wire(Bool())
val common_totalUnderflow = Wire(Bool())
val common_underflow = Wire(Bool())
val common_inexact = Wire(Bool())
if (
neverOverflows && neverUnderflows
&& (effectiveInSigWidth <= outSigWidth)
) {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1
common_fractOut :=
Mux(doShiftSigDown1,
adjustedSig(outSigWidth + 1, 3),
adjustedSig(outSigWidth, 2)
)
common_overflow := false.B
common_totalUnderflow := false.B
common_underflow := false.B
common_inexact := false.B
} else {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
val roundMask =
if (neverUnderflows)
0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W)
else
(lowMask(
sAdjustedExp(outExpWidth, 0),
outMinNormExp - outSigWidth - 1,
outMinNormExp
) | doShiftSigDown1) ##
3.U(2.W)
val shiftedRoundMask = 0.U(1.W) ## roundMask>>1
val roundPosMask = ~shiftedRoundMask & roundMask
val roundPosBit = (adjustedSig & roundPosMask).orR
val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR
val anyRound = roundPosBit || anyRoundExtra
val roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
roundPosBit) ||
(roundMagUp && anyRound)
val roundedSig: Bits =
Mux(roundIncr,
(((adjustedSig | roundMask)>>2) +& 1.U) &
~Mux(roundingMode_near_even && roundPosBit &&
! anyRoundExtra,
roundMask>>1,
0.U((outSigWidth + 2).W)
),
(adjustedSig & ~roundMask)>>2 |
Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U)
)
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext
common_expOut := sRoundedExp(outExpWidth, 0)
common_fractOut :=
Mux(doShiftSigDown1,
roundedSig(outSigWidth - 1, 1),
roundedSig(outSigWidth - 2, 0)
)
common_overflow :=
(if (neverOverflows) false.B else
//*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?:
(sRoundedExp>>(outExpWidth - 1) >= 3.S))
common_totalUnderflow :=
(if (neverUnderflows) false.B else
//*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?:
(sRoundedExp < outMinNonzeroExp.S))
val unboundedRange_roundPosBit =
Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1))
val unboundedRange_anyRound =
(doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR
val unboundedRange_roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
unboundedRange_roundPosBit) ||
(roundMagUp && unboundedRange_anyRound)
val roundCarry =
Mux(doShiftSigDown1,
roundedSig(outSigWidth + 1),
roundedSig(outSigWidth)
)
common_underflow :=
(if (neverUnderflows) false.B else
common_totalUnderflow ||
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
(anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) &&
Mux(doShiftSigDown1, roundMask(3), roundMask(2)) &&
! ((io.detectTininess === tininess_afterRounding) &&
! Mux(doShiftSigDown1,
roundMask(4),
roundMask(3)
) &&
roundCarry && roundPosBit &&
unboundedRange_roundIncr)))
common_inexact := common_totalUnderflow || anyRound
}
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val isNaNOut = io.invalidExc || io.in.isNaN
val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf
val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero
val overflow = commonCase && common_overflow
val underflow = commonCase && common_underflow
val inexact = overflow || (commonCase && common_inexact)
val overflow_roundMagUp =
roundingMode_near_even || roundingMode_near_maxMag || roundMagUp
val pegMinNonzeroMagOut =
commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd)
val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp
val notNaN_isInfOut =
notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp)
val signOut = Mux(isNaNOut, false.B, io.in.sign)
val expOut =
(common_expOut &
~Mux(io.in.isZero || common_totalUnderflow,
(BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMinNonzeroMagOut,
~outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMaxFiniteMagOut,
(BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W),
0.U
) &
~Mux(notNaN_isInfOut,
(BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
)) |
Mux(pegMinNonzeroMagOut,
outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) |
Mux(pegMaxFiniteMagOut,
outMaxFiniteExp.U((outExpWidth + 1).W),
0.U
) |
Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) |
Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U)
val fractOut =
Mux(isNaNOut || io.in.isZero || common_totalUnderflow,
Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U),
common_fractOut
) |
Fill(outSigWidth - 1, pegMaxFiniteMagOut)
io.out := signOut ## expOut ## fractOut
io.exceptionFlags :=
io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int)
extends RawModule
{
override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(expWidth, sigWidth + 2))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
expWidth, sigWidth + 2, expWidth, sigWidth, options))
roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc
roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc
roundAnyRawFNToRecFN.io.in := io.in
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
| module RoundRawFNToRecFN_e8_s24_130( // @[RoundAnyRawFNToRecFN.scala:295:5]
input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:299:16]
input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:299:16]
input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:299:16]
output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:299:16]
output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:299:16]
);
wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_130 roundAnyRawFNToRecFN ( // @[RoundAnyRawFNToRecFN.scala:310:15]
.io_invalidExc (io_invalidExc_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isNaN (io_in_isNaN_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isInf (io_in_isInf_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isZero (io_in_isZero_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sign (io_in_sign_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sExp (io_in_sExp_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sig (io_in_sig_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_out (io_out_0),
.io_exceptionFlags (io_exceptionFlags_0)
); // @[RoundAnyRawFNToRecFN.scala:310:15]
assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Tile.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
import Util._
/**
* A Tile is a purely combinational 2D array of passThrough PEs.
* a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs
* @param width The data width of each PE in bits
* @param rows Number of PEs on each row
* @param columns Number of PEs on each column
*/
class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module {
val io = IO(new Bundle {
val in_a = Input(Vec(rows, inputType))
val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it
val in_d = Input(Vec(columns, outputType))
val in_control = Input(Vec(columns, new PEControl(accType)))
val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val in_last = Input(Vec(columns, Bool()))
val out_a = Output(Vec(rows, inputType))
val out_c = Output(Vec(columns, outputType))
val out_b = Output(Vec(columns, outputType))
val out_control = Output(Vec(columns, new PEControl(accType)))
val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W)))
val out_last = Output(Vec(columns, Bool()))
val in_valid = Input(Vec(columns, Bool()))
val out_valid = Output(Vec(columns, Bool()))
val bad_dataflow = Output(Bool())
})
import ev._
val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls)))
val tileT = tile.transpose
// TODO: abstract hori/vert broadcast, all these connections look the same
// Broadcast 'a' horizontally across the Tile
for (r <- 0 until rows) {
tile(r).foldLeft(io.in_a(r)) {
case (in_a, pe) =>
pe.io.in_a := in_a
pe.io.out_a
}
}
// Broadcast 'b' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_b(c)) {
case (in_b, pe) =>
pe.io.in_b := (if (tree_reduction) in_b.zero else in_b)
pe.io.out_b
}
}
// Broadcast 'd' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_d(c)) {
case (in_d, pe) =>
pe.io.in_d := in_d
pe.io.out_c
}
}
// Broadcast 'control' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_control(c)) {
case (in_ctrl, pe) =>
pe.io.in_control := in_ctrl
pe.io.out_control
}
}
// Broadcast 'garbage' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_valid(c)) {
case (v, pe) =>
pe.io.in_valid := v
pe.io.out_valid
}
}
// Broadcast 'id' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_id(c)) {
case (id, pe) =>
pe.io.in_id := id
pe.io.out_id
}
}
// Broadcast 'last' vertically across the Tile
for (c <- 0 until columns) {
tileT(c).foldLeft(io.in_last(c)) {
case (last, pe) =>
pe.io.in_last := last
pe.io.out_last
}
}
// Drive the Tile's bottom IO
for (c <- 0 until columns) {
io.out_c(c) := tile(rows-1)(c).io.out_c
io.out_control(c) := tile(rows-1)(c).io.out_control
io.out_id(c) := tile(rows-1)(c).io.out_id
io.out_last(c) := tile(rows-1)(c).io.out_last
io.out_valid(c) := tile(rows-1)(c).io.out_valid
io.out_b(c) := {
if (tree_reduction) {
val prods = tileT(c).map(_.io.out_b)
accumulateTree(prods :+ io.in_b(c))
} else {
tile(rows - 1)(c).io.out_b
}
}
}
io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_)
// Drive the Tile's right IO
for (r <- 0 until rows) {
io.out_a(r) := tile(r)(columns-1).io.out_a
}
}
| module Tile_131( // @[Tile.scala:16:7]
input clock, // @[Tile.scala:16:7]
input reset, // @[Tile.scala:16:7]
input [7:0] io_in_a_0, // @[Tile.scala:17:14]
input [19:0] io_in_b_0, // @[Tile.scala:17:14]
input [19:0] io_in_d_0, // @[Tile.scala:17:14]
input io_in_control_0_dataflow, // @[Tile.scala:17:14]
input io_in_control_0_propagate, // @[Tile.scala:17:14]
input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14]
input [2:0] io_in_id_0, // @[Tile.scala:17:14]
input io_in_last_0, // @[Tile.scala:17:14]
output [7:0] io_out_a_0, // @[Tile.scala:17:14]
output [19:0] io_out_c_0, // @[Tile.scala:17:14]
output [19:0] io_out_b_0, // @[Tile.scala:17:14]
output io_out_control_0_dataflow, // @[Tile.scala:17:14]
output io_out_control_0_propagate, // @[Tile.scala:17:14]
output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14]
output [2:0] io_out_id_0, // @[Tile.scala:17:14]
output io_out_last_0, // @[Tile.scala:17:14]
input io_in_valid_0, // @[Tile.scala:17:14]
output io_out_valid_0 // @[Tile.scala:17:14]
);
wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7]
wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7]
wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7]
wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7]
wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7]
wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7]
wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7]
wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7]
wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7]
wire io_bad_dataflow = 1'h0; // @[Tile.scala:16:7, :17:14, :42:44]
wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7]
wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7]
wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
wire io_out_control_0_propagate_0; // @[Tile.scala:16:7]
wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7]
wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7]
wire io_out_last_0_0; // @[Tile.scala:16:7]
wire io_out_valid_0_0; // @[Tile.scala:16:7]
PE_387 tile_0_0 ( // @[Tile.scala:42:44]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0_0), // @[Tile.scala:16:7]
.io_in_b (io_in_b_0_0), // @[Tile.scala:16:7]
.io_in_d (io_in_d_0_0), // @[Tile.scala:16:7]
.io_out_a (io_out_a_0_0),
.io_out_b (io_out_b_0_0),
.io_out_c (io_out_c_0_0),
.io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7]
.io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7]
.io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7]
.io_out_control_dataflow (io_out_control_0_dataflow_0),
.io_out_control_propagate (io_out_control_0_propagate_0),
.io_out_control_shift (io_out_control_0_shift_0),
.io_in_id (io_in_id_0_0), // @[Tile.scala:16:7]
.io_out_id (io_out_id_0_0),
.io_in_last (io_in_last_0_0), // @[Tile.scala:16:7]
.io_out_last (io_out_last_0_0),
.io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7]
.io_out_valid (io_out_valid_0_0)
); // @[Tile.scala:42:44]
assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7]
assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7]
assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7]
assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7]
assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7]
assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7]
assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7]
assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7]
assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Repeater.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{Decoupled, DecoupledIO}
// A Repeater passes its input to its output, unless repeat is asserted.
// When repeat is asserted, the Repeater copies the input and repeats it next cycle.
class Repeater[T <: Data](gen: T) extends Module
{
override def desiredName = s"Repeater_${gen.typeName}"
val io = IO( new Bundle {
val repeat = Input(Bool())
val full = Output(Bool())
val enq = Flipped(Decoupled(gen.cloneType))
val deq = Decoupled(gen.cloneType)
} )
val full = RegInit(false.B)
val saved = Reg(gen.cloneType)
// When !full, a repeater is pass-through
io.deq.valid := io.enq.valid || full
io.enq.ready := io.deq.ready && !full
io.deq.bits := Mux(full, saved, io.enq.bits)
io.full := full
when (io.enq.fire && io.repeat) { full := true.B; saved := io.enq.bits }
when (io.deq.fire && !io.repeat) { full := false.B }
}
object Repeater
{
def apply[T <: Data](enq: DecoupledIO[T], repeat: Bool): DecoupledIO[T] = {
val repeater = Module(new Repeater(chiselTypeOf(enq.bits)))
repeater.io.repeat := repeat
repeater.io.enq <> enq
repeater.io.deq
}
}
| module Repeater_TLBundleA_a26d64s7k1z3u_1( // @[Repeater.scala:10:7]
input clock, // @[Repeater.scala:10:7]
input reset, // @[Repeater.scala:10:7]
input io_repeat, // @[Repeater.scala:13:14]
output io_full, // @[Repeater.scala:13:14]
output io_enq_ready, // @[Repeater.scala:13:14]
input io_enq_valid, // @[Repeater.scala:13:14]
input [2:0] io_enq_bits_opcode, // @[Repeater.scala:13:14]
input [2:0] io_enq_bits_param, // @[Repeater.scala:13:14]
input [2:0] io_enq_bits_size, // @[Repeater.scala:13:14]
input [6:0] io_enq_bits_source, // @[Repeater.scala:13:14]
input [25:0] io_enq_bits_address, // @[Repeater.scala:13:14]
input [7:0] io_enq_bits_mask, // @[Repeater.scala:13:14]
input [63:0] io_enq_bits_data, // @[Repeater.scala:13:14]
input io_enq_bits_corrupt, // @[Repeater.scala:13:14]
input io_deq_ready, // @[Repeater.scala:13:14]
output io_deq_valid, // @[Repeater.scala:13:14]
output [2:0] io_deq_bits_opcode, // @[Repeater.scala:13:14]
output [2:0] io_deq_bits_param, // @[Repeater.scala:13:14]
output [2:0] io_deq_bits_size, // @[Repeater.scala:13:14]
output [6:0] io_deq_bits_source, // @[Repeater.scala:13:14]
output [25:0] io_deq_bits_address, // @[Repeater.scala:13:14]
output [7:0] io_deq_bits_mask, // @[Repeater.scala:13:14]
output io_deq_bits_corrupt // @[Repeater.scala:13:14]
);
wire io_repeat_0 = io_repeat; // @[Repeater.scala:10:7]
wire io_enq_valid_0 = io_enq_valid; // @[Repeater.scala:10:7]
wire [2:0] io_enq_bits_opcode_0 = io_enq_bits_opcode; // @[Repeater.scala:10:7]
wire [2:0] io_enq_bits_param_0 = io_enq_bits_param; // @[Repeater.scala:10:7]
wire [2:0] io_enq_bits_size_0 = io_enq_bits_size; // @[Repeater.scala:10:7]
wire [6:0] io_enq_bits_source_0 = io_enq_bits_source; // @[Repeater.scala:10:7]
wire [25:0] io_enq_bits_address_0 = io_enq_bits_address; // @[Repeater.scala:10:7]
wire [7:0] io_enq_bits_mask_0 = io_enq_bits_mask; // @[Repeater.scala:10:7]
wire [63:0] io_enq_bits_data_0 = io_enq_bits_data; // @[Repeater.scala:10:7]
wire io_enq_bits_corrupt_0 = io_enq_bits_corrupt; // @[Repeater.scala:10:7]
wire io_deq_ready_0 = io_deq_ready; // @[Repeater.scala:10:7]
wire _io_enq_ready_T_1; // @[Repeater.scala:25:32]
wire _io_deq_valid_T; // @[Repeater.scala:24:32]
wire [2:0] _io_deq_bits_T_opcode; // @[Repeater.scala:26:21]
wire [2:0] _io_deq_bits_T_param; // @[Repeater.scala:26:21]
wire [2:0] _io_deq_bits_T_size; // @[Repeater.scala:26:21]
wire [6:0] _io_deq_bits_T_source; // @[Repeater.scala:26:21]
wire [25:0] _io_deq_bits_T_address; // @[Repeater.scala:26:21]
wire [7:0] _io_deq_bits_T_mask; // @[Repeater.scala:26:21]
wire [63:0] _io_deq_bits_T_data; // @[Repeater.scala:26:21]
wire _io_deq_bits_T_corrupt; // @[Repeater.scala:26:21]
wire io_enq_ready_0; // @[Repeater.scala:10:7]
wire [2:0] io_deq_bits_opcode_0; // @[Repeater.scala:10:7]
wire [2:0] io_deq_bits_param_0; // @[Repeater.scala:10:7]
wire [2:0] io_deq_bits_size_0; // @[Repeater.scala:10:7]
wire [6:0] io_deq_bits_source_0; // @[Repeater.scala:10:7]
wire [25:0] io_deq_bits_address_0; // @[Repeater.scala:10:7]
wire [7:0] io_deq_bits_mask_0; // @[Repeater.scala:10:7]
wire [63:0] io_deq_bits_data; // @[Repeater.scala:10:7]
wire io_deq_bits_corrupt_0; // @[Repeater.scala:10:7]
wire io_deq_valid_0; // @[Repeater.scala:10:7]
wire io_full_0; // @[Repeater.scala:10:7]
reg full; // @[Repeater.scala:20:21]
assign io_full_0 = full; // @[Repeater.scala:10:7, :20:21]
reg [2:0] saved_opcode; // @[Repeater.scala:21:18]
reg [2:0] saved_param; // @[Repeater.scala:21:18]
reg [2:0] saved_size; // @[Repeater.scala:21:18]
reg [6:0] saved_source; // @[Repeater.scala:21:18]
reg [25:0] saved_address; // @[Repeater.scala:21:18]
reg [7:0] saved_mask; // @[Repeater.scala:21:18]
reg [63:0] saved_data; // @[Repeater.scala:21:18]
reg saved_corrupt; // @[Repeater.scala:21:18]
assign _io_deq_valid_T = io_enq_valid_0 | full; // @[Repeater.scala:10:7, :20:21, :24:32]
assign io_deq_valid_0 = _io_deq_valid_T; // @[Repeater.scala:10:7, :24:32]
wire _io_enq_ready_T = ~full; // @[Repeater.scala:20:21, :25:35]
assign _io_enq_ready_T_1 = io_deq_ready_0 & _io_enq_ready_T; // @[Repeater.scala:10:7, :25:{32,35}]
assign io_enq_ready_0 = _io_enq_ready_T_1; // @[Repeater.scala:10:7, :25:32]
assign _io_deq_bits_T_opcode = full ? saved_opcode : io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_param = full ? saved_param : io_enq_bits_param_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_size = full ? saved_size : io_enq_bits_size_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_source = full ? saved_source : io_enq_bits_source_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_address = full ? saved_address : io_enq_bits_address_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_mask = full ? saved_mask : io_enq_bits_mask_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_data = full ? saved_data : io_enq_bits_data_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_corrupt = full ? saved_corrupt : io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign io_deq_bits_opcode_0 = _io_deq_bits_T_opcode; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_param_0 = _io_deq_bits_T_param; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_size_0 = _io_deq_bits_T_size; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_source_0 = _io_deq_bits_T_source; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_address_0 = _io_deq_bits_T_address; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_mask_0 = _io_deq_bits_T_mask; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_data = _io_deq_bits_T_data; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_corrupt_0 = _io_deq_bits_T_corrupt; // @[Repeater.scala:10:7, :26:21]
wire _T_1 = io_enq_ready_0 & io_enq_valid_0 & io_repeat_0; // @[Decoupled.scala:51:35]
always @(posedge clock) begin // @[Repeater.scala:10:7]
if (reset) // @[Repeater.scala:10:7]
full <= 1'h0; // @[Repeater.scala:20:21]
else // @[Repeater.scala:10:7]
full <= ~(io_deq_ready_0 & io_deq_valid_0 & ~io_repeat_0) & (_T_1 | full); // @[Decoupled.scala:51:35]
if (_T_1) begin // @[Decoupled.scala:51:35]
saved_opcode <= io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :21:18]
saved_param <= io_enq_bits_param_0; // @[Repeater.scala:10:7, :21:18]
saved_size <= io_enq_bits_size_0; // @[Repeater.scala:10:7, :21:18]
saved_source <= io_enq_bits_source_0; // @[Repeater.scala:10:7, :21:18]
saved_address <= io_enq_bits_address_0; // @[Repeater.scala:10:7, :21:18]
saved_mask <= io_enq_bits_mask_0; // @[Repeater.scala:10:7, :21:18]
saved_data <= io_enq_bits_data_0; // @[Repeater.scala:10:7, :21:18]
saved_corrupt <= io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :21:18]
end
always @(posedge)
assign io_full = io_full_0; // @[Repeater.scala:10:7]
assign io_enq_ready = io_enq_ready_0; // @[Repeater.scala:10:7]
assign io_deq_valid = io_deq_valid_0; // @[Repeater.scala:10:7]
assign io_deq_bits_opcode = io_deq_bits_opcode_0; // @[Repeater.scala:10:7]
assign io_deq_bits_param = io_deq_bits_param_0; // @[Repeater.scala:10:7]
assign io_deq_bits_size = io_deq_bits_size_0; // @[Repeater.scala:10:7]
assign io_deq_bits_source = io_deq_bits_source_0; // @[Repeater.scala:10:7]
assign io_deq_bits_address = io_deq_bits_address_0; // @[Repeater.scala:10:7]
assign io_deq_bits_mask = io_deq_bits_mask_0; // @[Repeater.scala:10:7]
assign io_deq_bits_corrupt = io_deq_bits_corrupt_0; // @[Repeater.scala:10:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_91( // @[AsyncQueue.scala:58:7]
input io_in, // @[AsyncQueue.scala:59:14]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_101 io_out_sink_valid ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_d (io_in_0), // @[AsyncQueue.scala:58:7]
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_54( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [1:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [10:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [10:0] io_in_d_bits_source // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire a_first_done = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35]
reg a_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [1:0] size; // @[Monitor.scala:389:22]
reg [10:0] source; // @[Monitor.scala:390:22]
reg [28:0] address; // @[Monitor.scala:391:22]
reg d_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] size_1; // @[Monitor.scala:540:22]
reg [10:0] source_1; // @[Monitor.scala:541:22]
reg [1039:0] inflight; // @[Monitor.scala:614:27]
reg [4159:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [4159:0] inflight_sizes; // @[Monitor.scala:618:33]
reg a_first_counter_1; // @[Edges.scala:229:27]
reg d_first_counter_1; // @[Edges.scala:229:27]
wire _GEN = a_first_done & ~a_first_counter_1; // @[Decoupled.scala:51:35]
wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46]
wire _GEN_0 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
reg [1039:0] inflight_1; // @[Monitor.scala:726:35]
reg [4159:0] inflight_sizes_1; // @[Monitor.scala:728:35]
reg d_first_counter_2; // @[Edges.scala:229:27]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_97( // @[AsyncQueue.scala:58:7]
input io_in, // @[AsyncQueue.scala:59:14]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_110 io_out_source_valid_1 ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_d (io_in_0), // @[AsyncQueue.scala:58:7]
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
File AsyncCrossing.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet, NodeHandle}
import freechips.rocketchip.prci.{AsynchronousCrossing}
import freechips.rocketchip.subsystem.CrossingWrapper
import freechips.rocketchip.util.{AsyncQueueParams, ToAsyncBundle, FromAsyncBundle, Pow2ClockDivider, property}
class TLAsyncCrossingSource(sync: Option[Int])(implicit p: Parameters) extends LazyModule
{
def this(x: Int)(implicit p: Parameters) = this(Some(x))
def this()(implicit p: Parameters) = this(None)
val node = TLAsyncSourceNode(sync)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = (Seq("TLAsyncCrossingSource") ++ node.in.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
val bce = edgeIn.manager.anySupportAcquireB && edgeIn.client.anySupportProbe
val psync = sync.getOrElse(edgeOut.manager.async.sync)
val params = edgeOut.manager.async.copy(sync = psync)
out.a <> ToAsyncBundle(in.a, params)
in.d <> FromAsyncBundle(out.d, psync)
property.cover(in.a, "TL_ASYNC_CROSSING_SOURCE_A", "MemorySystem;;TLAsyncCrossingSource Channel A")
property.cover(in.d, "TL_ASYNC_CROSSING_SOURCE_D", "MemorySystem;;TLAsyncCrossingSource Channel D")
if (bce) {
in.b <> FromAsyncBundle(out.b, psync)
out.c <> ToAsyncBundle(in.c, params)
out.e <> ToAsyncBundle(in.e, params)
property.cover(in.b, "TL_ASYNC_CROSSING_SOURCE_B", "MemorySystem;;TLAsyncCrossingSource Channel B")
property.cover(in.c, "TL_ASYNC_CROSSING_SOURCE_C", "MemorySystem;;TLAsyncCrossingSource Channel C")
property.cover(in.e, "TL_ASYNC_CROSSING_SOURCE_E", "MemorySystem;;TLAsyncCrossingSource Channel E")
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ridx := 0.U
out.c.widx := 0.U
out.e.widx := 0.U
}
}
}
}
class TLAsyncCrossingSink(params: AsyncQueueParams = AsyncQueueParams())(implicit p: Parameters) extends LazyModule
{
val node = TLAsyncSinkNode(params)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = (Seq("TLAsyncCrossingSink") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
val bce = edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe
out.a <> FromAsyncBundle(in.a, params.sync)
in.d <> ToAsyncBundle(out.d, params)
property.cover(out.a, "TL_ASYNC_CROSSING_SINK_A", "MemorySystem;;TLAsyncCrossingSink Channel A")
property.cover(out.d, "TL_ASYNC_CROSSING_SINK_D", "MemorySystem;;TLAsyncCrossingSink Channel D")
if (bce) {
in.b <> ToAsyncBundle(out.b, params)
out.c <> FromAsyncBundle(in.c, params.sync)
out.e <> FromAsyncBundle(in.e, params.sync)
property.cover(out.b, "TL_ASYNC_CROSSING_SINK_B", "MemorySystem;;TLAsyncCrossingSinkChannel B")
property.cover(out.c, "TL_ASYNC_CROSSING_SINK_C", "MemorySystem;;TLAsyncCrossingSink Channel C")
property.cover(out.e, "TL_ASYNC_CROSSING_SINK_E", "MemorySystem;;TLAsyncCrossingSink Channel E")
} else {
in.b.widx := 0.U
in.c.ridx := 0.U
in.e.ridx := 0.U
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLAsyncCrossingSource
{
def apply()(implicit p: Parameters): TLAsyncSourceNode = apply(None)
def apply(sync: Int)(implicit p: Parameters): TLAsyncSourceNode = apply(Some(sync))
def apply(sync: Option[Int])(implicit p: Parameters): TLAsyncSourceNode =
{
val asource = LazyModule(new TLAsyncCrossingSource(sync))
asource.node
}
}
object TLAsyncCrossingSink
{
def apply(params: AsyncQueueParams = AsyncQueueParams())(implicit p: Parameters) =
{
val asink = LazyModule(new TLAsyncCrossingSink(params))
asink.node
}
}
@deprecated("TLAsyncCrossing is fragile. Use TLAsyncCrossingSource and TLAsyncCrossingSink", "rocket-chip 1.2")
class TLAsyncCrossing(params: AsyncQueueParams = AsyncQueueParams())(implicit p: Parameters) extends LazyModule
{
val source = LazyModule(new TLAsyncCrossingSource())
val sink = LazyModule(new TLAsyncCrossingSink(params))
val node = NodeHandle(source.node, sink.node)
sink.node := source.node
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
val io = IO(new Bundle {
val in_clock = Input(Clock())
val in_reset = Input(Bool())
val out_clock = Input(Clock())
val out_reset = Input(Bool())
})
source.module.clock := io.in_clock
source.module.reset := io.in_reset
sink.module.clock := io.out_clock
sink.module.reset := io.out_reset
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMAsyncCrossing(txns: Int, params: AsynchronousCrossing = AsynchronousCrossing())(implicit p: Parameters) extends LazyModule {
val model = LazyModule(new TLRAMModel("AsyncCrossing"))
val fuzz = LazyModule(new TLFuzzer(txns))
val island = LazyModule(new CrossingWrapper(params))
val ram = island { LazyModule(new TLRAM(AddressSet(0x0, 0x3ff))) }
island.crossTLIn(ram.node) := TLFragmenter(4, 256) := TLDelayer(0.1) := model.node := fuzz.node
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
// Shove the RAM into another clock domain
val clocks = Module(new Pow2ClockDivider(2))
island.module.clock := clocks.io.clock_out
}
}
class TLRAMAsyncCrossingTest(txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut_wide = Module(LazyModule(new TLRAMAsyncCrossing(txns)).module)
val dut_narrow = Module(LazyModule(new TLRAMAsyncCrossing(txns, AsynchronousCrossing(safe = false, narrow = true))).module)
io.finished := dut_wide.io.finished && dut_narrow.io.finished
dut_wide.io.start := io.start
dut_narrow.io.start := io.start
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
| module TLAsyncCrossingSink_a9d32s1k1z2u( // @[AsyncCrossing.scala:59:9]
input clock, // @[AsyncCrossing.scala:59:9]
input reset, // @[AsyncCrossing.scala:59:9]
input [2:0] auto_in_a_mem_0_opcode, // @[LazyModuleImp.scala:107:25]
input [8:0] auto_in_a_mem_0_address, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_in_a_mem_0_data, // @[LazyModuleImp.scala:107:25]
output auto_in_a_ridx, // @[LazyModuleImp.scala:107:25]
input auto_in_a_widx, // @[LazyModuleImp.scala:107:25]
output auto_in_a_safe_ridx_valid, // @[LazyModuleImp.scala:107:25]
input auto_in_a_safe_widx_valid, // @[LazyModuleImp.scala:107:25]
input auto_in_a_safe_source_reset_n, // @[LazyModuleImp.scala:107:25]
output auto_in_a_safe_sink_reset_n, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_mem_0_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_mem_0_size, // @[LazyModuleImp.scala:107:25]
output auto_in_d_mem_0_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_in_d_mem_0_data, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ridx, // @[LazyModuleImp.scala:107:25]
output auto_in_d_widx, // @[LazyModuleImp.scala:107:25]
input auto_in_d_safe_ridx_valid, // @[LazyModuleImp.scala:107:25]
output auto_in_d_safe_widx_valid, // @[LazyModuleImp.scala:107:25]
output auto_in_d_safe_source_reset_n, // @[LazyModuleImp.scala:107:25]
input auto_in_d_safe_sink_reset_n, // @[LazyModuleImp.scala:107:25]
input auto_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [8:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_out_d_bits_data // @[LazyModuleImp.scala:107:25]
);
AsyncQueueSink_TLBundleA_a9d32s1k1z2u nodeOut_a_sink ( // @[AsyncQueue.scala:211:22]
.clock (clock),
.reset (reset),
.io_deq_ready (auto_out_a_ready),
.io_deq_valid (auto_out_a_valid),
.io_deq_bits_opcode (auto_out_a_bits_opcode),
.io_deq_bits_param (auto_out_a_bits_param),
.io_deq_bits_size (auto_out_a_bits_size),
.io_deq_bits_source (auto_out_a_bits_source),
.io_deq_bits_address (auto_out_a_bits_address),
.io_deq_bits_mask (auto_out_a_bits_mask),
.io_deq_bits_data (auto_out_a_bits_data),
.io_deq_bits_corrupt (auto_out_a_bits_corrupt),
.io_async_mem_0_opcode (auto_in_a_mem_0_opcode),
.io_async_mem_0_address (auto_in_a_mem_0_address),
.io_async_mem_0_data (auto_in_a_mem_0_data),
.io_async_ridx (auto_in_a_ridx),
.io_async_widx (auto_in_a_widx),
.io_async_safe_ridx_valid (auto_in_a_safe_ridx_valid),
.io_async_safe_widx_valid (auto_in_a_safe_widx_valid),
.io_async_safe_source_reset_n (auto_in_a_safe_source_reset_n),
.io_async_safe_sink_reset_n (auto_in_a_safe_sink_reset_n)
); // @[AsyncQueue.scala:211:22]
AsyncQueueSource_TLBundleD_a9d32s1k1z2u nodeIn_d_source ( // @[AsyncQueue.scala:220:24]
.clock (clock),
.reset (reset),
.io_enq_ready (auto_out_d_ready),
.io_enq_valid (auto_out_d_valid),
.io_enq_bits_opcode (auto_out_d_bits_opcode),
.io_enq_bits_size (auto_out_d_bits_size),
.io_enq_bits_source (auto_out_d_bits_source),
.io_enq_bits_data (auto_out_d_bits_data),
.io_async_mem_0_opcode (auto_in_d_mem_0_opcode),
.io_async_mem_0_size (auto_in_d_mem_0_size),
.io_async_mem_0_source (auto_in_d_mem_0_source),
.io_async_mem_0_data (auto_in_d_mem_0_data),
.io_async_ridx (auto_in_d_ridx),
.io_async_widx (auto_in_d_widx),
.io_async_safe_ridx_valid (auto_in_d_safe_ridx_valid),
.io_async_safe_widx_valid (auto_in_d_safe_widx_valid),
.io_async_safe_source_reset_n (auto_in_d_safe_source_reset_n),
.io_async_safe_sink_reset_n (auto_in_d_safe_sink_reset_n)
); // @[AsyncQueue.scala:220:24]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_24( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire [26:0] _GEN = {23'h0, io_in_a_bits_size}; // @[package.scala:243:71]
wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35]
reg [8:0] a_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [3:0] size; // @[Monitor.scala:389:22]
reg [6:0] source; // @[Monitor.scala:390:22]
reg [28:0] address; // @[Monitor.scala:391:22]
reg [8:0] d_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [3:0] size_1; // @[Monitor.scala:540:22]
reg [6:0] source_1; // @[Monitor.scala:541:22]
reg sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
reg [64:0] inflight; // @[Monitor.scala:614:27]
reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [519:0] inflight_sizes; // @[Monitor.scala:618:33]
reg [8:0] a_first_counter_1; // @[Edges.scala:229:27]
wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
reg [8:0] d_first_counter_1; // @[Edges.scala:229:27]
wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire [127:0] _GEN_0 = {121'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35]
wire _GEN_1 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35]
wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46]
wire _GEN_2 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74]
wire [127:0] _GEN_3 = {121'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
reg [64:0] inflight_1; // @[Monitor.scala:726:35]
reg [519:0] inflight_sizes_1; // @[Monitor.scala:728:35]
reg [8:0] d_first_counter_2; // @[Edges.scala:229:27]
wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_156( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7]
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_280 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_d (_output_T_1), // @[SynchronizerReg.scala:87:41]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ClockGroup.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.prci
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.resources.FixedClockResource
case class ClockGroupingNode(groupName: String)(implicit valName: ValName)
extends MixedNexusNode(ClockGroupImp, ClockImp)(
dFn = { _ => ClockSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq) })
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroup(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupingNode(groupName)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
require (node.in.size == 1)
require (in.member.size == out.size)
(in.member.data zip out) foreach { case (i, o) => o := i }
}
}
object ClockGroup
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroup(valName.name)).node
}
case class ClockGroupAggregateNode(groupName: String)(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq.flatMap(_.members))})
{
override def circuitIdentity = outputs.size == 1
}
class ClockGroupAggregator(groupName: String)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupAggregateNode(groupName)
override lazy val desiredName = s"ClockGroupAggregator_$groupName"
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in.unzip
val (out, _) = node.out.unzip
val outputs = out.flatMap(_.member.data)
require (node.in.size == 1, s"Aggregator for groupName: ${groupName} had ${node.in.size} inward edges instead of 1")
require (in.head.member.size == outputs.size)
in.head.member.data.zip(outputs).foreach { case (i, o) => o := i }
}
}
object ClockGroupAggregator
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroupAggregator(valName.name)).node
}
class SimpleClockGroupSource(numSources: Int = 1)(implicit p: Parameters) extends LazyModule
{
val node = ClockGroupSourceNode(List.fill(numSources) { ClockGroupSourceParameters() })
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
val (out, _) = node.out.unzip
out.map { out: ClockGroupBundle =>
out.member.data.foreach { o =>
o.clock := clock; o.reset := reset }
}
}
}
object SimpleClockGroupSource
{
def apply(num: Int = 1)(implicit p: Parameters, valName: ValName) = LazyModule(new SimpleClockGroupSource(num)).node
}
case class FixedClockBroadcastNode(fixedClockOpt: Option[ClockParameters])(implicit valName: ValName)
extends NexusNode(ClockImp)(
dFn = { seq => fixedClockOpt.map(_ => ClockSourceParameters(give = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSourceParameters()) },
uFn = { seq => fixedClockOpt.map(_ => ClockSinkParameters(take = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSinkParameters()) },
inputRequiresOutput = false) {
def fixedClockResources(name: String, prefix: String = "soc/"): Seq[Option[FixedClockResource]] = Seq(fixedClockOpt.map(t => new FixedClockResource(name, t.freqMHz, prefix)))
}
class FixedClockBroadcast(fixedClockOpt: Option[ClockParameters])(implicit p: Parameters) extends LazyModule
{
val node = new FixedClockBroadcastNode(fixedClockOpt) {
override def circuitIdentity = outputs.size == 1
}
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val (in, _) = node.in(0)
val (out, _) = node.out.unzip
override def desiredName = s"FixedClockBroadcast_${out.size}"
require (node.in.size == 1, "FixedClockBroadcast can only broadcast a single clock")
out.foreach { _ := in }
}
}
object FixedClockBroadcast
{
def apply(fixedClockOpt: Option[ClockParameters] = None)(implicit p: Parameters, valName: ValName) = LazyModule(new FixedClockBroadcast(fixedClockOpt)).node
}
case class PRCIClockGroupNode()(implicit valName: ValName)
extends NexusNode(ClockGroupImp)(
dFn = { _ => ClockGroupSourceParameters() },
uFn = { _ => ClockGroupSinkParameters("prci", Nil) },
outputRequiresInput = false)
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
| module FixedClockBroadcast_4( // @[ClockGroup.scala:104:9]
input auto_anon_in_clock, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_reset, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_2_clock, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_2_reset, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_0_clock, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_0_reset // @[LazyModuleImp.scala:107:25]
);
assign auto_anon_out_2_clock = auto_anon_in_clock; // @[ClockGroup.scala:104:9]
assign auto_anon_out_2_reset = auto_anon_in_reset; // @[ClockGroup.scala:104:9]
assign auto_anon_out_0_clock = auto_anon_in_clock; // @[ClockGroup.scala:104:9]
assign auto_anon_out_0_reset = auto_anon_in_reset; // @[ClockGroup.scala:104:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File UnsafeAXI4ToTL.scala:
package ara
import chisel3._
import chisel3.util._
import freechips.rocketchip.amba._
import freechips.rocketchip.amba.axi4._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle {
val data = UInt(dataWidth.W)
val resp = UInt(respWidth.W)
val last = Bool()
val user = BundleMap(userFields)
}
/** Parameters for [[BaseReservableListBuffer]] and all child classes.
*
* @param numEntries Total number of elements that can be stored in the 'data' RAM
* @param numLists Maximum number of linked lists
* @param numBeats Maximum number of beats per entry
*/
case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) {
// Avoid zero-width wires when we call 'log2Ceil'
val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries)
val listBits = if (numLists == 1) 1 else log2Ceil(numLists)
val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats)
}
case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName)
extends MixedAdapterNode(AXI4Imp, TLImp)(
dFn = { case mp =>
TLMasterPortParameters.v2(
masters = mp.masters.zipWithIndex.map { case (m, i) =>
// Support 'numTlTxns' read requests and 'numTlTxns' write requests at once.
val numSourceIds = numTlTxns * 2
TLMasterParameters.v2(
name = m.name,
sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds),
nodePath = m.nodePath
)
},
echoFields = mp.echoFields,
requestFields = AMBAProtField() +: mp.requestFields,
responseKeys = mp.responseKeys
)
},
uFn = { mp =>
AXI4SlavePortParameters(
slaves = mp.managers.map { m =>
val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits))
AXI4SlaveParameters(
address = m.address,
resources = m.resources,
regionType = m.regionType,
executable = m.executable,
nodePath = m.nodePath,
supportsWrite = m.supportsPutPartial.intersect(maxXfer),
supportsRead = m.supportsGet.intersect(maxXfer),
interleavedId = Some(0) // TL2 never interleaves D beats
)
},
beatBytes = mp.beatBytes,
minLatency = mp.minLatency,
responseFields = mp.responseFields,
requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt)
)
}
)
class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule {
require(numTlTxns >= 1)
require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2")
val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt)
lazy val module = new LazyModuleImp(this) {
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
edgeIn.master.masters.foreach { m =>
require(m.aligned, "AXI4ToTL requires aligned requests")
}
val numIds = edgeIn.master.endId
val beatBytes = edgeOut.slave.beatBytes
val maxTransfer = edgeOut.slave.maxTransfer
val maxBeats = maxTransfer / beatBytes
// Look for an Error device to redirect bad requests
val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError")
require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.")
val errorDev = errorDevs.maxBy(_.maxTransfer)
val errorDevAddr = errorDev.address.head.base
require(
errorDev.supportsPutPartial.contains(maxTransfer),
s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer"
)
require(
errorDev.supportsGet.contains(maxTransfer),
s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer"
)
// All of the read-response reordering logic.
val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields)
val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats)
val listBuffer = if (numTlTxns > 1) {
Module(new ReservableListBuffer(listBufData, listBufParams))
} else {
Module(new PassthroughListBuffer(listBufData, listBufParams))
}
// To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to
// 0 for read requests and 1 for write requests.
val isReadSourceBit = 0.U(1.W)
val isWriteSourceBit = 1.U(1.W)
/* Read request logic */
val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val rBytes1 = in.ar.bits.bytes1()
val rSize = OH1ToUInt(rBytes1)
val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize)
val rId = if (numTlTxns > 1) {
Cat(isReadSourceBit, listBuffer.ioReservedIndex)
} else {
isReadSourceBit
}
val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Indicates if there are still valid TileLink source IDs left to use.
val canIssueR = listBuffer.ioReserve.ready
listBuffer.ioReserve.bits := in.ar.bits.id
listBuffer.ioReserve.valid := in.ar.valid && rOut.ready
in.ar.ready := rOut.ready && canIssueR
rOut.valid := in.ar.valid && canIssueR
rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2
rOut.bits.user :<= in.ar.bits.user
rOut.bits.user.lift(AMBAProt).foreach { rProt =>
rProt.privileged := in.ar.bits.prot(0)
rProt.secure := !in.ar.bits.prot(1)
rProt.fetch := in.ar.bits.prot(2)
rProt.bufferable := in.ar.bits.cache(0)
rProt.modifiable := in.ar.bits.cache(1)
rProt.readalloc := in.ar.bits.cache(2)
rProt.writealloc := in.ar.bits.cache(3)
}
/* Write request logic */
// Strip off the MSB, which identifies the transaction as read vs write.
val strippedResponseSourceId = if (numTlTxns > 1) {
out.d.bits.source((out.d.bits.source).getWidth - 2, 0)
} else {
// When there's only 1 TileLink transaction allowed for read/write, then this field is always 0.
0.U(1.W)
}
// Track when a write request burst is in progress.
val writeBurstBusy = RegInit(false.B)
when(in.w.fire) {
writeBurstBusy := !in.w.bits.last
}
val usedWriteIds = RegInit(0.U(numTlTxns.W))
val canIssueW = !usedWriteIds.andR
val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W))
val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W))
usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet
// Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't
// change mid-burst.
val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W))
val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy
val freeWriteIdIndex = OHToUInt(freeWriteIdOH)
freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds
val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle)))
val wBytes1 = in.aw.bits.bytes1()
val wSize = OH1ToUInt(wBytes1)
val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize)
val wId = if (numTlTxns > 1) {
Cat(isWriteSourceBit, freeWriteIdIndex)
} else {
isWriteSourceBit
}
val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0))
// Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain
// asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but
// the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb
// bits during a W-channel burst.
in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW
in.w.ready := wOut.ready && in.aw.valid && canIssueW
wOut.valid := in.aw.valid && in.w.valid && canIssueW
wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2
in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ }
wOut.bits.user :<= in.aw.bits.user
wOut.bits.user.lift(AMBAProt).foreach { wProt =>
wProt.privileged := in.aw.bits.prot(0)
wProt.secure := !in.aw.bits.prot(1)
wProt.fetch := in.aw.bits.prot(2)
wProt.bufferable := in.aw.bits.cache(0)
wProt.modifiable := in.aw.bits.cache(1)
wProt.readalloc := in.aw.bits.cache(2)
wProt.writealloc := in.aw.bits.cache(3)
}
// Merge the AXI4 read/write requests into the TL-A channel.
TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut))
/* Read/write response logic */
val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle)))
val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle)))
val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY)
val dHasData = edgeOut.hasData(out.d.bits)
val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d)
val dNumBeats1 = edgeOut.numBeats1(out.d.bits)
// Handle cases where writeack arrives before write is done
val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U
out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck)
listBuffer.ioDataOut.ready := okR.ready
okR.valid := listBuffer.ioDataOut.valid
okB.valid := out.d.valid && !dHasData && !writeEarlyAck
listBuffer.ioResponse.valid := out.d.valid && dHasData
listBuffer.ioResponse.bits.index := strippedResponseSourceId
listBuffer.ioResponse.bits.data.data := out.d.bits.data
listBuffer.ioResponse.bits.data.resp := dResp
listBuffer.ioResponse.bits.data.last := dLast
listBuffer.ioResponse.bits.data.user :<= out.d.bits.user
listBuffer.ioResponse.bits.count := dCount
listBuffer.ioResponse.bits.numBeats1 := dNumBeats1
okR.bits.id := listBuffer.ioDataOut.bits.listIndex
okR.bits.data := listBuffer.ioDataOut.bits.payload.data
okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp
okR.bits.last := listBuffer.ioDataOut.bits.payload.last
okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user
// Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write
// response, mark the write transaction as complete.
val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W))
val writeResponseId = writeIdMap.read(strippedResponseSourceId)
when(wOut.fire) {
writeIdMap.write(freeWriteIdIndex, in.aw.bits.id)
}
when(edgeOut.done(wOut)) {
usedWriteIdsSet := freeWriteIdOH
}
when(okB.fire) {
usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns)
}
okB.bits.id := writeResponseId
okB.bits.resp := dResp
okB.bits.user :<= out.d.bits.user
// AXI4 needs irrevocable behaviour
in.r <> Queue.irrevocable(okR, 1, flow = true)
in.b <> Queue.irrevocable(okB, 1, flow = true)
// Unused channels
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
/* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */
def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = {
val lReqType = reqType.toLowerCase
when(a.valid) {
assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U)
// Narrow transfers and FIXED bursts must be single-beat bursts.
when(a.bits.len =/= 0.U) {
assert(
a.bits.size === log2Ceil(beatBytes).U,
s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)",
1.U << a.bits.size,
a.bits.len + 1.U
)
assert(
a.bits.burst =/= AXI4Parameters.BURST_FIXED,
s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)",
a.bits.len + 1.U
)
}
// Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in
// particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink
// Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts.
}
}
checkRequest(in.ar, "Read")
checkRequest(in.aw, "Write")
}
}
}
object UnsafeAXI4ToTL {
def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = {
val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt))
axi42tl.node
}
}
/* ReservableListBuffer logic, and associated classes. */
class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle {
val index = UInt(params.entryBits.W)
val count = UInt(params.beatBits.W)
val numBeats1 = UInt(params.beatBits.W)
}
class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle {
val listIndex = UInt(params.listBits.W)
}
/** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */
abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends Module {
require(params.numEntries > 0)
require(params.numLists > 0)
val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W))))
val ioReservedIndex = IO(Output(UInt(params.entryBits.W)))
val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params))))
val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params)))
}
/** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve
* linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the
* 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a
* given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order.
*
* ==Constructor==
* @param gen Chisel type of linked list data element
* @param params Other parameters
*
* ==Module IO==
* @param ioReserve Index of list to reserve a new element in
* @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire'
* @param ioResponse Payload containing response data and linked-list-entry index
* @param ioDataOut Payload containing data read from response linked list and linked list index
*/
class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
val valid = RegInit(0.U(params.numLists.W))
val head = Mem(params.numLists, UInt(params.entryBits.W))
val tail = Mem(params.numLists, UInt(params.entryBits.W))
val used = RegInit(0.U(params.numEntries.W))
val next = Mem(params.numEntries, UInt(params.entryBits.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) }
val dataIsPresent = RegInit(0.U(params.numEntries.W))
val beats = Mem(params.numEntries, UInt(params.beatBits.W))
// The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower.
val dataMemReadEnable = WireDefault(false.B)
val dataMemWriteEnable = WireDefault(false.B)
assert(!(dataMemReadEnable && dataMemWriteEnable))
// 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the
// lowest-index entry in the 'data' RAM which is free.
val freeOH = Wire(UInt(params.numEntries.W))
val freeIndex = OHToUInt(freeOH)
freeOH := ~(leftOR(~used) << 1) & ~used
ioReservedIndex := freeIndex
val validSet = WireDefault(0.U(params.numLists.W))
val validClr = WireDefault(0.U(params.numLists.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
val dataIsPresentSet = WireDefault(0.U(params.numEntries.W))
val dataIsPresentClr = WireDefault(0.U(params.numEntries.W))
valid := (valid & ~validClr) | validSet
used := (used & ~usedClr) | usedSet
dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet
/* Reservation logic signals */
val reserveTail = Wire(UInt(params.entryBits.W))
val reserveIsValid = Wire(Bool())
/* Response logic signals */
val responseIndex = Wire(UInt(params.entryBits.W))
val responseListIndex = Wire(UInt(params.listBits.W))
val responseHead = Wire(UInt(params.entryBits.W))
val responseTail = Wire(UInt(params.entryBits.W))
val nextResponseHead = Wire(UInt(params.entryBits.W))
val nextDataIsPresent = Wire(Bool())
val isResponseInOrder = Wire(Bool())
val isEndOfList = Wire(Bool())
val isLastBeat = Wire(Bool())
val isLastResponseBeat = Wire(Bool())
val isLastUnwindBeat = Wire(Bool())
/* Reservation logic */
reserveTail := tail.read(ioReserve.bits)
reserveIsValid := valid(ioReserve.bits)
ioReserve.ready := !used.andR
// When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we
// actually start a new list, rather than appending to a list that's about to disappear.
val reserveResponseSameList = ioReserve.bits === responseListIndex
val appendToAndDestroyList =
ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat
when(ioReserve.fire) {
validSet := UIntToOH(ioReserve.bits, params.numLists)
usedSet := freeOH
when(reserveIsValid && !appendToAndDestroyList) {
next.write(reserveTail, freeIndex)
}.otherwise {
head.write(ioReserve.bits, freeIndex)
}
tail.write(ioReserve.bits, freeIndex)
map.write(freeIndex, ioReserve.bits)
}
/* Response logic */
// The majority of the response logic (reading from and writing to the various RAMs) is common between the
// response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid).
// The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the
// 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and
// response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after
// two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker.
responseHead := head.read(responseListIndex)
responseTail := tail.read(responseListIndex)
nextResponseHead := next.read(responseIndex)
nextDataIsPresent := dataIsPresent(nextResponseHead)
// Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since
// there isn't a next element in the linked list.
isResponseInOrder := responseHead === responseIndex
isEndOfList := responseHead === responseTail
isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1
// When a response's last beat is sent to the output channel, mark it as completed. This can happen in two
// situations:
// 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM
// reservation was never needed.
// 2. An entry is read out of the 'data' SRAM (within the unwind FSM).
when(ioDataOut.fire && isLastBeat) {
// Mark the reservation as no-longer-used.
usedClr := UIntToOH(responseIndex, params.numEntries)
// If the response is in-order, then we're popping an element from this linked list.
when(isEndOfList) {
// Once we pop the last element from a linked list, mark it as no-longer-present.
validClr := UIntToOH(responseListIndex, params.numLists)
}.otherwise {
// Move the linked list's head pointer to the new head pointer.
head.write(responseListIndex, nextResponseHead)
}
}
// If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding.
when(ioResponse.fire && !isResponseInOrder) {
dataMemWriteEnable := true.B
when(isLastResponseBeat) {
dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries)
beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1)
}
}
// Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to.
val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats)
(responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) =>
when(select && dataMemWriteEnable) {
seqMem.write(ioResponse.bits.index, ioResponse.bits.data)
}
}
/* Response unwind logic */
// Unwind FSM state definitions
val sIdle :: sUnwinding :: Nil = Enum(2)
val unwindState = RegInit(sIdle)
val busyUnwinding = unwindState === sUnwinding
val startUnwind = Wire(Bool())
val stopUnwind = Wire(Bool())
when(startUnwind) {
unwindState := sUnwinding
}.elsewhen(stopUnwind) {
unwindState := sIdle
}
assert(!(startUnwind && stopUnwind))
// Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to
// become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is
// invalid.
//
// Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to
// worry about overwriting the 'data' SRAM's output when we start the unwind FSM.
startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent
// Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of
// two things happens:
// 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent)
// 2. There are no more outstanding responses in this list (isEndOfList)
//
// Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are
// passing from 'ioResponse' to 'ioDataOut'.
stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList)
val isUnwindBurstOver = Wire(Bool())
val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable)
// Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of
// beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we
// increment 'beatCounter' until it reaches 'unwindBeats1'.
val unwindBeats1 = Reg(UInt(params.beatBits.W))
val nextBeatCounter = Wire(UInt(params.beatBits.W))
val beatCounter = RegNext(nextBeatCounter)
isUnwindBurstOver := beatCounter === unwindBeats1
when(startNewBurst) {
unwindBeats1 := beats.read(nextResponseHead)
nextBeatCounter := 0.U
}.elsewhen(dataMemReadEnable) {
nextBeatCounter := beatCounter + 1.U
}.otherwise {
nextBeatCounter := beatCounter
}
// When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next
// entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which
// happens at the start of reading a new stored burst).
val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst)
responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index)
// Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the
// SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead
// holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'.
val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex)
// The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid
// until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle).
val unwindDataIsValid = RegInit(false.B)
when(dataMemReadEnable) {
unwindDataIsValid := true.B
}.elsewhen(ioDataOut.fire) {
unwindDataIsValid := false.B
}
isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid
// Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats.
isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat)
// Select which SRAM to read from based on the beat counter.
val dataOutputVec = Wire(Vec(params.numBeats, gen))
val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats)
(nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) =>
dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable)
}
// Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured
// by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading
// from.
val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable)
// Mark 'data' burst entries as no-longer-present as they get read out of the SRAM.
when(dataMemReadEnable) {
dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries)
}
// As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue
// a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know
// we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be
// consumed by the output channel).
val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready
dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem)
// While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need
// 'responseListIndex' to be coherent for the entire unwind process.
val rawResponseListIndex = map.read(responseIndex)
val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst)
responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex)
// Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are
// just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that
// could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be
// single-ported.
ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding
// Either pass an in-order response to the output channel, or data read from the unwind FSM.
ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder)
ioDataOut.bits.listIndex := responseListIndex
ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data)
// It's an error to get a response that isn't associated with a valid linked list.
when(ioResponse.fire || unwindDataIsValid) {
assert(
valid(responseListIndex),
"No linked list exists at index %d, mapped from %d",
responseListIndex,
responseIndex
)
}
when(busyUnwinding && dataMemReadEnable) {
assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order")
}
}
/** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1.
*
* Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to
* reorder any responses, or store any linked lists.
*/
class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters)
extends BaseReservableListBuffer(gen, params) {
require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1")
val used = RegInit(0.U(params.numEntries.W))
val map = Mem(params.numEntries, UInt(params.listBits.W))
val usedSet = WireDefault(0.U(params.numEntries.W))
val usedClr = WireDefault(0.U(params.numEntries.W))
used := (used & ~usedClr) | usedSet
ioReserve.ready := used === 0.U
// Store which list index was reserved, we need to return this value when we get a response.
when(ioReserve.fire) {
usedSet := 1.U
map.write(0.U, ioReserve.bits)
}
// There's only one valid linked list entry, which is at index 0.
ioReservedIndex := 0.U
val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1
// Mark the linked list as empty when we get the last beat in a response.
// Note that 'ioResponse.fire === ioDataOut.fire'.
when(ioResponse.fire && isLastResponseBeat) {
usedClr := 1.U
}
// Always pass the response data straight through, since we never need to reorder the response data.
ioDataOut.bits.listIndex := map.read(0.U)
ioDataOut.bits.payload := ioResponse.bits.data
ioDataOut.valid := ioResponse.valid
ioResponse.ready := ioDataOut.ready
}
| module dataMems_55( // @[UnsafeAXI4ToTL.scala:365:62]
input [4:0] R0_addr,
input R0_en,
input R0_clk,
output [66:0] R0_data,
input [4:0] W0_addr,
input W0_en,
input W0_clk,
input [66:0] W0_data
);
dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62]
.R0_addr (R0_addr),
.R0_en (R0_en),
.R0_clk (R0_clk),
.R0_data (R0_data),
.W0_addr (W0_addr),
.W0_en (W0_en),
.W0_clk (W0_clk),
.W0_data (W0_data)
); // @[UnsafeAXI4ToTL.scala:365:62]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File PE.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle {
val dataflow = UInt(1.W) // TODO make this an Enum
val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)?
val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats
}
class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module {
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(inputType)
val in_c = Input(cType)
val out_d = Output(dType)
})
io.out_d := io.in_c.mac(io.in_a, io.in_b)
}
// TODO update documentation
/**
* A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh.
* @param width Data width of operands
*/
class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int)
(implicit ev: Arithmetic[T]) extends Module { // Debugging variables
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(outputType)
val in_d = Input(outputType)
val out_a = Output(inputType)
val out_b = Output(outputType)
val out_c = Output(outputType)
val in_control = Input(new PEControl(accType))
val out_control = Output(new PEControl(accType))
val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W))
val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W))
val in_last = Input(Bool())
val out_last = Output(Bool())
val in_valid = Input(Bool())
val out_valid = Output(Bool())
val bad_dataflow = Output(Bool())
})
val cType = if (df == Dataflow.WS) inputType else accType
// When creating PEs that support multiple dataflows, the
// elaboration/synthesis tools often fail to consolidate and de-duplicate
// MAC units. To force mac circuitry to be re-used, we create a "mac_unit"
// module here which just performs a single MAC operation
val mac_unit = Module(new MacUnit(inputType,
if (df == Dataflow.WS) outputType else accType, outputType))
val a = io.in_a
val b = io.in_b
val d = io.in_d
val c1 = Reg(cType)
val c2 = Reg(cType)
val dataflow = io.in_control.dataflow
val prop = io.in_control.propagate
val shift = io.in_control.shift
val id = io.in_id
val last = io.in_last
val valid = io.in_valid
io.out_a := a
io.out_control.dataflow := dataflow
io.out_control.propagate := prop
io.out_control.shift := shift
io.out_id := id
io.out_last := last
io.out_valid := valid
mac_unit.io.in_a := a
val last_s = RegEnable(prop, valid)
val flip = last_s =/= prop
val shift_offset = Mux(flip, shift, 0.U)
// Which dataflow are we using?
val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W)
val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W)
// Is c1 being computed on, or propagated forward (in the output-stationary dataflow)?
val COMPUTE = 0.U(1.W)
val PROPAGATE = 1.U(1.W)
io.bad_dataflow := false.B
when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
c2 := mac_unit.io.out_d
c1 := d.withWidthOf(cType)
}.otherwise {
io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c1
c1 := mac_unit.io.out_d
c2 := d.withWidthOf(cType)
}
}.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := c1
mac_unit.io.in_b := c2.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c1 := d
}.otherwise {
io.out_c := c2
mac_unit.io.in_b := c1.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c2 := d
}
}.otherwise {
io.bad_dataflow := true.B
//assert(false.B, "unknown dataflow")
io.out_c := DontCare
io.out_b := DontCare
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
}
when (!valid) {
c1 := c1
c2 := c2
mac_unit.io.in_b := DontCare
mac_unit.io.in_c := DontCare
}
}
File Arithmetic.scala:
// A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own:
// implicit MyTypeArithmetic extends Arithmetic[MyType] { ... }
package gemmini
import chisel3._
import chisel3.util._
import hardfloat._
// Bundles that represent the raw bits of custom datatypes
case class Float(expWidth: Int, sigWidth: Int) extends Bundle {
val bits = UInt((expWidth + sigWidth).W)
val bias: Int = (1 << (expWidth-1)) - 1
}
case class DummySInt(w: Int) extends Bundle {
val bits = UInt(w.W)
def dontCare: DummySInt = {
val o = Wire(new DummySInt(w))
o.bits := 0.U
o
}
}
// The Arithmetic typeclass which implements various arithmetic operations on custom datatypes
abstract class Arithmetic[T <: Data] {
implicit def cast(t: T): ArithmeticOps[T]
}
abstract class ArithmeticOps[T <: Data](self: T) {
def *(t: T): T
def mac(m1: T, m2: T): T // Returns (m1 * m2 + self)
def +(t: T): T
def -(t: T): T
def >>(u: UInt): T // This is a rounding shift! Rounds away from 0
def >(t: T): Bool
def identity: T
def withWidthOf(t: T): T
def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates
def relu: T
def zero: T
def minimum: T
// Optional parameters, which only need to be defined if you want to enable various optimizations for transformers
def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None
def mult_with_reciprocal[U <: Data](reciprocal: U) = self
}
object Arithmetic {
implicit object UIntArithmetic extends Arithmetic[UInt] {
override implicit def cast(self: UInt) = new ArithmeticOps(self) {
override def *(t: UInt) = self * t
override def mac(m1: UInt, m2: UInt) = m1 * m2 + self
override def +(t: UInt) = self + t
override def -(t: UInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = point_five & (zeros | ones_digit)
(self >> u).asUInt + r
}
override def >(t: UInt): Bool = self > t
override def withWidthOf(t: UInt) = self.asTypeOf(t)
override def clippedToWidthOf(t: UInt) = {
val sat = ((1 << (t.getWidth-1))-1).U
Mux(self > sat, sat, self)(t.getWidth-1, 0)
}
override def relu: UInt = self
override def zero: UInt = 0.U
override def identity: UInt = 1.U
override def minimum: UInt = 0.U
}
}
implicit object SIntArithmetic extends Arithmetic[SInt] {
override implicit def cast(self: SInt) = new ArithmeticOps(self) {
override def *(t: SInt) = self * t
override def mac(m1: SInt, m2: SInt) = m1 * m2 + self
override def +(t: SInt) = self + t
override def -(t: SInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = (point_five & (zeros | ones_digit)).asBool
(self >> u).asSInt + Mux(r, 1.S, 0.S)
}
override def >(t: SInt): Bool = self > t
override def withWidthOf(t: SInt) = {
if (self.getWidth >= t.getWidth)
self(t.getWidth-1, 0).asSInt
else {
val sign_bits = t.getWidth - self.getWidth
val sign = self(self.getWidth-1)
Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t)
}
}
override def clippedToWidthOf(t: SInt): SInt = {
val maxsat = ((1 << (t.getWidth-1))-1).S
val minsat = (-(1 << (t.getWidth-1))).S
MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt
}
override def relu: SInt = Mux(self >= 0.S, self, 0.S)
override def zero: SInt = 0.S
override def identity: SInt = 1.S
override def minimum: SInt = (-(1 << (self.getWidth-1))).S
override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(denom_t.cloneType))
val output = Wire(Decoupled(self.cloneType))
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def sin_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def uin_to_float(x: UInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := x
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = sin_to_float(self)
val denom_rec = uin_to_float(input.bits)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := self_rec
divider.io.b := denom_rec
divider.io.roundingMode := consts.round_minMag
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := float_to_in(divider.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(self.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
// Instantiate the hardloat sqrt
val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0))
input.ready := sqrter.io.inReady
sqrter.io.inValid := input.valid
sqrter.io.sqrtOp := true.B
sqrter.io.a := self_rec
sqrter.io.b := DontCare
sqrter.io.roundingMode := consts.round_minMag
sqrter.io.detectTininess := consts.tininess_afterRounding
output.valid := sqrter.io.outValid_sqrt
output.bits := float_to_in(sqrter.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match {
case Float(expWidth, sigWidth) =>
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(u.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
val self_rec = in_to_float(self)
val one_rec = in_to_float(1.S)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := one_rec
divider.io.b := self_rec
divider.io.roundingMode := consts.round_near_even
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u)
assert(!output.valid || output.ready)
Some((input, output))
case _ => None
}
override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match {
case recip @ Float(expWidth, sigWidth) =>
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits)
// Instantiate the hardloat divider
val muladder = Module(new MulRecFN(expWidth, sigWidth))
muladder.io.roundingMode := consts.round_near_even
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := reciprocal_rec
float_to_in(muladder.io.out)
case _ => self
}
}
}
implicit object FloatArithmetic extends Arithmetic[Float] {
// TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array
override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) {
override def *(t: Float): Float = {
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := t_rec_resized
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def mac(m1: Float, m2: Float): Float = {
// Recode all operands
val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits)
val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize m1 to self's width
val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth))
m1_resizer.io.in := m1_rec
m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m1_resizer.io.detectTininess := consts.tininess_afterRounding
val m1_rec_resized = m1_resizer.io.out
// Resize m2 to self's width
val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth))
m2_resizer.io.in := m2_rec
m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m2_resizer.io.detectTininess := consts.tininess_afterRounding
val m2_rec_resized = m2_resizer.io.out
// Perform multiply-add
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := m1_rec_resized
muladder.io.b := m2_rec_resized
muladder.io.c := self_rec
// Convert result to standard format // TODO remove these intermediate recodings
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def +(t: Float): Float = {
require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Generate 1 as a float
val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := 1.U
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
val one_rec = in_to_rec_fn.io.out
// Resize t
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
// Perform addition
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := t_rec_resized
muladder.io.b := one_rec
muladder.io.c := self_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def -(t: Float): Float = {
val t_sgn = t.bits(t.getWidth-1)
val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t)
self + neg_t
}
override def >>(u: UInt): Float = {
// Recode self
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Get 2^(-u) as a recoded float
val shift_exp = Wire(UInt(self.expWidth.W))
shift_exp := self.bias.U - u
val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W))
val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn)
assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported")
// Multiply self and 2^(-u)
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := shift_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def >(t: Float): Bool = {
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize t to self's width
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth))
comparator.io.a := self_rec
comparator.io.b := t_rec_resized
comparator.io.signaling := false.B
comparator.io.gt
}
override def withWidthOf(t: Float): Float = {
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def clippedToWidthOf(t: Float): Float = {
// TODO check for overflow. Right now, we just assume that overflow doesn't happen
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def relu: Float = {
val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits)
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits)
result
}
override def zero: Float = 0.U.asTypeOf(self)
override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
}
}
implicit object DummySIntArithmetic extends Arithmetic[DummySInt] {
override implicit def cast(self: DummySInt) = new ArithmeticOps(self) {
override def *(t: DummySInt) = self.dontCare
override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare
override def +(t: DummySInt) = self.dontCare
override def -(t: DummySInt) = self.dontCare
override def >>(t: UInt) = self.dontCare
override def >(t: DummySInt): Bool = false.B
override def identity = self.dontCare
override def withWidthOf(t: DummySInt) = self.dontCare
override def clippedToWidthOf(t: DummySInt) = self.dontCare
override def relu = self.dontCare
override def zero = self.dontCare
override def minimum: DummySInt = self.dontCare
}
}
}
| module MacUnit_40( // @[PE.scala:14:7]
input clock, // @[PE.scala:14:7]
input reset, // @[PE.scala:14:7]
input [7:0] io_in_a, // @[PE.scala:16:14]
input [7:0] io_in_b, // @[PE.scala:16:14]
input [31:0] io_in_c, // @[PE.scala:16:14]
output [19:0] io_out_d // @[PE.scala:16:14]
);
wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7]
wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7]
wire [31:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7]
wire [19:0] io_out_d_0; // @[PE.scala:14:7]
wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7]
wire [32:0] _io_out_d_T_1 = {{17{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[31], io_in_c_0}; // @[PE.scala:14:7]
wire [31:0] _io_out_d_T_2 = _io_out_d_T_1[31:0]; // @[Arithmetic.scala:93:54]
wire [31:0] _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54]
assign io_out_d_0 = _io_out_d_T_3[19:0]; // @[PE.scala:14:7, :23:12]
assign io_out_d = io_out_d_0; // @[PE.scala:14:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
File Arbiter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
object TLArbiter
{
// (valids, select) => readys
type Policy = (Integer, UInt, Bool) => UInt
val lowestIndexFirst: Policy = (width, valids, select) => ~(leftOR(valids) << 1)(width-1, 0)
val highestIndexFirst: Policy = (width, valids, select) => ~((rightOR(valids) >> 1).pad(width))
val roundRobin: Policy = (width, valids, select) => if (width == 1) 1.U(1.W) else {
val valid = valids(width-1, 0)
assert (valid === valids)
val mask = RegInit(((BigInt(1) << width)-1).U(width-1,0))
val filter = Cat(valid & ~mask, valid)
val unready = (rightOR(filter, width*2, width) >> 1) | (mask << width)
val readys = ~((unready >> width) & unready(width-1, 0))
when (select && valid.orR) {
mask := leftOR(readys & valid, width)
}
readys(width-1, 0)
}
def lowestFromSeq[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: Seq[DecoupledIO[T]]): Unit = {
apply(lowestIndexFirst)(sink, sources.map(s => (edge.numBeats1(s.bits), s)):_*)
}
def lowest[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = {
apply(lowestIndexFirst)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*)
}
def highest[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = {
apply(highestIndexFirst)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*)
}
def robin[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = {
apply(roundRobin)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*)
}
def apply[T <: Data](policy: Policy)(sink: DecoupledIO[T], sources: (UInt, DecoupledIO[T])*): Unit = {
if (sources.isEmpty) {
sink.bits := DontCare
} else if (sources.size == 1) {
sink :<>= sources.head._2
} else {
val pairs = sources.toList
val beatsIn = pairs.map(_._1)
val sourcesIn = pairs.map(_._2)
// The number of beats which remain to be sent
val beatsLeft = RegInit(0.U)
val idle = beatsLeft === 0.U
val latch = idle && sink.ready // winner (if any) claims sink
// Who wants access to the sink?
val valids = sourcesIn.map(_.valid)
// Arbitrate amongst the requests
val readys = VecInit(policy(valids.size, Cat(valids.reverse), latch).asBools)
// Which request wins arbitration?
val winner = VecInit((readys zip valids) map { case (r,v) => r&&v })
// Confirm the policy works properly
require (readys.size == valids.size)
// Never two winners
val prefixOR = winner.scanLeft(false.B)(_||_).init
assert((prefixOR zip winner) map { case (p,w) => !p || !w } reduce {_ && _})
// If there was any request, there is a winner
assert (!valids.reduce(_||_) || winner.reduce(_||_))
// Track remaining beats
val maskedBeats = (winner zip beatsIn) map { case (w,b) => Mux(w, b, 0.U) }
val initBeats = maskedBeats.reduce(_ | _) // no winner => 0 beats
beatsLeft := Mux(latch, initBeats, beatsLeft - sink.fire)
// The one-hot source granted access in the previous cycle
val state = RegInit(VecInit(Seq.fill(sources.size)(false.B)))
val muxState = Mux(idle, winner, state)
state := muxState
val allowed = Mux(idle, readys, state)
(sourcesIn zip allowed) foreach { case (s, r) =>
s.ready := sink.ready && r
}
sink.valid := Mux(idle, valids.reduce(_||_), Mux1H(state, valids))
sink.bits :<= Mux1H(muxState, sourcesIn.map(_.bits))
}
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
abstract class DecoupledArbiterTest(
policy: TLArbiter.Policy,
txns: Int,
timeout: Int,
val numSources: Int,
beatsLeftFromIdx: Int => UInt)
(implicit p: Parameters) extends UnitTest(timeout)
{
val sources = Wire(Vec(numSources, DecoupledIO(UInt(log2Ceil(numSources).W))))
dontTouch(sources.suggestName("sources"))
val sink = Wire(DecoupledIO(UInt(log2Ceil(numSources).W)))
dontTouch(sink.suggestName("sink"))
val count = RegInit(0.U(log2Ceil(txns).W))
val lfsr = LFSR(16, true.B)
sources.zipWithIndex.map { case (z, i) => z.bits := i.U }
TLArbiter(policy)(sink, sources.zipWithIndex.map {
case (z, i) => (beatsLeftFromIdx(i), z)
}:_*)
count := count + 1.U
io.finished := count >= txns.U
}
/** This tests that when a specific pattern of source valids are driven,
* a new index from amongst that pattern is always selected,
* unless one of those sources takes multiple beats,
* in which case the same index should be selected until the arbiter goes idle.
*/
class TLDecoupledArbiterRobinTest(txns: Int = 128, timeout: Int = 500000, print: Boolean = false)
(implicit p: Parameters)
extends DecoupledArbiterTest(TLArbiter.roundRobin, txns, timeout, 6, i => i.U)
{
val lastWinner = RegInit((numSources+1).U)
val beatsLeft = RegInit(0.U(log2Ceil(numSources).W))
val first = lastWinner > numSources.U
val valid = lfsr(0)
val ready = lfsr(15)
sink.ready := ready
sources.zipWithIndex.map { // pattern: every even-indexed valid is driven the same random way
case (s, i) => s.valid := (if (i % 2 == 1) false.B else valid)
}
when (sink.fire) {
if (print) { printf("TestRobin: %d\n", sink.bits) }
when (beatsLeft === 0.U) {
assert(lastWinner =/= sink.bits, "Round robin did not pick a new idx despite one being valid.")
lastWinner := sink.bits
beatsLeft := sink.bits
} .otherwise {
assert(lastWinner === sink.bits, "Round robin did not pick the same index over multiple beats")
beatsLeft := beatsLeft - 1.U
}
}
if (print) {
when (!sink.fire) { printf("TestRobin: idle (%d %d)\n", valid, ready) }
}
}
/** This tests that the lowest index is always selected across random single cycle transactions. */
class TLDecoupledArbiterLowestTest(txns: Int = 128, timeout: Int = 500000)(implicit p: Parameters)
extends DecoupledArbiterTest(TLArbiter.lowestIndexFirst, txns, timeout, 15, _ => 0.U)
{
def assertLowest(id: Int): Unit = {
when (sources(id).valid) {
assert((numSources-1 until id by -1).map(!sources(_).fire).foldLeft(true.B)(_&&_), s"$id was valid but a higher valid source was granted ready.")
}
}
sources.zipWithIndex.map { case (s, i) => s.valid := lfsr(i) }
sink.ready := lfsr(15)
when (sink.fire) { (0 until numSources).foreach(assertLowest(_)) }
}
/** This tests that the highest index is always selected across random single cycle transactions. */
class TLDecoupledArbiterHighestTest(txns: Int = 128, timeout: Int = 500000)(implicit p: Parameters)
extends DecoupledArbiterTest(TLArbiter.highestIndexFirst, txns, timeout, 15, _ => 0.U)
{
def assertHighest(id: Int): Unit = {
when (sources(id).valid) {
assert((0 until id).map(!sources(_).fire).foldLeft(true.B)(_&&_), s"$id was valid but a lower valid source was granted ready.")
}
}
sources.zipWithIndex.map { case (s, i) => s.valid := lfsr(i) }
sink.ready := lfsr(15)
when (sink.fire) { (0 until numSources).foreach(assertHighest(_)) }
}
File Xbar.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressDecoder, AddressSet, RegionType, IdRange, TriStateValue}
import freechips.rocketchip.util.BundleField
// Trades off slave port proximity against routing resource cost
object ForceFanout
{
def apply[T](
a: TriStateValue = TriStateValue.unset,
b: TriStateValue = TriStateValue.unset,
c: TriStateValue = TriStateValue.unset,
d: TriStateValue = TriStateValue.unset,
e: TriStateValue = TriStateValue.unset)(body: Parameters => T)(implicit p: Parameters) =
{
body(p.alterPartial {
case ForceFanoutKey => p(ForceFanoutKey) match {
case ForceFanoutParams(pa, pb, pc, pd, pe) =>
ForceFanoutParams(a.update(pa), b.update(pb), c.update(pc), d.update(pd), e.update(pe))
}
})
}
}
private case class ForceFanoutParams(a: Boolean, b: Boolean, c: Boolean, d: Boolean, e: Boolean)
private case object ForceFanoutKey extends Field(ForceFanoutParams(false, false, false, false, false))
class TLXbar(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule
{
val node = new TLNexusNode(
clientFn = { seq =>
seq(0).v1copy(
echoFields = BundleField.union(seq.flatMap(_.echoFields)),
requestFields = BundleField.union(seq.flatMap(_.requestFields)),
responseKeys = seq.flatMap(_.responseKeys).distinct,
minLatency = seq.map(_.minLatency).min,
clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) =>
port.clients map { client => client.v1copy(
sourceId = client.sourceId.shift(range.start)
)}
}
)
},
managerFn = { seq =>
val fifoIdFactory = TLXbar.relabeler()
seq(0).v1copy(
responseFields = BundleField.union(seq.flatMap(_.responseFields)),
requestKeys = seq.flatMap(_.requestKeys).distinct,
minLatency = seq.map(_.minLatency).min,
endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max,
managers = seq.flatMap { port =>
require (port.beatBytes == seq(0).beatBytes,
s"Xbar ($name with parent $parent) data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B")
val fifoIdMapper = fifoIdFactory()
port.managers map { manager => manager.v1copy(
fifoId = manager.fifoId.map(fifoIdMapper(_))
)}
}
)
}
){
override def circuitIdentity = outputs.size == 1 && inputs.size == 1
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
if ((node.in.size * node.out.size) > (8*32)) {
println (s"!!! WARNING !!!")
println (s" Your TLXbar ($name with parent $parent) is very large, with ${node.in.size} Masters and ${node.out.size} Slaves.")
println (s"!!! WARNING !!!")
}
val wide_bundle = TLBundleParameters.union((node.in ++ node.out).map(_._2.bundle))
override def desiredName = (Seq("TLXbar") ++ nameSuffix ++ Seq(s"i${node.in.size}_o${node.out.size}_${wide_bundle.shortName}")).mkString("_")
TLXbar.circuit(policy, node.in, node.out)
}
}
object TLXbar
{
def mapInputIds(ports: Seq[TLMasterPortParameters]) = assignRanges(ports.map(_.endSourceId))
def mapOutputIds(ports: Seq[TLSlavePortParameters]) = assignRanges(ports.map(_.endSinkId))
def assignRanges(sizes: Seq[Int]) = {
val pow2Sizes = sizes.map { z => if (z == 0) 0 else 1 << log2Ceil(z) }
val tuples = pow2Sizes.zipWithIndex.sortBy(_._1) // record old index, then sort by increasing size
val starts = tuples.scanRight(0)(_._1 + _).tail // suffix-sum of the sizes = the start positions
val ranges = (tuples zip starts) map { case ((sz, i), st) =>
(if (sz == 0) IdRange(0, 0) else IdRange(st, st + sz), i)
}
ranges.sortBy(_._2).map(_._1) // Restore orignal order
}
def relabeler() = {
var idFactory = 0
() => {
val fifoMap = scala.collection.mutable.HashMap.empty[Int, Int]
(x: Int) => {
if (fifoMap.contains(x)) fifoMap(x) else {
val out = idFactory
idFactory = idFactory + 1
fifoMap += (x -> out)
out
}
}
}
}
def circuit(policy: TLArbiter.Policy, seqIn: Seq[(TLBundle, TLEdge)], seqOut: Seq[(TLBundle, TLEdge)]) {
val (io_in, edgesIn) = seqIn.unzip
val (io_out, edgesOut) = seqOut.unzip
// Not every master need connect to every slave on every channel; determine which connections are necessary
val reachableIO = edgesIn.map { cp => edgesOut.map { mp =>
cp.client.clients.exists { c => mp.manager.managers.exists { m =>
c.visibility.exists { ca => m.address.exists { ma =>
ca.overlaps(ma)}}}}
}.toVector}.toVector
val probeIO = (edgesIn zip reachableIO).map { case (cp, reachableO) =>
(edgesOut zip reachableO).map { case (mp, reachable) =>
reachable && cp.client.anySupportProbe && mp.manager.managers.exists(_.regionType >= RegionType.TRACKED)
}.toVector}.toVector
val releaseIO = (edgesIn zip reachableIO).map { case (cp, reachableO) =>
(edgesOut zip reachableO).map { case (mp, reachable) =>
reachable && cp.client.anySupportProbe && mp.manager.anySupportAcquireB
}.toVector}.toVector
val connectAIO = reachableIO
val connectBIO = probeIO
val connectCIO = releaseIO
val connectDIO = reachableIO
val connectEIO = releaseIO
def transpose[T](x: Seq[Seq[T]]) = if (x.isEmpty) Nil else Vector.tabulate(x(0).size) { i => Vector.tabulate(x.size) { j => x(j)(i) } }
val connectAOI = transpose(connectAIO)
val connectBOI = transpose(connectBIO)
val connectCOI = transpose(connectCIO)
val connectDOI = transpose(connectDIO)
val connectEOI = transpose(connectEIO)
// Grab the port ID mapping
val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client))
val outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager))
// We need an intermediate size of bundle with the widest possible identifiers
val wide_bundle = TLBundleParameters.union(io_in.map(_.params) ++ io_out.map(_.params))
// Handle size = 1 gracefully (Chisel3 empty range is broken)
def trim(id: UInt, size: Int): UInt = if (size <= 1) 0.U else id(log2Ceil(size)-1, 0)
// Transform input bundle sources (sinks use global namespace on both sides)
val in = Wire(Vec(io_in.size, TLBundle(wide_bundle)))
for (i <- 0 until in.size) {
val r = inputIdRanges(i)
if (connectAIO(i).exists(x=>x)) {
in(i).a.bits.user := DontCare
in(i).a.squeezeAll.waiveAll :<>= io_in(i).a.squeezeAll.waiveAll
in(i).a.bits.source := io_in(i).a.bits.source | r.start.U
} else {
in(i).a := DontCare
io_in(i).a := DontCare
in(i).a.valid := false.B
io_in(i).a.ready := true.B
}
if (connectBIO(i).exists(x=>x)) {
io_in(i).b.squeezeAll :<>= in(i).b.squeezeAll
io_in(i).b.bits.source := trim(in(i).b.bits.source, r.size)
} else {
in(i).b := DontCare
io_in(i).b := DontCare
in(i).b.ready := true.B
io_in(i).b.valid := false.B
}
if (connectCIO(i).exists(x=>x)) {
in(i).c.bits.user := DontCare
in(i).c.squeezeAll.waiveAll :<>= io_in(i).c.squeezeAll.waiveAll
in(i).c.bits.source := io_in(i).c.bits.source | r.start.U
} else {
in(i).c := DontCare
io_in(i).c := DontCare
in(i).c.valid := false.B
io_in(i).c.ready := true.B
}
if (connectDIO(i).exists(x=>x)) {
io_in(i).d.squeezeAll.waiveAll :<>= in(i).d.squeezeAll.waiveAll
io_in(i).d.bits.source := trim(in(i).d.bits.source, r.size)
} else {
in(i).d := DontCare
io_in(i).d := DontCare
in(i).d.ready := true.B
io_in(i).d.valid := false.B
}
if (connectEIO(i).exists(x=>x)) {
in(i).e.squeezeAll :<>= io_in(i).e.squeezeAll
} else {
in(i).e := DontCare
io_in(i).e := DontCare
in(i).e.valid := false.B
io_in(i).e.ready := true.B
}
}
// Transform output bundle sinks (sources use global namespace on both sides)
val out = Wire(Vec(io_out.size, TLBundle(wide_bundle)))
for (o <- 0 until out.size) {
val r = outputIdRanges(o)
if (connectAOI(o).exists(x=>x)) {
out(o).a.bits.user := DontCare
io_out(o).a.squeezeAll.waiveAll :<>= out(o).a.squeezeAll.waiveAll
} else {
out(o).a := DontCare
io_out(o).a := DontCare
out(o).a.ready := true.B
io_out(o).a.valid := false.B
}
if (connectBOI(o).exists(x=>x)) {
out(o).b.squeezeAll :<>= io_out(o).b.squeezeAll
} else {
out(o).b := DontCare
io_out(o).b := DontCare
out(o).b.valid := false.B
io_out(o).b.ready := true.B
}
if (connectCOI(o).exists(x=>x)) {
out(o).c.bits.user := DontCare
io_out(o).c.squeezeAll.waiveAll :<>= out(o).c.squeezeAll.waiveAll
} else {
out(o).c := DontCare
io_out(o).c := DontCare
out(o).c.ready := true.B
io_out(o).c.valid := false.B
}
if (connectDOI(o).exists(x=>x)) {
out(o).d.squeezeAll :<>= io_out(o).d.squeezeAll
out(o).d.bits.sink := io_out(o).d.bits.sink | r.start.U
} else {
out(o).d := DontCare
io_out(o).d := DontCare
out(o).d.valid := false.B
io_out(o).d.ready := true.B
}
if (connectEOI(o).exists(x=>x)) {
io_out(o).e.squeezeAll :<>= out(o).e.squeezeAll
io_out(o).e.bits.sink := trim(out(o).e.bits.sink, r.size)
} else {
out(o).e := DontCare
io_out(o).e := DontCare
out(o).e.ready := true.B
io_out(o).e.valid := false.B
}
}
// Filter a list to only those elements selected
def filter[T](data: Seq[T], mask: Seq[Boolean]) = (data zip mask).filter(_._2).map(_._1)
// Based on input=>output connectivity, create per-input minimal address decode circuits
val requiredAC = (connectAIO ++ connectCIO).distinct
val outputPortFns: Map[Vector[Boolean], Seq[UInt => Bool]] = requiredAC.map { connectO =>
val port_addrs = edgesOut.map(_.manager.managers.flatMap(_.address))
val routingMask = AddressDecoder(filter(port_addrs, connectO))
val route_addrs = port_addrs.map(seq => AddressSet.unify(seq.map(_.widen(~routingMask)).distinct))
// Print the address mapping
if (false) {
println("Xbar mapping:")
route_addrs.foreach { p =>
print(" ")
p.foreach { a => print(s" ${a}") }
println("")
}
println("--")
}
(connectO, route_addrs.map(seq => (addr: UInt) => seq.map(_.contains(addr)).reduce(_ || _)))
}.toMap
// Print the ID mapping
if (false) {
println(s"XBar mapping:")
(edgesIn zip inputIdRanges).zipWithIndex.foreach { case ((edge, id), i) =>
println(s"\t$i assigned ${id} for ${edge.client.clients.map(_.name).mkString(", ")}")
}
println("")
}
val addressA = (in zip edgesIn) map { case (i, e) => e.address(i.a.bits) }
val addressC = (in zip edgesIn) map { case (i, e) => e.address(i.c.bits) }
def unique(x: Vector[Boolean]): Bool = (x.filter(x=>x).size <= 1).B
val requestAIO = (connectAIO zip addressA) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } }
val requestCIO = (connectCIO zip addressC) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } }
val requestBOI = out.map { o => inputIdRanges.map { i => i.contains(o.b.bits.source) } }
val requestDOI = out.map { o => inputIdRanges.map { i => i.contains(o.d.bits.source) } }
val requestEIO = in.map { i => outputIdRanges.map { o => o.contains(i.e.bits.sink) } }
val beatsAI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.a.bits) }
val beatsBO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.b.bits) }
val beatsCI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.c.bits) }
val beatsDO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.d.bits) }
val beatsEI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.e.bits) }
// Fanout the input sources to the output sinks
val portsAOI = transpose((in zip requestAIO) map { case (i, r) => TLXbar.fanout(i.a, r, edgesOut.map(_.params(ForceFanoutKey).a)) })
val portsBIO = transpose((out zip requestBOI) map { case (o, r) => TLXbar.fanout(o.b, r, edgesIn .map(_.params(ForceFanoutKey).b)) })
val portsCOI = transpose((in zip requestCIO) map { case (i, r) => TLXbar.fanout(i.c, r, edgesOut.map(_.params(ForceFanoutKey).c)) })
val portsDIO = transpose((out zip requestDOI) map { case (o, r) => TLXbar.fanout(o.d, r, edgesIn .map(_.params(ForceFanoutKey).d)) })
val portsEOI = transpose((in zip requestEIO) map { case (i, r) => TLXbar.fanout(i.e, r, edgesOut.map(_.params(ForceFanoutKey).e)) })
// Arbitrate amongst the sources
for (o <- 0 until out.size) {
TLArbiter(policy)(out(o).a, filter(beatsAI zip portsAOI(o), connectAOI(o)):_*)
TLArbiter(policy)(out(o).c, filter(beatsCI zip portsCOI(o), connectCOI(o)):_*)
TLArbiter(policy)(out(o).e, filter(beatsEI zip portsEOI(o), connectEOI(o)):_*)
filter(portsAOI(o), connectAOI(o).map(!_)) foreach { r => r.ready := false.B }
filter(portsCOI(o), connectCOI(o).map(!_)) foreach { r => r.ready := false.B }
filter(portsEOI(o), connectEOI(o).map(!_)) foreach { r => r.ready := false.B }
}
for (i <- 0 until in.size) {
TLArbiter(policy)(in(i).b, filter(beatsBO zip portsBIO(i), connectBIO(i)):_*)
TLArbiter(policy)(in(i).d, filter(beatsDO zip portsDIO(i), connectDIO(i)):_*)
filter(portsBIO(i), connectBIO(i).map(!_)) foreach { r => r.ready := false.B }
filter(portsDIO(i), connectDIO(i).map(!_)) foreach { r => r.ready := false.B }
}
}
def apply(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode =
{
val xbar = LazyModule(new TLXbar(policy, nameSuffix))
xbar.node
}
// Replicate an input port to each output port
def fanout[T <: TLChannel](input: DecoupledIO[T], select: Seq[Bool], force: Seq[Boolean] = Nil): Seq[DecoupledIO[T]] = {
val filtered = Wire(Vec(select.size, chiselTypeOf(input)))
for (i <- 0 until select.size) {
filtered(i).bits := (if (force.lift(i).getOrElse(false)) IdentityModule(input.bits) else input.bits)
filtered(i).valid := input.valid && (select(i) || (select.size == 1).B)
}
input.ready := Mux1H(select, filtered.map(_.ready))
filtered
}
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMXbar(nManagers: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("Xbar"))
val xbar = LazyModule(new TLXbar)
xbar.node := TLDelayer(0.1) := model.node := fuzz.node
(0 until nManagers) foreach { n =>
val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff)))
ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMXbarTest(nManagers: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMXbar(nManagers,txns)).module)
dut.io.start := io.start
io.finished := dut.io.finished
}
class TLMulticlientXbar(nManagers: Int, nClients: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val xbar = LazyModule(new TLXbar)
val fuzzers = (0 until nClients) map { n =>
val fuzz = LazyModule(new TLFuzzer(txns))
xbar.node := TLDelayer(0.1) := fuzz.node
fuzz
}
(0 until nManagers) foreach { n =>
val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff)))
ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzzers.last.module.io.finished
}
}
class TLMulticlientXbarTest(nManagers: Int, nClients: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLMulticlientXbar(nManagers, nClients, txns)).module)
dut.io.start := io.start
io.finished := dut.io.finished
}
| module TLXbar_sbus_i2_o1_a32d64s6k1z4u( // @[Xbar.scala:74:9]
input clock, // @[Xbar.scala:74:9]
input reset, // @[Xbar.scala:74:9]
output auto_anon_in_1_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_1_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_1_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_anon_in_1_a_bits_size, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_anon_in_1_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_anon_in_1_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_in_1_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_1_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_in_1_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_anon_in_1_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_anon_in_1_d_bits_size, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_in_1_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_1_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_0_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_0_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_0_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_in_0_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_anon_in_0_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [4:0] auto_anon_in_0_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_anon_in_0_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_anon_in_0_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_in_0_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_0_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_anon_in_0_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_0_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_in_0_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_anon_in_0_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_anon_in_0_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [4:0] auto_anon_in_0_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_0_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_0_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_in_0_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_anon_in_0_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_anon_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_anon_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_anon_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25]
);
wire out_0_d_bits_sink; // @[Xbar.scala:216:19]
wire [5:0] in_1_a_bits_source; // @[Xbar.scala:159:18]
wire [5:0] in_0_a_bits_source; // @[Xbar.scala:159:18]
wire auto_anon_in_1_a_valid_0 = auto_anon_in_1_a_valid; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_a_bits_opcode_0 = auto_anon_in_1_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_a_bits_param_0 = auto_anon_in_1_a_bits_param; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_in_1_a_bits_size_0 = auto_anon_in_1_a_bits_size; // @[Xbar.scala:74:9]
wire auto_anon_in_1_a_bits_source_0 = auto_anon_in_1_a_bits_source; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_in_1_a_bits_address_0 = auto_anon_in_1_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] auto_anon_in_1_a_bits_mask_0 = auto_anon_in_1_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_in_1_a_bits_data_0 = auto_anon_in_1_a_bits_data; // @[Xbar.scala:74:9]
wire auto_anon_in_1_a_bits_corrupt_0 = auto_anon_in_1_a_bits_corrupt; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_ready_0 = auto_anon_in_1_d_ready; // @[Xbar.scala:74:9]
wire auto_anon_in_0_a_valid_0 = auto_anon_in_0_a_valid; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_0_a_bits_opcode_0 = auto_anon_in_0_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_0_a_bits_param_0 = auto_anon_in_0_a_bits_param; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_in_0_a_bits_size_0 = auto_anon_in_0_a_bits_size; // @[Xbar.scala:74:9]
wire [4:0] auto_anon_in_0_a_bits_source_0 = auto_anon_in_0_a_bits_source; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_in_0_a_bits_address_0 = auto_anon_in_0_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] auto_anon_in_0_a_bits_mask_0 = auto_anon_in_0_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_in_0_a_bits_data_0 = auto_anon_in_0_a_bits_data; // @[Xbar.scala:74:9]
wire auto_anon_in_0_a_bits_corrupt_0 = auto_anon_in_0_a_bits_corrupt; // @[Xbar.scala:74:9]
wire auto_anon_in_0_d_ready_0 = auto_anon_in_0_d_ready; // @[Xbar.scala:74:9]
wire auto_anon_out_a_ready_0 = auto_anon_out_a_ready; // @[Xbar.scala:74:9]
wire auto_anon_out_d_valid_0 = auto_anon_out_d_valid; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_d_bits_opcode_0 = auto_anon_out_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_out_d_bits_param_0 = auto_anon_out_d_bits_param; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_out_d_bits_size_0 = auto_anon_out_d_bits_size; // @[Xbar.scala:74:9]
wire [5:0] auto_anon_out_d_bits_source_0 = auto_anon_out_d_bits_source; // @[Xbar.scala:74:9]
wire auto_anon_out_d_bits_sink_0 = auto_anon_out_d_bits_sink; // @[Xbar.scala:74:9]
wire auto_anon_out_d_bits_denied_0 = auto_anon_out_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_out_d_bits_data_0 = auto_anon_out_d_bits_data; // @[Xbar.scala:74:9]
wire auto_anon_out_d_bits_corrupt_0 = auto_anon_out_d_bits_corrupt; // @[Xbar.scala:74:9]
wire _readys_T_2 = reset; // @[Arbiter.scala:22:12]
wire _addressC_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _addressC_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _addressC_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _addressC_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _addressC_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _addressC_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _addressC_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _addressC_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _addressC_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _addressC_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _addressC_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _addressC_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _requestBOI_WIRE_ready = 1'h0; // @[Bundles.scala:264:74]
wire _requestBOI_WIRE_valid = 1'h0; // @[Bundles.scala:264:74]
wire _requestBOI_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire _requestBOI_WIRE_1_ready = 1'h0; // @[Bundles.scala:264:61]
wire _requestBOI_WIRE_1_valid = 1'h0; // @[Bundles.scala:264:61]
wire _requestBOI_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire _requestBOI_T = 1'h0; // @[Parameters.scala:54:10]
wire _requestBOI_WIRE_2_ready = 1'h0; // @[Bundles.scala:264:74]
wire _requestBOI_WIRE_2_valid = 1'h0; // @[Bundles.scala:264:74]
wire _requestBOI_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire _requestBOI_WIRE_3_ready = 1'h0; // @[Bundles.scala:264:61]
wire _requestBOI_WIRE_3_valid = 1'h0; // @[Bundles.scala:264:61]
wire _requestBOI_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire requestBOI_uncommonBits_1 = 1'h0; // @[Parameters.scala:52:56]
wire _requestBOI_T_6 = 1'h0; // @[Parameters.scala:54:32]
wire _requestBOI_T_8 = 1'h0; // @[Parameters.scala:54:67]
wire requestBOI_0_1 = 1'h0; // @[Parameters.scala:56:48]
wire _requestEIO_WIRE_ready = 1'h0; // @[Bundles.scala:267:74]
wire _requestEIO_WIRE_valid = 1'h0; // @[Bundles.scala:267:74]
wire _requestEIO_WIRE_bits_sink = 1'h0; // @[Bundles.scala:267:74]
wire _requestEIO_WIRE_1_ready = 1'h0; // @[Bundles.scala:267:61]
wire _requestEIO_WIRE_1_valid = 1'h0; // @[Bundles.scala:267:61]
wire _requestEIO_WIRE_1_bits_sink = 1'h0; // @[Bundles.scala:267:61]
wire _requestEIO_WIRE_2_ready = 1'h0; // @[Bundles.scala:267:74]
wire _requestEIO_WIRE_2_valid = 1'h0; // @[Bundles.scala:267:74]
wire _requestEIO_WIRE_2_bits_sink = 1'h0; // @[Bundles.scala:267:74]
wire _requestEIO_WIRE_3_ready = 1'h0; // @[Bundles.scala:267:61]
wire _requestEIO_WIRE_3_valid = 1'h0; // @[Bundles.scala:267:61]
wire _requestEIO_WIRE_3_bits_sink = 1'h0; // @[Bundles.scala:267:61]
wire _beatsBO_WIRE_ready = 1'h0; // @[Bundles.scala:264:74]
wire _beatsBO_WIRE_valid = 1'h0; // @[Bundles.scala:264:74]
wire _beatsBO_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire _beatsBO_WIRE_1_ready = 1'h0; // @[Bundles.scala:264:61]
wire _beatsBO_WIRE_1_valid = 1'h0; // @[Bundles.scala:264:61]
wire _beatsBO_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire _beatsBO_opdata_T = 1'h0; // @[Edges.scala:97:37]
wire _beatsCI_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _beatsCI_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _beatsCI_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _beatsCI_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _beatsCI_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _beatsCI_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire beatsCI_opdata = 1'h0; // @[Edges.scala:102:36]
wire _beatsCI_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _beatsCI_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _beatsCI_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _beatsCI_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _beatsCI_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _beatsCI_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire beatsCI_opdata_1 = 1'h0; // @[Edges.scala:102:36]
wire _beatsEI_WIRE_ready = 1'h0; // @[Bundles.scala:267:74]
wire _beatsEI_WIRE_valid = 1'h0; // @[Bundles.scala:267:74]
wire _beatsEI_WIRE_bits_sink = 1'h0; // @[Bundles.scala:267:74]
wire _beatsEI_WIRE_1_ready = 1'h0; // @[Bundles.scala:267:61]
wire _beatsEI_WIRE_1_valid = 1'h0; // @[Bundles.scala:267:61]
wire _beatsEI_WIRE_1_bits_sink = 1'h0; // @[Bundles.scala:267:61]
wire _beatsEI_WIRE_2_ready = 1'h0; // @[Bundles.scala:267:74]
wire _beatsEI_WIRE_2_valid = 1'h0; // @[Bundles.scala:267:74]
wire _beatsEI_WIRE_2_bits_sink = 1'h0; // @[Bundles.scala:267:74]
wire _beatsEI_WIRE_3_ready = 1'h0; // @[Bundles.scala:267:61]
wire _beatsEI_WIRE_3_valid = 1'h0; // @[Bundles.scala:267:61]
wire _beatsEI_WIRE_3_bits_sink = 1'h0; // @[Bundles.scala:267:61]
wire _portsBIO_WIRE_ready = 1'h0; // @[Bundles.scala:264:74]
wire _portsBIO_WIRE_valid = 1'h0; // @[Bundles.scala:264:74]
wire _portsBIO_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74]
wire _portsBIO_WIRE_1_ready = 1'h0; // @[Bundles.scala:264:61]
wire _portsBIO_WIRE_1_valid = 1'h0; // @[Bundles.scala:264:61]
wire _portsBIO_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:264:61]
wire portsBIO_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_1_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_1_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsBIO_filtered_1_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire _portsBIO_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsBIO_filtered_1_valid_T = 1'h0; // @[Xbar.scala:355:54]
wire _portsBIO_filtered_1_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsBIO_T = 1'h0; // @[Mux.scala:30:73]
wire _portsBIO_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _portsBIO_T_2 = 1'h0; // @[Mux.scala:30:73]
wire _portsBIO_WIRE_2 = 1'h0; // @[Mux.scala:30:73]
wire _portsCOI_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _portsCOI_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _portsCOI_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _portsCOI_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _portsCOI_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _portsCOI_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire portsCOI_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsCOI_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsCOI_filtered_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire _portsCOI_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsCOI_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _portsCOI_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _portsCOI_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _portsCOI_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _portsCOI_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _portsCOI_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire portsCOI_filtered_1_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsCOI_filtered_1_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsCOI_filtered_1_0_bits_corrupt = 1'h0; // @[Xbar.scala:352:24]
wire _portsCOI_filtered_0_valid_T_3 = 1'h0; // @[Xbar.scala:355:40]
wire _portsEOI_WIRE_ready = 1'h0; // @[Bundles.scala:267:74]
wire _portsEOI_WIRE_valid = 1'h0; // @[Bundles.scala:267:74]
wire _portsEOI_WIRE_bits_sink = 1'h0; // @[Bundles.scala:267:74]
wire _portsEOI_WIRE_1_ready = 1'h0; // @[Bundles.scala:267:61]
wire _portsEOI_WIRE_1_valid = 1'h0; // @[Bundles.scala:267:61]
wire _portsEOI_WIRE_1_bits_sink = 1'h0; // @[Bundles.scala:267:61]
wire portsEOI_filtered_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsEOI_filtered_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsEOI_filtered_0_bits_sink = 1'h0; // @[Xbar.scala:352:24]
wire _portsEOI_filtered_0_valid_T_1 = 1'h0; // @[Xbar.scala:355:40]
wire _portsEOI_WIRE_2_ready = 1'h0; // @[Bundles.scala:267:74]
wire _portsEOI_WIRE_2_valid = 1'h0; // @[Bundles.scala:267:74]
wire _portsEOI_WIRE_2_bits_sink = 1'h0; // @[Bundles.scala:267:74]
wire _portsEOI_WIRE_3_ready = 1'h0; // @[Bundles.scala:267:61]
wire _portsEOI_WIRE_3_valid = 1'h0; // @[Bundles.scala:267:61]
wire _portsEOI_WIRE_3_bits_sink = 1'h0; // @[Bundles.scala:267:61]
wire portsEOI_filtered_1_0_ready = 1'h0; // @[Xbar.scala:352:24]
wire portsEOI_filtered_1_0_valid = 1'h0; // @[Xbar.scala:352:24]
wire portsEOI_filtered_1_0_bits_sink = 1'h0; // @[Xbar.scala:352:24]
wire _portsEOI_filtered_0_valid_T_3 = 1'h0; // @[Xbar.scala:355:40]
wire _state_WIRE_0 = 1'h0; // @[Arbiter.scala:88:34]
wire _state_WIRE_1 = 1'h0; // @[Arbiter.scala:88:34]
wire _requestAIO_T_4 = 1'h1; // @[Parameters.scala:137:59]
wire requestAIO_0_0 = 1'h1; // @[Xbar.scala:307:107]
wire _requestAIO_T_9 = 1'h1; // @[Parameters.scala:137:59]
wire requestAIO_1_0 = 1'h1; // @[Xbar.scala:307:107]
wire _requestCIO_T_4 = 1'h1; // @[Parameters.scala:137:59]
wire requestCIO_0_0 = 1'h1; // @[Xbar.scala:308:107]
wire _requestCIO_T_9 = 1'h1; // @[Parameters.scala:137:59]
wire requestCIO_1_0 = 1'h1; // @[Xbar.scala:308:107]
wire _requestBOI_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire _requestBOI_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _requestBOI_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire _requestBOI_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire requestBOI_0_0 = 1'h1; // @[Parameters.scala:56:48]
wire _requestBOI_T_7 = 1'h1; // @[Parameters.scala:56:32]
wire _requestBOI_T_9 = 1'h1; // @[Parameters.scala:57:20]
wire _requestDOI_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _requestDOI_T_4 = 1'h1; // @[Parameters.scala:57:20]
wire _requestDOI_T_7 = 1'h1; // @[Parameters.scala:56:32]
wire _requestDOI_T_9 = 1'h1; // @[Parameters.scala:57:20]
wire beatsBO_opdata = 1'h1; // @[Edges.scala:97:28]
wire _portsAOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire _portsAOI_filtered_0_valid_T_2 = 1'h1; // @[Xbar.scala:355:54]
wire _portsBIO_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire _portsCOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire _portsCOI_filtered_0_valid_T_2 = 1'h1; // @[Xbar.scala:355:54]
wire _portsEOI_filtered_0_valid_T = 1'h1; // @[Xbar.scala:355:54]
wire _portsEOI_filtered_0_valid_T_2 = 1'h1; // @[Xbar.scala:355:54]
wire [63:0] _addressC_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _addressC_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _addressC_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _addressC_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _requestBOI_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] _requestBOI_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] _requestBOI_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] _requestBOI_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] _beatsBO_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] _beatsBO_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] _beatsCI_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _beatsCI_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _beatsCI_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _beatsCI_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _portsBIO_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74]
wire [63:0] _portsBIO_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:264:61]
wire [63:0] portsBIO_filtered_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] portsBIO_filtered_1_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] _portsCOI_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _portsCOI_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] portsCOI_filtered_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [63:0] _portsCOI_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _portsCOI_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] portsCOI_filtered_1_0_bits_data = 64'h0; // @[Xbar.scala:352:24]
wire [31:0] _addressC_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _addressC_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _addressC_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _addressC_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _requestCIO_T = 32'h0; // @[Parameters.scala:137:31]
wire [31:0] _requestCIO_T_5 = 32'h0; // @[Parameters.scala:137:31]
wire [31:0] _requestBOI_WIRE_bits_address = 32'h0; // @[Bundles.scala:264:74]
wire [31:0] _requestBOI_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:264:61]
wire [31:0] _requestBOI_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:264:74]
wire [31:0] _requestBOI_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:264:61]
wire [31:0] _beatsBO_WIRE_bits_address = 32'h0; // @[Bundles.scala:264:74]
wire [31:0] _beatsBO_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:264:61]
wire [31:0] _beatsCI_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _beatsCI_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _beatsCI_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _beatsCI_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _portsBIO_WIRE_bits_address = 32'h0; // @[Bundles.scala:264:74]
wire [31:0] _portsBIO_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:264:61]
wire [31:0] portsBIO_filtered_0_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [31:0] portsBIO_filtered_1_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [31:0] _portsCOI_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _portsCOI_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] portsCOI_filtered_0_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [31:0] _portsCOI_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _portsCOI_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] portsCOI_filtered_1_0_bits_address = 32'h0; // @[Xbar.scala:352:24]
wire [5:0] _addressC_WIRE_bits_source = 6'h0; // @[Bundles.scala:265:74]
wire [5:0] _addressC_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:265:61]
wire [5:0] _addressC_WIRE_2_bits_source = 6'h0; // @[Bundles.scala:265:74]
wire [5:0] _addressC_WIRE_3_bits_source = 6'h0; // @[Bundles.scala:265:61]
wire [5:0] _requestBOI_WIRE_bits_source = 6'h0; // @[Bundles.scala:264:74]
wire [5:0] _requestBOI_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:264:61]
wire [5:0] _requestBOI_uncommonBits_T = 6'h0; // @[Parameters.scala:52:29]
wire [5:0] _requestBOI_WIRE_2_bits_source = 6'h0; // @[Bundles.scala:264:74]
wire [5:0] _requestBOI_WIRE_3_bits_source = 6'h0; // @[Bundles.scala:264:61]
wire [5:0] _requestBOI_uncommonBits_T_1 = 6'h0; // @[Parameters.scala:52:29]
wire [5:0] _beatsBO_WIRE_bits_source = 6'h0; // @[Bundles.scala:264:74]
wire [5:0] _beatsBO_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:264:61]
wire [5:0] _beatsCI_WIRE_bits_source = 6'h0; // @[Bundles.scala:265:74]
wire [5:0] _beatsCI_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:265:61]
wire [5:0] _beatsCI_WIRE_2_bits_source = 6'h0; // @[Bundles.scala:265:74]
wire [5:0] _beatsCI_WIRE_3_bits_source = 6'h0; // @[Bundles.scala:265:61]
wire [5:0] _portsBIO_WIRE_bits_source = 6'h0; // @[Bundles.scala:264:74]
wire [5:0] _portsBIO_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:264:61]
wire [5:0] portsBIO_filtered_0_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [5:0] portsBIO_filtered_1_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [5:0] _portsCOI_WIRE_bits_source = 6'h0; // @[Bundles.scala:265:74]
wire [5:0] _portsCOI_WIRE_1_bits_source = 6'h0; // @[Bundles.scala:265:61]
wire [5:0] portsCOI_filtered_0_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [5:0] _portsCOI_WIRE_2_bits_source = 6'h0; // @[Bundles.scala:265:74]
wire [5:0] _portsCOI_WIRE_3_bits_source = 6'h0; // @[Bundles.scala:265:61]
wire [5:0] portsCOI_filtered_1_0_bits_source = 6'h0; // @[Xbar.scala:352:24]
wire [3:0] _addressC_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _addressC_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _addressC_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _addressC_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _requestBOI_WIRE_bits_size = 4'h0; // @[Bundles.scala:264:74]
wire [3:0] _requestBOI_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:264:61]
wire [3:0] _requestBOI_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:264:74]
wire [3:0] _requestBOI_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:264:61]
wire [3:0] _beatsBO_WIRE_bits_size = 4'h0; // @[Bundles.scala:264:74]
wire [3:0] _beatsBO_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:264:61]
wire [3:0] _beatsCI_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _beatsCI_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _beatsCI_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _beatsCI_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _portsBIO_WIRE_bits_size = 4'h0; // @[Bundles.scala:264:74]
wire [3:0] _portsBIO_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:264:61]
wire [3:0] portsBIO_filtered_0_bits_size = 4'h0; // @[Xbar.scala:352:24]
wire [3:0] portsBIO_filtered_1_bits_size = 4'h0; // @[Xbar.scala:352:24]
wire [3:0] _portsCOI_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _portsCOI_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] portsCOI_filtered_0_bits_size = 4'h0; // @[Xbar.scala:352:24]
wire [3:0] _portsCOI_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _portsCOI_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] portsCOI_filtered_1_0_bits_size = 4'h0; // @[Xbar.scala:352:24]
wire [2:0] _addressC_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _addressC_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _addressC_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _addressC_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _addressC_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _addressC_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _addressC_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _addressC_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _requestBOI_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] _requestBOI_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] _requestBOI_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] _requestBOI_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] _beatsBO_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] _beatsBO_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] _beatsCI_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _beatsCI_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _beatsCI_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _beatsCI_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _beatsCI_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _beatsCI_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _beatsCI_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _beatsCI_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _portsBIO_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74]
wire [2:0] _portsBIO_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:264:61]
wire [2:0] portsBIO_filtered_0_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsBIO_filtered_1_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] _portsCOI_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _portsCOI_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _portsCOI_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _portsCOI_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] portsCOI_filtered_0_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsCOI_filtered_0_bits_param = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] _portsCOI_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _portsCOI_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _portsCOI_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _portsCOI_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] portsCOI_filtered_1_0_bits_opcode = 3'h0; // @[Xbar.scala:352:24]
wire [2:0] portsCOI_filtered_1_0_bits_param = 3'h0; // @[Xbar.scala:352:24]
wire [7:0] _requestBOI_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] _requestBOI_WIRE_1_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] _requestBOI_WIRE_2_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] _requestBOI_WIRE_3_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] _beatsBO_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] _beatsBO_WIRE_1_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] _portsBIO_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74]
wire [7:0] _portsBIO_WIRE_1_bits_mask = 8'h0; // @[Bundles.scala:264:61]
wire [7:0] portsBIO_filtered_0_bits_mask = 8'h0; // @[Xbar.scala:352:24]
wire [7:0] portsBIO_filtered_1_bits_mask = 8'h0; // @[Xbar.scala:352:24]
wire [1:0] _requestBOI_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] _requestBOI_WIRE_1_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] _requestBOI_WIRE_2_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] _requestBOI_WIRE_3_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] _beatsBO_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] _beatsBO_WIRE_1_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] _portsBIO_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74]
wire [1:0] _portsBIO_WIRE_1_bits_param = 2'h0; // @[Bundles.scala:264:61]
wire [1:0] portsBIO_filtered_0_bits_param = 2'h0; // @[Xbar.scala:352:24]
wire [1:0] portsBIO_filtered_1_bits_param = 2'h0; // @[Xbar.scala:352:24]
wire [8:0] beatsBO_decode = 9'h0; // @[Edges.scala:220:59]
wire [8:0] beatsBO_0 = 9'h0; // @[Edges.scala:221:14]
wire [8:0] beatsCI_decode = 9'h0; // @[Edges.scala:220:59]
wire [8:0] beatsCI_0 = 9'h0; // @[Edges.scala:221:14]
wire [8:0] beatsCI_decode_1 = 9'h0; // @[Edges.scala:220:59]
wire [8:0] beatsCI_1 = 9'h0; // @[Edges.scala:221:14]
wire [11:0] _beatsBO_decode_T_2 = 12'h0; // @[package.scala:243:46]
wire [11:0] _beatsCI_decode_T_2 = 12'h0; // @[package.scala:243:46]
wire [11:0] _beatsCI_decode_T_5 = 12'h0; // @[package.scala:243:46]
wire [11:0] _beatsBO_decode_T_1 = 12'hFFF; // @[package.scala:243:76]
wire [11:0] _beatsCI_decode_T_1 = 12'hFFF; // @[package.scala:243:76]
wire [11:0] _beatsCI_decode_T_4 = 12'hFFF; // @[package.scala:243:76]
wire [26:0] _beatsBO_decode_T = 27'hFFF; // @[package.scala:243:71]
wire [26:0] _beatsCI_decode_T = 27'hFFF; // @[package.scala:243:71]
wire [26:0] _beatsCI_decode_T_3 = 27'hFFF; // @[package.scala:243:71]
wire [4:0] requestBOI_uncommonBits = 5'h0; // @[Parameters.scala:52:56]
wire [4:0] _requestBOI_T_5 = 5'h0; // @[Parameters.scala:54:10]
wire [32:0] _requestAIO_T_2 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestAIO_T_3 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestAIO_T_7 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestAIO_T_8 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_1 = 33'h0; // @[Parameters.scala:137:41]
wire [32:0] _requestCIO_T_2 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_3 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_6 = 33'h0; // @[Parameters.scala:137:41]
wire [32:0] _requestCIO_T_7 = 33'h0; // @[Parameters.scala:137:46]
wire [32:0] _requestCIO_T_8 = 33'h0; // @[Parameters.scala:137:46]
wire anonIn_1_a_ready; // @[MixedNode.scala:551:17]
wire anonIn_1_a_valid = auto_anon_in_1_a_valid_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_1_a_bits_opcode = auto_anon_in_1_a_bits_opcode_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_1_a_bits_param = auto_anon_in_1_a_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] anonIn_1_a_bits_size = auto_anon_in_1_a_bits_size_0; // @[Xbar.scala:74:9]
wire anonIn_1_a_bits_source = auto_anon_in_1_a_bits_source_0; // @[Xbar.scala:74:9]
wire [31:0] anonIn_1_a_bits_address = auto_anon_in_1_a_bits_address_0; // @[Xbar.scala:74:9]
wire [7:0] anonIn_1_a_bits_mask = auto_anon_in_1_a_bits_mask_0; // @[Xbar.scala:74:9]
wire [63:0] anonIn_1_a_bits_data = auto_anon_in_1_a_bits_data_0; // @[Xbar.scala:74:9]
wire anonIn_1_a_bits_corrupt = auto_anon_in_1_a_bits_corrupt_0; // @[Xbar.scala:74:9]
wire anonIn_1_d_ready = auto_anon_in_1_d_ready_0; // @[Xbar.scala:74:9]
wire anonIn_1_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] anonIn_1_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] anonIn_1_d_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] anonIn_1_d_bits_size; // @[MixedNode.scala:551:17]
wire anonIn_1_d_bits_source; // @[MixedNode.scala:551:17]
wire anonIn_1_d_bits_sink; // @[MixedNode.scala:551:17]
wire anonIn_1_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] anonIn_1_d_bits_data; // @[MixedNode.scala:551:17]
wire anonIn_1_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire anonIn_a_ready; // @[MixedNode.scala:551:17]
wire anonIn_a_valid = auto_anon_in_0_a_valid_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_a_bits_opcode = auto_anon_in_0_a_bits_opcode_0; // @[Xbar.scala:74:9]
wire [2:0] anonIn_a_bits_param = auto_anon_in_0_a_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] anonIn_a_bits_size = auto_anon_in_0_a_bits_size_0; // @[Xbar.scala:74:9]
wire [4:0] anonIn_a_bits_source = auto_anon_in_0_a_bits_source_0; // @[Xbar.scala:74:9]
wire [31:0] anonIn_a_bits_address = auto_anon_in_0_a_bits_address_0; // @[Xbar.scala:74:9]
wire [7:0] anonIn_a_bits_mask = auto_anon_in_0_a_bits_mask_0; // @[Xbar.scala:74:9]
wire [63:0] anonIn_a_bits_data = auto_anon_in_0_a_bits_data_0; // @[Xbar.scala:74:9]
wire anonIn_a_bits_corrupt = auto_anon_in_0_a_bits_corrupt_0; // @[Xbar.scala:74:9]
wire anonIn_d_ready = auto_anon_in_0_d_ready_0; // @[Xbar.scala:74:9]
wire anonIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] anonIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] anonIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] anonIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [4:0] anonIn_d_bits_source; // @[MixedNode.scala:551:17]
wire anonIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire anonIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] anonIn_d_bits_data; // @[MixedNode.scala:551:17]
wire anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire anonOut_a_ready = auto_anon_out_a_ready_0; // @[Xbar.scala:74:9]
wire anonOut_a_valid; // @[MixedNode.scala:542:17]
wire [2:0] anonOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] anonOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [3:0] anonOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [5:0] anonOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [31:0] anonOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] anonOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] anonOut_a_bits_data; // @[MixedNode.scala:542:17]
wire anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire anonOut_d_ready; // @[MixedNode.scala:542:17]
wire anonOut_d_valid = auto_anon_out_d_valid_0; // @[Xbar.scala:74:9]
wire [2:0] anonOut_d_bits_opcode = auto_anon_out_d_bits_opcode_0; // @[Xbar.scala:74:9]
wire [1:0] anonOut_d_bits_param = auto_anon_out_d_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] anonOut_d_bits_size = auto_anon_out_d_bits_size_0; // @[Xbar.scala:74:9]
wire [5:0] anonOut_d_bits_source = auto_anon_out_d_bits_source_0; // @[Xbar.scala:74:9]
wire anonOut_d_bits_sink = auto_anon_out_d_bits_sink_0; // @[Xbar.scala:74:9]
wire anonOut_d_bits_denied = auto_anon_out_d_bits_denied_0; // @[Xbar.scala:74:9]
wire [63:0] anonOut_d_bits_data = auto_anon_out_d_bits_data_0; // @[Xbar.scala:74:9]
wire anonOut_d_bits_corrupt = auto_anon_out_d_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_a_ready_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_1_d_bits_opcode_0; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_in_1_d_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_in_1_d_bits_size_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_bits_source_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_bits_sink_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_bits_denied_0; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_in_1_d_bits_data_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_in_1_d_valid_0; // @[Xbar.scala:74:9]
wire auto_anon_in_0_a_ready_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_in_0_d_bits_opcode_0; // @[Xbar.scala:74:9]
wire [1:0] auto_anon_in_0_d_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_in_0_d_bits_size_0; // @[Xbar.scala:74:9]
wire [4:0] auto_anon_in_0_d_bits_source_0; // @[Xbar.scala:74:9]
wire auto_anon_in_0_d_bits_sink_0; // @[Xbar.scala:74:9]
wire auto_anon_in_0_d_bits_denied_0; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_in_0_d_bits_data_0; // @[Xbar.scala:74:9]
wire auto_anon_in_0_d_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_in_0_d_valid_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_a_bits_opcode_0; // @[Xbar.scala:74:9]
wire [2:0] auto_anon_out_a_bits_param_0; // @[Xbar.scala:74:9]
wire [3:0] auto_anon_out_a_bits_size_0; // @[Xbar.scala:74:9]
wire [5:0] auto_anon_out_a_bits_source_0; // @[Xbar.scala:74:9]
wire [31:0] auto_anon_out_a_bits_address_0; // @[Xbar.scala:74:9]
wire [7:0] auto_anon_out_a_bits_mask_0; // @[Xbar.scala:74:9]
wire [63:0] auto_anon_out_a_bits_data_0; // @[Xbar.scala:74:9]
wire auto_anon_out_a_bits_corrupt_0; // @[Xbar.scala:74:9]
wire auto_anon_out_a_valid_0; // @[Xbar.scala:74:9]
wire auto_anon_out_d_ready_0; // @[Xbar.scala:74:9]
wire in_0_a_ready; // @[Xbar.scala:159:18]
assign auto_anon_in_0_a_ready_0 = anonIn_a_ready; // @[Xbar.scala:74:9]
wire in_0_a_valid = anonIn_a_valid; // @[Xbar.scala:159:18]
wire [2:0] in_0_a_bits_opcode = anonIn_a_bits_opcode; // @[Xbar.scala:159:18]
wire [2:0] in_0_a_bits_param = anonIn_a_bits_param; // @[Xbar.scala:159:18]
wire [3:0] in_0_a_bits_size = anonIn_a_bits_size; // @[Xbar.scala:159:18]
wire [4:0] _in_0_a_bits_source_T = anonIn_a_bits_source; // @[Xbar.scala:166:55]
wire [31:0] in_0_a_bits_address = anonIn_a_bits_address; // @[Xbar.scala:159:18]
wire [7:0] in_0_a_bits_mask = anonIn_a_bits_mask; // @[Xbar.scala:159:18]
wire [63:0] in_0_a_bits_data = anonIn_a_bits_data; // @[Xbar.scala:159:18]
wire in_0_a_bits_corrupt = anonIn_a_bits_corrupt; // @[Xbar.scala:159:18]
wire in_0_d_ready = anonIn_d_ready; // @[Xbar.scala:159:18]
wire in_0_d_valid; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_valid_0 = anonIn_d_valid; // @[Xbar.scala:74:9]
wire [2:0] in_0_d_bits_opcode; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_opcode_0 = anonIn_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] in_0_d_bits_param; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_param_0 = anonIn_d_bits_param; // @[Xbar.scala:74:9]
wire [3:0] in_0_d_bits_size; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_size_0 = anonIn_d_bits_size; // @[Xbar.scala:74:9]
wire [4:0] _anonIn_d_bits_source_T; // @[Xbar.scala:156:69]
assign auto_anon_in_0_d_bits_source_0 = anonIn_d_bits_source; // @[Xbar.scala:74:9]
wire in_0_d_bits_sink; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_sink_0 = anonIn_d_bits_sink; // @[Xbar.scala:74:9]
wire in_0_d_bits_denied; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_denied_0 = anonIn_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] in_0_d_bits_data; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_data_0 = anonIn_d_bits_data; // @[Xbar.scala:74:9]
wire in_0_d_bits_corrupt; // @[Xbar.scala:159:18]
assign auto_anon_in_0_d_bits_corrupt_0 = anonIn_d_bits_corrupt; // @[Xbar.scala:74:9]
wire in_1_a_ready; // @[Xbar.scala:159:18]
assign auto_anon_in_1_a_ready_0 = anonIn_1_a_ready; // @[Xbar.scala:74:9]
wire in_1_a_valid = anonIn_1_a_valid; // @[Xbar.scala:159:18]
wire [2:0] in_1_a_bits_opcode = anonIn_1_a_bits_opcode; // @[Xbar.scala:159:18]
wire [2:0] in_1_a_bits_param = anonIn_1_a_bits_param; // @[Xbar.scala:159:18]
wire [3:0] in_1_a_bits_size = anonIn_1_a_bits_size; // @[Xbar.scala:159:18]
wire [31:0] in_1_a_bits_address = anonIn_1_a_bits_address; // @[Xbar.scala:159:18]
wire [7:0] in_1_a_bits_mask = anonIn_1_a_bits_mask; // @[Xbar.scala:159:18]
wire [63:0] in_1_a_bits_data = anonIn_1_a_bits_data; // @[Xbar.scala:159:18]
wire in_1_a_bits_corrupt = anonIn_1_a_bits_corrupt; // @[Xbar.scala:159:18]
wire in_1_d_ready = anonIn_1_d_ready; // @[Xbar.scala:159:18]
wire in_1_d_valid; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_valid_0 = anonIn_1_d_valid; // @[Xbar.scala:74:9]
wire [2:0] in_1_d_bits_opcode; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_opcode_0 = anonIn_1_d_bits_opcode; // @[Xbar.scala:74:9]
wire [1:0] in_1_d_bits_param; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_param_0 = anonIn_1_d_bits_param; // @[Xbar.scala:74:9]
wire [3:0] in_1_d_bits_size; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_size_0 = anonIn_1_d_bits_size; // @[Xbar.scala:74:9]
wire _anonIn_d_bits_source_T_1; // @[Xbar.scala:156:69]
assign auto_anon_in_1_d_bits_source_0 = anonIn_1_d_bits_source; // @[Xbar.scala:74:9]
wire in_1_d_bits_sink; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_sink_0 = anonIn_1_d_bits_sink; // @[Xbar.scala:74:9]
wire in_1_d_bits_denied; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_denied_0 = anonIn_1_d_bits_denied; // @[Xbar.scala:74:9]
wire [63:0] in_1_d_bits_data; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_data_0 = anonIn_1_d_bits_data; // @[Xbar.scala:74:9]
wire in_1_d_bits_corrupt; // @[Xbar.scala:159:18]
assign auto_anon_in_1_d_bits_corrupt_0 = anonIn_1_d_bits_corrupt; // @[Xbar.scala:74:9]
wire out_0_a_ready = anonOut_a_ready; // @[Xbar.scala:216:19]
wire out_0_a_valid; // @[Xbar.scala:216:19]
assign auto_anon_out_a_valid_0 = anonOut_a_valid; // @[Xbar.scala:74:9]
wire [2:0] out_0_a_bits_opcode; // @[Xbar.scala:216:19]
assign auto_anon_out_a_bits_opcode_0 = anonOut_a_bits_opcode; // @[Xbar.scala:74:9]
wire [2:0] out_0_a_bits_param; // @[Xbar.scala:216:19]
assign auto_anon_out_a_bits_param_0 = anonOut_a_bits_param; // @[Xbar.scala:74:9]
wire [3:0] out_0_a_bits_size; // @[Xbar.scala:216:19]
assign auto_anon_out_a_bits_size_0 = anonOut_a_bits_size; // @[Xbar.scala:74:9]
wire [5:0] out_0_a_bits_source; // @[Xbar.scala:216:19]
assign auto_anon_out_a_bits_source_0 = anonOut_a_bits_source; // @[Xbar.scala:74:9]
wire [31:0] out_0_a_bits_address; // @[Xbar.scala:216:19]
assign auto_anon_out_a_bits_address_0 = anonOut_a_bits_address; // @[Xbar.scala:74:9]
wire [7:0] out_0_a_bits_mask; // @[Xbar.scala:216:19]
assign auto_anon_out_a_bits_mask_0 = anonOut_a_bits_mask; // @[Xbar.scala:74:9]
wire [63:0] out_0_a_bits_data; // @[Xbar.scala:216:19]
assign auto_anon_out_a_bits_data_0 = anonOut_a_bits_data; // @[Xbar.scala:74:9]
wire out_0_a_bits_corrupt; // @[Xbar.scala:216:19]
assign auto_anon_out_a_bits_corrupt_0 = anonOut_a_bits_corrupt; // @[Xbar.scala:74:9]
wire out_0_d_ready; // @[Xbar.scala:216:19]
assign auto_anon_out_d_ready_0 = anonOut_d_ready; // @[Xbar.scala:74:9]
wire out_0_d_valid = anonOut_d_valid; // @[Xbar.scala:216:19]
wire [2:0] out_0_d_bits_opcode = anonOut_d_bits_opcode; // @[Xbar.scala:216:19]
wire [1:0] out_0_d_bits_param = anonOut_d_bits_param; // @[Xbar.scala:216:19]
wire [3:0] out_0_d_bits_size = anonOut_d_bits_size; // @[Xbar.scala:216:19]
wire [5:0] out_0_d_bits_source = anonOut_d_bits_source; // @[Xbar.scala:216:19]
wire _out_0_d_bits_sink_T = anonOut_d_bits_sink; // @[Xbar.scala:251:53]
wire out_0_d_bits_denied = anonOut_d_bits_denied; // @[Xbar.scala:216:19]
wire [63:0] out_0_d_bits_data = anonOut_d_bits_data; // @[Xbar.scala:216:19]
wire out_0_d_bits_corrupt = anonOut_d_bits_corrupt; // @[Xbar.scala:216:19]
wire portsAOI_filtered_0_ready; // @[Xbar.scala:352:24]
assign anonIn_a_ready = in_0_a_ready; // @[Xbar.scala:159:18]
wire _portsAOI_filtered_0_valid_T_1 = in_0_a_valid; // @[Xbar.scala:159:18, :355:40]
wire [2:0] portsAOI_filtered_0_bits_opcode = in_0_a_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsAOI_filtered_0_bits_param = in_0_a_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [3:0] portsAOI_filtered_0_bits_size = in_0_a_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [5:0] portsAOI_filtered_0_bits_source = in_0_a_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [31:0] _requestAIO_T = in_0_a_bits_address; // @[Xbar.scala:159:18]
wire [31:0] portsAOI_filtered_0_bits_address = in_0_a_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [7:0] portsAOI_filtered_0_bits_mask = in_0_a_bits_mask; // @[Xbar.scala:159:18, :352:24]
wire [63:0] portsAOI_filtered_0_bits_data = in_0_a_bits_data; // @[Xbar.scala:159:18, :352:24]
wire portsAOI_filtered_0_bits_corrupt = in_0_a_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire portsDIO_filtered_0_ready = in_0_d_ready; // @[Xbar.scala:159:18, :352:24]
wire portsDIO_filtered_0_valid; // @[Xbar.scala:352:24]
assign anonIn_d_valid = in_0_d_valid; // @[Xbar.scala:159:18]
wire [2:0] portsDIO_filtered_0_bits_opcode; // @[Xbar.scala:352:24]
assign anonIn_d_bits_opcode = in_0_d_bits_opcode; // @[Xbar.scala:159:18]
wire [1:0] portsDIO_filtered_0_bits_param; // @[Xbar.scala:352:24]
assign anonIn_d_bits_param = in_0_d_bits_param; // @[Xbar.scala:159:18]
wire [3:0] portsDIO_filtered_0_bits_size; // @[Xbar.scala:352:24]
assign anonIn_d_bits_size = in_0_d_bits_size; // @[Xbar.scala:159:18]
wire [5:0] portsDIO_filtered_0_bits_source; // @[Xbar.scala:352:24]
wire portsDIO_filtered_0_bits_sink; // @[Xbar.scala:352:24]
assign anonIn_d_bits_sink = in_0_d_bits_sink; // @[Xbar.scala:159:18]
wire portsDIO_filtered_0_bits_denied; // @[Xbar.scala:352:24]
assign anonIn_d_bits_denied = in_0_d_bits_denied; // @[Xbar.scala:159:18]
wire [63:0] portsDIO_filtered_0_bits_data; // @[Xbar.scala:352:24]
assign anonIn_d_bits_data = in_0_d_bits_data; // @[Xbar.scala:159:18]
wire portsDIO_filtered_0_bits_corrupt; // @[Xbar.scala:352:24]
assign anonIn_d_bits_corrupt = in_0_d_bits_corrupt; // @[Xbar.scala:159:18]
wire portsAOI_filtered_1_0_ready; // @[Xbar.scala:352:24]
assign anonIn_1_a_ready = in_1_a_ready; // @[Xbar.scala:159:18]
wire _portsAOI_filtered_0_valid_T_3 = in_1_a_valid; // @[Xbar.scala:159:18, :355:40]
wire [2:0] portsAOI_filtered_1_0_bits_opcode = in_1_a_bits_opcode; // @[Xbar.scala:159:18, :352:24]
wire [2:0] portsAOI_filtered_1_0_bits_param = in_1_a_bits_param; // @[Xbar.scala:159:18, :352:24]
wire [5:0] _in_1_a_bits_source_T; // @[Xbar.scala:166:55]
wire [3:0] portsAOI_filtered_1_0_bits_size = in_1_a_bits_size; // @[Xbar.scala:159:18, :352:24]
wire [5:0] portsAOI_filtered_1_0_bits_source = in_1_a_bits_source; // @[Xbar.scala:159:18, :352:24]
wire [31:0] _requestAIO_T_5 = in_1_a_bits_address; // @[Xbar.scala:159:18]
wire [31:0] portsAOI_filtered_1_0_bits_address = in_1_a_bits_address; // @[Xbar.scala:159:18, :352:24]
wire [7:0] portsAOI_filtered_1_0_bits_mask = in_1_a_bits_mask; // @[Xbar.scala:159:18, :352:24]
wire [63:0] portsAOI_filtered_1_0_bits_data = in_1_a_bits_data; // @[Xbar.scala:159:18, :352:24]
wire portsAOI_filtered_1_0_bits_corrupt = in_1_a_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire portsDIO_filtered_1_ready = in_1_d_ready; // @[Xbar.scala:159:18, :352:24]
wire portsDIO_filtered_1_valid; // @[Xbar.scala:352:24]
assign anonIn_1_d_valid = in_1_d_valid; // @[Xbar.scala:159:18]
wire [2:0] portsDIO_filtered_1_bits_opcode; // @[Xbar.scala:352:24]
assign anonIn_1_d_bits_opcode = in_1_d_bits_opcode; // @[Xbar.scala:159:18]
wire [1:0] portsDIO_filtered_1_bits_param; // @[Xbar.scala:352:24]
assign anonIn_1_d_bits_param = in_1_d_bits_param; // @[Xbar.scala:159:18]
wire [3:0] portsDIO_filtered_1_bits_size; // @[Xbar.scala:352:24]
assign anonIn_1_d_bits_size = in_1_d_bits_size; // @[Xbar.scala:159:18]
wire [5:0] portsDIO_filtered_1_bits_source; // @[Xbar.scala:352:24]
wire portsDIO_filtered_1_bits_sink; // @[Xbar.scala:352:24]
assign anonIn_1_d_bits_sink = in_1_d_bits_sink; // @[Xbar.scala:159:18]
wire portsDIO_filtered_1_bits_denied; // @[Xbar.scala:352:24]
assign anonIn_1_d_bits_denied = in_1_d_bits_denied; // @[Xbar.scala:159:18]
wire [63:0] portsDIO_filtered_1_bits_data; // @[Xbar.scala:352:24]
assign anonIn_1_d_bits_data = in_1_d_bits_data; // @[Xbar.scala:159:18]
wire portsDIO_filtered_1_bits_corrupt; // @[Xbar.scala:352:24]
assign anonIn_1_d_bits_corrupt = in_1_d_bits_corrupt; // @[Xbar.scala:159:18]
wire [5:0] in_0_d_bits_source; // @[Xbar.scala:159:18]
wire [5:0] in_1_d_bits_source; // @[Xbar.scala:159:18]
assign in_0_a_bits_source = {1'h0, _in_0_a_bits_source_T}; // @[Xbar.scala:159:18, :166:{29,55}]
assign _anonIn_d_bits_source_T = in_0_d_bits_source[4:0]; // @[Xbar.scala:156:69, :159:18]
assign anonIn_d_bits_source = _anonIn_d_bits_source_T; // @[Xbar.scala:156:69]
assign _in_1_a_bits_source_T = {5'h10, anonIn_1_a_bits_source}; // @[Xbar.scala:166:55]
assign in_1_a_bits_source = _in_1_a_bits_source_T; // @[Xbar.scala:159:18, :166:55]
assign _anonIn_d_bits_source_T_1 = in_1_d_bits_source[0]; // @[Xbar.scala:156:69, :159:18]
assign anonIn_1_d_bits_source = _anonIn_d_bits_source_T_1; // @[Xbar.scala:156:69]
wire _out_0_a_valid_T_4; // @[Arbiter.scala:96:24]
assign anonOut_a_valid = out_0_a_valid; // @[Xbar.scala:216:19]
wire [2:0] _out_0_a_bits_WIRE_opcode; // @[Mux.scala:30:73]
assign anonOut_a_bits_opcode = out_0_a_bits_opcode; // @[Xbar.scala:216:19]
wire [2:0] _out_0_a_bits_WIRE_param; // @[Mux.scala:30:73]
assign anonOut_a_bits_param = out_0_a_bits_param; // @[Xbar.scala:216:19]
wire [3:0] _out_0_a_bits_WIRE_size; // @[Mux.scala:30:73]
assign anonOut_a_bits_size = out_0_a_bits_size; // @[Xbar.scala:216:19]
wire [5:0] _out_0_a_bits_WIRE_source; // @[Mux.scala:30:73]
assign anonOut_a_bits_source = out_0_a_bits_source; // @[Xbar.scala:216:19]
wire [31:0] _out_0_a_bits_WIRE_address; // @[Mux.scala:30:73]
assign anonOut_a_bits_address = out_0_a_bits_address; // @[Xbar.scala:216:19]
wire [7:0] _out_0_a_bits_WIRE_mask; // @[Mux.scala:30:73]
assign anonOut_a_bits_mask = out_0_a_bits_mask; // @[Xbar.scala:216:19]
wire [63:0] _out_0_a_bits_WIRE_data; // @[Mux.scala:30:73]
assign anonOut_a_bits_data = out_0_a_bits_data; // @[Xbar.scala:216:19]
wire _out_0_a_bits_WIRE_corrupt; // @[Mux.scala:30:73]
assign anonOut_a_bits_corrupt = out_0_a_bits_corrupt; // @[Xbar.scala:216:19]
wire _portsDIO_out_0_d_ready_WIRE; // @[Mux.scala:30:73]
assign anonOut_d_ready = out_0_d_ready; // @[Xbar.scala:216:19]
assign portsDIO_filtered_0_bits_opcode = out_0_d_bits_opcode; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_1_bits_opcode = out_0_d_bits_opcode; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_0_bits_param = out_0_d_bits_param; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_1_bits_param = out_0_d_bits_param; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_0_bits_size = out_0_d_bits_size; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_1_bits_size = out_0_d_bits_size; // @[Xbar.scala:216:19, :352:24]
wire [5:0] _requestDOI_uncommonBits_T = out_0_d_bits_source; // @[Xbar.scala:216:19]
wire [5:0] _requestDOI_uncommonBits_T_1 = out_0_d_bits_source; // @[Xbar.scala:216:19]
assign portsDIO_filtered_0_bits_source = out_0_d_bits_source; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_1_bits_source = out_0_d_bits_source; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_0_bits_sink = out_0_d_bits_sink; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_1_bits_sink = out_0_d_bits_sink; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_0_bits_denied = out_0_d_bits_denied; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_1_bits_denied = out_0_d_bits_denied; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_0_bits_data = out_0_d_bits_data; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_1_bits_data = out_0_d_bits_data; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_0_bits_corrupt = out_0_d_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
assign portsDIO_filtered_1_bits_corrupt = out_0_d_bits_corrupt; // @[Xbar.scala:216:19, :352:24]
assign out_0_d_bits_sink = _out_0_d_bits_sink_T; // @[Xbar.scala:216:19, :251:53]
wire [32:0] _requestAIO_T_1 = {1'h0, _requestAIO_T}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _requestAIO_T_6 = {1'h0, _requestAIO_T_5}; // @[Parameters.scala:137:{31,41}]
wire [4:0] requestDOI_uncommonBits = _requestDOI_uncommonBits_T[4:0]; // @[Parameters.scala:52:{29,56}]
wire _requestDOI_T = out_0_d_bits_source[5]; // @[Xbar.scala:216:19]
wire _requestDOI_T_1 = ~_requestDOI_T; // @[Parameters.scala:54:{10,32}]
wire _requestDOI_T_3 = _requestDOI_T_1; // @[Parameters.scala:54:{32,67}]
wire requestDOI_0_0 = _requestDOI_T_3; // @[Parameters.scala:54:67, :56:48]
wire _portsDIO_filtered_0_valid_T = requestDOI_0_0; // @[Xbar.scala:355:54]
wire requestDOI_uncommonBits_1 = _requestDOI_uncommonBits_T_1[0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _requestDOI_T_5 = out_0_d_bits_source[5:1]; // @[Xbar.scala:216:19]
wire _requestDOI_T_6 = _requestDOI_T_5 == 5'h10; // @[Parameters.scala:54:{10,32}]
wire _requestDOI_T_8 = _requestDOI_T_6; // @[Parameters.scala:54:{32,67}]
wire requestDOI_0_1 = _requestDOI_T_8; // @[Parameters.scala:54:67, :56:48]
wire _portsDIO_filtered_1_valid_T = requestDOI_0_1; // @[Xbar.scala:355:54]
wire [26:0] _beatsAI_decode_T = 27'hFFF << in_0_a_bits_size; // @[package.scala:243:71]
wire [11:0] _beatsAI_decode_T_1 = _beatsAI_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _beatsAI_decode_T_2 = ~_beatsAI_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] beatsAI_decode = _beatsAI_decode_T_2[11:3]; // @[package.scala:243:46]
wire _beatsAI_opdata_T = in_0_a_bits_opcode[2]; // @[Xbar.scala:159:18]
wire beatsAI_opdata = ~_beatsAI_opdata_T; // @[Edges.scala:92:{28,37}]
wire [8:0] beatsAI_0 = beatsAI_opdata ? beatsAI_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
wire [26:0] _beatsAI_decode_T_3 = 27'hFFF << in_1_a_bits_size; // @[package.scala:243:71]
wire [11:0] _beatsAI_decode_T_4 = _beatsAI_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _beatsAI_decode_T_5 = ~_beatsAI_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] beatsAI_decode_1 = _beatsAI_decode_T_5[11:3]; // @[package.scala:243:46]
wire _beatsAI_opdata_T_1 = in_1_a_bits_opcode[2]; // @[Xbar.scala:159:18]
wire beatsAI_opdata_1 = ~_beatsAI_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [8:0] beatsAI_1 = beatsAI_opdata_1 ? beatsAI_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
wire [26:0] _beatsDO_decode_T = 27'hFFF << out_0_d_bits_size; // @[package.scala:243:71]
wire [11:0] _beatsDO_decode_T_1 = _beatsDO_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _beatsDO_decode_T_2 = ~_beatsDO_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] beatsDO_decode = _beatsDO_decode_T_2[11:3]; // @[package.scala:243:46]
wire beatsDO_opdata = out_0_d_bits_opcode[0]; // @[Xbar.scala:216:19]
wire [8:0] beatsDO_0 = beatsDO_opdata ? beatsDO_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
wire _filtered_0_ready_T; // @[Arbiter.scala:94:31]
assign in_0_a_ready = portsAOI_filtered_0_ready; // @[Xbar.scala:159:18, :352:24]
wire portsAOI_filtered_0_valid; // @[Xbar.scala:352:24]
assign portsAOI_filtered_0_valid = _portsAOI_filtered_0_valid_T_1; // @[Xbar.scala:352:24, :355:40]
wire _filtered_0_ready_T_1; // @[Arbiter.scala:94:31]
assign in_1_a_ready = portsAOI_filtered_1_0_ready; // @[Xbar.scala:159:18, :352:24]
wire portsAOI_filtered_1_0_valid; // @[Xbar.scala:352:24]
assign portsAOI_filtered_1_0_valid = _portsAOI_filtered_0_valid_T_3; // @[Xbar.scala:352:24, :355:40]
wire _portsDIO_filtered_0_valid_T_1; // @[Xbar.scala:355:40]
assign in_0_d_valid = portsDIO_filtered_0_valid; // @[Xbar.scala:159:18, :352:24]
assign in_0_d_bits_opcode = portsDIO_filtered_0_bits_opcode; // @[Xbar.scala:159:18, :352:24]
assign in_0_d_bits_param = portsDIO_filtered_0_bits_param; // @[Xbar.scala:159:18, :352:24]
assign in_0_d_bits_size = portsDIO_filtered_0_bits_size; // @[Xbar.scala:159:18, :352:24]
assign in_0_d_bits_source = portsDIO_filtered_0_bits_source; // @[Xbar.scala:159:18, :352:24]
assign in_0_d_bits_sink = portsDIO_filtered_0_bits_sink; // @[Xbar.scala:159:18, :352:24]
assign in_0_d_bits_denied = portsDIO_filtered_0_bits_denied; // @[Xbar.scala:159:18, :352:24]
assign in_0_d_bits_data = portsDIO_filtered_0_bits_data; // @[Xbar.scala:159:18, :352:24]
assign in_0_d_bits_corrupt = portsDIO_filtered_0_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
wire _portsDIO_filtered_1_valid_T_1; // @[Xbar.scala:355:40]
assign in_1_d_valid = portsDIO_filtered_1_valid; // @[Xbar.scala:159:18, :352:24]
assign in_1_d_bits_opcode = portsDIO_filtered_1_bits_opcode; // @[Xbar.scala:159:18, :352:24]
assign in_1_d_bits_param = portsDIO_filtered_1_bits_param; // @[Xbar.scala:159:18, :352:24]
assign in_1_d_bits_size = portsDIO_filtered_1_bits_size; // @[Xbar.scala:159:18, :352:24]
assign in_1_d_bits_source = portsDIO_filtered_1_bits_source; // @[Xbar.scala:159:18, :352:24]
assign in_1_d_bits_sink = portsDIO_filtered_1_bits_sink; // @[Xbar.scala:159:18, :352:24]
assign in_1_d_bits_denied = portsDIO_filtered_1_bits_denied; // @[Xbar.scala:159:18, :352:24]
assign in_1_d_bits_data = portsDIO_filtered_1_bits_data; // @[Xbar.scala:159:18, :352:24]
assign in_1_d_bits_corrupt = portsDIO_filtered_1_bits_corrupt; // @[Xbar.scala:159:18, :352:24]
assign _portsDIO_filtered_0_valid_T_1 = out_0_d_valid & _portsDIO_filtered_0_valid_T; // @[Xbar.scala:216:19, :355:{40,54}]
assign portsDIO_filtered_0_valid = _portsDIO_filtered_0_valid_T_1; // @[Xbar.scala:352:24, :355:40]
assign _portsDIO_filtered_1_valid_T_1 = out_0_d_valid & _portsDIO_filtered_1_valid_T; // @[Xbar.scala:216:19, :355:{40,54}]
assign portsDIO_filtered_1_valid = _portsDIO_filtered_1_valid_T_1; // @[Xbar.scala:352:24, :355:40]
wire _portsDIO_out_0_d_ready_T = requestDOI_0_0 & portsDIO_filtered_0_ready; // @[Mux.scala:30:73]
wire _portsDIO_out_0_d_ready_T_1 = requestDOI_0_1 & portsDIO_filtered_1_ready; // @[Mux.scala:30:73]
wire _portsDIO_out_0_d_ready_T_2 = _portsDIO_out_0_d_ready_T | _portsDIO_out_0_d_ready_T_1; // @[Mux.scala:30:73]
assign _portsDIO_out_0_d_ready_WIRE = _portsDIO_out_0_d_ready_T_2; // @[Mux.scala:30:73]
assign out_0_d_ready = _portsDIO_out_0_d_ready_WIRE; // @[Mux.scala:30:73]
reg [8:0] beatsLeft; // @[Arbiter.scala:60:30]
wire idle = beatsLeft == 9'h0; // @[Arbiter.scala:60:30, :61:28]
wire latch = idle & out_0_a_ready; // @[Xbar.scala:216:19]
wire [1:0] _readys_T = {portsAOI_filtered_1_0_valid, portsAOI_filtered_0_valid}; // @[Xbar.scala:352:24]
wire [1:0] readys_valid = _readys_T; // @[Arbiter.scala:21:23, :68:51]
wire _readys_T_1 = readys_valid == _readys_T; // @[Arbiter.scala:21:23, :22:19, :68:51]
wire _readys_T_3 = ~_readys_T_2; // @[Arbiter.scala:22:12]
wire _readys_T_4 = ~_readys_T_1; // @[Arbiter.scala:22:{12,19}]
reg [1:0] readys_mask; // @[Arbiter.scala:23:23]
wire [1:0] _readys_filter_T = ~readys_mask; // @[Arbiter.scala:23:23, :24:30]
wire [1:0] _readys_filter_T_1 = readys_valid & _readys_filter_T; // @[Arbiter.scala:21:23, :24:{28,30}]
wire [3:0] readys_filter = {_readys_filter_T_1, readys_valid}; // @[Arbiter.scala:21:23, :24:{21,28}]
wire [2:0] _readys_unready_T = readys_filter[3:1]; // @[package.scala:262:48]
wire [3:0] _readys_unready_T_1 = {readys_filter[3], readys_filter[2:0] | _readys_unready_T}; // @[package.scala:262:{43,48}]
wire [3:0] _readys_unready_T_2 = _readys_unready_T_1; // @[package.scala:262:43, :263:17]
wire [2:0] _readys_unready_T_3 = _readys_unready_T_2[3:1]; // @[package.scala:263:17]
wire [3:0] _readys_unready_T_4 = {readys_mask, 2'h0}; // @[Arbiter.scala:23:23, :25:66]
wire [3:0] readys_unready = {1'h0, _readys_unready_T_3} | _readys_unready_T_4; // @[Arbiter.scala:25:{52,58,66}]
wire [1:0] _readys_readys_T = readys_unready[3:2]; // @[Arbiter.scala:25:58, :26:29]
wire [1:0] _readys_readys_T_1 = readys_unready[1:0]; // @[Arbiter.scala:25:58, :26:48]
wire [1:0] _readys_readys_T_2 = _readys_readys_T & _readys_readys_T_1; // @[Arbiter.scala:26:{29,39,48}]
wire [1:0] readys_readys = ~_readys_readys_T_2; // @[Arbiter.scala:26:{18,39}]
wire [1:0] _readys_T_7 = readys_readys; // @[Arbiter.scala:26:18, :30:11]
wire _readys_T_5 = |readys_valid; // @[Arbiter.scala:21:23, :27:27]
wire _readys_T_6 = latch & _readys_T_5; // @[Arbiter.scala:27:{18,27}, :62:24]
wire [1:0] _readys_mask_T = readys_readys & readys_valid; // @[Arbiter.scala:21:23, :26:18, :28:29]
wire [2:0] _readys_mask_T_1 = {_readys_mask_T, 1'h0}; // @[package.scala:253:48]
wire [1:0] _readys_mask_T_2 = _readys_mask_T_1[1:0]; // @[package.scala:253:{48,53}]
wire [1:0] _readys_mask_T_3 = _readys_mask_T | _readys_mask_T_2; // @[package.scala:253:{43,53}]
wire [1:0] _readys_mask_T_4 = _readys_mask_T_3; // @[package.scala:253:43, :254:17]
wire _readys_T_8 = _readys_T_7[0]; // @[Arbiter.scala:30:11, :68:76]
wire readys_0 = _readys_T_8; // @[Arbiter.scala:68:{27,76}]
wire _readys_T_9 = _readys_T_7[1]; // @[Arbiter.scala:30:11, :68:76]
wire readys_1 = _readys_T_9; // @[Arbiter.scala:68:{27,76}]
wire _winner_T = readys_0 & portsAOI_filtered_0_valid; // @[Xbar.scala:352:24]
wire winner_0 = _winner_T; // @[Arbiter.scala:71:{27,69}]
wire _winner_T_1 = readys_1 & portsAOI_filtered_1_0_valid; // @[Xbar.scala:352:24]
wire winner_1 = _winner_T_1; // @[Arbiter.scala:71:{27,69}]
wire prefixOR_1 = winner_0; // @[Arbiter.scala:71:27, :76:48]
wire _prefixOR_T = prefixOR_1 | winner_1; // @[Arbiter.scala:71:27, :76:48]
wire _out_0_a_valid_T = portsAOI_filtered_0_valid | portsAOI_filtered_1_0_valid; // @[Xbar.scala:352:24] |
Generate the Verilog code corresponding to the following Chisel files.
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v3.common.{MicroOp}
import boom.v3.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v3.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U}
def apply(ip: UInt, isel: UInt): SInt = {
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0).asSInt
}
}
/**
* Object to get the FP rounding mode out of a packed immediate.
*/
object ImmGenRm { def apply(ip: UInt): UInt = { return ip(2,0) } }
/**
* Object to get the FP function fype from a packed immediate.
* Note: only works if !(IS_B or IS_S)
*/
object ImmGenTyp { def apply(ip: UInt): UInt = { return ip(9,8) } }
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v3.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v3.common.MicroOp => Bool = u => true.B, flow: Boolean = true)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v3.common.BoomModule()(p)
with boom.v3.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire)
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B //!IsKilledByBranch(io.brupdate, io.enq.bits.uop)
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value) && !IsKilledByBranch(io.brupdate, out.uop) && !(io.flush && flush_fn(out.uop))
io.deq.bits := out
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, out.uop)
// For flow queue behavior.
if (flow) {
when (io.empty) {
io.deq.valid := io.enq.valid //&& !IsKilledByBranch(io.brupdate, io.enq.bits.uop)
io.deq.bits := io.enq.bits
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
do_deq := false.B
when (io.deq.ready) { do_enq := false.B }
}
}
private val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
File consts.scala:
//******************************************************************************
// Copyright (c) 2011 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Constants
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.common.constants
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util.Str
import freechips.rocketchip.rocket.RVCExpander
/**
* Mixin for issue queue types
*/
trait IQType
{
val IQT_SZ = 3
val IQT_INT = 1.U(IQT_SZ.W)
val IQT_MEM = 2.U(IQT_SZ.W)
val IQT_FP = 4.U(IQT_SZ.W)
val IQT_MFP = 6.U(IQT_SZ.W)
}
/**
* Mixin for scalar operation constants
*/
trait ScalarOpConstants
{
val X = BitPat("b?")
val Y = BitPat("b1")
val N = BitPat("b0")
//************************************
// Extra Constants
// Which branch predictor predicted us
val BSRC_SZ = 2
val BSRC_1 = 0.U(BSRC_SZ.W) // 1-cycle branch pred
val BSRC_2 = 1.U(BSRC_SZ.W) // 2-cycle branch pred
val BSRC_3 = 2.U(BSRC_SZ.W) // 3-cycle branch pred
val BSRC_C = 3.U(BSRC_SZ.W) // core branch resolution
//************************************
// Control Signals
// CFI types
val CFI_SZ = 3
val CFI_X = 0.U(CFI_SZ.W) // Not a CFI instruction
val CFI_BR = 1.U(CFI_SZ.W) // Branch
val CFI_JAL = 2.U(CFI_SZ.W) // JAL
val CFI_JALR = 3.U(CFI_SZ.W) // JALR
// PC Select Signal
val PC_PLUS4 = 0.U(2.W) // PC + 4
val PC_BRJMP = 1.U(2.W) // brjmp_target
val PC_JALR = 2.U(2.W) // jump_reg_target
// Branch Type
val BR_N = 0.U(4.W) // Next
val BR_NE = 1.U(4.W) // Branch on NotEqual
val BR_EQ = 2.U(4.W) // Branch on Equal
val BR_GE = 3.U(4.W) // Branch on Greater/Equal
val BR_GEU = 4.U(4.W) // Branch on Greater/Equal Unsigned
val BR_LT = 5.U(4.W) // Branch on Less Than
val BR_LTU = 6.U(4.W) // Branch on Less Than Unsigned
val BR_J = 7.U(4.W) // Jump
val BR_JR = 8.U(4.W) // Jump Register
// RS1 Operand Select Signal
val OP1_RS1 = 0.U(2.W) // Register Source #1
val OP1_ZERO= 1.U(2.W)
val OP1_PC = 2.U(2.W)
val OP1_X = BitPat("b??")
// RS2 Operand Select Signal
val OP2_RS2 = 0.U(3.W) // Register Source #2
val OP2_IMM = 1.U(3.W) // immediate
val OP2_ZERO= 2.U(3.W) // constant 0
val OP2_NEXT= 3.U(3.W) // constant 2/4 (for PC+2/4)
val OP2_IMMC= 4.U(3.W) // for CSR imm found in RS1
val OP2_X = BitPat("b???")
// Register File Write Enable Signal
val REN_0 = false.B
val REN_1 = true.B
// Is 32b Word or 64b Doubldword?
val SZ_DW = 1
val DW_X = true.B // Bool(xLen==64)
val DW_32 = false.B
val DW_64 = true.B
val DW_XPR = true.B // Bool(xLen==64)
// Memory Enable Signal
val MEN_0 = false.B
val MEN_1 = true.B
val MEN_X = false.B
// Immediate Extend Select
val IS_I = 0.U(3.W) // I-Type (LD,ALU)
val IS_S = 1.U(3.W) // S-Type (ST)
val IS_B = 2.U(3.W) // SB-Type (BR)
val IS_U = 3.U(3.W) // U-Type (LUI/AUIPC)
val IS_J = 4.U(3.W) // UJ-Type (J/JAL)
val IS_X = BitPat("b???")
// Decode Stage Control Signals
val RT_FIX = 0.U(2.W)
val RT_FLT = 1.U(2.W)
val RT_PAS = 3.U(2.W) // pass-through (prs1 := lrs1, etc)
val RT_X = 2.U(2.W) // not-a-register (but shouldn't get a busy-bit, etc.)
// TODO rename RT_NAR
// Micro-op opcodes
// TODO change micro-op opcodes into using enum
val UOPC_SZ = 7
val uopX = BitPat.dontCare(UOPC_SZ)
val uopNOP = 0.U(UOPC_SZ.W)
val uopLD = 1.U(UOPC_SZ.W)
val uopSTA = 2.U(UOPC_SZ.W) // store address generation
val uopSTD = 3.U(UOPC_SZ.W) // store data generation
val uopLUI = 4.U(UOPC_SZ.W)
val uopADDI = 5.U(UOPC_SZ.W)
val uopANDI = 6.U(UOPC_SZ.W)
val uopORI = 7.U(UOPC_SZ.W)
val uopXORI = 8.U(UOPC_SZ.W)
val uopSLTI = 9.U(UOPC_SZ.W)
val uopSLTIU= 10.U(UOPC_SZ.W)
val uopSLLI = 11.U(UOPC_SZ.W)
val uopSRAI = 12.U(UOPC_SZ.W)
val uopSRLI = 13.U(UOPC_SZ.W)
val uopSLL = 14.U(UOPC_SZ.W)
val uopADD = 15.U(UOPC_SZ.W)
val uopSUB = 16.U(UOPC_SZ.W)
val uopSLT = 17.U(UOPC_SZ.W)
val uopSLTU = 18.U(UOPC_SZ.W)
val uopAND = 19.U(UOPC_SZ.W)
val uopOR = 20.U(UOPC_SZ.W)
val uopXOR = 21.U(UOPC_SZ.W)
val uopSRA = 22.U(UOPC_SZ.W)
val uopSRL = 23.U(UOPC_SZ.W)
val uopBEQ = 24.U(UOPC_SZ.W)
val uopBNE = 25.U(UOPC_SZ.W)
val uopBGE = 26.U(UOPC_SZ.W)
val uopBGEU = 27.U(UOPC_SZ.W)
val uopBLT = 28.U(UOPC_SZ.W)
val uopBLTU = 29.U(UOPC_SZ.W)
val uopCSRRW= 30.U(UOPC_SZ.W)
val uopCSRRS= 31.U(UOPC_SZ.W)
val uopCSRRC= 32.U(UOPC_SZ.W)
val uopCSRRWI=33.U(UOPC_SZ.W)
val uopCSRRSI=34.U(UOPC_SZ.W)
val uopCSRRCI=35.U(UOPC_SZ.W)
val uopJ = 36.U(UOPC_SZ.W)
val uopJAL = 37.U(UOPC_SZ.W)
val uopJALR = 38.U(UOPC_SZ.W)
val uopAUIPC= 39.U(UOPC_SZ.W)
//val uopSRET = 40.U(UOPC_SZ.W)
val uopCFLSH= 41.U(UOPC_SZ.W)
val uopFENCE= 42.U(UOPC_SZ.W)
val uopADDIW= 43.U(UOPC_SZ.W)
val uopADDW = 44.U(UOPC_SZ.W)
val uopSUBW = 45.U(UOPC_SZ.W)
val uopSLLIW= 46.U(UOPC_SZ.W)
val uopSLLW = 47.U(UOPC_SZ.W)
val uopSRAIW= 48.U(UOPC_SZ.W)
val uopSRAW = 49.U(UOPC_SZ.W)
val uopSRLIW= 50.U(UOPC_SZ.W)
val uopSRLW = 51.U(UOPC_SZ.W)
val uopMUL = 52.U(UOPC_SZ.W)
val uopMULH = 53.U(UOPC_SZ.W)
val uopMULHU= 54.U(UOPC_SZ.W)
val uopMULHSU=55.U(UOPC_SZ.W)
val uopMULW = 56.U(UOPC_SZ.W)
val uopDIV = 57.U(UOPC_SZ.W)
val uopDIVU = 58.U(UOPC_SZ.W)
val uopREM = 59.U(UOPC_SZ.W)
val uopREMU = 60.U(UOPC_SZ.W)
val uopDIVW = 61.U(UOPC_SZ.W)
val uopDIVUW= 62.U(UOPC_SZ.W)
val uopREMW = 63.U(UOPC_SZ.W)
val uopREMUW= 64.U(UOPC_SZ.W)
val uopFENCEI = 65.U(UOPC_SZ.W)
// = 66.U(UOPC_SZ.W)
val uopAMO_AG = 67.U(UOPC_SZ.W) // AMO-address gen (use normal STD for datagen)
val uopFMV_W_X = 68.U(UOPC_SZ.W)
val uopFMV_D_X = 69.U(UOPC_SZ.W)
val uopFMV_X_W = 70.U(UOPC_SZ.W)
val uopFMV_X_D = 71.U(UOPC_SZ.W)
val uopFSGNJ_S = 72.U(UOPC_SZ.W)
val uopFSGNJ_D = 73.U(UOPC_SZ.W)
val uopFCVT_S_D = 74.U(UOPC_SZ.W)
val uopFCVT_D_S = 75.U(UOPC_SZ.W)
val uopFCVT_S_X = 76.U(UOPC_SZ.W)
val uopFCVT_D_X = 77.U(UOPC_SZ.W)
val uopFCVT_X_S = 78.U(UOPC_SZ.W)
val uopFCVT_X_D = 79.U(UOPC_SZ.W)
val uopCMPR_S = 80.U(UOPC_SZ.W)
val uopCMPR_D = 81.U(UOPC_SZ.W)
val uopFCLASS_S = 82.U(UOPC_SZ.W)
val uopFCLASS_D = 83.U(UOPC_SZ.W)
val uopFMINMAX_S = 84.U(UOPC_SZ.W)
val uopFMINMAX_D = 85.U(UOPC_SZ.W)
// = 86.U(UOPC_SZ.W)
val uopFADD_S = 87.U(UOPC_SZ.W)
val uopFSUB_S = 88.U(UOPC_SZ.W)
val uopFMUL_S = 89.U(UOPC_SZ.W)
val uopFADD_D = 90.U(UOPC_SZ.W)
val uopFSUB_D = 91.U(UOPC_SZ.W)
val uopFMUL_D = 92.U(UOPC_SZ.W)
val uopFMADD_S = 93.U(UOPC_SZ.W)
val uopFMSUB_S = 94.U(UOPC_SZ.W)
val uopFNMADD_S = 95.U(UOPC_SZ.W)
val uopFNMSUB_S = 96.U(UOPC_SZ.W)
val uopFMADD_D = 97.U(UOPC_SZ.W)
val uopFMSUB_D = 98.U(UOPC_SZ.W)
val uopFNMADD_D = 99.U(UOPC_SZ.W)
val uopFNMSUB_D = 100.U(UOPC_SZ.W)
val uopFDIV_S = 101.U(UOPC_SZ.W)
val uopFDIV_D = 102.U(UOPC_SZ.W)
val uopFSQRT_S = 103.U(UOPC_SZ.W)
val uopFSQRT_D = 104.U(UOPC_SZ.W)
val uopWFI = 105.U(UOPC_SZ.W) // pass uop down the CSR pipeline
val uopERET = 106.U(UOPC_SZ.W) // pass uop down the CSR pipeline, also is ERET
val uopSFENCE = 107.U(UOPC_SZ.W)
val uopROCC = 108.U(UOPC_SZ.W)
val uopMOV = 109.U(UOPC_SZ.W) // conditional mov decoded from "add rd, x0, rs2"
// The Bubble Instruction (Machine generated NOP)
// Insert (XOR x0,x0,x0) which is different from software compiler
// generated NOPs which are (ADDI x0, x0, 0).
// Reasoning for this is to let visualizers and stat-trackers differentiate
// between software NOPs and machine-generated Bubbles in the pipeline.
val BUBBLE = (0x4033).U(32.W)
def NullMicroOp()(implicit p: Parameters): boom.v3.common.MicroOp = {
val uop = Wire(new boom.v3.common.MicroOp)
uop := DontCare // Overridden in the following lines
uop.uopc := uopNOP // maybe not required, but helps on asserts that try to catch spurious behavior
uop.bypassable := false.B
uop.fp_val := false.B
uop.uses_stq := false.B
uop.uses_ldq := false.B
uop.pdst := 0.U
uop.dst_rtype := RT_X
val cs = Wire(new boom.v3.common.CtrlSignals())
cs := DontCare // Overridden in the following lines
cs.br_type := BR_N
cs.csr_cmd := freechips.rocketchip.rocket.CSR.N
cs.is_load := false.B
cs.is_sta := false.B
cs.is_std := false.B
uop.ctrl := cs
uop
}
}
/**
* Mixin for RISCV constants
*/
trait RISCVConstants
{
// abstract out instruction decode magic numbers
val RD_MSB = 11
val RD_LSB = 7
val RS1_MSB = 19
val RS1_LSB = 15
val RS2_MSB = 24
val RS2_LSB = 20
val RS3_MSB = 31
val RS3_LSB = 27
val CSR_ADDR_MSB = 31
val CSR_ADDR_LSB = 20
val CSR_ADDR_SZ = 12
// location of the fifth bit in the shamt (for checking for illegal ops for SRAIW,etc.)
val SHAMT_5_BIT = 25
val LONGEST_IMM_SZ = 20
val X0 = 0.U
val RA = 1.U // return address register
// memory consistency model
// The C/C++ atomics MCM requires that two loads to the same address maintain program order.
// The Cortex A9 does NOT enforce load/load ordering (which leads to buggy behavior).
val MCM_ORDER_DEPENDENT_LOADS = true
val jal_opc = (0x6f).U
val jalr_opc = (0x67).U
def GetUop(inst: UInt): UInt = inst(6,0)
def GetRd (inst: UInt): UInt = inst(RD_MSB,RD_LSB)
def GetRs1(inst: UInt): UInt = inst(RS1_MSB,RS1_LSB)
def ExpandRVC(inst: UInt)(implicit p: Parameters): UInt = {
val rvc_exp = Module(new RVCExpander)
rvc_exp.io.in := inst
Mux(rvc_exp.io.rvc, rvc_exp.io.out.bits, inst)
}
// Note: Accepts only EXPANDED rvc instructions
def ComputeBranchTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = {
val b_imm32 = Cat(Fill(20,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
((pc.asSInt + b_imm32.asSInt).asSInt & (-2).S).asUInt
}
// Note: Accepts only EXPANDED rvc instructions
def ComputeJALTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = {
val j_imm32 = Cat(Fill(12,inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
((pc.asSInt + j_imm32.asSInt).asSInt & (-2).S).asUInt
}
// Note: Accepts only EXPANDED rvc instructions
def GetCfiType(inst: UInt)(implicit p: Parameters): UInt = {
val bdecode = Module(new boom.v3.exu.BranchDecode)
bdecode.io.inst := inst
bdecode.io.pc := 0.U
bdecode.io.out.cfi_type
}
}
/**
* Mixin for exception cause constants
*/
trait ExcCauseConstants
{
// a memory disambigious misspeculation occurred
val MINI_EXCEPTION_MEM_ORDERING = 16.U
val MINI_EXCEPTION_CSR_REPLAY = 17.U
require (!freechips.rocketchip.rocket.Causes.all.contains(16))
require (!freechips.rocketchip.rocket.Causes.all.contains(17))
}
File issue-slot.scala:
//******************************************************************************
// Copyright (c) 2015 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Issue Slot Logic
//--------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Note: stores (and AMOs) are "broken down" into 2 uops, but stored within a single issue-slot.
// TODO XXX make a separate issueSlot for MemoryIssueSlots, and only they break apart stores.
// TODO Disable ldspec for FP queue.
package boom.v3.exu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import boom.v3.common._
import boom.v3.util._
import FUConstants._
/**
* IO bundle to interact with Issue slot
*
* @param numWakeupPorts number of wakeup ports for the slot
*/
class IssueSlotIO(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomBundle
{
val valid = Output(Bool())
val will_be_valid = Output(Bool()) // TODO code review, do we need this signal so explicitely?
val request = Output(Bool())
val request_hp = Output(Bool())
val grant = Input(Bool())
val brupdate = Input(new BrUpdateInfo())
val kill = Input(Bool()) // pipeline flush
val clear = Input(Bool()) // entry being moved elsewhere (not mutually exclusive with grant)
val ldspec_miss = Input(Bool()) // Previous cycle's speculative load wakeup was mispredicted.
val wakeup_ports = Flipped(Vec(numWakeupPorts, Valid(new IqWakeup(maxPregSz))))
val pred_wakeup_port = Flipped(Valid(UInt(log2Ceil(ftqSz).W)))
val spec_ld_wakeup = Flipped(Vec(memWidth, Valid(UInt(width=maxPregSz.W))))
val in_uop = Flipped(Valid(new MicroOp())) // if valid, this WILL overwrite an entry!
val out_uop = Output(new MicroOp()) // the updated slot uop; will be shifted upwards in a collasping queue.
val uop = Output(new MicroOp()) // the current Slot's uop. Sent down the pipeline when issued.
val debug = {
val result = new Bundle {
val p1 = Bool()
val p2 = Bool()
val p3 = Bool()
val ppred = Bool()
val state = UInt(width=2.W)
}
Output(result)
}
}
/**
* Single issue slot. Holds a uop within the issue queue
*
* @param numWakeupPorts number of wakeup ports
*/
class IssueSlot(val numWakeupPorts: Int)(implicit p: Parameters)
extends BoomModule
with IssueUnitConstants
{
val io = IO(new IssueSlotIO(numWakeupPorts))
// slot invalid?
// slot is valid, holding 1 uop
// slot is valid, holds 2 uops (like a store)
def is_invalid = state === s_invalid
def is_valid = state =/= s_invalid
val next_state = Wire(UInt()) // the next state of this slot (which might then get moved to a new slot)
val next_uopc = Wire(UInt()) // the next uopc of this slot (which might then get moved to a new slot)
val next_lrs1_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot)
val next_lrs2_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot)
val state = RegInit(s_invalid)
val p1 = RegInit(false.B)
val p2 = RegInit(false.B)
val p3 = RegInit(false.B)
val ppred = RegInit(false.B)
// Poison if woken up by speculative load.
// Poison lasts 1 cycle (as ldMiss will come on the next cycle).
// SO if poisoned is true, set it to false!
val p1_poisoned = RegInit(false.B)
val p2_poisoned = RegInit(false.B)
p1_poisoned := false.B
p2_poisoned := false.B
val next_p1_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p1_poisoned, p1_poisoned)
val next_p2_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p2_poisoned, p2_poisoned)
val slot_uop = RegInit(NullMicroOp)
val next_uop = Mux(io.in_uop.valid, io.in_uop.bits, slot_uop)
//-----------------------------------------------------------------------------
// next slot state computation
// compute the next state for THIS entry slot (in a collasping queue, the
// current uop may get moved elsewhere, and a new uop can enter
when (io.kill) {
state := s_invalid
} .elsewhen (io.in_uop.valid) {
state := io.in_uop.bits.iw_state
} .elsewhen (io.clear) {
state := s_invalid
} .otherwise {
state := next_state
}
//-----------------------------------------------------------------------------
// "update" state
// compute the next state for the micro-op in this slot. This micro-op may
// be moved elsewhere, so the "next_state" travels with it.
// defaults
next_state := state
next_uopc := slot_uop.uopc
next_lrs1_rtype := slot_uop.lrs1_rtype
next_lrs2_rtype := slot_uop.lrs2_rtype
when (io.kill) {
next_state := s_invalid
} .elsewhen ((io.grant && (state === s_valid_1)) ||
(io.grant && (state === s_valid_2) && p1 && p2 && ppred)) {
// try to issue this uop.
when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) {
next_state := s_invalid
}
} .elsewhen (io.grant && (state === s_valid_2)) {
when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) {
next_state := s_valid_1
when (p1) {
slot_uop.uopc := uopSTD
next_uopc := uopSTD
slot_uop.lrs1_rtype := RT_X
next_lrs1_rtype := RT_X
} .otherwise {
slot_uop.lrs2_rtype := RT_X
next_lrs2_rtype := RT_X
}
}
}
when (io.in_uop.valid) {
slot_uop := io.in_uop.bits
assert (is_invalid || io.clear || io.kill, "trying to overwrite a valid issue slot.")
}
// Wakeup Compare Logic
// these signals are the "next_p*" for the current slot's micro-op.
// they are important for shifting the current slot_uop up to an other entry.
val next_p1 = WireInit(p1)
val next_p2 = WireInit(p2)
val next_p3 = WireInit(p3)
val next_ppred = WireInit(ppred)
when (io.in_uop.valid) {
p1 := !(io.in_uop.bits.prs1_busy)
p2 := !(io.in_uop.bits.prs2_busy)
p3 := !(io.in_uop.bits.prs3_busy)
ppred := !(io.in_uop.bits.ppred_busy)
}
when (io.ldspec_miss && next_p1_poisoned) {
assert(next_uop.prs1 =/= 0.U, "Poison bit can't be set for prs1=x0!")
p1 := false.B
}
when (io.ldspec_miss && next_p2_poisoned) {
assert(next_uop.prs2 =/= 0.U, "Poison bit can't be set for prs2=x0!")
p2 := false.B
}
for (i <- 0 until numWakeupPorts) {
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs1)) {
p1 := true.B
}
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs2)) {
p2 := true.B
}
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs3)) {
p3 := true.B
}
}
when (io.pred_wakeup_port.valid && io.pred_wakeup_port.bits === next_uop.ppred) {
ppred := true.B
}
for (w <- 0 until memWidth) {
assert (!(io.spec_ld_wakeup(w).valid && io.spec_ld_wakeup(w).bits === 0.U),
"Loads to x0 should never speculatively wakeup other instructions")
}
// TODO disable if FP IQ.
for (w <- 0 until memWidth) {
when (io.spec_ld_wakeup(w).valid &&
io.spec_ld_wakeup(w).bits === next_uop.prs1 &&
next_uop.lrs1_rtype === RT_FIX) {
p1 := true.B
p1_poisoned := true.B
assert (!next_p1_poisoned)
}
when (io.spec_ld_wakeup(w).valid &&
io.spec_ld_wakeup(w).bits === next_uop.prs2 &&
next_uop.lrs2_rtype === RT_FIX) {
p2 := true.B
p2_poisoned := true.B
assert (!next_p2_poisoned)
}
}
// Handle branch misspeculations
val next_br_mask = GetNewBrMask(io.brupdate, slot_uop)
// was this micro-op killed by a branch? if yes, we can't let it be valid if
// we compact it into an other entry
when (IsKilledByBranch(io.brupdate, slot_uop)) {
next_state := s_invalid
}
when (!io.in_uop.valid) {
slot_uop.br_mask := next_br_mask
}
//-------------------------------------------------------------
// Request Logic
io.request := is_valid && p1 && p2 && p3 && ppred && !io.kill
val high_priority = slot_uop.is_br || slot_uop.is_jal || slot_uop.is_jalr
io.request_hp := io.request && high_priority
when (state === s_valid_1) {
io.request := p1 && p2 && p3 && ppred && !io.kill
} .elsewhen (state === s_valid_2) {
io.request := (p1 || p2) && ppred && !io.kill
} .otherwise {
io.request := false.B
}
//assign outputs
io.valid := is_valid
io.uop := slot_uop
io.uop.iw_p1_poisoned := p1_poisoned
io.uop.iw_p2_poisoned := p2_poisoned
// micro-op will vacate due to grant.
val may_vacate = io.grant && ((state === s_valid_1) || (state === s_valid_2) && p1 && p2 && ppred)
val squash_grant = io.ldspec_miss && (p1_poisoned || p2_poisoned)
io.will_be_valid := is_valid && !(may_vacate && !squash_grant)
io.out_uop := slot_uop
io.out_uop.iw_state := next_state
io.out_uop.uopc := next_uopc
io.out_uop.lrs1_rtype := next_lrs1_rtype
io.out_uop.lrs2_rtype := next_lrs2_rtype
io.out_uop.br_mask := next_br_mask
io.out_uop.prs1_busy := !p1
io.out_uop.prs2_busy := !p2
io.out_uop.prs3_busy := !p3
io.out_uop.ppred_busy := !ppred
io.out_uop.iw_p1_poisoned := p1_poisoned
io.out_uop.iw_p2_poisoned := p2_poisoned
when (state === s_valid_2) {
when (p1 && p2 && ppred) {
; // send out the entire instruction as one uop
} .elsewhen (p1 && ppred) {
io.uop.uopc := slot_uop.uopc
io.uop.lrs2_rtype := RT_X
} .elsewhen (p2 && ppred) {
io.uop.uopc := uopSTD
io.uop.lrs1_rtype := RT_X
}
}
// debug outputs
io.debug.p1 := p1
io.debug.p2 := p2
io.debug.p3 := p3
io.debug.ppred := ppred
io.debug.state := state
}
| module IssueSlot_44( // @[issue-slot.scala:69:7]
input clock, // @[issue-slot.scala:69:7]
input reset, // @[issue-slot.scala:69:7]
output io_valid, // @[issue-slot.scala:73:14]
output io_will_be_valid, // @[issue-slot.scala:73:14]
output io_request, // @[issue-slot.scala:73:14]
output io_request_hp, // @[issue-slot.scala:73:14]
input io_grant, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b1_resolve_mask, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b1_mispredict_mask, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_uopc, // @[issue-slot.scala:73:14]
input [31:0] io_brupdate_b2_uop_inst, // @[issue-slot.scala:73:14]
input [31:0] io_brupdate_b2_uop_debug_inst, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_rvc, // @[issue-slot.scala:73:14]
input [39:0] io_brupdate_b2_uop_debug_pc, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_iq_type, // @[issue-slot.scala:73:14]
input [9:0] io_brupdate_b2_uop_fu_code, // @[issue-slot.scala:73:14]
input [3:0] io_brupdate_b2_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_iw_state, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_br, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_jalr, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_jal, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_sfb, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b2_uop_br_mask, // @[issue-slot.scala:73:14]
input [3:0] io_brupdate_b2_uop_br_tag, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ftq_idx, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_edge_inst, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_pc_lob, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_taken, // @[issue-slot.scala:73:14]
input [19:0] io_brupdate_b2_uop_imm_packed, // @[issue-slot.scala:73:14]
input [11:0] io_brupdate_b2_uop_csr_addr, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_rob_idx, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ldq_idx, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_stq_idx, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_rxq_idx, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_pdst, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs1, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs2, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs3, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ppred, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs1_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs2_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs3_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ppred_busy, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_stale_pdst, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_exception, // @[issue-slot.scala:73:14]
input [63:0] io_brupdate_b2_uop_exc_cause, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bypassable, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_mem_cmd, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_mem_size, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_mem_signed, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_fence, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_fencei, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_amo, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_uses_ldq, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_uses_stq, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_unique, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_flush_on_commit, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_ldst, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs1, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs2, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs3, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ldst_val, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_dst_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_frs3_en, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_fp_val, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_fp_single, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bp_debug_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_debug_fsrc, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_debug_tsrc, // @[issue-slot.scala:73:14]
input io_brupdate_b2_valid, // @[issue-slot.scala:73:14]
input io_brupdate_b2_mispredict, // @[issue-slot.scala:73:14]
input io_brupdate_b2_taken, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_cfi_type, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_pc_sel, // @[issue-slot.scala:73:14]
input [39:0] io_brupdate_b2_jalr_target, // @[issue-slot.scala:73:14]
input [20:0] io_brupdate_b2_target_offset, // @[issue-slot.scala:73:14]
input io_kill, // @[issue-slot.scala:73:14]
input io_clear, // @[issue-slot.scala:73:14]
input io_ldspec_miss, // @[issue-slot.scala:73:14]
input io_wakeup_ports_0_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_0_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_0_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_1_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_1_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_1_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_2_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_2_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_2_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_3_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_3_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_3_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_4_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_4_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_4_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_5_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_5_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_5_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_6_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_6_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_6_bits_poisoned, // @[issue-slot.scala:73:14]
input io_spec_ld_wakeup_0_valid, // @[issue-slot.scala:73:14]
input [6:0] io_spec_ld_wakeup_0_bits, // @[issue-slot.scala:73:14]
input io_in_uop_valid, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_uopc, // @[issue-slot.scala:73:14]
input [31:0] io_in_uop_bits_inst, // @[issue-slot.scala:73:14]
input [31:0] io_in_uop_bits_debug_inst, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_rvc, // @[issue-slot.scala:73:14]
input [39:0] io_in_uop_bits_debug_pc, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_iq_type, // @[issue-slot.scala:73:14]
input [9:0] io_in_uop_bits_fu_code, // @[issue-slot.scala:73:14]
input [3:0] io_in_uop_bits_ctrl_br_type, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_ctrl_op1_sel, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_op2_sel, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_imm_sel, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ctrl_op_fcn, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_load, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_sta, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_std, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_iw_state, // @[issue-slot.scala:73:14]
input io_in_uop_bits_iw_p1_poisoned, // @[issue-slot.scala:73:14]
input io_in_uop_bits_iw_p2_poisoned, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_br, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_jalr, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_jal, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_sfb, // @[issue-slot.scala:73:14]
input [15:0] io_in_uop_bits_br_mask, // @[issue-slot.scala:73:14]
input [3:0] io_in_uop_bits_br_tag, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ftq_idx, // @[issue-slot.scala:73:14]
input io_in_uop_bits_edge_inst, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_pc_lob, // @[issue-slot.scala:73:14]
input io_in_uop_bits_taken, // @[issue-slot.scala:73:14]
input [19:0] io_in_uop_bits_imm_packed, // @[issue-slot.scala:73:14]
input [11:0] io_in_uop_bits_csr_addr, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_rob_idx, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ldq_idx, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_stq_idx, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_rxq_idx, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_pdst, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs1, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs2, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs3, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ppred, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs1_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs2_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs3_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ppred_busy, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_stale_pdst, // @[issue-slot.scala:73:14]
input io_in_uop_bits_exception, // @[issue-slot.scala:73:14]
input [63:0] io_in_uop_bits_exc_cause, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bypassable, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_mem_cmd, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_mem_size, // @[issue-slot.scala:73:14]
input io_in_uop_bits_mem_signed, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_fence, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_fencei, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_amo, // @[issue-slot.scala:73:14]
input io_in_uop_bits_uses_ldq, // @[issue-slot.scala:73:14]
input io_in_uop_bits_uses_stq, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_sys_pc2epc, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_unique, // @[issue-slot.scala:73:14]
input io_in_uop_bits_flush_on_commit, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ldst_is_rs1, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_ldst, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs1, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs2, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs3, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ldst_val, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_dst_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_lrs1_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_lrs2_rtype, // @[issue-slot.scala:73:14]
input io_in_uop_bits_frs3_en, // @[issue-slot.scala:73:14]
input io_in_uop_bits_fp_val, // @[issue-slot.scala:73:14]
input io_in_uop_bits_fp_single, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_pf_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_ae_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_ma_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bp_debug_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bp_xcpt_if, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_debug_fsrc, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_debug_tsrc, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_uopc, // @[issue-slot.scala:73:14]
output [31:0] io_out_uop_inst, // @[issue-slot.scala:73:14]
output [31:0] io_out_uop_debug_inst, // @[issue-slot.scala:73:14]
output io_out_uop_is_rvc, // @[issue-slot.scala:73:14]
output [39:0] io_out_uop_debug_pc, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_iq_type, // @[issue-slot.scala:73:14]
output [9:0] io_out_uop_fu_code, // @[issue-slot.scala:73:14]
output [3:0] io_out_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_iw_state, // @[issue-slot.scala:73:14]
output io_out_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
output io_out_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
output io_out_uop_is_br, // @[issue-slot.scala:73:14]
output io_out_uop_is_jalr, // @[issue-slot.scala:73:14]
output io_out_uop_is_jal, // @[issue-slot.scala:73:14]
output io_out_uop_is_sfb, // @[issue-slot.scala:73:14]
output [15:0] io_out_uop_br_mask, // @[issue-slot.scala:73:14]
output [3:0] io_out_uop_br_tag, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ftq_idx, // @[issue-slot.scala:73:14]
output io_out_uop_edge_inst, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_pc_lob, // @[issue-slot.scala:73:14]
output io_out_uop_taken, // @[issue-slot.scala:73:14]
output [19:0] io_out_uop_imm_packed, // @[issue-slot.scala:73:14]
output [11:0] io_out_uop_csr_addr, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_rob_idx, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ldq_idx, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_stq_idx, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_rxq_idx, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_pdst, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs1, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs2, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs3, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ppred, // @[issue-slot.scala:73:14]
output io_out_uop_prs1_busy, // @[issue-slot.scala:73:14]
output io_out_uop_prs2_busy, // @[issue-slot.scala:73:14]
output io_out_uop_prs3_busy, // @[issue-slot.scala:73:14]
output io_out_uop_ppred_busy, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_stale_pdst, // @[issue-slot.scala:73:14]
output io_out_uop_exception, // @[issue-slot.scala:73:14]
output [63:0] io_out_uop_exc_cause, // @[issue-slot.scala:73:14]
output io_out_uop_bypassable, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_mem_cmd, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_mem_size, // @[issue-slot.scala:73:14]
output io_out_uop_mem_signed, // @[issue-slot.scala:73:14]
output io_out_uop_is_fence, // @[issue-slot.scala:73:14]
output io_out_uop_is_fencei, // @[issue-slot.scala:73:14]
output io_out_uop_is_amo, // @[issue-slot.scala:73:14]
output io_out_uop_uses_ldq, // @[issue-slot.scala:73:14]
output io_out_uop_uses_stq, // @[issue-slot.scala:73:14]
output io_out_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
output io_out_uop_is_unique, // @[issue-slot.scala:73:14]
output io_out_uop_flush_on_commit, // @[issue-slot.scala:73:14]
output io_out_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_ldst, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs1, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs2, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs3, // @[issue-slot.scala:73:14]
output io_out_uop_ldst_val, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_dst_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
output io_out_uop_frs3_en, // @[issue-slot.scala:73:14]
output io_out_uop_fp_val, // @[issue-slot.scala:73:14]
output io_out_uop_fp_single, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
output io_out_uop_bp_debug_if, // @[issue-slot.scala:73:14]
output io_out_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_debug_fsrc, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_debug_tsrc, // @[issue-slot.scala:73:14]
output [6:0] io_uop_uopc, // @[issue-slot.scala:73:14]
output [31:0] io_uop_inst, // @[issue-slot.scala:73:14]
output [31:0] io_uop_debug_inst, // @[issue-slot.scala:73:14]
output io_uop_is_rvc, // @[issue-slot.scala:73:14]
output [39:0] io_uop_debug_pc, // @[issue-slot.scala:73:14]
output [2:0] io_uop_iq_type, // @[issue-slot.scala:73:14]
output [9:0] io_uop_fu_code, // @[issue-slot.scala:73:14]
output [3:0] io_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
output [1:0] io_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
output io_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
output [1:0] io_uop_iw_state, // @[issue-slot.scala:73:14]
output io_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
output io_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
output io_uop_is_br, // @[issue-slot.scala:73:14]
output io_uop_is_jalr, // @[issue-slot.scala:73:14]
output io_uop_is_jal, // @[issue-slot.scala:73:14]
output io_uop_is_sfb, // @[issue-slot.scala:73:14]
output [15:0] io_uop_br_mask, // @[issue-slot.scala:73:14]
output [3:0] io_uop_br_tag, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ftq_idx, // @[issue-slot.scala:73:14]
output io_uop_edge_inst, // @[issue-slot.scala:73:14]
output [5:0] io_uop_pc_lob, // @[issue-slot.scala:73:14]
output io_uop_taken, // @[issue-slot.scala:73:14]
output [19:0] io_uop_imm_packed, // @[issue-slot.scala:73:14]
output [11:0] io_uop_csr_addr, // @[issue-slot.scala:73:14]
output [6:0] io_uop_rob_idx, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ldq_idx, // @[issue-slot.scala:73:14]
output [4:0] io_uop_stq_idx, // @[issue-slot.scala:73:14]
output [1:0] io_uop_rxq_idx, // @[issue-slot.scala:73:14]
output [6:0] io_uop_pdst, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs1, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs2, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs3, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ppred, // @[issue-slot.scala:73:14]
output io_uop_prs1_busy, // @[issue-slot.scala:73:14]
output io_uop_prs2_busy, // @[issue-slot.scala:73:14]
output io_uop_prs3_busy, // @[issue-slot.scala:73:14]
output io_uop_ppred_busy, // @[issue-slot.scala:73:14]
output [6:0] io_uop_stale_pdst, // @[issue-slot.scala:73:14]
output io_uop_exception, // @[issue-slot.scala:73:14]
output [63:0] io_uop_exc_cause, // @[issue-slot.scala:73:14]
output io_uop_bypassable, // @[issue-slot.scala:73:14]
output [4:0] io_uop_mem_cmd, // @[issue-slot.scala:73:14]
output [1:0] io_uop_mem_size, // @[issue-slot.scala:73:14]
output io_uop_mem_signed, // @[issue-slot.scala:73:14]
output io_uop_is_fence, // @[issue-slot.scala:73:14]
output io_uop_is_fencei, // @[issue-slot.scala:73:14]
output io_uop_is_amo, // @[issue-slot.scala:73:14]
output io_uop_uses_ldq, // @[issue-slot.scala:73:14]
output io_uop_uses_stq, // @[issue-slot.scala:73:14]
output io_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
output io_uop_is_unique, // @[issue-slot.scala:73:14]
output io_uop_flush_on_commit, // @[issue-slot.scala:73:14]
output io_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
output [5:0] io_uop_ldst, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs1, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs2, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs3, // @[issue-slot.scala:73:14]
output io_uop_ldst_val, // @[issue-slot.scala:73:14]
output [1:0] io_uop_dst_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
output io_uop_frs3_en, // @[issue-slot.scala:73:14]
output io_uop_fp_val, // @[issue-slot.scala:73:14]
output io_uop_fp_single, // @[issue-slot.scala:73:14]
output io_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
output io_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
output io_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
output io_uop_bp_debug_if, // @[issue-slot.scala:73:14]
output io_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
output [1:0] io_uop_debug_fsrc, // @[issue-slot.scala:73:14]
output [1:0] io_uop_debug_tsrc, // @[issue-slot.scala:73:14]
output io_debug_p1, // @[issue-slot.scala:73:14]
output io_debug_p2, // @[issue-slot.scala:73:14]
output io_debug_p3, // @[issue-slot.scala:73:14]
output io_debug_ppred, // @[issue-slot.scala:73:14]
output [1:0] io_debug_state // @[issue-slot.scala:73:14]
);
wire io_grant_0 = io_grant; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_uopc_0 = io_brupdate_b2_uop_uopc; // @[issue-slot.scala:69:7]
wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[issue-slot.scala:69:7]
wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[issue-slot.scala:69:7]
wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_iq_type_0 = io_brupdate_b2_uop_iq_type; // @[issue-slot.scala:69:7]
wire [9:0] io_brupdate_b2_uop_fu_code_0 = io_brupdate_b2_uop_fu_code; // @[issue-slot.scala:69:7]
wire [3:0] io_brupdate_b2_uop_ctrl_br_type_0 = io_brupdate_b2_uop_ctrl_br_type; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_ctrl_op1_sel_0 = io_brupdate_b2_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_op2_sel_0 = io_brupdate_b2_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_imm_sel_0 = io_brupdate_b2_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ctrl_op_fcn_0 = io_brupdate_b2_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_fcn_dw_0 = io_brupdate_b2_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_csr_cmd_0 = io_brupdate_b2_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_load_0 = io_brupdate_b2_uop_ctrl_is_load; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_sta_0 = io_brupdate_b2_uop_ctrl_is_sta; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_std_0 = io_brupdate_b2_uop_ctrl_is_std; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_iw_state_0 = io_brupdate_b2_uop_iw_state; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_iw_p1_poisoned_0 = io_brupdate_b2_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_iw_p2_poisoned_0 = io_brupdate_b2_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_br_0 = io_brupdate_b2_uop_is_br; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_jalr_0 = io_brupdate_b2_uop_is_jalr; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_jal_0 = io_brupdate_b2_uop_is_jal; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[issue-slot.scala:69:7]
wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[issue-slot.scala:69:7]
wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[issue-slot.scala:69:7]
wire [11:0] io_brupdate_b2_uop_csr_addr_0 = io_brupdate_b2_uop_csr_addr; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[issue-slot.scala:69:7]
wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bypassable_0 = io_brupdate_b2_uop_bypassable; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ldst_val_0 = io_brupdate_b2_uop_ldst_val; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_fp_single_0 = io_brupdate_b2_uop_fp_single; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_valid_0 = io_brupdate_b2_valid; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[issue-slot.scala:69:7]
wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[issue-slot.scala:69:7]
wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[issue-slot.scala:69:7]
wire io_kill_0 = io_kill; // @[issue-slot.scala:69:7]
wire io_clear_0 = io_clear; // @[issue-slot.scala:69:7]
wire io_ldspec_miss_0 = io_ldspec_miss; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_0_valid_0 = io_wakeup_ports_0_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_0_bits_pdst_0 = io_wakeup_ports_0_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_0_bits_poisoned_0 = io_wakeup_ports_0_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_1_valid_0 = io_wakeup_ports_1_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_1_bits_pdst_0 = io_wakeup_ports_1_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_1_bits_poisoned_0 = io_wakeup_ports_1_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_2_valid_0 = io_wakeup_ports_2_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_2_bits_pdst_0 = io_wakeup_ports_2_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_2_bits_poisoned_0 = io_wakeup_ports_2_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_3_valid_0 = io_wakeup_ports_3_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_3_bits_pdst_0 = io_wakeup_ports_3_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_3_bits_poisoned_0 = io_wakeup_ports_3_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_4_valid_0 = io_wakeup_ports_4_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_4_bits_pdst_0 = io_wakeup_ports_4_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_4_bits_poisoned_0 = io_wakeup_ports_4_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_5_valid_0 = io_wakeup_ports_5_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_5_bits_pdst_0 = io_wakeup_ports_5_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_5_bits_poisoned_0 = io_wakeup_ports_5_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_6_valid_0 = io_wakeup_ports_6_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_6_bits_pdst_0 = io_wakeup_ports_6_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_6_bits_poisoned_0 = io_wakeup_ports_6_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_spec_ld_wakeup_0_valid_0 = io_spec_ld_wakeup_0_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_spec_ld_wakeup_0_bits_0 = io_spec_ld_wakeup_0_bits; // @[issue-slot.scala:69:7]
wire io_in_uop_valid_0 = io_in_uop_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_uopc_0 = io_in_uop_bits_uopc; // @[issue-slot.scala:69:7]
wire [31:0] io_in_uop_bits_inst_0 = io_in_uop_bits_inst; // @[issue-slot.scala:69:7]
wire [31:0] io_in_uop_bits_debug_inst_0 = io_in_uop_bits_debug_inst; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_rvc_0 = io_in_uop_bits_is_rvc; // @[issue-slot.scala:69:7]
wire [39:0] io_in_uop_bits_debug_pc_0 = io_in_uop_bits_debug_pc; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_iq_type_0 = io_in_uop_bits_iq_type; // @[issue-slot.scala:69:7]
wire [9:0] io_in_uop_bits_fu_code_0 = io_in_uop_bits_fu_code; // @[issue-slot.scala:69:7]
wire [3:0] io_in_uop_bits_ctrl_br_type_0 = io_in_uop_bits_ctrl_br_type; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_ctrl_op1_sel_0 = io_in_uop_bits_ctrl_op1_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_op2_sel_0 = io_in_uop_bits_ctrl_op2_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_imm_sel_0 = io_in_uop_bits_ctrl_imm_sel; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ctrl_op_fcn_0 = io_in_uop_bits_ctrl_op_fcn; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_fcn_dw_0 = io_in_uop_bits_ctrl_fcn_dw; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_csr_cmd_0 = io_in_uop_bits_ctrl_csr_cmd; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_load_0 = io_in_uop_bits_ctrl_is_load; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_sta_0 = io_in_uop_bits_ctrl_is_sta; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_std_0 = io_in_uop_bits_ctrl_is_std; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_iw_state_0 = io_in_uop_bits_iw_state; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_iw_p1_poisoned_0 = io_in_uop_bits_iw_p1_poisoned; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_iw_p2_poisoned_0 = io_in_uop_bits_iw_p2_poisoned; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_br_0 = io_in_uop_bits_is_br; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_jalr_0 = io_in_uop_bits_is_jalr; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_jal_0 = io_in_uop_bits_is_jal; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_sfb_0 = io_in_uop_bits_is_sfb; // @[issue-slot.scala:69:7]
wire [15:0] io_in_uop_bits_br_mask_0 = io_in_uop_bits_br_mask; // @[issue-slot.scala:69:7]
wire [3:0] io_in_uop_bits_br_tag_0 = io_in_uop_bits_br_tag; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ftq_idx_0 = io_in_uop_bits_ftq_idx; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_edge_inst_0 = io_in_uop_bits_edge_inst; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_pc_lob_0 = io_in_uop_bits_pc_lob; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_taken_0 = io_in_uop_bits_taken; // @[issue-slot.scala:69:7]
wire [19:0] io_in_uop_bits_imm_packed_0 = io_in_uop_bits_imm_packed; // @[issue-slot.scala:69:7]
wire [11:0] io_in_uop_bits_csr_addr_0 = io_in_uop_bits_csr_addr; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_rob_idx_0 = io_in_uop_bits_rob_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ldq_idx_0 = io_in_uop_bits_ldq_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_stq_idx_0 = io_in_uop_bits_stq_idx; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_rxq_idx_0 = io_in_uop_bits_rxq_idx; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_pdst_0 = io_in_uop_bits_pdst; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs1_0 = io_in_uop_bits_prs1; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs2_0 = io_in_uop_bits_prs2; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs3_0 = io_in_uop_bits_prs3; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ppred_0 = io_in_uop_bits_ppred; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs1_busy_0 = io_in_uop_bits_prs1_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs2_busy_0 = io_in_uop_bits_prs2_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs3_busy_0 = io_in_uop_bits_prs3_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ppred_busy_0 = io_in_uop_bits_ppred_busy; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_stale_pdst_0 = io_in_uop_bits_stale_pdst; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_exception_0 = io_in_uop_bits_exception; // @[issue-slot.scala:69:7]
wire [63:0] io_in_uop_bits_exc_cause_0 = io_in_uop_bits_exc_cause; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bypassable_0 = io_in_uop_bits_bypassable; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_mem_cmd_0 = io_in_uop_bits_mem_cmd; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_mem_size_0 = io_in_uop_bits_mem_size; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_mem_signed_0 = io_in_uop_bits_mem_signed; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_fence_0 = io_in_uop_bits_is_fence; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_fencei_0 = io_in_uop_bits_is_fencei; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_amo_0 = io_in_uop_bits_is_amo; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_uses_ldq_0 = io_in_uop_bits_uses_ldq; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_uses_stq_0 = io_in_uop_bits_uses_stq; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_sys_pc2epc_0 = io_in_uop_bits_is_sys_pc2epc; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_unique_0 = io_in_uop_bits_is_unique; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_flush_on_commit_0 = io_in_uop_bits_flush_on_commit; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ldst_is_rs1_0 = io_in_uop_bits_ldst_is_rs1; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_ldst_0 = io_in_uop_bits_ldst; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs1_0 = io_in_uop_bits_lrs1; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs2_0 = io_in_uop_bits_lrs2; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs3_0 = io_in_uop_bits_lrs3; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ldst_val_0 = io_in_uop_bits_ldst_val; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_dst_rtype_0 = io_in_uop_bits_dst_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_lrs1_rtype_0 = io_in_uop_bits_lrs1_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_lrs2_rtype_0 = io_in_uop_bits_lrs2_rtype; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_frs3_en_0 = io_in_uop_bits_frs3_en; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_fp_val_0 = io_in_uop_bits_fp_val; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_fp_single_0 = io_in_uop_bits_fp_single; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_pf_if_0 = io_in_uop_bits_xcpt_pf_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_ae_if_0 = io_in_uop_bits_xcpt_ae_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_ma_if_0 = io_in_uop_bits_xcpt_ma_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bp_debug_if_0 = io_in_uop_bits_bp_debug_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bp_xcpt_if_0 = io_in_uop_bits_bp_xcpt_if; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_debug_fsrc_0 = io_in_uop_bits_debug_fsrc; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_debug_tsrc_0 = io_in_uop_bits_debug_tsrc; // @[issue-slot.scala:69:7]
wire io_pred_wakeup_port_valid = 1'h0; // @[issue-slot.scala:69:7]
wire slot_uop_uop_is_rvc = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_fcn_dw = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_load = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_sta = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_std = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_iw_p1_poisoned = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_iw_p2_poisoned = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_br = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_jalr = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_jal = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_sfb = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_edge_inst = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_taken = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs1_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs2_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs3_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ppred_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_exception = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bypassable = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_mem_signed = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_fence = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_fencei = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_amo = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_uses_ldq = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_uses_stq = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_sys_pc2epc = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_unique = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_flush_on_commit = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ldst_is_rs1 = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ldst_val = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_frs3_en = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_fp_val = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_fp_single = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_pf_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_ae_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_ma_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bp_debug_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bp_xcpt_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_cs_fcn_dw = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_load = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_sta = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_std = 1'h0; // @[consts.scala:279:18]
wire [4:0] io_pred_wakeup_port_bits = 5'h0; // @[issue-slot.scala:69:7]
wire [4:0] slot_uop_uop_ctrl_op_fcn = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ftq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ldq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_stq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ppred = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_mem_cmd = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_cs_op_fcn = 5'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_uop_iq_type = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_op2_sel = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_imm_sel = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_csr_cmd = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_cs_op2_sel = 3'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_cs_imm_sel = 3'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_cs_csr_cmd = 3'h0; // @[consts.scala:279:18]
wire [1:0] slot_uop_uop_ctrl_op1_sel = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_iw_state = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_rxq_idx = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_mem_size = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_lrs1_rtype = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_lrs2_rtype = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_debug_fsrc = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_debug_tsrc = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_cs_op1_sel = 2'h0; // @[consts.scala:279:18]
wire [3:0] slot_uop_uop_ctrl_br_type = 4'h0; // @[consts.scala:269:19]
wire [3:0] slot_uop_uop_br_tag = 4'h0; // @[consts.scala:269:19]
wire [3:0] slot_uop_cs_br_type = 4'h0; // @[consts.scala:279:18]
wire [1:0] slot_uop_uop_dst_rtype = 2'h2; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_pc_lob = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_ldst = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs1 = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs2 = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs3 = 6'h0; // @[consts.scala:269:19]
wire [63:0] slot_uop_uop_exc_cause = 64'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_uopc = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_rob_idx = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_pdst = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs1 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs2 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs3 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_stale_pdst = 7'h0; // @[consts.scala:269:19]
wire [11:0] slot_uop_uop_csr_addr = 12'h0; // @[consts.scala:269:19]
wire [19:0] slot_uop_uop_imm_packed = 20'h0; // @[consts.scala:269:19]
wire [15:0] slot_uop_uop_br_mask = 16'h0; // @[consts.scala:269:19]
wire [9:0] slot_uop_uop_fu_code = 10'h0; // @[consts.scala:269:19]
wire [39:0] slot_uop_uop_debug_pc = 40'h0; // @[consts.scala:269:19]
wire [31:0] slot_uop_uop_inst = 32'h0; // @[consts.scala:269:19]
wire [31:0] slot_uop_uop_debug_inst = 32'h0; // @[consts.scala:269:19]
wire _io_valid_T; // @[issue-slot.scala:79:24]
wire _io_will_be_valid_T_4; // @[issue-slot.scala:262:32]
wire _io_request_hp_T; // @[issue-slot.scala:243:31]
wire [6:0] next_uopc; // @[issue-slot.scala:82:29]
wire [1:0] next_state; // @[issue-slot.scala:81:29]
wire [15:0] next_br_mask; // @[util.scala:85:25]
wire _io_out_uop_prs1_busy_T; // @[issue-slot.scala:270:28]
wire _io_out_uop_prs2_busy_T; // @[issue-slot.scala:271:28]
wire _io_out_uop_prs3_busy_T; // @[issue-slot.scala:272:28]
wire _io_out_uop_ppred_busy_T; // @[issue-slot.scala:273:28]
wire [1:0] next_lrs1_rtype; // @[issue-slot.scala:83:29]
wire [1:0] next_lrs2_rtype; // @[issue-slot.scala:84:29]
wire [3:0] io_out_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_uopc_0; // @[issue-slot.scala:69:7]
wire [31:0] io_out_uop_inst_0; // @[issue-slot.scala:69:7]
wire [31:0] io_out_uop_debug_inst_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_rvc_0; // @[issue-slot.scala:69:7]
wire [39:0] io_out_uop_debug_pc_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_iq_type_0; // @[issue-slot.scala:69:7]
wire [9:0] io_out_uop_fu_code_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_iw_state_0; // @[issue-slot.scala:69:7]
wire io_out_uop_iw_p1_poisoned_0; // @[issue-slot.scala:69:7]
wire io_out_uop_iw_p2_poisoned_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_br_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_jalr_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_jal_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_sfb_0; // @[issue-slot.scala:69:7]
wire [15:0] io_out_uop_br_mask_0; // @[issue-slot.scala:69:7]
wire [3:0] io_out_uop_br_tag_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ftq_idx_0; // @[issue-slot.scala:69:7]
wire io_out_uop_edge_inst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_pc_lob_0; // @[issue-slot.scala:69:7]
wire io_out_uop_taken_0; // @[issue-slot.scala:69:7]
wire [19:0] io_out_uop_imm_packed_0; // @[issue-slot.scala:69:7]
wire [11:0] io_out_uop_csr_addr_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_rob_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ldq_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_stq_idx_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_rxq_idx_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_pdst_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs1_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs2_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs3_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ppred_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs1_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs2_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs3_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ppred_busy_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_stale_pdst_0; // @[issue-slot.scala:69:7]
wire io_out_uop_exception_0; // @[issue-slot.scala:69:7]
wire [63:0] io_out_uop_exc_cause_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bypassable_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_mem_cmd_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_mem_size_0; // @[issue-slot.scala:69:7]
wire io_out_uop_mem_signed_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_fence_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_fencei_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_amo_0; // @[issue-slot.scala:69:7]
wire io_out_uop_uses_ldq_0; // @[issue-slot.scala:69:7]
wire io_out_uop_uses_stq_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_unique_0; // @[issue-slot.scala:69:7]
wire io_out_uop_flush_on_commit_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_ldst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs2_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs3_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ldst_val_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_dst_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7]
wire io_out_uop_frs3_en_0; // @[issue-slot.scala:69:7]
wire io_out_uop_fp_val_0; // @[issue-slot.scala:69:7]
wire io_out_uop_fp_single_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bp_debug_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_debug_fsrc_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_debug_tsrc_0; // @[issue-slot.scala:69:7]
wire [3:0] io_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_uopc_0; // @[issue-slot.scala:69:7]
wire [31:0] io_uop_inst_0; // @[issue-slot.scala:69:7]
wire [31:0] io_uop_debug_inst_0; // @[issue-slot.scala:69:7]
wire io_uop_is_rvc_0; // @[issue-slot.scala:69:7]
wire [39:0] io_uop_debug_pc_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_iq_type_0; // @[issue-slot.scala:69:7]
wire [9:0] io_uop_fu_code_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_iw_state_0; // @[issue-slot.scala:69:7]
wire io_uop_iw_p1_poisoned_0; // @[issue-slot.scala:69:7]
wire io_uop_iw_p2_poisoned_0; // @[issue-slot.scala:69:7]
wire io_uop_is_br_0; // @[issue-slot.scala:69:7]
wire io_uop_is_jalr_0; // @[issue-slot.scala:69:7]
wire io_uop_is_jal_0; // @[issue-slot.scala:69:7]
wire io_uop_is_sfb_0; // @[issue-slot.scala:69:7]
wire [15:0] io_uop_br_mask_0; // @[issue-slot.scala:69:7]
wire [3:0] io_uop_br_tag_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ftq_idx_0; // @[issue-slot.scala:69:7]
wire io_uop_edge_inst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_pc_lob_0; // @[issue-slot.scala:69:7]
wire io_uop_taken_0; // @[issue-slot.scala:69:7]
wire [19:0] io_uop_imm_packed_0; // @[issue-slot.scala:69:7]
wire [11:0] io_uop_csr_addr_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_rob_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ldq_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_stq_idx_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_rxq_idx_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_pdst_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs1_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs2_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs3_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ppred_0; // @[issue-slot.scala:69:7]
wire io_uop_prs1_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_prs2_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_prs3_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_ppred_busy_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_stale_pdst_0; // @[issue-slot.scala:69:7]
wire io_uop_exception_0; // @[issue-slot.scala:69:7]
wire [63:0] io_uop_exc_cause_0; // @[issue-slot.scala:69:7]
wire io_uop_bypassable_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_mem_cmd_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_mem_size_0; // @[issue-slot.scala:69:7]
wire io_uop_mem_signed_0; // @[issue-slot.scala:69:7]
wire io_uop_is_fence_0; // @[issue-slot.scala:69:7]
wire io_uop_is_fencei_0; // @[issue-slot.scala:69:7]
wire io_uop_is_amo_0; // @[issue-slot.scala:69:7]
wire io_uop_uses_ldq_0; // @[issue-slot.scala:69:7]
wire io_uop_uses_stq_0; // @[issue-slot.scala:69:7]
wire io_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7]
wire io_uop_is_unique_0; // @[issue-slot.scala:69:7]
wire io_uop_flush_on_commit_0; // @[issue-slot.scala:69:7]
wire io_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_ldst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs2_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs3_0; // @[issue-slot.scala:69:7]
wire io_uop_ldst_val_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_dst_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7]
wire io_uop_frs3_en_0; // @[issue-slot.scala:69:7]
wire io_uop_fp_val_0; // @[issue-slot.scala:69:7]
wire io_uop_fp_single_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7]
wire io_uop_bp_debug_if_0; // @[issue-slot.scala:69:7]
wire io_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_debug_fsrc_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_debug_tsrc_0; // @[issue-slot.scala:69:7]
wire io_debug_p1_0; // @[issue-slot.scala:69:7]
wire io_debug_p2_0; // @[issue-slot.scala:69:7]
wire io_debug_p3_0; // @[issue-slot.scala:69:7]
wire io_debug_ppred_0; // @[issue-slot.scala:69:7]
wire [1:0] io_debug_state_0; // @[issue-slot.scala:69:7]
wire io_valid_0; // @[issue-slot.scala:69:7]
wire io_will_be_valid_0; // @[issue-slot.scala:69:7]
wire io_request_0; // @[issue-slot.scala:69:7]
wire io_request_hp_0; // @[issue-slot.scala:69:7]
assign io_out_uop_iw_state_0 = next_state; // @[issue-slot.scala:69:7, :81:29]
assign io_out_uop_uopc_0 = next_uopc; // @[issue-slot.scala:69:7, :82:29]
assign io_out_uop_lrs1_rtype_0 = next_lrs1_rtype; // @[issue-slot.scala:69:7, :83:29]
assign io_out_uop_lrs2_rtype_0 = next_lrs2_rtype; // @[issue-slot.scala:69:7, :84:29]
reg [1:0] state; // @[issue-slot.scala:86:22]
assign io_debug_state_0 = state; // @[issue-slot.scala:69:7, :86:22]
reg p1; // @[issue-slot.scala:87:22]
assign io_debug_p1_0 = p1; // @[issue-slot.scala:69:7, :87:22]
wire next_p1 = p1; // @[issue-slot.scala:87:22, :163:25]
reg p2; // @[issue-slot.scala:88:22]
assign io_debug_p2_0 = p2; // @[issue-slot.scala:69:7, :88:22]
wire next_p2 = p2; // @[issue-slot.scala:88:22, :164:25]
reg p3; // @[issue-slot.scala:89:22]
assign io_debug_p3_0 = p3; // @[issue-slot.scala:69:7, :89:22]
wire next_p3 = p3; // @[issue-slot.scala:89:22, :165:25]
reg ppred; // @[issue-slot.scala:90:22]
assign io_debug_ppred_0 = ppred; // @[issue-slot.scala:69:7, :90:22]
wire next_ppred = ppred; // @[issue-slot.scala:90:22, :166:28]
reg p1_poisoned; // @[issue-slot.scala:95:28]
assign io_out_uop_iw_p1_poisoned_0 = p1_poisoned; // @[issue-slot.scala:69:7, :95:28]
assign io_uop_iw_p1_poisoned_0 = p1_poisoned; // @[issue-slot.scala:69:7, :95:28]
reg p2_poisoned; // @[issue-slot.scala:96:28]
assign io_out_uop_iw_p2_poisoned_0 = p2_poisoned; // @[issue-slot.scala:69:7, :96:28]
assign io_uop_iw_p2_poisoned_0 = p2_poisoned; // @[issue-slot.scala:69:7, :96:28]
wire next_p1_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p1_poisoned_0 : p1_poisoned; // @[issue-slot.scala:69:7, :95:28, :99:29]
wire next_p2_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p2_poisoned_0 : p2_poisoned; // @[issue-slot.scala:69:7, :96:28, :100:29]
reg [6:0] slot_uop_uopc; // @[issue-slot.scala:102:25]
reg [31:0] slot_uop_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25]
reg [31:0] slot_uop_debug_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_rvc; // @[issue-slot.scala:102:25]
assign io_out_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25]
reg [39:0] slot_uop_debug_pc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_iq_type; // @[issue-slot.scala:102:25]
assign io_out_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25]
reg [9:0] slot_uop_fu_code; // @[issue-slot.scala:102:25]
assign io_out_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25]
reg [3:0] slot_uop_ctrl_br_type; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_ctrl_op1_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_op2_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_imm_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ctrl_op_fcn; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_load; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_sta; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_std; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_iw_state; // @[issue-slot.scala:102:25]
assign io_uop_iw_state_0 = slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_iw_p1_poisoned; // @[issue-slot.scala:102:25]
reg slot_uop_iw_p2_poisoned; // @[issue-slot.scala:102:25]
reg slot_uop_is_br; // @[issue-slot.scala:102:25]
assign io_out_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_jalr; // @[issue-slot.scala:102:25]
assign io_out_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_jal; // @[issue-slot.scala:102:25]
assign io_out_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_sfb; // @[issue-slot.scala:102:25]
assign io_out_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25]
reg [15:0] slot_uop_br_mask; // @[issue-slot.scala:102:25]
assign io_uop_br_mask_0 = slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25]
reg [3:0] slot_uop_br_tag; // @[issue-slot.scala:102:25]
assign io_out_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ftq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_edge_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_pc_lob; // @[issue-slot.scala:102:25]
assign io_out_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_taken; // @[issue-slot.scala:102:25]
assign io_out_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25]
reg [19:0] slot_uop_imm_packed; // @[issue-slot.scala:102:25]
assign io_out_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25]
reg [11:0] slot_uop_csr_addr; // @[issue-slot.scala:102:25]
assign io_out_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_rob_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ldq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_stq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_rxq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_pdst; // @[issue-slot.scala:102:25]
assign io_out_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs1; // @[issue-slot.scala:102:25]
assign io_out_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs2; // @[issue-slot.scala:102:25]
assign io_out_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs3; // @[issue-slot.scala:102:25]
assign io_out_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ppred; // @[issue-slot.scala:102:25]
assign io_out_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs1_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs1_busy_0 = slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs2_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs2_busy_0 = slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs3_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs3_busy_0 = slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ppred_busy; // @[issue-slot.scala:102:25]
assign io_uop_ppred_busy_0 = slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_stale_pdst; // @[issue-slot.scala:102:25]
assign io_out_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_exception; // @[issue-slot.scala:102:25]
assign io_out_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25]
reg [63:0] slot_uop_exc_cause; // @[issue-slot.scala:102:25]
assign io_out_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bypassable; // @[issue-slot.scala:102:25]
assign io_out_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_mem_cmd; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_mem_size; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_mem_signed; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_fence; // @[issue-slot.scala:102:25]
assign io_out_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_fencei; // @[issue-slot.scala:102:25]
assign io_out_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_amo; // @[issue-slot.scala:102:25]
assign io_out_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_uses_ldq; // @[issue-slot.scala:102:25]
assign io_out_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_uses_stq; // @[issue-slot.scala:102:25]
assign io_out_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_sys_pc2epc; // @[issue-slot.scala:102:25]
assign io_out_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_unique; // @[issue-slot.scala:102:25]
assign io_out_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_flush_on_commit; // @[issue-slot.scala:102:25]
assign io_out_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ldst_is_rs1; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_ldst; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs1; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs2; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs3; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ldst_val; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_dst_rtype; // @[issue-slot.scala:102:25]
assign io_out_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_lrs1_rtype; // @[issue-slot.scala:102:25]
reg [1:0] slot_uop_lrs2_rtype; // @[issue-slot.scala:102:25]
reg slot_uop_frs3_en; // @[issue-slot.scala:102:25]
assign io_out_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_fp_val; // @[issue-slot.scala:102:25]
assign io_out_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_fp_single; // @[issue-slot.scala:102:25]
assign io_out_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_pf_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_ae_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_ma_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bp_debug_if; // @[issue-slot.scala:102:25]
assign io_out_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bp_xcpt_if; // @[issue-slot.scala:102:25]
assign io_out_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_debug_fsrc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_debug_tsrc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25]
wire [6:0] next_uop_uopc = io_in_uop_valid_0 ? io_in_uop_bits_uopc_0 : slot_uop_uopc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [31:0] next_uop_inst = io_in_uop_valid_0 ? io_in_uop_bits_inst_0 : slot_uop_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [31:0] next_uop_debug_inst = io_in_uop_valid_0 ? io_in_uop_bits_debug_inst_0 : slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_rvc = io_in_uop_valid_0 ? io_in_uop_bits_is_rvc_0 : slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [39:0] next_uop_debug_pc = io_in_uop_valid_0 ? io_in_uop_bits_debug_pc_0 : slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_iq_type = io_in_uop_valid_0 ? io_in_uop_bits_iq_type_0 : slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [9:0] next_uop_fu_code = io_in_uop_valid_0 ? io_in_uop_bits_fu_code_0 : slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [3:0] next_uop_ctrl_br_type = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_br_type_0 : slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_ctrl_op1_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op1_sel_0 : slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_op2_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op2_sel_0 : slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_imm_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_imm_sel_0 : slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ctrl_op_fcn = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op_fcn_0 : slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_fcn_dw = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_fcn_dw_0 : slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_csr_cmd = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_csr_cmd_0 : slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_load = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_load_0 : slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_sta = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_sta_0 : slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_std = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_std_0 : slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_iw_state = io_in_uop_valid_0 ? io_in_uop_bits_iw_state_0 : slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_iw_p1_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p1_poisoned_0 : slot_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_iw_p2_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p2_poisoned_0 : slot_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_br = io_in_uop_valid_0 ? io_in_uop_bits_is_br_0 : slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_jalr = io_in_uop_valid_0 ? io_in_uop_bits_is_jalr_0 : slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_jal = io_in_uop_valid_0 ? io_in_uop_bits_is_jal_0 : slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_sfb = io_in_uop_valid_0 ? io_in_uop_bits_is_sfb_0 : slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [15:0] next_uop_br_mask = io_in_uop_valid_0 ? io_in_uop_bits_br_mask_0 : slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [3:0] next_uop_br_tag = io_in_uop_valid_0 ? io_in_uop_bits_br_tag_0 : slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ftq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ftq_idx_0 : slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_edge_inst = io_in_uop_valid_0 ? io_in_uop_bits_edge_inst_0 : slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_pc_lob = io_in_uop_valid_0 ? io_in_uop_bits_pc_lob_0 : slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_taken = io_in_uop_valid_0 ? io_in_uop_bits_taken_0 : slot_uop_taken; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [19:0] next_uop_imm_packed = io_in_uop_valid_0 ? io_in_uop_bits_imm_packed_0 : slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [11:0] next_uop_csr_addr = io_in_uop_valid_0 ? io_in_uop_bits_csr_addr_0 : slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_rob_idx = io_in_uop_valid_0 ? io_in_uop_bits_rob_idx_0 : slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ldq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ldq_idx_0 : slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_stq_idx = io_in_uop_valid_0 ? io_in_uop_bits_stq_idx_0 : slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_rxq_idx = io_in_uop_valid_0 ? io_in_uop_bits_rxq_idx_0 : slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_pdst = io_in_uop_valid_0 ? io_in_uop_bits_pdst_0 : slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs1 = io_in_uop_valid_0 ? io_in_uop_bits_prs1_0 : slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs2 = io_in_uop_valid_0 ? io_in_uop_bits_prs2_0 : slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs3 = io_in_uop_valid_0 ? io_in_uop_bits_prs3_0 : slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ppred = io_in_uop_valid_0 ? io_in_uop_bits_ppred_0 : slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs1_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs1_busy_0 : slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs2_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs2_busy_0 : slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs3_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs3_busy_0 : slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ppred_busy = io_in_uop_valid_0 ? io_in_uop_bits_ppred_busy_0 : slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_stale_pdst = io_in_uop_valid_0 ? io_in_uop_bits_stale_pdst_0 : slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_exception = io_in_uop_valid_0 ? io_in_uop_bits_exception_0 : slot_uop_exception; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [63:0] next_uop_exc_cause = io_in_uop_valid_0 ? io_in_uop_bits_exc_cause_0 : slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bypassable = io_in_uop_valid_0 ? io_in_uop_bits_bypassable_0 : slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_mem_cmd = io_in_uop_valid_0 ? io_in_uop_bits_mem_cmd_0 : slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_mem_size = io_in_uop_valid_0 ? io_in_uop_bits_mem_size_0 : slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_mem_signed = io_in_uop_valid_0 ? io_in_uop_bits_mem_signed_0 : slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_fence = io_in_uop_valid_0 ? io_in_uop_bits_is_fence_0 : slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_fencei = io_in_uop_valid_0 ? io_in_uop_bits_is_fencei_0 : slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_amo = io_in_uop_valid_0 ? io_in_uop_bits_is_amo_0 : slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_uses_ldq = io_in_uop_valid_0 ? io_in_uop_bits_uses_ldq_0 : slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_uses_stq = io_in_uop_valid_0 ? io_in_uop_bits_uses_stq_0 : slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_sys_pc2epc = io_in_uop_valid_0 ? io_in_uop_bits_is_sys_pc2epc_0 : slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_unique = io_in_uop_valid_0 ? io_in_uop_bits_is_unique_0 : slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_flush_on_commit = io_in_uop_valid_0 ? io_in_uop_bits_flush_on_commit_0 : slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ldst_is_rs1 = io_in_uop_valid_0 ? io_in_uop_bits_ldst_is_rs1_0 : slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_ldst = io_in_uop_valid_0 ? io_in_uop_bits_ldst_0 : slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs1 = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_0 : slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs2 = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_0 : slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs3 = io_in_uop_valid_0 ? io_in_uop_bits_lrs3_0 : slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ldst_val = io_in_uop_valid_0 ? io_in_uop_bits_ldst_val_0 : slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_dst_rtype = io_in_uop_valid_0 ? io_in_uop_bits_dst_rtype_0 : slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_lrs1_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_rtype_0 : slot_uop_lrs1_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_lrs2_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_rtype_0 : slot_uop_lrs2_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_frs3_en = io_in_uop_valid_0 ? io_in_uop_bits_frs3_en_0 : slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_fp_val = io_in_uop_valid_0 ? io_in_uop_bits_fp_val_0 : slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_fp_single = io_in_uop_valid_0 ? io_in_uop_bits_fp_single_0 : slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_pf_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_pf_if_0 : slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_ae_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ae_if_0 : slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_ma_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ma_if_0 : slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bp_debug_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_debug_if_0 : slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bp_xcpt_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_xcpt_if_0 : slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_debug_fsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_fsrc_0 : slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_debug_tsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_tsrc_0 : slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire _T_11 = state == 2'h2; // @[issue-slot.scala:86:22, :134:25]
wire _T_7 = io_grant_0 & state == 2'h1 | io_grant_0 & _T_11 & p1 & p2 & ppred; // @[issue-slot.scala:69:7, :86:22, :87:22, :88:22, :90:22, :133:{26,36,52}, :134:{15,25,40,46,52}]
wire _T_12 = io_grant_0 & _T_11; // @[issue-slot.scala:69:7, :134:25, :139:25]
wire _T_14 = io_ldspec_miss_0 & (p1_poisoned | p2_poisoned); // @[issue-slot.scala:69:7, :95:28, :96:28, :140:{28,44}]
wire _GEN = _T_12 & ~_T_14; // @[issue-slot.scala:126:14, :139:{25,51}, :140:{11,28,62}, :141:18]
wire _GEN_0 = io_kill_0 | _T_7; // @[issue-slot.scala:69:7, :102:25, :131:18, :133:52, :134:63, :139:51]
wire _GEN_1 = _GEN_0 | ~(_T_12 & ~_T_14 & p1); // @[issue-slot.scala:87:22, :102:25, :131:18, :134:63, :139:{25,51}, :140:{11,28,62}, :142:17, :143:23]
assign next_uopc = _GEN_1 ? slot_uop_uopc : 7'h3; // @[issue-slot.scala:82:29, :102:25, :131:18, :134:63, :139:51]
assign next_lrs1_rtype = _GEN_1 ? slot_uop_lrs1_rtype : 2'h2; // @[issue-slot.scala:83:29, :102:25, :131:18, :134:63, :139:51]
wire _GEN_2 = _GEN_0 | ~_GEN | p1; // @[issue-slot.scala:87:22, :102:25, :126:14, :131:18, :134:63, :139:51, :140:62, :141:18, :142:17]
assign next_lrs2_rtype = _GEN_2 ? slot_uop_lrs2_rtype : 2'h2; // @[issue-slot.scala:84:29, :102:25, :131:18, :134:63, :139:51, :140:62, :142:17]
wire _p1_T = ~io_in_uop_bits_prs1_busy_0; // @[issue-slot.scala:69:7, :169:11]
wire _p2_T = ~io_in_uop_bits_prs2_busy_0; // @[issue-slot.scala:69:7, :170:11]
wire _p3_T = ~io_in_uop_bits_prs3_busy_0; // @[issue-slot.scala:69:7, :171:11]
wire _ppred_T = ~io_in_uop_bits_ppred_busy_0; // @[issue-slot.scala:69:7, :172:14]
wire _T_22 = io_ldspec_miss_0 & next_p1_poisoned; // @[issue-slot.scala:69:7, :99:29, :175:24]
wire _T_27 = io_ldspec_miss_0 & next_p2_poisoned; // @[issue-slot.scala:69:7, :100:29, :179:24]
wire _T_85 = io_spec_ld_wakeup_0_valid_0 & io_spec_ld_wakeup_0_bits_0 == next_uop_prs1 & next_uop_lrs1_rtype == 2'h0; // @[issue-slot.scala:69:7, :103:21, :209:38, :210:{33,51}, :211:27]
wire _T_93 = io_spec_ld_wakeup_0_valid_0 & io_spec_ld_wakeup_0_bits_0 == next_uop_prs2 & next_uop_lrs2_rtype == 2'h0; // @[issue-slot.scala:69:7, :103:21, :216:38, :217:{33,51}, :218:27] |
Generate the Verilog code corresponding to the following Chisel files.
File Serdes.scala:
package testchipip.serdes
import chisel3._
import chisel3.util._
import freechips.rocketchip.diplomacy._
import org.chipsalliance.cde.config._
class GenericSerializer[T <: Data](t: T, flitWidth: Int) extends Module {
override def desiredName = s"GenericSerializer_${t.typeName}w${t.getWidth}_f${flitWidth}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(t))
val out = Decoupled(new Flit(flitWidth))
val busy = Output(Bool())
})
val dataBits = t.getWidth.max(flitWidth)
val dataBeats = (dataBits - 1) / flitWidth + 1
require(dataBeats >= 1)
val data = Reg(Vec(dataBeats, UInt(flitWidth.W)))
val beat = RegInit(0.U(log2Ceil(dataBeats).W))
io.in.ready := io.out.ready && beat === 0.U
io.out.valid := io.in.valid || beat =/= 0.U
io.out.bits.flit := Mux(beat === 0.U, io.in.bits.asUInt, data(beat))
when (io.out.fire) {
beat := Mux(beat === (dataBeats-1).U, 0.U, beat + 1.U)
when (beat === 0.U) {
data := io.in.bits.asTypeOf(Vec(dataBeats, UInt(flitWidth.W)))
data(0) := DontCare // unused, DCE this
}
}
io.busy := io.out.valid
}
class GenericDeserializer[T <: Data](t: T, flitWidth: Int) extends Module {
override def desiredName = s"GenericDeserializer_${t.typeName}w${t.getWidth}_f${flitWidth}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Flit(flitWidth)))
val out = Decoupled(t)
val busy = Output(Bool())
})
val dataBits = t.getWidth.max(flitWidth)
val dataBeats = (dataBits - 1) / flitWidth + 1
require(dataBeats >= 1)
val data = Reg(Vec(dataBeats-1, UInt(flitWidth.W)))
val beat = RegInit(0.U(log2Ceil(dataBeats).W))
io.in.ready := io.out.ready || beat =/= (dataBeats-1).U
io.out.valid := io.in.valid && beat === (dataBeats-1).U
io.out.bits := (if (dataBeats == 1) {
io.in.bits.flit.asTypeOf(t)
} else {
Cat(io.in.bits.flit, data.asUInt).asTypeOf(t)
})
when (io.in.fire) {
beat := Mux(beat === (dataBeats-1).U, 0.U, beat + 1.U)
if (dataBeats > 1) {
when (beat =/= (dataBeats-1).U) {
data(beat(log2Ceil(dataBeats-1)-1,0)) := io.in.bits.flit
}
}
}
io.busy := beat =/= 0.U
}
class FlitToPhit(flitWidth: Int, phitWidth: Int) extends Module {
override def desiredName = s"FlitToPhit_f${flitWidth}_p${phitWidth}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Flit(flitWidth)))
val out = Decoupled(new Phit(phitWidth))
})
require(flitWidth >= phitWidth)
val dataBeats = (flitWidth - 1) / phitWidth + 1
val data = Reg(Vec(dataBeats-1, UInt(phitWidth.W)))
val beat = RegInit(0.U(log2Ceil(dataBeats).W))
io.in.ready := io.out.ready && beat === 0.U
io.out.valid := io.in.valid || beat =/= 0.U
io.out.bits.phit := (if (dataBeats == 1) io.in.bits.flit else Mux(beat === 0.U, io.in.bits.flit, data(beat-1.U)))
when (io.out.fire) {
beat := Mux(beat === (dataBeats-1).U, 0.U, beat + 1.U)
when (beat === 0.U) {
data := io.in.bits.asTypeOf(Vec(dataBeats, UInt(phitWidth.W))).tail
}
}
}
object FlitToPhit {
def apply(flit: DecoupledIO[Flit], phitWidth: Int): DecoupledIO[Phit] = {
val flit2phit = Module(new FlitToPhit(flit.bits.flitWidth, phitWidth))
flit2phit.io.in <> flit
flit2phit.io.out
}
}
class PhitToFlit(flitWidth: Int, phitWidth: Int) extends Module {
override def desiredName = s"PhitToFlit_p${phitWidth}_f${flitWidth}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Phit(phitWidth)))
val out = Decoupled(new Flit(flitWidth))
})
require(flitWidth >= phitWidth)
val dataBeats = (flitWidth - 1) / phitWidth + 1
val data = Reg(Vec(dataBeats-1, UInt(phitWidth.W)))
val beat = RegInit(0.U(log2Ceil(dataBeats).W))
io.in.ready := io.out.ready || beat =/= (dataBeats-1).U
io.out.valid := io.in.valid && beat === (dataBeats-1).U
io.out.bits.flit := (if (dataBeats == 1) io.in.bits.phit else Cat(io.in.bits.phit, data.asUInt))
when (io.in.fire) {
beat := Mux(beat === (dataBeats-1).U, 0.U, beat + 1.U)
if (dataBeats > 1) {
when (beat =/= (dataBeats-1).U) {
data(beat) := io.in.bits.phit
}
}
}
}
object PhitToFlit {
def apply(phit: DecoupledIO[Phit], flitWidth: Int): DecoupledIO[Flit] = {
val phit2flit = Module(new PhitToFlit(flitWidth, phit.bits.phitWidth))
phit2flit.io.in <> phit
phit2flit.io.out
}
def apply(phit: ValidIO[Phit], flitWidth: Int): ValidIO[Flit] = {
val phit2flit = Module(new PhitToFlit(flitWidth, phit.bits.phitWidth))
phit2flit.io.in.valid := phit.valid
phit2flit.io.in.bits := phit.bits
when (phit.valid) { assert(phit2flit.io.in.ready) }
val out = Wire(Valid(new Flit(flitWidth)))
out.valid := phit2flit.io.out.valid
out.bits := phit2flit.io.out.bits
phit2flit.io.out.ready := true.B
out
}
}
class PhitArbiter(phitWidth: Int, flitWidth: Int, channels: Int) extends Module {
override def desiredName = s"PhitArbiter_p${phitWidth}_f${flitWidth}_n${channels}"
val io = IO(new Bundle {
val in = Flipped(Vec(channels, Decoupled(new Phit(phitWidth))))
val out = Decoupled(new Phit(phitWidth))
})
if (channels == 1) {
io.out <> io.in(0)
} else {
val headerWidth = log2Ceil(channels)
val headerBeats = (headerWidth - 1) / phitWidth + 1
val flitBeats = (flitWidth - 1) / phitWidth + 1
val beats = headerBeats + flitBeats
val beat = RegInit(0.U(log2Ceil(beats).W))
val chosen_reg = Reg(UInt(headerWidth.W))
val chosen_prio = PriorityEncoder(io.in.map(_.valid))
val chosen = Mux(beat === 0.U, chosen_prio, chosen_reg)
val header_idx = if (headerBeats == 1) 0.U else beat(log2Ceil(headerBeats)-1,0)
io.out.valid := VecInit(io.in.map(_.valid))(chosen)
io.out.bits.phit := Mux(beat < headerBeats.U,
chosen.asTypeOf(Vec(headerBeats, UInt(phitWidth.W)))(header_idx),
VecInit(io.in.map(_.bits.phit))(chosen))
for (i <- 0 until channels) {
io.in(i).ready := io.out.ready && beat >= headerBeats.U && chosen_reg === i.U
}
when (io.out.fire) {
beat := Mux(beat === (beats-1).U, 0.U, beat + 1.U)
when (beat === 0.U) { chosen_reg := chosen_prio }
}
}
}
class PhitDemux(phitWidth: Int, flitWidth: Int, channels: Int) extends Module {
override def desiredName = s"PhitDemux_p${phitWidth}_f${flitWidth}_n${channels}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Phit(phitWidth)))
val out = Vec(channels, Decoupled(new Phit(phitWidth)))
})
if (channels == 1) {
io.out(0) <> io.in
} else {
val headerWidth = log2Ceil(channels)
val headerBeats = (headerWidth - 1) / phitWidth + 1
val flitBeats = (flitWidth - 1) / phitWidth + 1
val beats = headerBeats + flitBeats
val beat = RegInit(0.U(log2Ceil(beats).W))
val channel_vec = Reg(Vec(headerBeats, UInt(phitWidth.W)))
val channel = channel_vec.asUInt(log2Ceil(channels)-1,0)
val header_idx = if (headerBeats == 1) 0.U else beat(log2Ceil(headerBeats)-1,0)
io.in.ready := beat < headerBeats.U || VecInit(io.out.map(_.ready))(channel)
for (c <- 0 until channels) {
io.out(c).valid := io.in.valid && beat >= headerBeats.U && channel === c.U
io.out(c).bits.phit := io.in.bits.phit
}
when (io.in.fire) {
beat := Mux(beat === (beats-1).U, 0.U, beat + 1.U)
when (beat < headerBeats.U) {
channel_vec(header_idx) := io.in.bits.phit
}
}
}
}
class DecoupledFlitToCreditedFlit(flitWidth: Int, bufferSz: Int) extends Module {
override def desiredName = s"DecoupledFlitToCreditedFlit_f${flitWidth}_b${bufferSz}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Flit(flitWidth)))
val out = Decoupled(new Flit(flitWidth))
val credit = Flipped(Decoupled(new Flit(flitWidth)))
})
val creditWidth = log2Ceil(bufferSz)
require(creditWidth <= flitWidth)
val credits = RegInit(0.U((creditWidth+1).W))
val credit_incr = io.out.fire
val credit_decr = io.credit.fire
when (credit_incr || credit_decr) {
credits := credits + credit_incr - Mux(io.credit.valid, io.credit.bits.flit +& 1.U, 0.U)
}
io.out.valid := io.in.valid && credits < bufferSz.U
io.out.bits.flit := io.in.bits.flit
io.in.ready := io.out.ready && credits < bufferSz.U
io.credit.ready := true.B
}
class CreditedFlitToDecoupledFlit(flitWidth: Int, bufferSz: Int) extends Module {
override def desiredName = s"CreditedFlitToDecoupledFlit_f${flitWidth}_b${bufferSz}"
val io = IO(new Bundle {
val in = Flipped(Decoupled(new Flit(flitWidth)))
val out = Decoupled(new Flit(flitWidth))
val credit = Decoupled(new Flit(flitWidth))
})
val creditWidth = log2Ceil(bufferSz)
require(creditWidth <= flitWidth)
val buffer = Module(new Queue(new Flit(flitWidth), bufferSz))
val credits = RegInit(0.U((creditWidth+1).W))
val credit_incr = buffer.io.deq.fire
val credit_decr = io.credit.fire
when (credit_incr || credit_decr) {
credits := credit_incr + Mux(credit_decr, 0.U, credits)
}
buffer.io.enq.valid := io.in.valid
buffer.io.enq.bits := io.in.bits
io.in.ready := true.B
when (io.in.valid) { assert(buffer.io.enq.ready) }
io.out <> buffer.io.deq
io.credit.valid := credits =/= 0.U
io.credit.bits.flit := credits - 1.U
}
| module GenericDeserializer_TLBeatw10_f32( // @[Serdes.scala:37:7]
output io_in_ready, // @[Serdes.scala:39:14]
input io_in_valid, // @[Serdes.scala:39:14]
input [31:0] io_in_bits_flit, // @[Serdes.scala:39:14]
input io_out_ready, // @[Serdes.scala:39:14]
output io_out_valid, // @[Serdes.scala:39:14]
output io_out_bits_head, // @[Serdes.scala:39:14]
output io_out_bits_tail // @[Serdes.scala:39:14]
);
assign io_in_ready = io_out_ready; // @[Serdes.scala:37:7]
assign io_out_valid = io_in_valid; // @[Serdes.scala:37:7]
assign io_out_bits_head = io_in_bits_flit[1]; // @[Serdes.scala:37:7, :54:29]
assign io_out_bits_tail = io_in_bits_flit[0]; // @[Serdes.scala:37:7, :54:29]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_13( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [12:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_d_bits_source // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire [12:0] _GEN = {10'h0, io_in_a_bits_size}; // @[package.scala:243:71]
wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [6:0] source; // @[Monitor.scala:390:22]
reg [12:0] address; // @[Monitor.scala:391:22]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [6:0] source_1; // @[Monitor.scala:541:22]
reg [64:0] inflight; // @[Monitor.scala:614:27]
reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [259:0] inflight_sizes; // @[Monitor.scala:618:33]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _GEN_0 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35]
wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46]
wire _GEN_1 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
reg [64:0] inflight_1; // @[Monitor.scala:726:35]
reg [259:0] inflight_sizes_1; // @[Monitor.scala:728:35]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File MulRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (ported from Verilog to
Chisel by Andrew Waterman).
Copyright 2019, 2020 The Regents of the University of California. All rights
reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulFullRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth*2 - 1))
})
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
val notSigNaN_invalidExc = (io.a.isInf && io.b.isZero) || (io.a.isZero && io.b.isInf)
val notNaN_isInfOut = io.a.isInf || io.b.isInf
val notNaN_isZeroOut = io.a.isZero || io.b.isZero
val notNaN_signOut = io.a.sign ^ io.b.sign
val common_sExpOut = io.a.sExp + io.b.sExp - (1<<expWidth).S
val common_sigOut = (io.a.sig * io.b.sig)(sigWidth*2 - 1, 0)
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
io.invalidExc := isSigNaNRawFloat(io.a) || isSigNaNRawFloat(io.b) || notSigNaN_invalidExc
io.rawOut.isInf := notNaN_isInfOut
io.rawOut.isZero := notNaN_isZeroOut
io.rawOut.sExp := common_sExpOut
io.rawOut.isNaN := io.a.isNaN || io.b.isNaN
io.rawOut.sign := notNaN_signOut
io.rawOut.sig := common_sigOut
}
class MulRawFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(new RawFloat(expWidth, sigWidth))
val b = Input(new RawFloat(expWidth, sigWidth))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth + 2))
})
val mulFullRaw = Module(new MulFullRawFN(expWidth, sigWidth))
mulFullRaw.io.a := io.a
mulFullRaw.io.b := io.b
io.invalidExc := mulFullRaw.io.invalidExc
io.rawOut := mulFullRaw.io.rawOut
io.rawOut.sig := {
val sig = mulFullRaw.io.rawOut.sig
Cat(sig >> (sigWidth - 2), sig(sigWidth - 3, 0).orR)
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulRecFN(expWidth: Int, sigWidth: Int) extends chisel3.RawModule
{
val io = IO(new Bundle {
val a = Input(UInt((expWidth + sigWidth + 1).W))
val b = Input(UInt((expWidth + sigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(Bool())
val out = Output(UInt((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(UInt(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val mulRawFN = Module(new MulRawFN(expWidth, sigWidth))
mulRawFN.io.a := rawFloatFromRecFN(expWidth, sigWidth, io.a)
mulRawFN.io.b := rawFloatFromRecFN(expWidth, sigWidth, io.b)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundRawFNToRecFN =
Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0))
roundRawFNToRecFN.io.invalidExc := mulRawFN.io.invalidExc
roundRawFNToRecFN.io.infiniteExc := false.B
roundRawFNToRecFN.io.in := mulRawFN.io.rawOut
roundRawFNToRecFN.io.roundingMode := io.roundingMode
roundRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundRawFNToRecFN.io.out
io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags
}
File rawFloatFromRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
/*----------------------------------------------------------------------------
| In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be
| set.
*----------------------------------------------------------------------------*/
object rawFloatFromRecFN
{
def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat =
{
val exp = in(expWidth + sigWidth - 1, sigWidth - 1)
val isZero = exp(expWidth, expWidth - 2) === 0.U
val isSpecial = exp(expWidth, expWidth - 1) === 3.U
val out = Wire(new RawFloat(expWidth, sigWidth))
out.isNaN := isSpecial && exp(expWidth - 2)
out.isInf := isSpecial && ! exp(expWidth - 2)
out.isZero := isZero
out.sign := in(expWidth + sigWidth)
out.sExp := exp.zext
out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0)
out
}
}
| module MulRecFN_13( // @[MulRecFN.scala:100:7]
input [32:0] io_a, // @[MulRecFN.scala:102:16]
input [32:0] io_b, // @[MulRecFN.scala:102:16]
output [32:0] io_out // @[MulRecFN.scala:102:16]
);
wire _mulRawFN_io_invalidExc; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_isNaN; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_isInf; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_isZero; // @[MulRecFN.scala:113:26]
wire _mulRawFN_io_rawOut_sign; // @[MulRecFN.scala:113:26]
wire [9:0] _mulRawFN_io_rawOut_sExp; // @[MulRecFN.scala:113:26]
wire [26:0] _mulRawFN_io_rawOut_sig; // @[MulRecFN.scala:113:26]
wire [32:0] io_a_0 = io_a; // @[MulRecFN.scala:100:7]
wire [32:0] io_b_0 = io_b; // @[MulRecFN.scala:100:7]
wire io_detectTininess = 1'h1; // @[MulRecFN.scala:100:7, :102:16, :121:15]
wire [2:0] io_roundingMode = 3'h0; // @[MulRecFN.scala:100:7, :102:16, :121:15]
wire [32:0] io_out_0; // @[MulRecFN.scala:100:7]
wire [4:0] io_exceptionFlags; // @[MulRecFN.scala:100:7]
wire [8:0] mulRawFN_io_a_exp = io_a_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _mulRawFN_io_a_isZero_T = mulRawFN_io_a_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire mulRawFN_io_a_isZero = _mulRawFN_io_a_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire mulRawFN_io_a_out_isZero = mulRawFN_io_a_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _mulRawFN_io_a_isSpecial_T = mulRawFN_io_a_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire mulRawFN_io_a_isSpecial = &_mulRawFN_io_a_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _mulRawFN_io_a_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _mulRawFN_io_a_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _mulRawFN_io_a_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _mulRawFN_io_a_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _mulRawFN_io_a_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire mulRawFN_io_a_out_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_a_out_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_a_out_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] mulRawFN_io_a_out_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] mulRawFN_io_a_out_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _mulRawFN_io_a_out_isNaN_T = mulRawFN_io_a_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _mulRawFN_io_a_out_isInf_T = mulRawFN_io_a_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _mulRawFN_io_a_out_isNaN_T_1 = mulRawFN_io_a_isSpecial & _mulRawFN_io_a_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign mulRawFN_io_a_out_isNaN = _mulRawFN_io_a_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _mulRawFN_io_a_out_isInf_T_1 = ~_mulRawFN_io_a_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _mulRawFN_io_a_out_isInf_T_2 = mulRawFN_io_a_isSpecial & _mulRawFN_io_a_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign mulRawFN_io_a_out_isInf = _mulRawFN_io_a_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _mulRawFN_io_a_out_sign_T = io_a_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign mulRawFN_io_a_out_sign = _mulRawFN_io_a_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _mulRawFN_io_a_out_sExp_T = {1'h0, mulRawFN_io_a_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign mulRawFN_io_a_out_sExp = _mulRawFN_io_a_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _mulRawFN_io_a_out_sig_T = ~mulRawFN_io_a_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _mulRawFN_io_a_out_sig_T_1 = {1'h0, _mulRawFN_io_a_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _mulRawFN_io_a_out_sig_T_2 = io_a_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _mulRawFN_io_a_out_sig_T_3 = {_mulRawFN_io_a_out_sig_T_1, _mulRawFN_io_a_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign mulRawFN_io_a_out_sig = _mulRawFN_io_a_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
wire [8:0] mulRawFN_io_b_exp = io_b_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _mulRawFN_io_b_isZero_T = mulRawFN_io_b_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire mulRawFN_io_b_isZero = _mulRawFN_io_b_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire mulRawFN_io_b_out_isZero = mulRawFN_io_b_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _mulRawFN_io_b_isSpecial_T = mulRawFN_io_b_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire mulRawFN_io_b_isSpecial = &_mulRawFN_io_b_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _mulRawFN_io_b_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _mulRawFN_io_b_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _mulRawFN_io_b_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _mulRawFN_io_b_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _mulRawFN_io_b_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire mulRawFN_io_b_out_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_b_out_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire mulRawFN_io_b_out_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] mulRawFN_io_b_out_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] mulRawFN_io_b_out_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _mulRawFN_io_b_out_isNaN_T = mulRawFN_io_b_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _mulRawFN_io_b_out_isInf_T = mulRawFN_io_b_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _mulRawFN_io_b_out_isNaN_T_1 = mulRawFN_io_b_isSpecial & _mulRawFN_io_b_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign mulRawFN_io_b_out_isNaN = _mulRawFN_io_b_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _mulRawFN_io_b_out_isInf_T_1 = ~_mulRawFN_io_b_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _mulRawFN_io_b_out_isInf_T_2 = mulRawFN_io_b_isSpecial & _mulRawFN_io_b_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign mulRawFN_io_b_out_isInf = _mulRawFN_io_b_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _mulRawFN_io_b_out_sign_T = io_b_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign mulRawFN_io_b_out_sign = _mulRawFN_io_b_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _mulRawFN_io_b_out_sExp_T = {1'h0, mulRawFN_io_b_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign mulRawFN_io_b_out_sExp = _mulRawFN_io_b_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _mulRawFN_io_b_out_sig_T = ~mulRawFN_io_b_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _mulRawFN_io_b_out_sig_T_1 = {1'h0, _mulRawFN_io_b_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _mulRawFN_io_b_out_sig_T_2 = io_b_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _mulRawFN_io_b_out_sig_T_3 = {_mulRawFN_io_b_out_sig_T_1, _mulRawFN_io_b_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign mulRawFN_io_b_out_sig = _mulRawFN_io_b_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
MulRawFN_13 mulRawFN ( // @[MulRecFN.scala:113:26]
.io_a_isNaN (mulRawFN_io_a_out_isNaN), // @[rawFloatFromRecFN.scala:55:23]
.io_a_isInf (mulRawFN_io_a_out_isInf), // @[rawFloatFromRecFN.scala:55:23]
.io_a_isZero (mulRawFN_io_a_out_isZero), // @[rawFloatFromRecFN.scala:55:23]
.io_a_sign (mulRawFN_io_a_out_sign), // @[rawFloatFromRecFN.scala:55:23]
.io_a_sExp (mulRawFN_io_a_out_sExp), // @[rawFloatFromRecFN.scala:55:23]
.io_a_sig (mulRawFN_io_a_out_sig), // @[rawFloatFromRecFN.scala:55:23]
.io_b_isNaN (mulRawFN_io_b_out_isNaN), // @[rawFloatFromRecFN.scala:55:23]
.io_b_isInf (mulRawFN_io_b_out_isInf), // @[rawFloatFromRecFN.scala:55:23]
.io_b_isZero (mulRawFN_io_b_out_isZero), // @[rawFloatFromRecFN.scala:55:23]
.io_b_sign (mulRawFN_io_b_out_sign), // @[rawFloatFromRecFN.scala:55:23]
.io_b_sExp (mulRawFN_io_b_out_sExp), // @[rawFloatFromRecFN.scala:55:23]
.io_b_sig (mulRawFN_io_b_out_sig), // @[rawFloatFromRecFN.scala:55:23]
.io_invalidExc (_mulRawFN_io_invalidExc),
.io_rawOut_isNaN (_mulRawFN_io_rawOut_isNaN),
.io_rawOut_isInf (_mulRawFN_io_rawOut_isInf),
.io_rawOut_isZero (_mulRawFN_io_rawOut_isZero),
.io_rawOut_sign (_mulRawFN_io_rawOut_sign),
.io_rawOut_sExp (_mulRawFN_io_rawOut_sExp),
.io_rawOut_sig (_mulRawFN_io_rawOut_sig)
); // @[MulRecFN.scala:113:26]
RoundRawFNToRecFN_e8_s24_37 roundRawFNToRecFN ( // @[MulRecFN.scala:121:15]
.io_invalidExc (_mulRawFN_io_invalidExc), // @[MulRecFN.scala:113:26]
.io_in_isNaN (_mulRawFN_io_rawOut_isNaN), // @[MulRecFN.scala:113:26]
.io_in_isInf (_mulRawFN_io_rawOut_isInf), // @[MulRecFN.scala:113:26]
.io_in_isZero (_mulRawFN_io_rawOut_isZero), // @[MulRecFN.scala:113:26]
.io_in_sign (_mulRawFN_io_rawOut_sign), // @[MulRecFN.scala:113:26]
.io_in_sExp (_mulRawFN_io_rawOut_sExp), // @[MulRecFN.scala:113:26]
.io_in_sig (_mulRawFN_io_rawOut_sig), // @[MulRecFN.scala:113:26]
.io_out (io_out_0),
.io_exceptionFlags (io_exceptionFlags)
); // @[MulRecFN.scala:121:15]
assign io_out = io_out_0; // @[MulRecFN.scala:100:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Nodes.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection}
case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args))
object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle]
{
def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo)
def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo)
def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle)
def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle)
def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString)
override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = {
val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge)))
monitor.io.in := bundle
}
override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters =
pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })
override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters =
pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })
}
trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut]
case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode
case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode
case class TLAdapterNode(
clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s },
managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLJunctionNode(
clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters],
managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])(
implicit valName: ValName)
extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode
case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode
object TLNameNode {
def apply(name: ValName) = TLIdentityNode()(name)
def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLIdentityNode = apply(Some(name))
}
case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)()
object TLTempNode {
def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp"))
}
case class TLNexusNode(
clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters,
managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)(
implicit valName: ValName)
extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode
abstract class TLCustomNode(implicit valName: ValName)
extends CustomNode(TLImp) with TLFormatNode
// Asynchronous crossings
trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters]
object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle]
{
def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle)
def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString)
override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLAsyncAdapterNode(
clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s },
managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode
case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode
object TLAsyncNameNode {
def apply(name: ValName) = TLAsyncIdentityNode()(name)
def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLAsyncIdentityNode = apply(Some(name))
}
case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLAsyncImp)(
dFn = { p => TLAsyncClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain
case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName)
extends MixedAdapterNode(TLAsyncImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) },
uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut]
// Rationally related crossings
trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters]
object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle]
{
def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle)
def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */)
override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLRationalAdapterNode(
clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s },
managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode
case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode
object TLRationalNameNode {
def apply(name: ValName) = TLRationalIdentityNode()(name)
def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLRationalIdentityNode = apply(Some(name))
}
case class TLRationalSourceNode()(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLRationalImp)(
dFn = { p => TLRationalClientPortParameters(p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain
case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName)
extends MixedAdapterNode(TLRationalImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut]
// Credited version of TileLink channels
trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters]
object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle]
{
def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo)
def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle)
def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString)
override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters =
pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }))
override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters =
pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }))
}
case class TLCreditedAdapterNode(
clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s },
managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })(
implicit valName: ValName)
extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode
case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode
object TLCreditedNameNode {
def apply(name: ValName) = TLCreditedIdentityNode()(name)
def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name")))
def apply(name: String): TLCreditedIdentityNode = apply(Some(name))
}
case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLImp, TLCreditedImp)(
dFn = { p => TLCreditedClientPortParameters(delay, p) },
uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain
case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName)
extends MixedAdapterNode(TLCreditedImp, TLImp)(
dFn = { p => p.base.v1copy(minLatency = 1) },
uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut]
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
| module TLBuffer_a21d64s8k1z3u( // @[Buffer.scala:40:9]
input clock, // @[Buffer.scala:40:9]
input reset, // @[Buffer.scala:40:9]
output auto_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [20:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [20:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_out_d_bits_data // @[LazyModuleImp.scala:107:25]
);
wire _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21]
wire [2:0] _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21]
wire [1:0] _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21]
wire [2:0] _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21]
wire [7:0] _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21]
wire _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21]
wire _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21]
wire _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21]
wire _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21]
TLMonitor_27 monitor ( // @[Nodes.scala:27:25]
.clock (clock),
.reset (reset),
.io_in_a_ready (_nodeOut_a_q_io_enq_ready), // @[Decoupled.scala:362:21]
.io_in_a_valid (auto_in_a_valid),
.io_in_a_bits_opcode (auto_in_a_bits_opcode),
.io_in_a_bits_param (auto_in_a_bits_param),
.io_in_a_bits_size (auto_in_a_bits_size),
.io_in_a_bits_source (auto_in_a_bits_source),
.io_in_a_bits_address (auto_in_a_bits_address),
.io_in_a_bits_mask (auto_in_a_bits_mask),
.io_in_a_bits_corrupt (auto_in_a_bits_corrupt),
.io_in_d_ready (auto_in_d_ready),
.io_in_d_valid (_nodeIn_d_q_io_deq_valid), // @[Decoupled.scala:362:21]
.io_in_d_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode), // @[Decoupled.scala:362:21]
.io_in_d_bits_param (_nodeIn_d_q_io_deq_bits_param), // @[Decoupled.scala:362:21]
.io_in_d_bits_size (_nodeIn_d_q_io_deq_bits_size), // @[Decoupled.scala:362:21]
.io_in_d_bits_source (_nodeIn_d_q_io_deq_bits_source), // @[Decoupled.scala:362:21]
.io_in_d_bits_sink (_nodeIn_d_q_io_deq_bits_sink), // @[Decoupled.scala:362:21]
.io_in_d_bits_denied (_nodeIn_d_q_io_deq_bits_denied), // @[Decoupled.scala:362:21]
.io_in_d_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt) // @[Decoupled.scala:362:21]
); // @[Nodes.scala:27:25]
Queue2_TLBundleA_a21d64s8k1z3u nodeOut_a_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (_nodeOut_a_q_io_enq_ready),
.io_enq_valid (auto_in_a_valid),
.io_enq_bits_opcode (auto_in_a_bits_opcode),
.io_enq_bits_param (auto_in_a_bits_param),
.io_enq_bits_size (auto_in_a_bits_size),
.io_enq_bits_source (auto_in_a_bits_source),
.io_enq_bits_address (auto_in_a_bits_address),
.io_enq_bits_mask (auto_in_a_bits_mask),
.io_enq_bits_data (auto_in_a_bits_data),
.io_enq_bits_corrupt (auto_in_a_bits_corrupt),
.io_deq_ready (auto_out_a_ready),
.io_deq_valid (auto_out_a_valid),
.io_deq_bits_opcode (auto_out_a_bits_opcode),
.io_deq_bits_param (auto_out_a_bits_param),
.io_deq_bits_size (auto_out_a_bits_size),
.io_deq_bits_source (auto_out_a_bits_source),
.io_deq_bits_address (auto_out_a_bits_address),
.io_deq_bits_mask (auto_out_a_bits_mask),
.io_deq_bits_data (auto_out_a_bits_data),
.io_deq_bits_corrupt (auto_out_a_bits_corrupt)
); // @[Decoupled.scala:362:21]
Queue2_TLBundleD_a21d64s8k1z3u nodeIn_d_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (auto_out_d_ready),
.io_enq_valid (auto_out_d_valid),
.io_enq_bits_opcode (auto_out_d_bits_opcode),
.io_enq_bits_size (auto_out_d_bits_size),
.io_enq_bits_source (auto_out_d_bits_source),
.io_enq_bits_data (auto_out_d_bits_data),
.io_deq_ready (auto_in_d_ready),
.io_deq_valid (_nodeIn_d_q_io_deq_valid),
.io_deq_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode),
.io_deq_bits_param (_nodeIn_d_q_io_deq_bits_param),
.io_deq_bits_size (_nodeIn_d_q_io_deq_bits_size),
.io_deq_bits_source (_nodeIn_d_q_io_deq_bits_source),
.io_deq_bits_sink (_nodeIn_d_q_io_deq_bits_sink),
.io_deq_bits_denied (_nodeIn_d_q_io_deq_bits_denied),
.io_deq_bits_data (auto_in_d_bits_data),
.io_deq_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt)
); // @[Decoupled.scala:362:21]
assign auto_in_a_ready = _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21]
assign auto_in_d_valid = _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_opcode = _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_param = _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_size = _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_source = _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_sink = _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_denied = _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21]
assign auto_in_d_bits_corrupt = _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
| module OptimizationBarrier_TLBEntryData_54( // @[package.scala:267:30]
input clock, // @[package.scala:267:30]
input reset, // @[package.scala:267:30]
input [19:0] io_x_ppn, // @[package.scala:268:18]
input io_x_u, // @[package.scala:268:18]
input io_x_g, // @[package.scala:268:18]
input io_x_ae_ptw, // @[package.scala:268:18]
input io_x_ae_final, // @[package.scala:268:18]
input io_x_ae_stage2, // @[package.scala:268:18]
input io_x_pf, // @[package.scala:268:18]
input io_x_gf, // @[package.scala:268:18]
input io_x_sw, // @[package.scala:268:18]
input io_x_sx, // @[package.scala:268:18]
input io_x_sr, // @[package.scala:268:18]
input io_x_hw, // @[package.scala:268:18]
input io_x_hx, // @[package.scala:268:18]
input io_x_hr, // @[package.scala:268:18]
input io_x_pw, // @[package.scala:268:18]
input io_x_px, // @[package.scala:268:18]
input io_x_pr, // @[package.scala:268:18]
input io_x_ppp, // @[package.scala:268:18]
input io_x_pal, // @[package.scala:268:18]
input io_x_paa, // @[package.scala:268:18]
input io_x_eff, // @[package.scala:268:18]
input io_x_c, // @[package.scala:268:18]
input io_x_fragmented_superpage, // @[package.scala:268:18]
output [19:0] io_y_ppn, // @[package.scala:268:18]
output io_y_u, // @[package.scala:268:18]
output io_y_ae_ptw, // @[package.scala:268:18]
output io_y_ae_final, // @[package.scala:268:18]
output io_y_ae_stage2, // @[package.scala:268:18]
output io_y_pf, // @[package.scala:268:18]
output io_y_gf, // @[package.scala:268:18]
output io_y_sw, // @[package.scala:268:18]
output io_y_sx, // @[package.scala:268:18]
output io_y_sr, // @[package.scala:268:18]
output io_y_hw, // @[package.scala:268:18]
output io_y_hx, // @[package.scala:268:18]
output io_y_hr, // @[package.scala:268:18]
output io_y_pw, // @[package.scala:268:18]
output io_y_px, // @[package.scala:268:18]
output io_y_pr, // @[package.scala:268:18]
output io_y_ppp, // @[package.scala:268:18]
output io_y_pal, // @[package.scala:268:18]
output io_y_paa, // @[package.scala:268:18]
output io_y_eff, // @[package.scala:268:18]
output io_y_c // @[package.scala:268:18]
);
wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30]
wire io_x_u_0 = io_x_u; // @[package.scala:267:30]
wire io_x_g_0 = io_x_g; // @[package.scala:267:30]
wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30]
wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30]
wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30]
wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30]
wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30]
wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30]
wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30]
wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30]
wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30]
wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30]
wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30]
wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30]
wire io_x_px_0 = io_x_px; // @[package.scala:267:30]
wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30]
wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30]
wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30]
wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30]
wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30]
wire io_x_c_0 = io_x_c; // @[package.scala:267:30]
wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30]
wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30]
wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30]
wire io_y_g = io_x_g_0; // @[package.scala:267:30]
wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30]
wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30]
wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30]
wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30]
wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30]
wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30]
wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30]
wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30]
wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30]
wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30]
wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30]
wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30]
wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30]
wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30]
wire io_y_ppp_0 = io_x_ppp_0; // @[package.scala:267:30]
wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30]
wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30]
wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30]
wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30]
wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30]
assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30]
assign io_y_u = io_y_u_0; // @[package.scala:267:30]
assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30]
assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30]
assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30]
assign io_y_pf = io_y_pf_0; // @[package.scala:267:30]
assign io_y_gf = io_y_gf_0; // @[package.scala:267:30]
assign io_y_sw = io_y_sw_0; // @[package.scala:267:30]
assign io_y_sx = io_y_sx_0; // @[package.scala:267:30]
assign io_y_sr = io_y_sr_0; // @[package.scala:267:30]
assign io_y_hw = io_y_hw_0; // @[package.scala:267:30]
assign io_y_hx = io_y_hx_0; // @[package.scala:267:30]
assign io_y_hr = io_y_hr_0; // @[package.scala:267:30]
assign io_y_pw = io_y_pw_0; // @[package.scala:267:30]
assign io_y_px = io_y_px_0; // @[package.scala:267:30]
assign io_y_pr = io_y_pr_0; // @[package.scala:267:30]
assign io_y_ppp = io_y_ppp_0; // @[package.scala:267:30]
assign io_y_pal = io_y_pal_0; // @[package.scala:267:30]
assign io_y_paa = io_y_paa_0; // @[package.scala:267:30]
assign io_y_eff = io_y_eff_0; // @[package.scala:267:30]
assign io_y_c = io_y_c_0; // @[package.scala:267:30]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v4.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v4.common.{MicroOp}
import boom.v4.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, flush: Bool, uop: MicroOp): Bool = {
return apply(brupdate, flush, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, flush: Bool, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask) || flush
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: T): Bool = {
return apply(brupdate, flush, bundle.uop)
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Bool = {
return apply(brupdate, flush, bundle.bits)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, flush, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v4.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U, IS_N}
def apply(i: UInt, isel: UInt): UInt = {
val ip = Mux(isel === IS_N, 0.U(LONGEST_IMM_SZ.W), i)
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0)
}
}
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
object IsYoungerMask
{
def apply(i: UInt, head: UInt, n: Integer): UInt = {
val hi_mask = ~MaskLower(UIntToOH(i)(n-1,0))
val lo_mask = ~MaskUpper(UIntToOH(head)(n-1,0))
Mux(i < head, hi_mask & lo_mask, hi_mask | lo_mask)(n-1,0)
}
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v4.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v4.common.MicroOp => Bool = u => true.B, fastDeq: Boolean = false)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v4.common.BoomModule()(p)
with boom.v4.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
if (fastDeq && entries > 1) {
// Pipeline dequeue selection so the mux gets an entire cycle
val main = Module(new BranchKillableQueue(gen, entries-1, flush_fn, false))
val out_reg = Reg(gen)
val out_valid = RegInit(false.B)
val out_uop = Reg(new MicroOp)
main.io.enq <> io.enq
main.io.brupdate := io.brupdate
main.io.flush := io.flush
io.empty := main.io.empty && !out_valid
io.count := main.io.count + out_valid
io.deq.valid := out_valid
io.deq.bits := out_reg
io.deq.bits.uop := out_uop
out_uop := UpdateBrMask(io.brupdate, out_uop)
out_valid := out_valid && !IsKilledByBranch(io.brupdate, false.B, out_uop) && !(io.flush && flush_fn(out_uop))
main.io.deq.ready := false.B
when (io.deq.fire || !out_valid) {
out_valid := main.io.deq.valid && !IsKilledByBranch(io.brupdate, false.B, main.io.deq.bits.uop) && !(io.flush && flush_fn(main.io.deq.bits.uop))
out_reg := main.io.deq.bits
out_uop := UpdateBrMask(io.brupdate, main.io.deq.bits.uop)
main.io.deq.ready := true.B
}
} else {
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire && !IsKilledByBranch(io.brupdate, false.B, io.enq.bits.uop) && !(io.flush && flush_fn(io.enq.bits.uop)))
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, false.B, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value)
io.deq.bits := out
val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
class BranchKillablePipeline[T <: boom.v4.common.HasBoomUOP](gen: T, stages: Int)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v4.common.BoomModule()(p)
with boom.v4.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val req = Input(Valid(gen))
val flush = Input(Bool())
val brupdate = Input(new BrUpdateInfo)
val resp = Output(Vec(stages, Valid(gen)))
})
require(stages > 0)
val uops = Reg(Vec(stages, Valid(gen)))
uops(0).valid := io.req.valid && !IsKilledByBranch(io.brupdate, io.flush, io.req.bits)
uops(0).bits := UpdateBrMask(io.brupdate, io.req.bits)
for (i <- 1 until stages) {
uops(i).valid := uops(i-1).valid && !IsKilledByBranch(io.brupdate, io.flush, uops(i-1).bits)
uops(i).bits := UpdateBrMask(io.brupdate, uops(i-1).bits)
}
for (i <- 0 until stages) { when (reset.asBool) { uops(i).valid := false.B } }
io.resp := uops
}
File issue-slot.scala:
//******************************************************************************
// Copyright (c) 2015 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Issue Slot Logic
//--------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Note: stores (and AMOs) are "broken down" into 2 uops, but stored within a single issue-slot.
// TODO XXX make a separate issueSlot for MemoryIssueSlots, and only they break apart stores.
// TODO Disable ldspec for FP queue.
package boom.v4.exu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import boom.v4.common._
import boom.v4.util._
class IssueSlotIO(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomBundle
{
val valid = Output(Bool())
val will_be_valid = Output(Bool()) // TODO code review, do we need this signal so explicitely?
val request = Output(Bool())
val grant = Input(Bool())
val iss_uop = Output(new MicroOp())
val in_uop = Input(Valid(new MicroOp())) // if valid, this WILL overwrite an entry!
val out_uop = Output(new MicroOp())
val brupdate = Input(new BrUpdateInfo())
val kill = Input(Bool()) // pipeline flush
val clear = Input(Bool()) // entry being moved elsewhere (not mutually exclusive with grant)
val squash_grant = Input(Bool())
val wakeup_ports = Flipped(Vec(numWakeupPorts, Valid(new Wakeup)))
val pred_wakeup_port = Flipped(Valid(UInt(log2Ceil(ftqSz).W)))
val child_rebusys = Input(UInt(aluWidth.W))
}
class IssueSlot(val numWakeupPorts: Int, val isMem: Boolean, val isFp: Boolean)(implicit p: Parameters)
extends BoomModule
{
val io = IO(new IssueSlotIO(numWakeupPorts))
val slot_valid = RegInit(false.B)
val slot_uop = Reg(new MicroOp())
val next_valid = WireInit(slot_valid)
val next_uop = WireInit(UpdateBrMask(io.brupdate, slot_uop))
val killed = IsKilledByBranch(io.brupdate, io.kill, slot_uop)
io.valid := slot_valid
io.out_uop := next_uop
io.will_be_valid := next_valid && !killed
when (io.kill) {
slot_valid := false.B
} .elsewhen (io.in_uop.valid) {
slot_valid := true.B
} .elsewhen (io.clear) {
slot_valid := false.B
} .otherwise {
slot_valid := next_valid && !killed
}
when (io.in_uop.valid) {
slot_uop := io.in_uop.bits
assert (!slot_valid || io.clear || io.kill)
} .otherwise {
slot_uop := next_uop
}
// Wakeups
next_uop.iw_p1_bypass_hint := false.B
next_uop.iw_p2_bypass_hint := false.B
next_uop.iw_p3_bypass_hint := false.B
next_uop.iw_p1_speculative_child := 0.U
next_uop.iw_p2_speculative_child := 0.U
val rebusied_prs1 = WireInit(false.B)
val rebusied_prs2 = WireInit(false.B)
val rebusied = rebusied_prs1 || rebusied_prs2
val prs1_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs1 }
val prs2_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs2 }
val prs3_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs3 }
val prs1_wakeups = (io.wakeup_ports zip prs1_matches).map { case (w,m) => w.valid && m }
val prs2_wakeups = (io.wakeup_ports zip prs2_matches).map { case (w,m) => w.valid && m }
val prs3_wakeups = (io.wakeup_ports zip prs3_matches).map { case (w,m) => w.valid && m }
val prs1_rebusys = (io.wakeup_ports zip prs1_matches).map { case (w,m) => w.bits.rebusy && m }
val prs2_rebusys = (io.wakeup_ports zip prs2_matches).map { case (w,m) => w.bits.rebusy && m }
val bypassables = io.wakeup_ports.map { w => w.bits.bypassable }
val speculative_masks = io.wakeup_ports.map { w => w.bits.speculative_mask }
when (prs1_wakeups.reduce(_||_)) {
next_uop.prs1_busy := false.B
next_uop.iw_p1_speculative_child := Mux1H(prs1_wakeups, speculative_masks)
next_uop.iw_p1_bypass_hint := Mux1H(prs1_wakeups, bypassables)
}
when ((prs1_rebusys.reduce(_||_) || ((io.child_rebusys & slot_uop.iw_p1_speculative_child) =/= 0.U)) &&
slot_uop.lrs1_rtype === RT_FIX) {
next_uop.prs1_busy := true.B
rebusied_prs1 := true.B
}
when (prs2_wakeups.reduce(_||_)) {
next_uop.prs2_busy := false.B
next_uop.iw_p2_speculative_child := Mux1H(prs2_wakeups, speculative_masks)
next_uop.iw_p2_bypass_hint := Mux1H(prs2_wakeups, bypassables)
}
when ((prs2_rebusys.reduce(_||_) || ((io.child_rebusys & slot_uop.iw_p2_speculative_child) =/= 0.U)) &&
slot_uop.lrs2_rtype === RT_FIX) {
next_uop.prs2_busy := true.B
rebusied_prs2 := true.B
}
when (prs3_wakeups.reduce(_||_)) {
next_uop.prs3_busy := false.B
next_uop.iw_p3_bypass_hint := Mux1H(prs3_wakeups, bypassables)
}
when (io.pred_wakeup_port.valid && io.pred_wakeup_port.bits === slot_uop.ppred) {
next_uop.ppred_busy := false.B
}
val iss_ready = !slot_uop.prs1_busy && !slot_uop.prs2_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && !(slot_uop.prs3_busy && isFp.B)
val agen_ready = (slot_uop.fu_code(FC_AGEN) && !slot_uop.prs1_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && isMem.B)
val dgen_ready = (slot_uop.fu_code(FC_DGEN) && !slot_uop.prs2_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && isMem.B)
io.request := slot_valid && !slot_uop.iw_issued && (
iss_ready || agen_ready || dgen_ready
)
io.iss_uop := slot_uop
// Update state for current micro-op based on grant
next_uop.iw_issued := false.B
next_uop.iw_issued_partial_agen := false.B
next_uop.iw_issued_partial_dgen := false.B
when (io.grant && !io.squash_grant) {
next_uop.iw_issued := true.B
}
if (isMem) {
when (slot_uop.fu_code(FC_AGEN) && slot_uop.fu_code(FC_DGEN)) {
when (agen_ready) {
// Issue the AGEN, next slot entry is a DGEN
when (io.grant && !io.squash_grant) {
next_uop.iw_issued_partial_agen := true.B
}
io.iss_uop.fu_code(FC_AGEN) := true.B
io.iss_uop.fu_code(FC_DGEN) := false.B
} .otherwise {
// Issue the DGEN, next slot entry is the AGEN
when (io.grant && !io.squash_grant) {
next_uop.iw_issued_partial_dgen := true.B
}
io.iss_uop.fu_code(FC_AGEN) := false.B
io.iss_uop.fu_code(FC_DGEN) := true.B
io.iss_uop.imm_sel := IS_N
io.iss_uop.prs1 := slot_uop.prs2
io.iss_uop.lrs1_rtype := slot_uop.lrs2_rtype
io.iss_uop.iw_p1_bypass_hint := slot_uop.iw_p2_bypass_hint
}
} .elsewhen (slot_uop.fu_code(FC_DGEN)) {
io.iss_uop.imm_sel := IS_N
io.iss_uop.prs1 := slot_uop.prs2
io.iss_uop.lrs1_rtype := slot_uop.lrs2_rtype
io.iss_uop.iw_p1_bypass_hint := slot_uop.iw_p2_bypass_hint
}
io.iss_uop.lrs2_rtype := RT_X
io.iss_uop.prs2 := io.iss_uop.prs1 // helps with DCE
}
when (slot_valid && slot_uop.iw_issued) {
next_valid := rebusied
if (isMem) {
when (slot_uop.iw_issued_partial_agen) {
next_valid := true.B
when (!rebusied_prs1) {
next_uop.fu_code(FC_AGEN) := false.B
next_uop.fu_code(FC_DGEN) := true.B
}
} .elsewhen (slot_uop.iw_issued_partial_dgen) {
next_valid := true.B
when (!rebusied_prs2) {
next_uop.fu_code(FC_AGEN) := true.B
next_uop.fu_code(FC_DGEN) := false.B
}
}
}
}
}
| module IssueSlot_20( // @[issue-slot.scala:49:7]
input clock, // @[issue-slot.scala:49:7]
input reset, // @[issue-slot.scala:49:7]
output io_valid, // @[issue-slot.scala:52:14]
output io_will_be_valid, // @[issue-slot.scala:52:14]
output io_request, // @[issue-slot.scala:52:14]
input io_grant, // @[issue-slot.scala:52:14]
output [31:0] io_iss_uop_inst, // @[issue-slot.scala:52:14]
output [31:0] io_iss_uop_debug_inst, // @[issue-slot.scala:52:14]
output io_iss_uop_is_rvc, // @[issue-slot.scala:52:14]
output [39:0] io_iss_uop_debug_pc, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_0, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_1, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_2, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_3, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_0, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_1, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_2, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_3, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_4, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_5, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_6, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_7, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_8, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_9, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_issued, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_dis_col_sel, // @[issue-slot.scala:52:14]
output [15:0] io_iss_uop_br_mask, // @[issue-slot.scala:52:14]
output [3:0] io_iss_uop_br_tag, // @[issue-slot.scala:52:14]
output [3:0] io_iss_uop_br_type, // @[issue-slot.scala:52:14]
output io_iss_uop_is_sfb, // @[issue-slot.scala:52:14]
output io_iss_uop_is_fence, // @[issue-slot.scala:52:14]
output io_iss_uop_is_fencei, // @[issue-slot.scala:52:14]
output io_iss_uop_is_sfence, // @[issue-slot.scala:52:14]
output io_iss_uop_is_amo, // @[issue-slot.scala:52:14]
output io_iss_uop_is_eret, // @[issue-slot.scala:52:14]
output io_iss_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
output io_iss_uop_is_rocc, // @[issue-slot.scala:52:14]
output io_iss_uop_is_mov, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_ftq_idx, // @[issue-slot.scala:52:14]
output io_iss_uop_edge_inst, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_pc_lob, // @[issue-slot.scala:52:14]
output io_iss_uop_taken, // @[issue-slot.scala:52:14]
output io_iss_uop_imm_rename, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_imm_sel, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_pimm, // @[issue-slot.scala:52:14]
output [19:0] io_iss_uop_imm_packed, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_op1_sel, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_op2_sel, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_rob_idx, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_ldq_idx, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_stq_idx, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_rxq_idx, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_pdst, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_prs1, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_prs2, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_prs3, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_ppred, // @[issue-slot.scala:52:14]
output io_iss_uop_prs1_busy, // @[issue-slot.scala:52:14]
output io_iss_uop_prs2_busy, // @[issue-slot.scala:52:14]
output io_iss_uop_prs3_busy, // @[issue-slot.scala:52:14]
output io_iss_uop_ppred_busy, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_stale_pdst, // @[issue-slot.scala:52:14]
output io_iss_uop_exception, // @[issue-slot.scala:52:14]
output [63:0] io_iss_uop_exc_cause, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_mem_cmd, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_mem_size, // @[issue-slot.scala:52:14]
output io_iss_uop_mem_signed, // @[issue-slot.scala:52:14]
output io_iss_uop_uses_ldq, // @[issue-slot.scala:52:14]
output io_iss_uop_uses_stq, // @[issue-slot.scala:52:14]
output io_iss_uop_is_unique, // @[issue-slot.scala:52:14]
output io_iss_uop_flush_on_commit, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_csr_cmd, // @[issue-slot.scala:52:14]
output io_iss_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_ldst, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_lrs1, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_lrs2, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_lrs3, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_dst_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
output io_iss_uop_frs3_en, // @[issue-slot.scala:52:14]
output io_iss_uop_fcn_dw, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_fcn_op, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_val, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_fp_rm, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_fp_typ, // @[issue-slot.scala:52:14]
output io_iss_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
output io_iss_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
output io_iss_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
output io_iss_uop_bp_debug_if, // @[issue-slot.scala:52:14]
output io_iss_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_debug_fsrc, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input io_in_uop_valid, // @[issue-slot.scala:52:14]
input [31:0] io_in_uop_bits_inst, // @[issue-slot.scala:52:14]
input [31:0] io_in_uop_bits_debug_inst, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_in_uop_bits_debug_pc, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_0, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_1, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_2, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_3, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_0, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_1, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_2, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_3, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_4, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_5, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_6, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_7, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_8, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_9, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_issued, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_dis_col_sel, // @[issue-slot.scala:52:14]
input [15:0] io_in_uop_bits_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_in_uop_bits_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_in_uop_bits_br_type, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_sfb, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_fence, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_fencei, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_sfence, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_amo, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_eret, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_rocc, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_ftq_idx, // @[issue-slot.scala:52:14]
input io_in_uop_bits_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_pc_lob, // @[issue-slot.scala:52:14]
input io_in_uop_bits_taken, // @[issue-slot.scala:52:14]
input io_in_uop_bits_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_in_uop_bits_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_op2_sel, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_rob_idx, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_ldq_idx, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_ppred, // @[issue-slot.scala:52:14]
input io_in_uop_bits_prs1_busy, // @[issue-slot.scala:52:14]
input io_in_uop_bits_prs2_busy, // @[issue-slot.scala:52:14]
input io_in_uop_bits_prs3_busy, // @[issue-slot.scala:52:14]
input io_in_uop_bits_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_stale_pdst, // @[issue-slot.scala:52:14]
input io_in_uop_bits_exception, // @[issue-slot.scala:52:14]
input [63:0] io_in_uop_bits_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_mem_size, // @[issue-slot.scala:52:14]
input io_in_uop_bits_mem_signed, // @[issue-slot.scala:52:14]
input io_in_uop_bits_uses_ldq, // @[issue-slot.scala:52:14]
input io_in_uop_bits_uses_stq, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_unique, // @[issue-slot.scala:52:14]
input io_in_uop_bits_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_csr_cmd, // @[issue-slot.scala:52:14]
input io_in_uop_bits_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_in_uop_bits_frs3_en, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_fcn_op, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_fp_typ, // @[issue-slot.scala:52:14]
input io_in_uop_bits_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_bp_debug_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_debug_tsrc, // @[issue-slot.scala:52:14]
output [31:0] io_out_uop_inst, // @[issue-slot.scala:52:14]
output [31:0] io_out_uop_debug_inst, // @[issue-slot.scala:52:14]
output io_out_uop_is_rvc, // @[issue-slot.scala:52:14]
output [39:0] io_out_uop_debug_pc, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_0, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_1, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_2, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_3, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_0, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_1, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_2, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_3, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_4, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_5, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_6, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_7, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_8, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_9, // @[issue-slot.scala:52:14]
output io_out_uop_iw_issued, // @[issue-slot.scala:52:14]
output io_out_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
output io_out_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
output io_out_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_dis_col_sel, // @[issue-slot.scala:52:14]
output [15:0] io_out_uop_br_mask, // @[issue-slot.scala:52:14]
output [3:0] io_out_uop_br_tag, // @[issue-slot.scala:52:14]
output [3:0] io_out_uop_br_type, // @[issue-slot.scala:52:14]
output io_out_uop_is_sfb, // @[issue-slot.scala:52:14]
output io_out_uop_is_fence, // @[issue-slot.scala:52:14]
output io_out_uop_is_fencei, // @[issue-slot.scala:52:14]
output io_out_uop_is_sfence, // @[issue-slot.scala:52:14]
output io_out_uop_is_amo, // @[issue-slot.scala:52:14]
output io_out_uop_is_eret, // @[issue-slot.scala:52:14]
output io_out_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
output io_out_uop_is_rocc, // @[issue-slot.scala:52:14]
output io_out_uop_is_mov, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_ftq_idx, // @[issue-slot.scala:52:14]
output io_out_uop_edge_inst, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_pc_lob, // @[issue-slot.scala:52:14]
output io_out_uop_taken, // @[issue-slot.scala:52:14]
output io_out_uop_imm_rename, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_imm_sel, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_pimm, // @[issue-slot.scala:52:14]
output [19:0] io_out_uop_imm_packed, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_op1_sel, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_op2_sel, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_rob_idx, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_ldq_idx, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_stq_idx, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_rxq_idx, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_pdst, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_prs1, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_prs2, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_prs3, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_ppred, // @[issue-slot.scala:52:14]
output io_out_uop_prs1_busy, // @[issue-slot.scala:52:14]
output io_out_uop_prs2_busy, // @[issue-slot.scala:52:14]
output io_out_uop_prs3_busy, // @[issue-slot.scala:52:14]
output io_out_uop_ppred_busy, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_stale_pdst, // @[issue-slot.scala:52:14]
output io_out_uop_exception, // @[issue-slot.scala:52:14]
output [63:0] io_out_uop_exc_cause, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_mem_cmd, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_mem_size, // @[issue-slot.scala:52:14]
output io_out_uop_mem_signed, // @[issue-slot.scala:52:14]
output io_out_uop_uses_ldq, // @[issue-slot.scala:52:14]
output io_out_uop_uses_stq, // @[issue-slot.scala:52:14]
output io_out_uop_is_unique, // @[issue-slot.scala:52:14]
output io_out_uop_flush_on_commit, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_csr_cmd, // @[issue-slot.scala:52:14]
output io_out_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_ldst, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_lrs1, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_lrs2, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_lrs3, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_dst_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
output io_out_uop_frs3_en, // @[issue-slot.scala:52:14]
output io_out_uop_fcn_dw, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_fcn_op, // @[issue-slot.scala:52:14]
output io_out_uop_fp_val, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_fp_rm, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_fp_typ, // @[issue-slot.scala:52:14]
output io_out_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
output io_out_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
output io_out_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
output io_out_uop_bp_debug_if, // @[issue-slot.scala:52:14]
output io_out_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_debug_fsrc, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input [15:0] io_brupdate_b1_resolve_mask, // @[issue-slot.scala:52:14]
input [15:0] io_brupdate_b1_mispredict_mask, // @[issue-slot.scala:52:14]
input [31:0] io_brupdate_b2_uop_inst, // @[issue-slot.scala:52:14]
input [31:0] io_brupdate_b2_uop_debug_inst, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_brupdate_b2_uop_debug_pc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_0, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_1, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_2, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_3, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_0, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_1, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_2, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_3, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_4, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_5, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_6, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_7, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_8, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_9, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_issued, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_dis_col_sel, // @[issue-slot.scala:52:14]
input [15:0] io_brupdate_b2_uop_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_brupdate_b2_uop_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_brupdate_b2_uop_br_type, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_sfb, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_fence, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_fencei, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_sfence, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_amo, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_eret, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_rocc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_ftq_idx, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_pc_lob, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_taken, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_brupdate_b2_uop_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_op2_sel, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_rob_idx, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_ldq_idx, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_ppred, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_prs1_busy, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_prs2_busy, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_prs3_busy, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_stale_pdst, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_exception, // @[issue-slot.scala:52:14]
input [63:0] io_brupdate_b2_uop_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_mem_size, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_mem_signed, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_uses_ldq, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_uses_stq, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_unique, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_csr_cmd, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_frs3_en, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_fcn_op, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_fp_typ, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_bp_debug_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_mispredict, // @[issue-slot.scala:52:14]
input io_brupdate_b2_taken, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_cfi_type, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_pc_sel, // @[issue-slot.scala:52:14]
input [39:0] io_brupdate_b2_jalr_target, // @[issue-slot.scala:52:14]
input [20:0] io_brupdate_b2_target_offset, // @[issue-slot.scala:52:14]
input io_kill, // @[issue-slot.scala:52:14]
input io_clear, // @[issue-slot.scala:52:14]
input io_squash_grant, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_valid, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_0_bits_uop_inst, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_0_bits_uop_debug_inst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_wakeup_ports_0_bits_uop_debug_pc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_4, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_5, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_6, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_7, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_8, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_9, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_issued, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14]
input [15:0] io_wakeup_ports_0_bits_uop_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_0_bits_uop_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_0_bits_uop_br_type, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_sfb, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_fence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_fencei, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_sfence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_amo, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_eret, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_rocc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_ftq_idx, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_pc_lob, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_taken, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_wakeup_ports_0_bits_uop_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_op2_sel, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_rob_idx, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_ldq_idx, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_ppred, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_prs1_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_prs2_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_prs3_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_stale_pdst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_exception, // @[issue-slot.scala:52:14]
input [63:0] io_wakeup_ports_0_bits_uop_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_mem_size, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_mem_signed, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_uses_ldq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_uses_stq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_unique, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_csr_cmd, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_frs3_en, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_fcn_op, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_fp_typ, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_valid, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_1_bits_uop_inst, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_1_bits_uop_debug_inst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_wakeup_ports_1_bits_uop_debug_pc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_4, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_5, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_6, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_7, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_8, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_9, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_issued, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14]
input [15:0] io_wakeup_ports_1_bits_uop_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_1_bits_uop_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_1_bits_uop_br_type, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_sfb, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_fence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_fencei, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_sfence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_amo, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_eret, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_rocc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_ftq_idx, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_pc_lob, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_taken, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_wakeup_ports_1_bits_uop_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_op2_sel, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_rob_idx, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_ldq_idx, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_ppred, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_prs1_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_prs2_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_prs3_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_stale_pdst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_exception, // @[issue-slot.scala:52:14]
input [63:0] io_wakeup_ports_1_bits_uop_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_mem_size, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_mem_signed, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_uses_ldq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_uses_stq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_unique, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_csr_cmd, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_frs3_en, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_fcn_op, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_fp_typ, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_debug_tsrc // @[issue-slot.scala:52:14]
);
wire [15:0] next_uop_out_br_mask; // @[util.scala:104:23]
wire io_grant_0 = io_grant; // @[issue-slot.scala:49:7]
wire io_in_uop_valid_0 = io_in_uop_valid; // @[issue-slot.scala:49:7]
wire [31:0] io_in_uop_bits_inst_0 = io_in_uop_bits_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_in_uop_bits_debug_inst_0 = io_in_uop_bits_debug_inst; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_rvc_0 = io_in_uop_bits_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_in_uop_bits_debug_pc_0 = io_in_uop_bits_debug_pc; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_0_0 = io_in_uop_bits_iq_type_0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_1_0 = io_in_uop_bits_iq_type_1; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_2_0 = io_in_uop_bits_iq_type_2; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_3_0 = io_in_uop_bits_iq_type_3; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_0_0 = io_in_uop_bits_fu_code_0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_1_0 = io_in_uop_bits_fu_code_1; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_2_0 = io_in_uop_bits_fu_code_2; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_3_0 = io_in_uop_bits_fu_code_3; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_4_0 = io_in_uop_bits_fu_code_4; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_5_0 = io_in_uop_bits_fu_code_5; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_6_0 = io_in_uop_bits_fu_code_6; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_7_0 = io_in_uop_bits_fu_code_7; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_8_0 = io_in_uop_bits_fu_code_8; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_9_0 = io_in_uop_bits_fu_code_9; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_issued_0 = io_in_uop_bits_iw_issued; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_p1_bypass_hint_0 = io_in_uop_bits_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_p2_bypass_hint_0 = io_in_uop_bits_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_p3_bypass_hint_0 = io_in_uop_bits_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_dis_col_sel_0 = io_in_uop_bits_dis_col_sel; // @[issue-slot.scala:49:7]
wire [15:0] io_in_uop_bits_br_mask_0 = io_in_uop_bits_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_in_uop_bits_br_tag_0 = io_in_uop_bits_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_in_uop_bits_br_type_0 = io_in_uop_bits_br_type; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_sfb_0 = io_in_uop_bits_is_sfb; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_fence_0 = io_in_uop_bits_is_fence; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_fencei_0 = io_in_uop_bits_is_fencei; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_sfence_0 = io_in_uop_bits_is_sfence; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_amo_0 = io_in_uop_bits_is_amo; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_eret_0 = io_in_uop_bits_is_eret; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_sys_pc2epc_0 = io_in_uop_bits_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_rocc_0 = io_in_uop_bits_is_rocc; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_mov_0 = io_in_uop_bits_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_ftq_idx_0 = io_in_uop_bits_ftq_idx; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_edge_inst_0 = io_in_uop_bits_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_pc_lob_0 = io_in_uop_bits_pc_lob; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_taken_0 = io_in_uop_bits_taken; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_imm_rename_0 = io_in_uop_bits_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_imm_sel_0 = io_in_uop_bits_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_pimm_0 = io_in_uop_bits_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_in_uop_bits_imm_packed_0 = io_in_uop_bits_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_op1_sel_0 = io_in_uop_bits_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_op2_sel_0 = io_in_uop_bits_op2_sel; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ldst_0 = io_in_uop_bits_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_wen_0 = io_in_uop_bits_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ren1_0 = io_in_uop_bits_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ren2_0 = io_in_uop_bits_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ren3_0 = io_in_uop_bits_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_swap12_0 = io_in_uop_bits_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_swap23_0 = io_in_uop_bits_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_fp_ctrl_typeTagIn_0 = io_in_uop_bits_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_fp_ctrl_typeTagOut_0 = io_in_uop_bits_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_fromint_0 = io_in_uop_bits_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_toint_0 = io_in_uop_bits_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_fastpipe_0 = io_in_uop_bits_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_fma_0 = io_in_uop_bits_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_div_0 = io_in_uop_bits_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_sqrt_0 = io_in_uop_bits_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_wflags_0 = io_in_uop_bits_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_vec_0 = io_in_uop_bits_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_rob_idx_0 = io_in_uop_bits_rob_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_ldq_idx_0 = io_in_uop_bits_ldq_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_stq_idx_0 = io_in_uop_bits_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_rxq_idx_0 = io_in_uop_bits_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_pdst_0 = io_in_uop_bits_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_prs1_0 = io_in_uop_bits_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_prs2_0 = io_in_uop_bits_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_prs3_0 = io_in_uop_bits_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_ppred_0 = io_in_uop_bits_ppred; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_prs1_busy_0 = io_in_uop_bits_prs1_busy; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_prs2_busy_0 = io_in_uop_bits_prs2_busy; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_prs3_busy_0 = io_in_uop_bits_prs3_busy; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_ppred_busy_0 = io_in_uop_bits_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_stale_pdst_0 = io_in_uop_bits_stale_pdst; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_exception_0 = io_in_uop_bits_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_in_uop_bits_exc_cause_0 = io_in_uop_bits_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_mem_cmd_0 = io_in_uop_bits_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_mem_size_0 = io_in_uop_bits_mem_size; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_mem_signed_0 = io_in_uop_bits_mem_signed; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_uses_ldq_0 = io_in_uop_bits_uses_ldq; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_uses_stq_0 = io_in_uop_bits_uses_stq; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_unique_0 = io_in_uop_bits_is_unique; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_flush_on_commit_0 = io_in_uop_bits_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_csr_cmd_0 = io_in_uop_bits_csr_cmd; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_ldst_is_rs1_0 = io_in_uop_bits_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_ldst_0 = io_in_uop_bits_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_lrs1_0 = io_in_uop_bits_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_lrs2_0 = io_in_uop_bits_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_lrs3_0 = io_in_uop_bits_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_dst_rtype_0 = io_in_uop_bits_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_lrs1_rtype_0 = io_in_uop_bits_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_lrs2_rtype_0 = io_in_uop_bits_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_frs3_en_0 = io_in_uop_bits_frs3_en; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fcn_dw_0 = io_in_uop_bits_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_fcn_op_0 = io_in_uop_bits_fcn_op; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_val_0 = io_in_uop_bits_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_fp_rm_0 = io_in_uop_bits_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_fp_typ_0 = io_in_uop_bits_fp_typ; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_xcpt_pf_if_0 = io_in_uop_bits_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_xcpt_ae_if_0 = io_in_uop_bits_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_xcpt_ma_if_0 = io_in_uop_bits_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_bp_debug_if_0 = io_in_uop_bits_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_bp_xcpt_if_0 = io_in_uop_bits_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_debug_fsrc_0 = io_in_uop_bits_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_debug_tsrc_0 = io_in_uop_bits_debug_tsrc; // @[issue-slot.scala:49:7]
wire [15:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[issue-slot.scala:49:7]
wire [15:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[issue-slot.scala:49:7]
wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_0_0 = io_brupdate_b2_uop_iq_type_0; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_1_0 = io_brupdate_b2_uop_iq_type_1; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_2_0 = io_brupdate_b2_uop_iq_type_2; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_3_0 = io_brupdate_b2_uop_iq_type_3; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_0_0 = io_brupdate_b2_uop_fu_code_0; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_1_0 = io_brupdate_b2_uop_fu_code_1; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_2_0 = io_brupdate_b2_uop_fu_code_2; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_3_0 = io_brupdate_b2_uop_fu_code_3; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_4_0 = io_brupdate_b2_uop_fu_code_4; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_5_0 = io_brupdate_b2_uop_fu_code_5; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_6_0 = io_brupdate_b2_uop_fu_code_6; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_7_0 = io_brupdate_b2_uop_fu_code_7; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_8_0 = io_brupdate_b2_uop_fu_code_8; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_9_0 = io_brupdate_b2_uop_fu_code_9; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_issued_0 = io_brupdate_b2_uop_iw_issued; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_issued_partial_agen_0 = io_brupdate_b2_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_issued_partial_dgen_0 = io_brupdate_b2_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_iw_p1_speculative_child_0 = io_brupdate_b2_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_iw_p2_speculative_child_0 = io_brupdate_b2_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_p1_bypass_hint_0 = io_brupdate_b2_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_p2_bypass_hint_0 = io_brupdate_b2_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_p3_bypass_hint_0 = io_brupdate_b2_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_dis_col_sel_0 = io_brupdate_b2_uop_dis_col_sel; // @[issue-slot.scala:49:7]
wire [15:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_brupdate_b2_uop_br_type_0 = io_brupdate_b2_uop_br_type; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_sfence_0 = io_brupdate_b2_uop_is_sfence; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_eret_0 = io_brupdate_b2_uop_is_eret; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_rocc_0 = io_brupdate_b2_uop_is_rocc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_mov_0 = io_brupdate_b2_uop_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_imm_rename_0 = io_brupdate_b2_uop_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_imm_sel_0 = io_brupdate_b2_uop_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_pimm_0 = io_brupdate_b2_uop_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_op1_sel_0 = io_brupdate_b2_uop_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_op2_sel_0 = io_brupdate_b2_uop_op2_sel; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ldst_0 = io_brupdate_b2_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_wen_0 = io_brupdate_b2_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ren1_0 = io_brupdate_b2_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ren2_0 = io_brupdate_b2_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ren3_0 = io_brupdate_b2_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_swap12_0 = io_brupdate_b2_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_swap23_0 = io_brupdate_b2_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn_0 = io_brupdate_b2_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut_0 = io_brupdate_b2_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_fromint_0 = io_brupdate_b2_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_toint_0 = io_brupdate_b2_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_fastpipe_0 = io_brupdate_b2_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_fma_0 = io_brupdate_b2_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_div_0 = io_brupdate_b2_uop_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_sqrt_0 = io_brupdate_b2_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_wflags_0 = io_brupdate_b2_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_vec_0 = io_brupdate_b2_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_csr_cmd_0 = io_brupdate_b2_uop_csr_cmd; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fcn_dw_0 = io_brupdate_b2_uop_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_fcn_op_0 = io_brupdate_b2_uop_fcn_op; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_fp_rm_0 = io_brupdate_b2_uop_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_fp_typ_0 = io_brupdate_b2_uop_fp_typ; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[issue-slot.scala:49:7]
wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[issue-slot.scala:49:7]
wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[issue-slot.scala:49:7]
wire io_kill_0 = io_kill; // @[issue-slot.scala:49:7]
wire io_clear_0 = io_clear; // @[issue-slot.scala:49:7]
wire io_squash_grant_0 = io_squash_grant; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_valid_0 = io_wakeup_ports_0_valid; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_0_bits_uop_inst_0 = io_wakeup_ports_0_bits_uop_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_0_bits_uop_debug_inst_0 = io_wakeup_ports_0_bits_uop_debug_inst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_rvc_0 = io_wakeup_ports_0_bits_uop_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_wakeup_ports_0_bits_uop_debug_pc_0 = io_wakeup_ports_0_bits_uop_debug_pc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_0_0 = io_wakeup_ports_0_bits_uop_iq_type_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_1_0 = io_wakeup_ports_0_bits_uop_iq_type_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_2_0 = io_wakeup_ports_0_bits_uop_iq_type_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_3_0 = io_wakeup_ports_0_bits_uop_iq_type_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_0_0 = io_wakeup_ports_0_bits_uop_fu_code_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_1_0 = io_wakeup_ports_0_bits_uop_fu_code_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_2_0 = io_wakeup_ports_0_bits_uop_fu_code_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_3_0 = io_wakeup_ports_0_bits_uop_fu_code_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_4_0 = io_wakeup_ports_0_bits_uop_fu_code_4; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_5_0 = io_wakeup_ports_0_bits_uop_fu_code_5; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_6_0 = io_wakeup_ports_0_bits_uop_fu_code_6; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_7_0 = io_wakeup_ports_0_bits_uop_fu_code_7; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_8_0 = io_wakeup_ports_0_bits_uop_fu_code_8; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_9_0 = io_wakeup_ports_0_bits_uop_fu_code_9; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_issued_0 = io_wakeup_ports_0_bits_uop_iw_issued; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_issued_partial_agen_0 = io_wakeup_ports_0_bits_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen_0 = io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_0_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_0_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_dis_col_sel_0 = io_wakeup_ports_0_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7]
wire [15:0] io_wakeup_ports_0_bits_uop_br_mask_0 = io_wakeup_ports_0_bits_uop_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_0_bits_uop_br_tag_0 = io_wakeup_ports_0_bits_uop_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_0_bits_uop_br_type_0 = io_wakeup_ports_0_bits_uop_br_type; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_sfb_0 = io_wakeup_ports_0_bits_uop_is_sfb; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_fence_0 = io_wakeup_ports_0_bits_uop_is_fence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_fencei_0 = io_wakeup_ports_0_bits_uop_is_fencei; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_sfence_0 = io_wakeup_ports_0_bits_uop_is_sfence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_amo_0 = io_wakeup_ports_0_bits_uop_is_amo; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_eret_0 = io_wakeup_ports_0_bits_uop_is_eret; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_0_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_rocc_0 = io_wakeup_ports_0_bits_uop_is_rocc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_mov_0 = io_wakeup_ports_0_bits_uop_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_ftq_idx_0 = io_wakeup_ports_0_bits_uop_ftq_idx; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_edge_inst_0 = io_wakeup_ports_0_bits_uop_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_pc_lob_0 = io_wakeup_ports_0_bits_uop_pc_lob; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_taken_0 = io_wakeup_ports_0_bits_uop_taken; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_imm_rename_0 = io_wakeup_ports_0_bits_uop_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_imm_sel_0 = io_wakeup_ports_0_bits_uop_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_pimm_0 = io_wakeup_ports_0_bits_uop_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_wakeup_ports_0_bits_uop_imm_packed_0 = io_wakeup_ports_0_bits_uop_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_op1_sel_0 = io_wakeup_ports_0_bits_uop_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_op2_sel_0 = io_wakeup_ports_0_bits_uop_op2_sel; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_rob_idx_0 = io_wakeup_ports_0_bits_uop_rob_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_ldq_idx_0 = io_wakeup_ports_0_bits_uop_ldq_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_stq_idx_0 = io_wakeup_ports_0_bits_uop_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_rxq_idx_0 = io_wakeup_ports_0_bits_uop_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_pdst_0 = io_wakeup_ports_0_bits_uop_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_prs1_0 = io_wakeup_ports_0_bits_uop_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_prs2_0 = io_wakeup_ports_0_bits_uop_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_prs3_0 = io_wakeup_ports_0_bits_uop_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_ppred_0 = io_wakeup_ports_0_bits_uop_ppred; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_prs1_busy_0 = io_wakeup_ports_0_bits_uop_prs1_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_prs2_busy_0 = io_wakeup_ports_0_bits_uop_prs2_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_prs3_busy_0 = io_wakeup_ports_0_bits_uop_prs3_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_ppred_busy_0 = io_wakeup_ports_0_bits_uop_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_stale_pdst_0 = io_wakeup_ports_0_bits_uop_stale_pdst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_exception_0 = io_wakeup_ports_0_bits_uop_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_wakeup_ports_0_bits_uop_exc_cause_0 = io_wakeup_ports_0_bits_uop_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_mem_cmd_0 = io_wakeup_ports_0_bits_uop_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_mem_size_0 = io_wakeup_ports_0_bits_uop_mem_size; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_mem_signed_0 = io_wakeup_ports_0_bits_uop_mem_signed; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_uses_ldq_0 = io_wakeup_ports_0_bits_uop_uses_ldq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_uses_stq_0 = io_wakeup_ports_0_bits_uop_uses_stq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_unique_0 = io_wakeup_ports_0_bits_uop_is_unique; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_flush_on_commit_0 = io_wakeup_ports_0_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_csr_cmd_0 = io_wakeup_ports_0_bits_uop_csr_cmd; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_0_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_ldst_0 = io_wakeup_ports_0_bits_uop_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_lrs1_0 = io_wakeup_ports_0_bits_uop_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_lrs2_0 = io_wakeup_ports_0_bits_uop_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_lrs3_0 = io_wakeup_ports_0_bits_uop_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_dst_rtype_0 = io_wakeup_ports_0_bits_uop_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_lrs1_rtype_0 = io_wakeup_ports_0_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_lrs2_rtype_0 = io_wakeup_ports_0_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_frs3_en_0 = io_wakeup_ports_0_bits_uop_frs3_en; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fcn_dw_0 = io_wakeup_ports_0_bits_uop_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_fcn_op_0 = io_wakeup_ports_0_bits_uop_fcn_op; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_val_0 = io_wakeup_ports_0_bits_uop_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_fp_rm_0 = io_wakeup_ports_0_bits_uop_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_fp_typ_0 = io_wakeup_ports_0_bits_uop_fp_typ; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_0_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_0_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_0_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_bp_debug_if_0 = io_wakeup_ports_0_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_0_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_debug_fsrc_0 = io_wakeup_ports_0_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_debug_tsrc_0 = io_wakeup_ports_0_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_valid_0 = io_wakeup_ports_1_valid; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_1_bits_uop_inst_0 = io_wakeup_ports_1_bits_uop_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_1_bits_uop_debug_inst_0 = io_wakeup_ports_1_bits_uop_debug_inst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_rvc_0 = io_wakeup_ports_1_bits_uop_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_wakeup_ports_1_bits_uop_debug_pc_0 = io_wakeup_ports_1_bits_uop_debug_pc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_0_0 = io_wakeup_ports_1_bits_uop_iq_type_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_1_0 = io_wakeup_ports_1_bits_uop_iq_type_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_2_0 = io_wakeup_ports_1_bits_uop_iq_type_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_3_0 = io_wakeup_ports_1_bits_uop_iq_type_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_0_0 = io_wakeup_ports_1_bits_uop_fu_code_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_1_0 = io_wakeup_ports_1_bits_uop_fu_code_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_2_0 = io_wakeup_ports_1_bits_uop_fu_code_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_3_0 = io_wakeup_ports_1_bits_uop_fu_code_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_4_0 = io_wakeup_ports_1_bits_uop_fu_code_4; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_5_0 = io_wakeup_ports_1_bits_uop_fu_code_5; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_6_0 = io_wakeup_ports_1_bits_uop_fu_code_6; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_7_0 = io_wakeup_ports_1_bits_uop_fu_code_7; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_8_0 = io_wakeup_ports_1_bits_uop_fu_code_8; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_9_0 = io_wakeup_ports_1_bits_uop_fu_code_9; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_issued_0 = io_wakeup_ports_1_bits_uop_iw_issued; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_issued_partial_agen_0 = io_wakeup_ports_1_bits_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen_0 = io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_1_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_1_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_dis_col_sel_0 = io_wakeup_ports_1_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7]
wire [15:0] io_wakeup_ports_1_bits_uop_br_mask_0 = io_wakeup_ports_1_bits_uop_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_1_bits_uop_br_tag_0 = io_wakeup_ports_1_bits_uop_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_1_bits_uop_br_type_0 = io_wakeup_ports_1_bits_uop_br_type; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_sfb_0 = io_wakeup_ports_1_bits_uop_is_sfb; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_fence_0 = io_wakeup_ports_1_bits_uop_is_fence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_fencei_0 = io_wakeup_ports_1_bits_uop_is_fencei; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_sfence_0 = io_wakeup_ports_1_bits_uop_is_sfence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_amo_0 = io_wakeup_ports_1_bits_uop_is_amo; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_eret_0 = io_wakeup_ports_1_bits_uop_is_eret; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_1_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_rocc_0 = io_wakeup_ports_1_bits_uop_is_rocc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_mov_0 = io_wakeup_ports_1_bits_uop_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_ftq_idx_0 = io_wakeup_ports_1_bits_uop_ftq_idx; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_edge_inst_0 = io_wakeup_ports_1_bits_uop_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_pc_lob_0 = io_wakeup_ports_1_bits_uop_pc_lob; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_taken_0 = io_wakeup_ports_1_bits_uop_taken; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_imm_rename_0 = io_wakeup_ports_1_bits_uop_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_imm_sel_0 = io_wakeup_ports_1_bits_uop_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_pimm_0 = io_wakeup_ports_1_bits_uop_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_wakeup_ports_1_bits_uop_imm_packed_0 = io_wakeup_ports_1_bits_uop_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_op1_sel_0 = io_wakeup_ports_1_bits_uop_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_op2_sel_0 = io_wakeup_ports_1_bits_uop_op2_sel; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_rob_idx_0 = io_wakeup_ports_1_bits_uop_rob_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_ldq_idx_0 = io_wakeup_ports_1_bits_uop_ldq_idx; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_stq_idx_0 = io_wakeup_ports_1_bits_uop_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_rxq_idx_0 = io_wakeup_ports_1_bits_uop_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_pdst_0 = io_wakeup_ports_1_bits_uop_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_prs1_0 = io_wakeup_ports_1_bits_uop_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_prs2_0 = io_wakeup_ports_1_bits_uop_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_prs3_0 = io_wakeup_ports_1_bits_uop_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_ppred_0 = io_wakeup_ports_1_bits_uop_ppred; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_prs1_busy_0 = io_wakeup_ports_1_bits_uop_prs1_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_prs2_busy_0 = io_wakeup_ports_1_bits_uop_prs2_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_prs3_busy_0 = io_wakeup_ports_1_bits_uop_prs3_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_ppred_busy_0 = io_wakeup_ports_1_bits_uop_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_stale_pdst_0 = io_wakeup_ports_1_bits_uop_stale_pdst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_exception_0 = io_wakeup_ports_1_bits_uop_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_wakeup_ports_1_bits_uop_exc_cause_0 = io_wakeup_ports_1_bits_uop_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_mem_cmd_0 = io_wakeup_ports_1_bits_uop_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_mem_size_0 = io_wakeup_ports_1_bits_uop_mem_size; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_mem_signed_0 = io_wakeup_ports_1_bits_uop_mem_signed; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_uses_ldq_0 = io_wakeup_ports_1_bits_uop_uses_ldq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_uses_stq_0 = io_wakeup_ports_1_bits_uop_uses_stq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_unique_0 = io_wakeup_ports_1_bits_uop_is_unique; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_flush_on_commit_0 = io_wakeup_ports_1_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_csr_cmd_0 = io_wakeup_ports_1_bits_uop_csr_cmd; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_1_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_ldst_0 = io_wakeup_ports_1_bits_uop_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_lrs1_0 = io_wakeup_ports_1_bits_uop_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_lrs2_0 = io_wakeup_ports_1_bits_uop_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_lrs3_0 = io_wakeup_ports_1_bits_uop_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_dst_rtype_0 = io_wakeup_ports_1_bits_uop_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_lrs1_rtype_0 = io_wakeup_ports_1_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_lrs2_rtype_0 = io_wakeup_ports_1_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_frs3_en_0 = io_wakeup_ports_1_bits_uop_frs3_en; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fcn_dw_0 = io_wakeup_ports_1_bits_uop_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_fcn_op_0 = io_wakeup_ports_1_bits_uop_fcn_op; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_val_0 = io_wakeup_ports_1_bits_uop_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_fp_rm_0 = io_wakeup_ports_1_bits_uop_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_fp_typ_0 = io_wakeup_ports_1_bits_uop_fp_typ; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_1_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_1_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_1_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_bp_debug_if_0 = io_wakeup_ports_1_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_1_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_debug_fsrc_0 = io_wakeup_ports_1_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_debug_tsrc_0 = io_wakeup_ports_1_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_rebusy = 1'h0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_bypassable = 1'h0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_rebusy = 1'h0; // @[issue-slot.scala:49:7]
wire io_pred_wakeup_port_valid = 1'h0; // @[issue-slot.scala:49:7]
wire next_uop_out_iw_issued_partial_agen = 1'h0; // @[util.scala:104:23]
wire next_uop_out_iw_issued_partial_dgen = 1'h0; // @[util.scala:104:23]
wire next_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:59:28]
wire next_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:59:28]
wire rebusied_prs1 = 1'h0; // @[issue-slot.scala:92:31]
wire rebusied_prs2 = 1'h0; // @[issue-slot.scala:93:31]
wire rebusied = 1'h0; // @[issue-slot.scala:94:32]
wire prs1_rebusys_0 = 1'h0; // @[issue-slot.scala:102:91]
wire prs1_rebusys_1 = 1'h0; // @[issue-slot.scala:102:91]
wire prs2_rebusys_0 = 1'h0; // @[issue-slot.scala:103:91]
wire prs2_rebusys_1 = 1'h0; // @[issue-slot.scala:103:91]
wire _next_uop_iw_p1_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _next_uop_iw_p2_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _next_uop_iw_p3_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73]
wire agen_ready = 1'h0; // @[issue-slot.scala:137:114]
wire dgen_ready = 1'h0; // @[issue-slot.scala:138:114]
wire [2:0] io_in_uop_bits_iw_p1_speculative_child = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_iw_p2_speculative_child = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_iw_p1_speculative_child = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_iw_p2_speculative_child = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_speculative_mask = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_speculative_mask = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] io_child_rebusys = 3'h0; // @[issue-slot.scala:49:7]
wire [2:0] next_uop_iw_p1_speculative_child = 3'h0; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_iw_p2_speculative_child = 3'h0; // @[issue-slot.scala:59:28]
wire [2:0] _next_uop_iw_p1_speculative_child_T = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p1_speculative_child_T_1 = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p1_speculative_child_T_2 = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p1_speculative_child_WIRE = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p2_speculative_child_T = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p2_speculative_child_T_1 = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p2_speculative_child_T_2 = 3'h0; // @[Mux.scala:30:73]
wire [2:0] _next_uop_iw_p2_speculative_child_WIRE = 3'h0; // @[Mux.scala:30:73]
wire io_wakeup_ports_0_bits_bypassable = 1'h1; // @[issue-slot.scala:49:7]
wire [4:0] io_pred_wakeup_port_bits = 5'h0; // @[issue-slot.scala:49:7]
wire _io_will_be_valid_T_1; // @[issue-slot.scala:65:34]
wire _io_request_T_4; // @[issue-slot.scala:140:51]
wire [31:0] next_uop_inst; // @[issue-slot.scala:59:28]
wire [31:0] next_uop_debug_inst; // @[issue-slot.scala:59:28]
wire next_uop_is_rvc; // @[issue-slot.scala:59:28]
wire [39:0] next_uop_debug_pc; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_0; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_1; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_2; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_3; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_0; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_1; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_2; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_3; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_4; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_5; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_6; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_7; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_8; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_9; // @[issue-slot.scala:59:28]
wire next_uop_iw_issued; // @[issue-slot.scala:59:28]
wire next_uop_iw_p1_bypass_hint; // @[issue-slot.scala:59:28]
wire next_uop_iw_p2_bypass_hint; // @[issue-slot.scala:59:28]
wire next_uop_iw_p3_bypass_hint; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_dis_col_sel; // @[issue-slot.scala:59:28]
wire [15:0] next_uop_br_mask; // @[issue-slot.scala:59:28]
wire [3:0] next_uop_br_tag; // @[issue-slot.scala:59:28]
wire [3:0] next_uop_br_type; // @[issue-slot.scala:59:28]
wire next_uop_is_sfb; // @[issue-slot.scala:59:28]
wire next_uop_is_fence; // @[issue-slot.scala:59:28]
wire next_uop_is_fencei; // @[issue-slot.scala:59:28]
wire next_uop_is_sfence; // @[issue-slot.scala:59:28]
wire next_uop_is_amo; // @[issue-slot.scala:59:28]
wire next_uop_is_eret; // @[issue-slot.scala:59:28]
wire next_uop_is_sys_pc2epc; // @[issue-slot.scala:59:28]
wire next_uop_is_rocc; // @[issue-slot.scala:59:28]
wire next_uop_is_mov; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_ftq_idx; // @[issue-slot.scala:59:28]
wire next_uop_edge_inst; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_pc_lob; // @[issue-slot.scala:59:28]
wire next_uop_taken; // @[issue-slot.scala:59:28]
wire next_uop_imm_rename; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_imm_sel; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_pimm; // @[issue-slot.scala:59:28]
wire [19:0] next_uop_imm_packed; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_op1_sel; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_op2_sel; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ldst; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_wen; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ren1; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ren2; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ren3; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_swap12; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_swap23; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_fromint; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_toint; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_fma; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_div; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_sqrt; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_wflags; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_vec; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_rob_idx; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_ldq_idx; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_stq_idx; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_rxq_idx; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_pdst; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_prs1; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_prs2; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_prs3; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_ppred; // @[issue-slot.scala:59:28]
wire next_uop_prs1_busy; // @[issue-slot.scala:59:28]
wire next_uop_prs2_busy; // @[issue-slot.scala:59:28]
wire next_uop_prs3_busy; // @[issue-slot.scala:59:28]
wire next_uop_ppred_busy; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_stale_pdst; // @[issue-slot.scala:59:28]
wire next_uop_exception; // @[issue-slot.scala:59:28]
wire [63:0] next_uop_exc_cause; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_mem_cmd; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_mem_size; // @[issue-slot.scala:59:28]
wire next_uop_mem_signed; // @[issue-slot.scala:59:28]
wire next_uop_uses_ldq; // @[issue-slot.scala:59:28]
wire next_uop_uses_stq; // @[issue-slot.scala:59:28]
wire next_uop_is_unique; // @[issue-slot.scala:59:28]
wire next_uop_flush_on_commit; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_csr_cmd; // @[issue-slot.scala:59:28]
wire next_uop_ldst_is_rs1; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_ldst; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_lrs1; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_lrs2; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_lrs3; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_dst_rtype; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_lrs1_rtype; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_lrs2_rtype; // @[issue-slot.scala:59:28]
wire next_uop_frs3_en; // @[issue-slot.scala:59:28]
wire next_uop_fcn_dw; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_fcn_op; // @[issue-slot.scala:59:28]
wire next_uop_fp_val; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_fp_rm; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_fp_typ; // @[issue-slot.scala:59:28]
wire next_uop_xcpt_pf_if; // @[issue-slot.scala:59:28]
wire next_uop_xcpt_ae_if; // @[issue-slot.scala:59:28]
wire next_uop_xcpt_ma_if; // @[issue-slot.scala:59:28]
wire next_uop_bp_debug_if; // @[issue-slot.scala:59:28]
wire next_uop_bp_xcpt_if; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_debug_fsrc; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_debug_tsrc; // @[issue-slot.scala:59:28]
wire io_iss_uop_iq_type_0_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iq_type_1_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iq_type_2_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iq_type_3_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_0_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_1_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_2_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_3_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_4_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_5_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_6_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_7_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_8_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_9_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ldst_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_wen_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ren1_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ren2_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ren3_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_swap12_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_swap23_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_fp_ctrl_typeTagIn_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_fp_ctrl_typeTagOut_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_fromint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_toint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_fastpipe_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_fma_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_div_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_sqrt_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_wflags_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_vec_0; // @[issue-slot.scala:49:7]
wire [31:0] io_iss_uop_inst_0; // @[issue-slot.scala:49:7]
wire [31:0] io_iss_uop_debug_inst_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_rvc_0; // @[issue-slot.scala:49:7]
wire [39:0] io_iss_uop_debug_pc_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_issued_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_iw_p1_speculative_child_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_iw_p2_speculative_child_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_p1_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_p2_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_p3_bypass_hint_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_dis_col_sel_0; // @[issue-slot.scala:49:7]
wire [15:0] io_iss_uop_br_mask_0; // @[issue-slot.scala:49:7]
wire [3:0] io_iss_uop_br_tag_0; // @[issue-slot.scala:49:7]
wire [3:0] io_iss_uop_br_type_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_sfb_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_fence_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_fencei_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_sfence_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_amo_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_eret_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_sys_pc2epc_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_rocc_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_mov_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_ftq_idx_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_edge_inst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_pc_lob_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_taken_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_imm_rename_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_imm_sel_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_pimm_0; // @[issue-slot.scala:49:7]
wire [19:0] io_iss_uop_imm_packed_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_op1_sel_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_op2_sel_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_rob_idx_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_ldq_idx_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_stq_idx_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_rxq_idx_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_pdst_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_prs1_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_prs2_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_prs3_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_ppred_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_prs1_busy_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_prs2_busy_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_prs3_busy_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_ppred_busy_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_stale_pdst_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_exception_0; // @[issue-slot.scala:49:7]
wire [63:0] io_iss_uop_exc_cause_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_mem_cmd_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_mem_size_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_mem_signed_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_uses_ldq_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_uses_stq_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_unique_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_flush_on_commit_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_csr_cmd_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_ldst_is_rs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_ldst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_lrs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_lrs2_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_lrs3_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_dst_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_lrs1_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_lrs2_rtype_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_frs3_en_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fcn_dw_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_fcn_op_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_val_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_fp_rm_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_fp_typ_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_xcpt_pf_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_xcpt_ae_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_xcpt_ma_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_bp_debug_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_bp_xcpt_if_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_debug_fsrc_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_debug_tsrc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_0_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_1_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_2_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_3_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_0_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_1_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_2_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_3_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_4_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_5_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_6_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_7_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_8_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_9_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ldst_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_wen_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ren1_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ren2_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ren3_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_swap12_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_swap23_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_fp_ctrl_typeTagIn_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_fp_ctrl_typeTagOut_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_fromint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_toint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_fastpipe_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_fma_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_div_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_sqrt_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_wflags_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_vec_0; // @[issue-slot.scala:49:7]
wire [31:0] io_out_uop_inst_0; // @[issue-slot.scala:49:7]
wire [31:0] io_out_uop_debug_inst_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_rvc_0; // @[issue-slot.scala:49:7]
wire [39:0] io_out_uop_debug_pc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_issued_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_p1_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_p2_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_p3_bypass_hint_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_dis_col_sel_0; // @[issue-slot.scala:49:7]
wire [15:0] io_out_uop_br_mask_0; // @[issue-slot.scala:49:7]
wire [3:0] io_out_uop_br_tag_0; // @[issue-slot.scala:49:7]
wire [3:0] io_out_uop_br_type_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_sfb_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_fence_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_fencei_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_sfence_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_amo_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_eret_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_sys_pc2epc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_rocc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_mov_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_ftq_idx_0; // @[issue-slot.scala:49:7]
wire io_out_uop_edge_inst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_pc_lob_0; // @[issue-slot.scala:49:7]
wire io_out_uop_taken_0; // @[issue-slot.scala:49:7]
wire io_out_uop_imm_rename_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_imm_sel_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_pimm_0; // @[issue-slot.scala:49:7]
wire [19:0] io_out_uop_imm_packed_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_op1_sel_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_op2_sel_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_rob_idx_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_ldq_idx_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_stq_idx_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_rxq_idx_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_pdst_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_prs1_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_prs2_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_prs3_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_ppred_0; // @[issue-slot.scala:49:7]
wire io_out_uop_prs1_busy_0; // @[issue-slot.scala:49:7]
wire io_out_uop_prs2_busy_0; // @[issue-slot.scala:49:7]
wire io_out_uop_prs3_busy_0; // @[issue-slot.scala:49:7]
wire io_out_uop_ppred_busy_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_stale_pdst_0; // @[issue-slot.scala:49:7]
wire io_out_uop_exception_0; // @[issue-slot.scala:49:7]
wire [63:0] io_out_uop_exc_cause_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_mem_cmd_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_mem_size_0; // @[issue-slot.scala:49:7]
wire io_out_uop_mem_signed_0; // @[issue-slot.scala:49:7]
wire io_out_uop_uses_ldq_0; // @[issue-slot.scala:49:7]
wire io_out_uop_uses_stq_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_unique_0; // @[issue-slot.scala:49:7]
wire io_out_uop_flush_on_commit_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_csr_cmd_0; // @[issue-slot.scala:49:7]
wire io_out_uop_ldst_is_rs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_ldst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_lrs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_lrs2_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_lrs3_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_dst_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_lrs1_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_lrs2_rtype_0; // @[issue-slot.scala:49:7]
wire io_out_uop_frs3_en_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fcn_dw_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_fcn_op_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_val_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_fp_rm_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_fp_typ_0; // @[issue-slot.scala:49:7]
wire io_out_uop_xcpt_pf_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_xcpt_ae_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_xcpt_ma_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_bp_debug_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_bp_xcpt_if_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_debug_fsrc_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_debug_tsrc_0; // @[issue-slot.scala:49:7]
wire io_valid_0; // @[issue-slot.scala:49:7]
wire io_will_be_valid_0; // @[issue-slot.scala:49:7]
wire io_request_0; // @[issue-slot.scala:49:7]
reg slot_valid; // @[issue-slot.scala:55:27]
assign io_valid_0 = slot_valid; // @[issue-slot.scala:49:7, :55:27]
reg [31:0] slot_uop_inst; // @[issue-slot.scala:56:21]
assign io_iss_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:49:7, :56:21]
wire [31:0] next_uop_out_inst = slot_uop_inst; // @[util.scala:104:23]
reg [31:0] slot_uop_debug_inst; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:49:7, :56:21]
wire [31:0] next_uop_out_debug_inst = slot_uop_debug_inst; // @[util.scala:104:23]
reg slot_uop_is_rvc; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_rvc = slot_uop_is_rvc; // @[util.scala:104:23]
reg [39:0] slot_uop_debug_pc; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:49:7, :56:21]
wire [39:0] next_uop_out_debug_pc = slot_uop_debug_pc; // @[util.scala:104:23]
reg slot_uop_iq_type_0; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_0_0 = slot_uop_iq_type_0; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_0 = slot_uop_iq_type_0; // @[util.scala:104:23]
reg slot_uop_iq_type_1; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_1_0 = slot_uop_iq_type_1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_1 = slot_uop_iq_type_1; // @[util.scala:104:23]
reg slot_uop_iq_type_2; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_2_0 = slot_uop_iq_type_2; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_2 = slot_uop_iq_type_2; // @[util.scala:104:23]
reg slot_uop_iq_type_3; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_3_0 = slot_uop_iq_type_3; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_3 = slot_uop_iq_type_3; // @[util.scala:104:23]
reg slot_uop_fu_code_0; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_0_0 = slot_uop_fu_code_0; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_0 = slot_uop_fu_code_0; // @[util.scala:104:23]
reg slot_uop_fu_code_1; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_1_0 = slot_uop_fu_code_1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_1 = slot_uop_fu_code_1; // @[util.scala:104:23]
reg slot_uop_fu_code_2; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_2_0 = slot_uop_fu_code_2; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_2 = slot_uop_fu_code_2; // @[util.scala:104:23]
reg slot_uop_fu_code_3; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_3_0 = slot_uop_fu_code_3; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_3 = slot_uop_fu_code_3; // @[util.scala:104:23]
reg slot_uop_fu_code_4; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_4_0 = slot_uop_fu_code_4; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_4 = slot_uop_fu_code_4; // @[util.scala:104:23]
reg slot_uop_fu_code_5; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_5_0 = slot_uop_fu_code_5; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_5 = slot_uop_fu_code_5; // @[util.scala:104:23]
reg slot_uop_fu_code_6; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_6_0 = slot_uop_fu_code_6; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_6 = slot_uop_fu_code_6; // @[util.scala:104:23]
reg slot_uop_fu_code_7; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_7_0 = slot_uop_fu_code_7; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_7 = slot_uop_fu_code_7; // @[util.scala:104:23]
reg slot_uop_fu_code_8; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_8_0 = slot_uop_fu_code_8; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_8 = slot_uop_fu_code_8; // @[util.scala:104:23]
reg slot_uop_fu_code_9; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_9_0 = slot_uop_fu_code_9; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_9 = slot_uop_fu_code_9; // @[util.scala:104:23]
reg slot_uop_iw_issued; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_issued_0 = slot_uop_iw_issued; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_issued = slot_uop_iw_issued; // @[util.scala:104:23]
reg [2:0] slot_uop_iw_p1_speculative_child; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p1_speculative_child_0 = slot_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_iw_p1_speculative_child = slot_uop_iw_p1_speculative_child; // @[util.scala:104:23]
reg [2:0] slot_uop_iw_p2_speculative_child; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p2_speculative_child_0 = slot_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_iw_p2_speculative_child = slot_uop_iw_p2_speculative_child; // @[util.scala:104:23]
reg slot_uop_iw_p1_bypass_hint; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p1_bypass_hint_0 = slot_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_p1_bypass_hint = slot_uop_iw_p1_bypass_hint; // @[util.scala:104:23]
reg slot_uop_iw_p2_bypass_hint; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p2_bypass_hint_0 = slot_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_p2_bypass_hint = slot_uop_iw_p2_bypass_hint; // @[util.scala:104:23]
reg slot_uop_iw_p3_bypass_hint; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p3_bypass_hint_0 = slot_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_p3_bypass_hint = slot_uop_iw_p3_bypass_hint; // @[util.scala:104:23]
reg [2:0] slot_uop_dis_col_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_dis_col_sel_0 = slot_uop_dis_col_sel; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_dis_col_sel = slot_uop_dis_col_sel; // @[util.scala:104:23]
reg [15:0] slot_uop_br_mask; // @[issue-slot.scala:56:21]
assign io_iss_uop_br_mask_0 = slot_uop_br_mask; // @[issue-slot.scala:49:7, :56:21]
reg [3:0] slot_uop_br_tag; // @[issue-slot.scala:56:21]
assign io_iss_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:49:7, :56:21]
wire [3:0] next_uop_out_br_tag = slot_uop_br_tag; // @[util.scala:104:23]
reg [3:0] slot_uop_br_type; // @[issue-slot.scala:56:21]
assign io_iss_uop_br_type_0 = slot_uop_br_type; // @[issue-slot.scala:49:7, :56:21]
wire [3:0] next_uop_out_br_type = slot_uop_br_type; // @[util.scala:104:23]
reg slot_uop_is_sfb; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_sfb = slot_uop_is_sfb; // @[util.scala:104:23]
reg slot_uop_is_fence; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_fence = slot_uop_is_fence; // @[util.scala:104:23]
reg slot_uop_is_fencei; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_fencei = slot_uop_is_fencei; // @[util.scala:104:23]
reg slot_uop_is_sfence; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_sfence_0 = slot_uop_is_sfence; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_sfence = slot_uop_is_sfence; // @[util.scala:104:23]
reg slot_uop_is_amo; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_amo = slot_uop_is_amo; // @[util.scala:104:23]
reg slot_uop_is_eret; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_eret_0 = slot_uop_is_eret; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_eret = slot_uop_is_eret; // @[util.scala:104:23]
reg slot_uop_is_sys_pc2epc; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_sys_pc2epc = slot_uop_is_sys_pc2epc; // @[util.scala:104:23]
reg slot_uop_is_rocc; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_rocc_0 = slot_uop_is_rocc; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_rocc = slot_uop_is_rocc; // @[util.scala:104:23]
reg slot_uop_is_mov; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_mov_0 = slot_uop_is_mov; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_mov = slot_uop_is_mov; // @[util.scala:104:23]
reg [4:0] slot_uop_ftq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_ftq_idx = slot_uop_ftq_idx; // @[util.scala:104:23]
reg slot_uop_edge_inst; // @[issue-slot.scala:56:21]
assign io_iss_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_edge_inst = slot_uop_edge_inst; // @[util.scala:104:23]
reg [5:0] slot_uop_pc_lob; // @[issue-slot.scala:56:21]
assign io_iss_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_pc_lob = slot_uop_pc_lob; // @[util.scala:104:23]
reg slot_uop_taken; // @[issue-slot.scala:56:21]
assign io_iss_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_taken = slot_uop_taken; // @[util.scala:104:23]
reg slot_uop_imm_rename; // @[issue-slot.scala:56:21]
assign io_iss_uop_imm_rename_0 = slot_uop_imm_rename; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_imm_rename = slot_uop_imm_rename; // @[util.scala:104:23]
reg [2:0] slot_uop_imm_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_imm_sel_0 = slot_uop_imm_sel; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_imm_sel = slot_uop_imm_sel; // @[util.scala:104:23]
reg [4:0] slot_uop_pimm; // @[issue-slot.scala:56:21]
assign io_iss_uop_pimm_0 = slot_uop_pimm; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_pimm = slot_uop_pimm; // @[util.scala:104:23]
reg [19:0] slot_uop_imm_packed; // @[issue-slot.scala:56:21]
assign io_iss_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:49:7, :56:21]
wire [19:0] next_uop_out_imm_packed = slot_uop_imm_packed; // @[util.scala:104:23]
reg [1:0] slot_uop_op1_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_op1_sel_0 = slot_uop_op1_sel; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_op1_sel = slot_uop_op1_sel; // @[util.scala:104:23]
reg [2:0] slot_uop_op2_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_op2_sel_0 = slot_uop_op2_sel; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_op2_sel = slot_uop_op2_sel; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ldst; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ldst_0 = slot_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ldst = slot_uop_fp_ctrl_ldst; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_wen; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_wen_0 = slot_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_wen = slot_uop_fp_ctrl_wen; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ren1; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ren1_0 = slot_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ren1 = slot_uop_fp_ctrl_ren1; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ren2; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ren2_0 = slot_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ren2 = slot_uop_fp_ctrl_ren2; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ren3; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ren3_0 = slot_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ren3 = slot_uop_fp_ctrl_ren3; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_swap12; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_swap12_0 = slot_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_swap12 = slot_uop_fp_ctrl_swap12; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_swap23; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_swap23_0 = slot_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_swap23 = slot_uop_fp_ctrl_swap23; // @[util.scala:104:23]
reg [1:0] slot_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_typeTagIn_0 = slot_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_fp_ctrl_typeTagIn = slot_uop_fp_ctrl_typeTagIn; // @[util.scala:104:23]
reg [1:0] slot_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_typeTagOut_0 = slot_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_fp_ctrl_typeTagOut = slot_uop_fp_ctrl_typeTagOut; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_fromint; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_fromint_0 = slot_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_fromint = slot_uop_fp_ctrl_fromint; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_toint; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_toint_0 = slot_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_toint = slot_uop_fp_ctrl_toint; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_fastpipe_0 = slot_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_fastpipe = slot_uop_fp_ctrl_fastpipe; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_fma; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_fma_0 = slot_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_fma = slot_uop_fp_ctrl_fma; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_div; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_div_0 = slot_uop_fp_ctrl_div; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_div = slot_uop_fp_ctrl_div; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_sqrt; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_sqrt_0 = slot_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_sqrt = slot_uop_fp_ctrl_sqrt; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_wflags; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_wflags_0 = slot_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_wflags = slot_uop_fp_ctrl_wflags; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_vec; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_vec_0 = slot_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_vec = slot_uop_fp_ctrl_vec; // @[util.scala:104:23]
reg [6:0] slot_uop_rob_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_rob_idx = slot_uop_rob_idx; // @[util.scala:104:23]
reg [4:0] slot_uop_ldq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_ldq_idx = slot_uop_ldq_idx; // @[util.scala:104:23]
reg [4:0] slot_uop_stq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_stq_idx = slot_uop_stq_idx; // @[util.scala:104:23]
reg [1:0] slot_uop_rxq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_rxq_idx = slot_uop_rxq_idx; // @[util.scala:104:23]
reg [6:0] slot_uop_pdst; // @[issue-slot.scala:56:21]
assign io_iss_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_pdst = slot_uop_pdst; // @[util.scala:104:23]
reg [6:0] slot_uop_prs1; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_prs1 = slot_uop_prs1; // @[util.scala:104:23]
reg [6:0] slot_uop_prs2; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_prs2 = slot_uop_prs2; // @[util.scala:104:23]
reg [6:0] slot_uop_prs3; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_prs3 = slot_uop_prs3; // @[util.scala:104:23]
reg [4:0] slot_uop_ppred; // @[issue-slot.scala:56:21]
assign io_iss_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_ppred = slot_uop_ppred; // @[util.scala:104:23]
reg slot_uop_prs1_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs1_busy_0 = slot_uop_prs1_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_prs1_busy = slot_uop_prs1_busy; // @[util.scala:104:23]
reg slot_uop_prs2_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs2_busy_0 = slot_uop_prs2_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_prs2_busy = slot_uop_prs2_busy; // @[util.scala:104:23]
reg slot_uop_prs3_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs3_busy_0 = slot_uop_prs3_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_prs3_busy = slot_uop_prs3_busy; // @[util.scala:104:23]
wire _iss_ready_T_6 = slot_uop_prs3_busy; // @[issue-slot.scala:56:21, :136:131]
reg slot_uop_ppred_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_ppred_busy_0 = slot_uop_ppred_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_ppred_busy = slot_uop_ppred_busy; // @[util.scala:104:23]
wire _iss_ready_T_3 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :136:88]
wire _agen_ready_T_2 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :137:95]
wire _dgen_ready_T_2 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :138:95]
reg [6:0] slot_uop_stale_pdst; // @[issue-slot.scala:56:21]
assign io_iss_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_stale_pdst = slot_uop_stale_pdst; // @[util.scala:104:23]
reg slot_uop_exception; // @[issue-slot.scala:56:21]
assign io_iss_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_exception = slot_uop_exception; // @[util.scala:104:23]
reg [63:0] slot_uop_exc_cause; // @[issue-slot.scala:56:21]
assign io_iss_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:49:7, :56:21]
wire [63:0] next_uop_out_exc_cause = slot_uop_exc_cause; // @[util.scala:104:23]
reg [4:0] slot_uop_mem_cmd; // @[issue-slot.scala:56:21]
assign io_iss_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_mem_cmd = slot_uop_mem_cmd; // @[util.scala:104:23]
reg [1:0] slot_uop_mem_size; // @[issue-slot.scala:56:21]
assign io_iss_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_mem_size = slot_uop_mem_size; // @[util.scala:104:23]
reg slot_uop_mem_signed; // @[issue-slot.scala:56:21]
assign io_iss_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_mem_signed = slot_uop_mem_signed; // @[util.scala:104:23]
reg slot_uop_uses_ldq; // @[issue-slot.scala:56:21]
assign io_iss_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_uses_ldq = slot_uop_uses_ldq; // @[util.scala:104:23]
reg slot_uop_uses_stq; // @[issue-slot.scala:56:21]
assign io_iss_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_uses_stq = slot_uop_uses_stq; // @[util.scala:104:23]
reg slot_uop_is_unique; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_unique = slot_uop_is_unique; // @[util.scala:104:23]
reg slot_uop_flush_on_commit; // @[issue-slot.scala:56:21]
assign io_iss_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_flush_on_commit = slot_uop_flush_on_commit; // @[util.scala:104:23]
reg [2:0] slot_uop_csr_cmd; // @[issue-slot.scala:56:21]
assign io_iss_uop_csr_cmd_0 = slot_uop_csr_cmd; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_csr_cmd = slot_uop_csr_cmd; // @[util.scala:104:23]
reg slot_uop_ldst_is_rs1; // @[issue-slot.scala:56:21]
assign io_iss_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_ldst_is_rs1 = slot_uop_ldst_is_rs1; // @[util.scala:104:23]
reg [5:0] slot_uop_ldst; // @[issue-slot.scala:56:21]
assign io_iss_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_ldst = slot_uop_ldst; // @[util.scala:104:23]
reg [5:0] slot_uop_lrs1; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_lrs1 = slot_uop_lrs1; // @[util.scala:104:23]
reg [5:0] slot_uop_lrs2; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_lrs2 = slot_uop_lrs2; // @[util.scala:104:23]
reg [5:0] slot_uop_lrs3; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_lrs3 = slot_uop_lrs3; // @[util.scala:104:23]
reg [1:0] slot_uop_dst_rtype; // @[issue-slot.scala:56:21]
assign io_iss_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_dst_rtype = slot_uop_dst_rtype; // @[util.scala:104:23]
reg [1:0] slot_uop_lrs1_rtype; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs1_rtype_0 = slot_uop_lrs1_rtype; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_lrs1_rtype = slot_uop_lrs1_rtype; // @[util.scala:104:23]
reg [1:0] slot_uop_lrs2_rtype; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs2_rtype_0 = slot_uop_lrs2_rtype; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_lrs2_rtype = slot_uop_lrs2_rtype; // @[util.scala:104:23]
reg slot_uop_frs3_en; // @[issue-slot.scala:56:21]
assign io_iss_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_frs3_en = slot_uop_frs3_en; // @[util.scala:104:23]
reg slot_uop_fcn_dw; // @[issue-slot.scala:56:21]
assign io_iss_uop_fcn_dw_0 = slot_uop_fcn_dw; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fcn_dw = slot_uop_fcn_dw; // @[util.scala:104:23]
reg [4:0] slot_uop_fcn_op; // @[issue-slot.scala:56:21]
assign io_iss_uop_fcn_op_0 = slot_uop_fcn_op; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_fcn_op = slot_uop_fcn_op; // @[util.scala:104:23]
reg slot_uop_fp_val; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_val = slot_uop_fp_val; // @[util.scala:104:23]
reg [2:0] slot_uop_fp_rm; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_rm_0 = slot_uop_fp_rm; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_fp_rm = slot_uop_fp_rm; // @[util.scala:104:23]
reg [1:0] slot_uop_fp_typ; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_typ_0 = slot_uop_fp_typ; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_fp_typ = slot_uop_fp_typ; // @[util.scala:104:23]
reg slot_uop_xcpt_pf_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_xcpt_pf_if = slot_uop_xcpt_pf_if; // @[util.scala:104:23]
reg slot_uop_xcpt_ae_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_xcpt_ae_if = slot_uop_xcpt_ae_if; // @[util.scala:104:23]
reg slot_uop_xcpt_ma_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_xcpt_ma_if = slot_uop_xcpt_ma_if; // @[util.scala:104:23]
reg slot_uop_bp_debug_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_bp_debug_if = slot_uop_bp_debug_if; // @[util.scala:104:23]
reg slot_uop_bp_xcpt_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_bp_xcpt_if = slot_uop_bp_xcpt_if; // @[util.scala:104:23]
reg [2:0] slot_uop_debug_fsrc; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_debug_fsrc = slot_uop_debug_fsrc; // @[util.scala:104:23]
reg [2:0] slot_uop_debug_tsrc; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_debug_tsrc = slot_uop_debug_tsrc; // @[util.scala:104:23]
wire next_valid; // @[issue-slot.scala:58:28]
assign next_uop_inst = next_uop_out_inst; // @[util.scala:104:23]
assign next_uop_debug_inst = next_uop_out_debug_inst; // @[util.scala:104:23]
assign next_uop_is_rvc = next_uop_out_is_rvc; // @[util.scala:104:23]
assign next_uop_debug_pc = next_uop_out_debug_pc; // @[util.scala:104:23]
assign next_uop_iq_type_0 = next_uop_out_iq_type_0; // @[util.scala:104:23]
assign next_uop_iq_type_1 = next_uop_out_iq_type_1; // @[util.scala:104:23]
assign next_uop_iq_type_2 = next_uop_out_iq_type_2; // @[util.scala:104:23]
assign next_uop_iq_type_3 = next_uop_out_iq_type_3; // @[util.scala:104:23]
assign next_uop_fu_code_0 = next_uop_out_fu_code_0; // @[util.scala:104:23]
assign next_uop_fu_code_1 = next_uop_out_fu_code_1; // @[util.scala:104:23]
assign next_uop_fu_code_2 = next_uop_out_fu_code_2; // @[util.scala:104:23]
assign next_uop_fu_code_3 = next_uop_out_fu_code_3; // @[util.scala:104:23]
assign next_uop_fu_code_4 = next_uop_out_fu_code_4; // @[util.scala:104:23]
assign next_uop_fu_code_5 = next_uop_out_fu_code_5; // @[util.scala:104:23]
assign next_uop_fu_code_6 = next_uop_out_fu_code_6; // @[util.scala:104:23]
assign next_uop_fu_code_7 = next_uop_out_fu_code_7; // @[util.scala:104:23]
assign next_uop_fu_code_8 = next_uop_out_fu_code_8; // @[util.scala:104:23]
assign next_uop_fu_code_9 = next_uop_out_fu_code_9; // @[util.scala:104:23]
wire [15:0] _next_uop_out_br_mask_T_1; // @[util.scala:93:25]
assign next_uop_dis_col_sel = next_uop_out_dis_col_sel; // @[util.scala:104:23]
assign next_uop_br_mask = next_uop_out_br_mask; // @[util.scala:104:23]
assign next_uop_br_tag = next_uop_out_br_tag; // @[util.scala:104:23]
assign next_uop_br_type = next_uop_out_br_type; // @[util.scala:104:23]
assign next_uop_is_sfb = next_uop_out_is_sfb; // @[util.scala:104:23]
assign next_uop_is_fence = next_uop_out_is_fence; // @[util.scala:104:23]
assign next_uop_is_fencei = next_uop_out_is_fencei; // @[util.scala:104:23]
assign next_uop_is_sfence = next_uop_out_is_sfence; // @[util.scala:104:23]
assign next_uop_is_amo = next_uop_out_is_amo; // @[util.scala:104:23]
assign next_uop_is_eret = next_uop_out_is_eret; // @[util.scala:104:23]
assign next_uop_is_sys_pc2epc = next_uop_out_is_sys_pc2epc; // @[util.scala:104:23]
assign next_uop_is_rocc = next_uop_out_is_rocc; // @[util.scala:104:23]
assign next_uop_is_mov = next_uop_out_is_mov; // @[util.scala:104:23]
assign next_uop_ftq_idx = next_uop_out_ftq_idx; // @[util.scala:104:23]
assign next_uop_edge_inst = next_uop_out_edge_inst; // @[util.scala:104:23]
assign next_uop_pc_lob = next_uop_out_pc_lob; // @[util.scala:104:23]
assign next_uop_taken = next_uop_out_taken; // @[util.scala:104:23]
assign next_uop_imm_rename = next_uop_out_imm_rename; // @[util.scala:104:23]
assign next_uop_imm_sel = next_uop_out_imm_sel; // @[util.scala:104:23]
assign next_uop_pimm = next_uop_out_pimm; // @[util.scala:104:23]
assign next_uop_imm_packed = next_uop_out_imm_packed; // @[util.scala:104:23]
assign next_uop_op1_sel = next_uop_out_op1_sel; // @[util.scala:104:23]
assign next_uop_op2_sel = next_uop_out_op2_sel; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ldst = next_uop_out_fp_ctrl_ldst; // @[util.scala:104:23]
assign next_uop_fp_ctrl_wen = next_uop_out_fp_ctrl_wen; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ren1 = next_uop_out_fp_ctrl_ren1; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ren2 = next_uop_out_fp_ctrl_ren2; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ren3 = next_uop_out_fp_ctrl_ren3; // @[util.scala:104:23]
assign next_uop_fp_ctrl_swap12 = next_uop_out_fp_ctrl_swap12; // @[util.scala:104:23]
assign next_uop_fp_ctrl_swap23 = next_uop_out_fp_ctrl_swap23; // @[util.scala:104:23]
assign next_uop_fp_ctrl_typeTagIn = next_uop_out_fp_ctrl_typeTagIn; // @[util.scala:104:23]
assign next_uop_fp_ctrl_typeTagOut = next_uop_out_fp_ctrl_typeTagOut; // @[util.scala:104:23]
assign next_uop_fp_ctrl_fromint = next_uop_out_fp_ctrl_fromint; // @[util.scala:104:23]
assign next_uop_fp_ctrl_toint = next_uop_out_fp_ctrl_toint; // @[util.scala:104:23]
assign next_uop_fp_ctrl_fastpipe = next_uop_out_fp_ctrl_fastpipe; // @[util.scala:104:23]
assign next_uop_fp_ctrl_fma = next_uop_out_fp_ctrl_fma; // @[util.scala:104:23]
assign next_uop_fp_ctrl_div = next_uop_out_fp_ctrl_div; // @[util.scala:104:23]
assign next_uop_fp_ctrl_sqrt = next_uop_out_fp_ctrl_sqrt; // @[util.scala:104:23]
assign next_uop_fp_ctrl_wflags = next_uop_out_fp_ctrl_wflags; // @[util.scala:104:23]
assign next_uop_fp_ctrl_vec = next_uop_out_fp_ctrl_vec; // @[util.scala:104:23]
assign next_uop_rob_idx = next_uop_out_rob_idx; // @[util.scala:104:23]
assign next_uop_ldq_idx = next_uop_out_ldq_idx; // @[util.scala:104:23]
assign next_uop_stq_idx = next_uop_out_stq_idx; // @[util.scala:104:23]
assign next_uop_rxq_idx = next_uop_out_rxq_idx; // @[util.scala:104:23]
assign next_uop_pdst = next_uop_out_pdst; // @[util.scala:104:23]
assign next_uop_prs1 = next_uop_out_prs1; // @[util.scala:104:23]
assign next_uop_prs2 = next_uop_out_prs2; // @[util.scala:104:23]
assign next_uop_prs3 = next_uop_out_prs3; // @[util.scala:104:23]
assign next_uop_ppred = next_uop_out_ppred; // @[util.scala:104:23]
assign next_uop_ppred_busy = next_uop_out_ppred_busy; // @[util.scala:104:23]
assign next_uop_stale_pdst = next_uop_out_stale_pdst; // @[util.scala:104:23]
assign next_uop_exception = next_uop_out_exception; // @[util.scala:104:23]
assign next_uop_exc_cause = next_uop_out_exc_cause; // @[util.scala:104:23]
assign next_uop_mem_cmd = next_uop_out_mem_cmd; // @[util.scala:104:23]
assign next_uop_mem_size = next_uop_out_mem_size; // @[util.scala:104:23]
assign next_uop_mem_signed = next_uop_out_mem_signed; // @[util.scala:104:23]
assign next_uop_uses_ldq = next_uop_out_uses_ldq; // @[util.scala:104:23]
assign next_uop_uses_stq = next_uop_out_uses_stq; // @[util.scala:104:23]
assign next_uop_is_unique = next_uop_out_is_unique; // @[util.scala:104:23]
assign next_uop_flush_on_commit = next_uop_out_flush_on_commit; // @[util.scala:104:23]
assign next_uop_csr_cmd = next_uop_out_csr_cmd; // @[util.scala:104:23]
assign next_uop_ldst_is_rs1 = next_uop_out_ldst_is_rs1; // @[util.scala:104:23]
assign next_uop_ldst = next_uop_out_ldst; // @[util.scala:104:23]
assign next_uop_lrs1 = next_uop_out_lrs1; // @[util.scala:104:23]
assign next_uop_lrs2 = next_uop_out_lrs2; // @[util.scala:104:23]
assign next_uop_lrs3 = next_uop_out_lrs3; // @[util.scala:104:23]
assign next_uop_dst_rtype = next_uop_out_dst_rtype; // @[util.scala:104:23]
assign next_uop_lrs1_rtype = next_uop_out_lrs1_rtype; // @[util.scala:104:23]
assign next_uop_lrs2_rtype = next_uop_out_lrs2_rtype; // @[util.scala:104:23]
assign next_uop_frs3_en = next_uop_out_frs3_en; // @[util.scala:104:23]
assign next_uop_fcn_dw = next_uop_out_fcn_dw; // @[util.scala:104:23]
assign next_uop_fcn_op = next_uop_out_fcn_op; // @[util.scala:104:23]
assign next_uop_fp_val = next_uop_out_fp_val; // @[util.scala:104:23]
assign next_uop_fp_rm = next_uop_out_fp_rm; // @[util.scala:104:23]
assign next_uop_fp_typ = next_uop_out_fp_typ; // @[util.scala:104:23]
assign next_uop_xcpt_pf_if = next_uop_out_xcpt_pf_if; // @[util.scala:104:23]
assign next_uop_xcpt_ae_if = next_uop_out_xcpt_ae_if; // @[util.scala:104:23]
assign next_uop_xcpt_ma_if = next_uop_out_xcpt_ma_if; // @[util.scala:104:23]
assign next_uop_bp_debug_if = next_uop_out_bp_debug_if; // @[util.scala:104:23]
assign next_uop_bp_xcpt_if = next_uop_out_bp_xcpt_if; // @[util.scala:104:23]
assign next_uop_debug_fsrc = next_uop_out_debug_fsrc; // @[util.scala:104:23]
assign next_uop_debug_tsrc = next_uop_out_debug_tsrc; // @[util.scala:104:23]
wire [15:0] _next_uop_out_br_mask_T = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:93:27]
assign _next_uop_out_br_mask_T_1 = slot_uop_br_mask & _next_uop_out_br_mask_T; // @[util.scala:93:{25,27}]
assign next_uop_out_br_mask = _next_uop_out_br_mask_T_1; // @[util.scala:93:25, :104:23]
assign io_out_uop_inst_0 = next_uop_inst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_inst_0 = next_uop_debug_inst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_rvc_0 = next_uop_is_rvc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_pc_0 = next_uop_debug_pc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_0_0 = next_uop_iq_type_0; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_1_0 = next_uop_iq_type_1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_2_0 = next_uop_iq_type_2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_3_0 = next_uop_iq_type_3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_0_0 = next_uop_fu_code_0; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_1_0 = next_uop_fu_code_1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_2_0 = next_uop_fu_code_2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_3_0 = next_uop_fu_code_3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_4_0 = next_uop_fu_code_4; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_5_0 = next_uop_fu_code_5; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_6_0 = next_uop_fu_code_6; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_7_0 = next_uop_fu_code_7; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_8_0 = next_uop_fu_code_8; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_9_0 = next_uop_fu_code_9; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_issued_0 = next_uop_iw_issued; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_p1_bypass_hint_0 = next_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_p2_bypass_hint_0 = next_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_p3_bypass_hint_0 = next_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_dis_col_sel_0 = next_uop_dis_col_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_br_mask_0 = next_uop_br_mask; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_br_tag_0 = next_uop_br_tag; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_br_type_0 = next_uop_br_type; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_sfb_0 = next_uop_is_sfb; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_fence_0 = next_uop_is_fence; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_fencei_0 = next_uop_is_fencei; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_sfence_0 = next_uop_is_sfence; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_amo_0 = next_uop_is_amo; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_eret_0 = next_uop_is_eret; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_sys_pc2epc_0 = next_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_rocc_0 = next_uop_is_rocc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_mov_0 = next_uop_is_mov; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ftq_idx_0 = next_uop_ftq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_edge_inst_0 = next_uop_edge_inst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_pc_lob_0 = next_uop_pc_lob; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_taken_0 = next_uop_taken; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_imm_rename_0 = next_uop_imm_rename; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_imm_sel_0 = next_uop_imm_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_pimm_0 = next_uop_pimm; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_imm_packed_0 = next_uop_imm_packed; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_op1_sel_0 = next_uop_op1_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_op2_sel_0 = next_uop_op2_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ldst_0 = next_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_wen_0 = next_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ren1_0 = next_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ren2_0 = next_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ren3_0 = next_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_swap12_0 = next_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_swap23_0 = next_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_typeTagIn_0 = next_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_typeTagOut_0 = next_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_fromint_0 = next_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_toint_0 = next_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_fastpipe_0 = next_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_fma_0 = next_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_div_0 = next_uop_fp_ctrl_div; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_sqrt_0 = next_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_wflags_0 = next_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_vec_0 = next_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_rob_idx_0 = next_uop_rob_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ldq_idx_0 = next_uop_ldq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_stq_idx_0 = next_uop_stq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_rxq_idx_0 = next_uop_rxq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_pdst_0 = next_uop_pdst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs1_0 = next_uop_prs1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs2_0 = next_uop_prs2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs3_0 = next_uop_prs3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ppred_0 = next_uop_ppred; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs1_busy_0 = next_uop_prs1_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs2_busy_0 = next_uop_prs2_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs3_busy_0 = next_uop_prs3_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ppred_busy_0 = next_uop_ppred_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_stale_pdst_0 = next_uop_stale_pdst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_exception_0 = next_uop_exception; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_exc_cause_0 = next_uop_exc_cause; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_mem_cmd_0 = next_uop_mem_cmd; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_mem_size_0 = next_uop_mem_size; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_mem_signed_0 = next_uop_mem_signed; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_uses_ldq_0 = next_uop_uses_ldq; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_uses_stq_0 = next_uop_uses_stq; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_unique_0 = next_uop_is_unique; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_flush_on_commit_0 = next_uop_flush_on_commit; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_csr_cmd_0 = next_uop_csr_cmd; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ldst_is_rs1_0 = next_uop_ldst_is_rs1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ldst_0 = next_uop_ldst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs1_0 = next_uop_lrs1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs2_0 = next_uop_lrs2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs3_0 = next_uop_lrs3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_dst_rtype_0 = next_uop_dst_rtype; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs1_rtype_0 = next_uop_lrs1_rtype; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs2_rtype_0 = next_uop_lrs2_rtype; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_frs3_en_0 = next_uop_frs3_en; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fcn_dw_0 = next_uop_fcn_dw; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fcn_op_0 = next_uop_fcn_op; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_val_0 = next_uop_fp_val; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_rm_0 = next_uop_fp_rm; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_typ_0 = next_uop_fp_typ; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_xcpt_pf_if_0 = next_uop_xcpt_pf_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_xcpt_ae_if_0 = next_uop_xcpt_ae_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_xcpt_ma_if_0 = next_uop_xcpt_ma_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_bp_debug_if_0 = next_uop_bp_debug_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_bp_xcpt_if_0 = next_uop_bp_xcpt_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_fsrc_0 = next_uop_debug_fsrc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_tsrc_0 = next_uop_debug_tsrc; // @[issue-slot.scala:49:7, :59:28]
wire [15:0] _killed_T = io_brupdate_b1_mispredict_mask_0 & slot_uop_br_mask; // @[util.scala:126:51]
wire _killed_T_1 = |_killed_T; // @[util.scala:126:{51,59}]
wire killed = _killed_T_1 | io_kill_0; // @[util.scala:61:61, :126:59]
wire _io_will_be_valid_T = ~killed; // @[util.scala:61:61]
assign _io_will_be_valid_T_1 = next_valid & _io_will_be_valid_T; // @[issue-slot.scala:58:28, :65:{34,37}]
assign io_will_be_valid_0 = _io_will_be_valid_T_1; // @[issue-slot.scala:49:7, :65:34]
wire _slot_valid_T = ~killed; // @[util.scala:61:61]
wire _slot_valid_T_1 = next_valid & _slot_valid_T; // @[issue-slot.scala:58:28, :74:{30,33}] |
Generate the Verilog code corresponding to the following Chisel files.
File RouteComputer.scala:
package constellation.router
import chisel3._
import chisel3.util._
import chisel3.util.experimental.decode.{TruthTable, decoder}
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import freechips.rocketchip.rocket.DecodeLogic
import constellation.channel._
import constellation.routing.{FlowRoutingBundle, FlowRoutingInfo}
import constellation.noc.{HasNoCParams}
class RouteComputerReq(implicit val p: Parameters) extends Bundle with HasNoCParams {
val src_virt_id = UInt(virtualChannelBits.W)
val flow = new FlowRoutingBundle
}
class RouteComputerResp(
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams])(implicit val p: Parameters) extends Bundle
with HasRouterOutputParams {
val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })
}
class RouteComputer(
val routerParams: RouterParams,
val inParams: Seq[ChannelParams],
val outParams: Seq[ChannelParams],
val ingressParams: Seq[IngressChannelParams],
val egressParams: Seq[EgressChannelParams]
)(implicit val p: Parameters) extends Module
with HasRouterParams
with HasRouterInputParams
with HasRouterOutputParams
with HasNoCParams {
val io = IO(new Bundle {
val req = MixedVec(allInParams.map { u => Flipped(Decoupled(new RouteComputerReq)) })
val resp = MixedVec(allInParams.map { u => Output(new RouteComputerResp(outParams, egressParams)) })
})
(io.req zip io.resp).zipWithIndex.map { case ((req, resp), i) =>
req.ready := true.B
if (outParams.size == 0) {
assert(!req.valid)
resp.vc_sel := DontCare
} else {
def toUInt(t: (Int, FlowRoutingInfo)): UInt = {
val l2 = (BigInt(t._1) << req.bits.flow.vnet_id .getWidth) | t._2.vNetId
val l3 = ( l2 << req.bits.flow.ingress_node .getWidth) | t._2.ingressNode
val l4 = ( l3 << req.bits.flow.ingress_node_id.getWidth) | t._2.ingressNodeId
val l5 = ( l4 << req.bits.flow.egress_node .getWidth) | t._2.egressNode
val l6 = ( l5 << req.bits.flow.egress_node_id .getWidth) | t._2.egressNodeId
l6.U(req.bits.getWidth.W)
}
val flow = req.bits.flow
val table = allInParams(i).possibleFlows.toSeq.distinct.map { pI =>
allInParams(i).channelRoutingInfos.map { cI =>
var row: String = "b"
(0 until nOutputs).foreach { o =>
(0 until outParams(o).nVirtualChannels).foreach { outVId =>
row = row + (if (routingRelation(cI, outParams(o).channelRoutingInfos(outVId), pI)) "1" else "0")
}
}
((cI.vc, pI), row)
}
}.flatten
val addr = req.bits.asUInt
val width = outParams.map(_.nVirtualChannels).reduce(_+_)
val decoded = if (table.size > 0) {
val truthTable = TruthTable(
table.map { e => (BitPat(toUInt(e._1)), BitPat(e._2)) },
BitPat("b" + "?" * width)
)
Reverse(decoder(addr, truthTable))
} else {
0.U(width.W)
}
var idx = 0
(0 until nAllOutputs).foreach { o =>
if (o < nOutputs) {
(0 until outParams(o).nVirtualChannels).foreach { outVId =>
resp.vc_sel(o)(outVId) := decoded(idx)
idx += 1
}
} else {
resp.vc_sel(o)(0) := false.B
}
}
}
}
}
| module RouteComputer_24( // @[RouteComputer.scala:29:7]
input [4:0] io_req_1_bits_src_virt_id, // @[RouteComputer.scala:40:14]
input [3:0] io_req_1_bits_flow_vnet_id, // @[RouteComputer.scala:40:14]
input [5:0] io_req_1_bits_flow_ingress_node, // @[RouteComputer.scala:40:14]
input [2:0] io_req_1_bits_flow_ingress_node_id, // @[RouteComputer.scala:40:14]
input [5:0] io_req_1_bits_flow_egress_node, // @[RouteComputer.scala:40:14]
input [2:0] io_req_1_bits_flow_egress_node_id, // @[RouteComputer.scala:40:14]
input [4:0] io_req_0_bits_src_virt_id, // @[RouteComputer.scala:40:14]
input [3:0] io_req_0_bits_flow_vnet_id, // @[RouteComputer.scala:40:14]
input [5:0] io_req_0_bits_flow_ingress_node, // @[RouteComputer.scala:40:14]
input [2:0] io_req_0_bits_flow_ingress_node_id, // @[RouteComputer.scala:40:14]
input [5:0] io_req_0_bits_flow_egress_node, // @[RouteComputer.scala:40:14]
input [2:0] io_req_0_bits_flow_egress_node_id, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_2, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_3, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_8, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_9, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_10, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_11, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_12, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_13, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_14, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_15, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_16, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_17, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_18, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_19, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_1_20, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_0_8, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_0_9, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_0_12, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_0_13, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_0_20, // @[RouteComputer.scala:40:14]
output io_resp_1_vc_sel_0_21, // @[RouteComputer.scala:40:14]
output io_resp_0_vc_sel_1_3, // @[RouteComputer.scala:40:14]
output io_resp_0_vc_sel_1_19, // @[RouteComputer.scala:40:14]
output io_resp_0_vc_sel_1_20, // @[RouteComputer.scala:40:14]
output io_resp_0_vc_sel_1_21 // @[RouteComputer.scala:40:14]
);
wire [1:0] _decoded_orMatrixOutputs_T_2 = {~(io_req_0_bits_flow_egress_node_id[0]), io_req_0_bits_flow_egress_node_id[0]}; // @[pla.scala:78:21, :90:45, :114:19]
wire [20:0] decoded_invInputs_1 = ~{io_req_1_bits_flow_vnet_id[2:0], io_req_1_bits_flow_ingress_node, io_req_1_bits_flow_ingress_node_id, io_req_1_bits_flow_egress_node, io_req_1_bits_flow_egress_node_id}; // @[pla.scala:78:21]
wire [3:0] _decoded_andMatrixOutputs_T_2 = {decoded_invInputs_1[2], io_req_1_bits_flow_egress_node[0], decoded_invInputs_1[4], decoded_invInputs_1[5]}; // @[pla.scala:78:21, :90:45, :91:29, :98:53]
wire [1:0] _decoded_andMatrixOutputs_T_4 = {io_req_1_bits_flow_egress_node_id[2], io_req_1_bits_flow_egress_node[0]}; // @[pla.scala:90:45, :98:53]
wire [1:0] _decoded_orMatrixOutputs_T_24 = {&_decoded_andMatrixOutputs_T_2, &_decoded_andMatrixOutputs_T_4}; // @[pla.scala:98:{53,70}, :114:19]
assign io_resp_1_vc_sel_1_2 = &{io_req_1_bits_flow_egress_node_id[0], decoded_invInputs_1[1], decoded_invInputs_1[2], decoded_invInputs_1[6], decoded_invInputs_1[7]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_3 = &{io_req_1_bits_flow_egress_node_id[0], decoded_invInputs_1[20], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_8 = &{io_req_1_bits_flow_egress_node[0], decoded_invInputs_1[6]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_9 = &{io_req_1_bits_flow_egress_node[0], decoded_invInputs_1[6], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_10 = &{decoded_invInputs_1[0], decoded_invInputs_1[3], io_req_1_bits_flow_vnet_id[2]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_11 = &{io_req_1_bits_flow_vnet_id[0], decoded_invInputs_1[19], io_req_1_bits_flow_vnet_id[2], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_12 = &{io_req_1_bits_flow_egress_node_id[0], decoded_invInputs_1[18]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_13 = &{io_req_1_bits_flow_egress_node_id[0], decoded_invInputs_1[18], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_14 = &{io_req_1_bits_flow_vnet_id[0], io_req_1_bits_flow_vnet_id[1]}; // @[pla.scala:90:45, :98:{53,70}]
assign io_resp_1_vc_sel_1_15 = &{io_req_1_bits_flow_vnet_id[0], io_req_1_bits_flow_vnet_id[1], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}; // @[pla.scala:90:45, :98:{53,70}]
assign io_resp_1_vc_sel_1_16 = &{io_req_1_bits_flow_ingress_node_id[1], decoded_invInputs_1[18], decoded_invInputs_1[19]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_17 = &{decoded_invInputs_1[18], decoded_invInputs_1[20], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_18 = &{decoded_invInputs_1[0], io_req_1_bits_flow_vnet_id[0], decoded_invInputs_1[20]}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}]
assign io_resp_1_vc_sel_1_19 = &{io_req_1_bits_flow_vnet_id[0], io_req_1_bits_flow_vnet_id[3], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}; // @[pla.scala:90:45, :98:{53,70}]
assign io_resp_1_vc_sel_1_20 = |{&{decoded_invInputs_1[6], io_req_1_bits_src_virt_id[0], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}, &{io_req_1_bits_flow_egress_node_id[0], io_req_1_bits_src_virt_id[0], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}, &{decoded_invInputs_1[2], io_req_1_bits_flow_ingress_node_id[1], io_req_1_bits_src_virt_id[0], io_req_1_bits_src_virt_id[2], io_req_1_bits_src_virt_id[4]}}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}, :114:{19,36}]
assign io_resp_1_vc_sel_0_8 = &_decoded_andMatrixOutputs_T_2; // @[pla.scala:98:{53,70}]
assign io_resp_1_vc_sel_0_9 = &_decoded_andMatrixOutputs_T_2; // @[pla.scala:98:{53,70}]
assign io_resp_1_vc_sel_0_12 = &_decoded_andMatrixOutputs_T_4; // @[pla.scala:98:{53,70}]
assign io_resp_1_vc_sel_0_13 = &_decoded_andMatrixOutputs_T_4; // @[pla.scala:98:{53,70}]
assign io_resp_1_vc_sel_0_20 = |_decoded_orMatrixOutputs_T_24; // @[pla.scala:114:{19,36}]
assign io_resp_1_vc_sel_0_21 = |_decoded_orMatrixOutputs_T_24; // @[pla.scala:114:{19,36}]
assign io_resp_0_vc_sel_1_3 = io_req_0_bits_flow_egress_node_id[0]; // @[pla.scala:90:45]
assign io_resp_0_vc_sel_1_19 = ~(io_req_0_bits_flow_egress_node_id[0]); // @[pla.scala:78:21]
assign io_resp_0_vc_sel_1_20 = |_decoded_orMatrixOutputs_T_2; // @[pla.scala:114:{19,36}]
assign io_resp_0_vc_sel_1_21 = |_decoded_orMatrixOutputs_T_2; // @[pla.scala:114:{19,36}]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File primitives.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object lowMask
{
def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt =
{
require(topBound != bottomBound)
val numInVals = BigInt(1)<<in.getWidth
if (topBound < bottomBound) {
lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound)
} else if (numInVals > 64 /* Empirical */) {
// For simulation performance, we should avoid generating
// exteremely wide shifters, so we divide and conquer.
// Empirically, this does not impact synthesis QoR.
val mid = numInVals / 2
val msb = in(in.getWidth - 1)
val lsbs = in(in.getWidth - 2, 0)
if (mid < topBound) {
if (mid <= bottomBound) {
Mux(msb,
lowMask(lsbs, topBound - mid, bottomBound - mid),
0.U
)
} else {
Mux(msb,
lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U,
lowMask(lsbs, mid, bottomBound)
)
}
} else {
~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound))
}
} else {
val shift = (BigInt(-1)<<numInVals.toInt).S>>in
Reverse(
shift(
(numInVals - 1 - bottomBound).toInt,
(numInVals - topBound).toInt
)
)
}
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object countLeadingZeros
{
def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object orReduceBy2
{
def apply(in: UInt): UInt =
{
val reducedWidth = (in.getWidth + 1)>>1
val reducedVec = Wire(Vec(reducedWidth, Bool()))
for (ix <- 0 until reducedWidth - 1) {
reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR
}
reducedVec(reducedWidth - 1) :=
in(in.getWidth - 1, (reducedWidth - 1) * 2).orR
reducedVec.asUInt
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object orReduceBy4
{
def apply(in: UInt): UInt =
{
val reducedWidth = (in.getWidth + 3)>>2
val reducedVec = Wire(Vec(reducedWidth, Bool()))
for (ix <- 0 until reducedWidth - 1) {
reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR
}
reducedVec(reducedWidth - 1) :=
in(in.getWidth - 1, (reducedWidth - 1) * 4).orR
reducedVec.asUInt
}
}
File MulAddRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle
{
//*** ENCODE SOME OF THESE CASES IN FEWER BITS?:
val isSigNaNAny = Bool()
val isNaNAOrB = Bool()
val isInfA = Bool()
val isZeroA = Bool()
val isInfB = Bool()
val isZeroB = Bool()
val signProd = Bool()
val isNaNC = Bool()
val isInfC = Bool()
val isZeroC = Bool()
val sExpSum = SInt((expWidth + 2).W)
val doSubMags = Bool()
val CIsDominant = Bool()
val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W)
val highAlignedSigC = UInt((sigWidth + 2).W)
val bit0AlignedSigC = UInt(1.W)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule
{
override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val op = Input(Bits(2.W))
val a = Input(Bits((expWidth + sigWidth + 1).W))
val b = Input(Bits((expWidth + sigWidth + 1).W))
val c = Input(Bits((expWidth + sigWidth + 1).W))
val mulAddA = Output(UInt(sigWidth.W))
val mulAddB = Output(UInt(sigWidth.W))
val mulAddC = Output(UInt((sigWidth * 2).W))
val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
//*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN
//*** UNSHIFTED C AND PRODUCT):
val sigSumWidth = sigWidth * 3 + 3
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a)
val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b)
val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c)
val signProd = rawA.sign ^ rawB.sign ^ io.op(1)
//*** REVIEW THE BIAS FOR 'sExpAlignedProd':
val sExpAlignedProd =
rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S
val doSubMags = signProd ^ rawC.sign ^ io.op(0)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sNatCAlignDist = sExpAlignedProd - rawC.sExp
val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0)
val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S)
val CIsDominant =
! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U))
val CAlignDist =
Mux(isMinCAlign,
0.U,
Mux(posNatCAlignDist < (sigSumWidth - 1).U,
posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0),
(sigSumWidth - 1).U
)
)
val mainAlignedSigC =
(Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist
val reduced4CExtra =
(orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) &
lowMask(
CAlignDist>>2,
//*** NOT NEEDED?:
// (sigSumWidth + 2)>>2,
(sigSumWidth - 1)>>2,
(sigSumWidth - sigWidth - 1)>>2
)
).orR
val alignedSigC =
Cat(mainAlignedSigC>>3,
Mux(doSubMags,
mainAlignedSigC(2, 0).andR && ! reduced4CExtra,
mainAlignedSigC(2, 0).orR || reduced4CExtra
)
)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
io.mulAddA := rawA.sig
io.mulAddB := rawB.sig
io.mulAddC := alignedSigC(sigWidth * 2, 1)
io.toPostMul.isSigNaNAny :=
isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) ||
isSigNaNRawFloat(rawC)
io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN
io.toPostMul.isInfA := rawA.isInf
io.toPostMul.isZeroA := rawA.isZero
io.toPostMul.isInfB := rawB.isInf
io.toPostMul.isZeroB := rawB.isZero
io.toPostMul.signProd := signProd
io.toPostMul.isNaNC := rawC.isNaN
io.toPostMul.isInfC := rawC.isInf
io.toPostMul.isZeroC := rawC.isZero
io.toPostMul.sExpSum :=
Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S)
io.toPostMul.doSubMags := doSubMags
io.toPostMul.CIsDominant := CIsDominant
io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0)
io.toPostMul.highAlignedSigC :=
alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1)
io.toPostMul.bit0AlignedSigC := alignedSigC(0)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule
{
override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth))
val mulAddResult = Input(UInt((sigWidth * 2 + 1).W))
val roundingMode = Input(UInt(3.W))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth + 2))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sigSumWidth = sigWidth * 3 + 3
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundingMode_min = (io.roundingMode === round_min)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags
val sigSum =
Cat(Mux(io.mulAddResult(sigWidth * 2),
io.fromPreMul.highAlignedSigC + 1.U,
io.fromPreMul.highAlignedSigC
),
io.mulAddResult(sigWidth * 2 - 1, 0),
io.fromPreMul.bit0AlignedSigC
)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val CDom_sign = opSignC
val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext
val CDom_absSigSum =
Mux(io.fromPreMul.doSubMags,
~sigSum(sigSumWidth - 1, sigWidth + 1),
0.U(1.W) ##
//*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO:
io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ##
sigSum(sigSumWidth - 3, sigWidth + 2)
)
val CDom_absSigSumExtra =
Mux(io.fromPreMul.doSubMags,
(~sigSum(sigWidth, 1)).orR,
sigSum(sigWidth + 1, 1).orR
)
val CDom_mainSig =
(CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)(
sigWidth * 2 + 1, sigWidth - 3)
val CDom_reduced4SigExtra =
(orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) &
lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR
val CDom_sig =
Cat(CDom_mainSig>>3,
CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra ||
CDom_absSigSumExtra
)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val notCDom_signSigSum = sigSum(sigWidth * 2 + 3)
val notCDom_absSigSum =
Mux(notCDom_signSigSum,
~sigSum(sigWidth * 2 + 2, 0),
sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags
)
val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum)
val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum)
val notCDom_nearNormDist = notCDom_normDistReduced2<<1
val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext
val notCDom_mainSig =
(notCDom_absSigSum<<notCDom_nearNormDist)(
sigWidth * 2 + 3, sigWidth - 1)
val notCDom_reduced4SigExtra =
(orReduceBy2(
notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) &
lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2)
).orR
val notCDom_sig =
Cat(notCDom_mainSig>>3,
notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra
)
val notCDom_completeCancellation =
(notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U)
val notCDom_sign =
Mux(notCDom_completeCancellation,
roundingMode_min,
io.fromPreMul.signProd ^ notCDom_signSigSum
)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB
val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC
val notNaN_addZeros =
(io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) &&
io.fromPreMul.isZeroC
io.invalidExc :=
io.fromPreMul.isSigNaNAny ||
(io.fromPreMul.isInfA && io.fromPreMul.isZeroB) ||
(io.fromPreMul.isZeroA && io.fromPreMul.isInfB) ||
(! io.fromPreMul.isNaNAOrB &&
(io.fromPreMul.isInfA || io.fromPreMul.isInfB) &&
io.fromPreMul.isInfC &&
io.fromPreMul.doSubMags)
io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC
io.rawOut.isInf := notNaN_isInfOut
//*** IMPROVE?:
io.rawOut.isZero :=
notNaN_addZeros ||
(! io.fromPreMul.CIsDominant && notCDom_completeCancellation)
io.rawOut.sign :=
(notNaN_isInfProd && io.fromPreMul.signProd) ||
(io.fromPreMul.isInfC && opSignC) ||
(notNaN_addZeros && ! roundingMode_min &&
io.fromPreMul.signProd && opSignC) ||
(notNaN_addZeros && roundingMode_min &&
(io.fromPreMul.signProd || opSignC)) ||
(! notNaN_isInfOut && ! notNaN_addZeros &&
Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign))
io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp)
io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule
{
override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val op = Input(Bits(2.W))
val a = Input(Bits((expWidth + sigWidth + 1).W))
val b = Input(Bits((expWidth + sigWidth + 1).W))
val c = Input(Bits((expWidth + sigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val mulAddRecFNToRaw_preMul =
Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth))
val mulAddRecFNToRaw_postMul =
Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth))
mulAddRecFNToRaw_preMul.io.op := io.op
mulAddRecFNToRaw_preMul.io.a := io.a
mulAddRecFNToRaw_preMul.io.b := io.b
mulAddRecFNToRaw_preMul.io.c := io.c
val mulAddResult =
(mulAddRecFNToRaw_preMul.io.mulAddA *
mulAddRecFNToRaw_preMul.io.mulAddB) +&
mulAddRecFNToRaw_preMul.io.mulAddC
mulAddRecFNToRaw_postMul.io.fromPreMul :=
mulAddRecFNToRaw_preMul.io.toPostMul
mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult
mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundRawFNToRecFN =
Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0))
roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc
roundRawFNToRecFN.io.infiniteExc := false.B
roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut
roundRawFNToRecFN.io.roundingMode := io.roundingMode
roundRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundRawFNToRecFN.io.out
io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags
}
File rawFloatFromRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
/*----------------------------------------------------------------------------
| In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be
| set.
*----------------------------------------------------------------------------*/
object rawFloatFromRecFN
{
def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat =
{
val exp = in(expWidth + sigWidth - 1, sigWidth - 1)
val isZero = exp(expWidth, expWidth - 2) === 0.U
val isSpecial = exp(expWidth, expWidth - 1) === 3.U
val out = Wire(new RawFloat(expWidth, sigWidth))
out.isNaN := isSpecial && exp(expWidth - 2)
out.isInf := isSpecial && ! exp(expWidth - 2)
out.isZero := isZero
out.sign := in(expWidth + sigWidth)
out.sExp := exp.zext
out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0)
out
}
}
File common.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of
the University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
object consts {
/*------------------------------------------------------------------------
| For rounding to integer values, rounding mode 'odd' rounds to minimum
| magnitude instead, same as 'minMag'.
*------------------------------------------------------------------------*/
def round_near_even = "b000".U(3.W)
def round_minMag = "b001".U(3.W)
def round_min = "b010".U(3.W)
def round_max = "b011".U(3.W)
def round_near_maxMag = "b100".U(3.W)
def round_odd = "b110".U(3.W)
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
def tininess_beforeRounding = 0.U
def tininess_afterRounding = 1.U
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
def flRoundOpt_sigMSBitAlwaysZero = 1
def flRoundOpt_subnormsAlwaysExact = 2
def flRoundOpt_neverUnderflows = 4
def flRoundOpt_neverOverflows = 8
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
def divSqrtOpt_twoBitsPerCycle = 16
}
class RawFloat(val expWidth: Int, val sigWidth: Int) extends Bundle
{
val isNaN: Bool = Bool() // overrides all other fields
val isInf: Bool = Bool() // overrides 'isZero', 'sExp', and 'sig'
val isZero: Bool = Bool() // overrides 'sExp' and 'sig'
val sign: Bool = Bool()
val sExp: SInt = SInt((expWidth + 2).W)
val sig: UInt = UInt((sigWidth + 1).W) // 2 m.s. bits cannot both be 0
}
//*** CHANGE THIS INTO A '.isSigNaN' METHOD OF THE 'RawFloat' CLASS:
object isSigNaNRawFloat
{
def apply(in: RawFloat): Bool = in.isNaN && !in.sig(in.sigWidth - 2)
}
| module MulAddRecFNToRaw_preMul_e8_s24_17( // @[MulAddRecFN.scala:71:7]
input [32:0] io_a, // @[MulAddRecFN.scala:74:16]
output [23:0] io_mulAddA, // @[MulAddRecFN.scala:74:16]
output [47:0] io_mulAddC, // @[MulAddRecFN.scala:74:16]
output io_toPostMul_isSigNaNAny, // @[MulAddRecFN.scala:74:16]
output io_toPostMul_isNaNAOrB, // @[MulAddRecFN.scala:74:16]
output io_toPostMul_isInfA, // @[MulAddRecFN.scala:74:16]
output io_toPostMul_isZeroA, // @[MulAddRecFN.scala:74:16]
output io_toPostMul_signProd, // @[MulAddRecFN.scala:74:16]
output [9:0] io_toPostMul_sExpSum, // @[MulAddRecFN.scala:74:16]
output io_toPostMul_doSubMags, // @[MulAddRecFN.scala:74:16]
output [4:0] io_toPostMul_CDom_CAlignDist, // @[MulAddRecFN.scala:74:16]
output [25:0] io_toPostMul_highAlignedSigC, // @[MulAddRecFN.scala:74:16]
output io_toPostMul_bit0AlignedSigC // @[MulAddRecFN.scala:74:16]
);
wire rawA_sign; // @[rawFloatFromRecFN.scala:55:23]
wire rawA_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire [32:0] io_a_0 = io_a; // @[MulAddRecFN.scala:71:7]
wire [8:0] rawB_exp = 9'h100; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _rawB_isZero_T = 3'h4; // @[rawFloatFromRecFN.scala:52:28]
wire [1:0] _rawB_isSpecial_T = 2'h2; // @[rawFloatFromRecFN.scala:53:28]
wire [9:0] rawB_sExp = 10'h100; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire [9:0] _rawB_out_sExp_T = 10'h100; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire [1:0] _rawB_out_sig_T_1 = 2'h1; // @[rawFloatFromRecFN.scala:61:32]
wire [24:0] rawB_sig = 25'h800000; // @[rawFloatFromRecFN.scala:55:23, :61:44]
wire [24:0] _rawB_out_sig_T_3 = 25'h800000; // @[rawFloatFromRecFN.scala:55:23, :61:44]
wire [8:0] rawC_exp = 9'h2B; // @[rawFloatFromRecFN.scala:51:21]
wire [9:0] rawC_sExp = 10'h2B; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire [9:0] _rawC_out_sExp_T = 10'h2B; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire [22:0] _rawB_out_sig_T_2 = 23'h0; // @[rawFloatFromRecFN.scala:61:49]
wire [22:0] _rawC_out_sig_T_2 = 23'h0; // @[rawFloatFromRecFN.scala:61:49]
wire [24:0] rawC_sig = 25'h0; // @[rawFloatFromRecFN.scala:55:23, :61:44]
wire [24:0] _rawC_out_sig_T_3 = 25'h0; // @[rawFloatFromRecFN.scala:55:23, :61:44]
wire [24:0] _mainAlignedSigC_T = 25'h1FFFFFF; // @[MulAddRecFN.scala:120:25]
wire [26:0] _reduced4CExtra_T = 27'h0; // @[MulAddRecFN.scala:122:30]
wire [2:0] _rawC_isZero_T = 3'h0; // @[rawFloatFromRecFN.scala:52:28]
wire [2:0] _reduced4CExtra_reducedVec_6_T = 3'h0; // @[rawFloatFromRecFN.scala:52:28]
wire [2:0] reduced4CExtra_lo = 3'h0; // @[rawFloatFromRecFN.scala:52:28]
wire [3:0] _reduced4CExtra_reducedVec_0_T = 4'h0; // @[primitives.scala:120:33, :124:20]
wire [3:0] _reduced4CExtra_reducedVec_1_T = 4'h0; // @[primitives.scala:120:33, :124:20]
wire [3:0] _reduced4CExtra_reducedVec_2_T = 4'h0; // @[primitives.scala:120:33, :124:20]
wire [3:0] _reduced4CExtra_reducedVec_3_T = 4'h0; // @[primitives.scala:120:33, :124:20]
wire [3:0] _reduced4CExtra_reducedVec_4_T = 4'h0; // @[primitives.scala:120:33, :124:20]
wire [3:0] _reduced4CExtra_reducedVec_5_T = 4'h0; // @[primitives.scala:120:33, :124:20]
wire [3:0] reduced4CExtra_hi = 4'h0; // @[primitives.scala:120:33, :124:20]
wire [6:0] _reduced4CExtra_T_1 = 7'h0; // @[primitives.scala:124:20]
wire [6:0] _reduced4CExtra_T_19 = 7'h0; // @[MulAddRecFN.scala:122:68]
wire io_toPostMul_isZeroC = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35]
wire _rawB_out_isInf_T_1 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35]
wire _rawB_out_sig_T = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35]
wire rawC_isZero = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35]
wire rawC_isZero_0 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35]
wire _rawC_out_isInf_T_1 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35]
wire _alignedSigC_T_3 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35]
wire _io_toPostMul_isSigNaNAny_T_4 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35]
wire _io_toPostMul_isSigNaNAny_T_8 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35]
wire io_toPostMul_isInfB = 1'h0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_isZeroB = 1'h0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_isNaNC = 1'h0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_isInfC = 1'h0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_CIsDominant = 1'h0; // @[MulAddRecFN.scala:71:7]
wire rawB_isZero = 1'h0; // @[rawFloatFromRecFN.scala:52:53]
wire rawB_isSpecial = 1'h0; // @[rawFloatFromRecFN.scala:53:53]
wire rawB_isNaN = 1'h0; // @[rawFloatFromRecFN.scala:55:23]
wire rawB_isInf = 1'h0; // @[rawFloatFromRecFN.scala:55:23]
wire rawB_isZero_0 = 1'h0; // @[rawFloatFromRecFN.scala:55:23]
wire rawB_sign = 1'h0; // @[rawFloatFromRecFN.scala:55:23]
wire _rawB_out_isNaN_T = 1'h0; // @[rawFloatFromRecFN.scala:56:41]
wire _rawB_out_isNaN_T_1 = 1'h0; // @[rawFloatFromRecFN.scala:56:33]
wire _rawB_out_isInf_T = 1'h0; // @[rawFloatFromRecFN.scala:57:41]
wire _rawB_out_isInf_T_2 = 1'h0; // @[rawFloatFromRecFN.scala:57:33]
wire _rawB_out_sign_T = 1'h0; // @[rawFloatFromRecFN.scala:59:25]
wire rawC_isSpecial = 1'h0; // @[rawFloatFromRecFN.scala:53:53]
wire rawC_isNaN = 1'h0; // @[rawFloatFromRecFN.scala:55:23]
wire rawC_isInf = 1'h0; // @[rawFloatFromRecFN.scala:55:23]
wire rawC_sign = 1'h0; // @[rawFloatFromRecFN.scala:55:23]
wire _rawC_out_isNaN_T = 1'h0; // @[rawFloatFromRecFN.scala:56:41]
wire _rawC_out_isNaN_T_1 = 1'h0; // @[rawFloatFromRecFN.scala:56:33]
wire _rawC_out_isInf_T = 1'h0; // @[rawFloatFromRecFN.scala:57:41]
wire _rawC_out_isInf_T_2 = 1'h0; // @[rawFloatFromRecFN.scala:57:33]
wire _rawC_out_sign_T = 1'h0; // @[rawFloatFromRecFN.scala:59:25]
wire _rawC_out_sig_T = 1'h0; // @[rawFloatFromRecFN.scala:61:35]
wire _signProd_T_1 = 1'h0; // @[MulAddRecFN.scala:97:49]
wire _doSubMags_T_1 = 1'h0; // @[MulAddRecFN.scala:102:49]
wire _CIsDominant_T = 1'h0; // @[MulAddRecFN.scala:110:9]
wire CIsDominant = 1'h0; // @[MulAddRecFN.scala:110:23]
wire reduced4CExtra_reducedVec_0 = 1'h0; // @[primitives.scala:118:30]
wire reduced4CExtra_reducedVec_1 = 1'h0; // @[primitives.scala:118:30]
wire reduced4CExtra_reducedVec_2 = 1'h0; // @[primitives.scala:118:30]
wire reduced4CExtra_reducedVec_3 = 1'h0; // @[primitives.scala:118:30]
wire reduced4CExtra_reducedVec_4 = 1'h0; // @[primitives.scala:118:30]
wire reduced4CExtra_reducedVec_5 = 1'h0; // @[primitives.scala:118:30]
wire reduced4CExtra_reducedVec_6 = 1'h0; // @[primitives.scala:118:30]
wire _reduced4CExtra_reducedVec_0_T_1 = 1'h0; // @[primitives.scala:120:54]
wire _reduced4CExtra_reducedVec_1_T_1 = 1'h0; // @[primitives.scala:120:54]
wire _reduced4CExtra_reducedVec_2_T_1 = 1'h0; // @[primitives.scala:120:54]
wire _reduced4CExtra_reducedVec_3_T_1 = 1'h0; // @[primitives.scala:120:54]
wire _reduced4CExtra_reducedVec_4_T_1 = 1'h0; // @[primitives.scala:120:54]
wire _reduced4CExtra_reducedVec_5_T_1 = 1'h0; // @[primitives.scala:120:54]
wire _reduced4CExtra_reducedVec_6_T_1 = 1'h0; // @[primitives.scala:123:57]
wire reduced4CExtra = 1'h0; // @[MulAddRecFN.scala:130:11]
wire _io_toPostMul_isSigNaNAny_T_3 = 1'h0; // @[common.scala:82:56]
wire _io_toPostMul_isSigNaNAny_T_5 = 1'h0; // @[common.scala:82:46]
wire _io_toPostMul_isSigNaNAny_T_7 = 1'h0; // @[common.scala:82:56]
wire _io_toPostMul_isSigNaNAny_T_9 = 1'h0; // @[common.scala:82:46]
wire [23:0] io_mulAddB = 24'h800000; // @[MulAddRecFN.scala:71:7, :74:16, :142:16]
wire [32:0] io_c = 33'h15800000; // @[MulAddRecFN.scala:71:7, :74:16]
wire [32:0] io_b = 33'h80000000; // @[MulAddRecFN.scala:71:7, :74:16]
wire [1:0] io_op = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32]
wire [1:0] _rawC_isSpecial_T = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32]
wire [1:0] _rawC_out_sig_T_1 = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32]
wire [1:0] reduced4CExtra_lo_hi = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32]
wire [1:0] reduced4CExtra_hi_lo = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32]
wire [1:0] reduced4CExtra_hi_hi = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32]
wire [47:0] _io_mulAddC_T; // @[MulAddRecFN.scala:143:30]
wire _io_toPostMul_isSigNaNAny_T_10; // @[MulAddRecFN.scala:146:58]
wire _io_toPostMul_isNaNAOrB_T; // @[MulAddRecFN.scala:148:42]
wire rawA_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire rawA_isZero; // @[rawFloatFromRecFN.scala:55:23]
wire signProd; // @[MulAddRecFN.scala:97:42]
wire doSubMags; // @[MulAddRecFN.scala:102:42]
wire [4:0] _io_toPostMul_CDom_CAlignDist_T; // @[MulAddRecFN.scala:161:47]
wire [25:0] _io_toPostMul_highAlignedSigC_T; // @[MulAddRecFN.scala:163:20]
wire _io_toPostMul_bit0AlignedSigC_T; // @[MulAddRecFN.scala:164:48]
wire io_toPostMul_isSigNaNAny_0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_isNaNAOrB_0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_isInfA_0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_isZeroA_0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_signProd_0; // @[MulAddRecFN.scala:71:7]
wire [9:0] io_toPostMul_sExpSum_0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_doSubMags_0; // @[MulAddRecFN.scala:71:7]
wire [4:0] io_toPostMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:71:7]
wire [25:0] io_toPostMul_highAlignedSigC_0; // @[MulAddRecFN.scala:71:7]
wire io_toPostMul_bit0AlignedSigC_0; // @[MulAddRecFN.scala:71:7]
wire [23:0] io_mulAddA_0; // @[MulAddRecFN.scala:71:7]
wire [47:0] io_mulAddC_0; // @[MulAddRecFN.scala:71:7]
wire [8:0] rawA_exp = io_a_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _rawA_isZero_T = rawA_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire rawA_isZero_0 = _rawA_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
assign rawA_isZero = rawA_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _rawA_isSpecial_T = rawA_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire rawA_isSpecial = &_rawA_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _rawA_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _rawA_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
assign _io_toPostMul_isNaNAOrB_T = rawA_isNaN; // @[rawFloatFromRecFN.scala:55:23]
assign io_toPostMul_isInfA_0 = rawA_isInf; // @[rawFloatFromRecFN.scala:55:23]
assign io_toPostMul_isZeroA_0 = rawA_isZero; // @[rawFloatFromRecFN.scala:55:23]
wire _rawA_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire _isMinCAlign_T = rawA_isZero; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] _rawA_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire _signProd_T = rawA_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] _rawA_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire [9:0] rawA_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] rawA_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _rawA_out_isNaN_T = rawA_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _rawA_out_isInf_T = rawA_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _rawA_out_isNaN_T_1 = rawA_isSpecial & _rawA_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign rawA_isNaN = _rawA_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _rawA_out_isInf_T_1 = ~_rawA_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _rawA_out_isInf_T_2 = rawA_isSpecial & _rawA_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign rawA_isInf = _rawA_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _rawA_out_sign_T = io_a_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign rawA_sign = _rawA_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _rawA_out_sExp_T = {1'h0, rawA_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign rawA_sExp = _rawA_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _rawA_out_sig_T = ~rawA_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _rawA_out_sig_T_1 = {1'h0, _rawA_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _rawA_out_sig_T_2 = io_a_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _rawA_out_sig_T_3 = {_rawA_out_sig_T_1, _rawA_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign rawA_sig = _rawA_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
assign signProd = _signProd_T; // @[MulAddRecFN.scala:97:{30,42}]
assign io_toPostMul_signProd_0 = signProd; // @[MulAddRecFN.scala:71:7, :97:42]
wire _doSubMags_T = signProd; // @[MulAddRecFN.scala:97:42, :102:30]
wire [10:0] _sExpAlignedProd_T = {rawA_sExp[9], rawA_sExp} + 11'h100; // @[rawFloatFromRecFN.scala:55:23]
wire [11:0] _sExpAlignedProd_T_1 = {_sExpAlignedProd_T[10], _sExpAlignedProd_T} - 12'hE5; // @[MulAddRecFN.scala:100:{19,32}]
wire [10:0] _sExpAlignedProd_T_2 = _sExpAlignedProd_T_1[10:0]; // @[MulAddRecFN.scala:100:32]
wire [10:0] sExpAlignedProd = _sExpAlignedProd_T_2; // @[MulAddRecFN.scala:100:32]
assign doSubMags = _doSubMags_T; // @[MulAddRecFN.scala:102:{30,42}]
assign io_toPostMul_doSubMags_0 = doSubMags; // @[MulAddRecFN.scala:71:7, :102:42]
wire [11:0] _GEN = {sExpAlignedProd[10], sExpAlignedProd}; // @[MulAddRecFN.scala:100:32, :106:42]
wire [11:0] _sNatCAlignDist_T = _GEN - 12'h2B; // @[MulAddRecFN.scala:106:42]
wire [10:0] _sNatCAlignDist_T_1 = _sNatCAlignDist_T[10:0]; // @[MulAddRecFN.scala:106:42]
wire [10:0] sNatCAlignDist = _sNatCAlignDist_T_1; // @[MulAddRecFN.scala:106:42]
wire [9:0] posNatCAlignDist = sNatCAlignDist[9:0]; // @[MulAddRecFN.scala:106:42, :107:42]
wire _isMinCAlign_T_1 = $signed(sNatCAlignDist) < 11'sh0; // @[MulAddRecFN.scala:106:42, :108:69]
wire isMinCAlign = _isMinCAlign_T | _isMinCAlign_T_1; // @[MulAddRecFN.scala:108:{35,50,69}]
wire _CIsDominant_T_1 = posNatCAlignDist < 10'h19; // @[MulAddRecFN.scala:107:42, :110:60]
wire _CIsDominant_T_2 = isMinCAlign | _CIsDominant_T_1; // @[MulAddRecFN.scala:108:50, :110:{39,60}]
wire _CAlignDist_T = posNatCAlignDist < 10'h4A; // @[MulAddRecFN.scala:107:42, :114:34]
wire [6:0] _CAlignDist_T_1 = posNatCAlignDist[6:0]; // @[MulAddRecFN.scala:107:42, :115:33]
wire [6:0] _CAlignDist_T_2 = _CAlignDist_T ? _CAlignDist_T_1 : 7'h4A; // @[MulAddRecFN.scala:114:{16,34}, :115:33]
wire [6:0] CAlignDist = isMinCAlign ? 7'h0 : _CAlignDist_T_2; // @[MulAddRecFN.scala:108:50, :112:12, :114:16]
wire [24:0] _mainAlignedSigC_T_1 = {25{doSubMags}}; // @[MulAddRecFN.scala:102:42, :120:13]
wire [52:0] _mainAlignedSigC_T_2 = {53{doSubMags}}; // @[MulAddRecFN.scala:102:42, :120:53]
wire [77:0] _mainAlignedSigC_T_3 = {_mainAlignedSigC_T_1, _mainAlignedSigC_T_2}; // @[MulAddRecFN.scala:120:{13,46,53}]
wire [77:0] _mainAlignedSigC_T_4 = _mainAlignedSigC_T_3; // @[MulAddRecFN.scala:120:{46,94}]
wire [77:0] mainAlignedSigC = $signed($signed(_mainAlignedSigC_T_4) >>> CAlignDist); // @[MulAddRecFN.scala:112:12, :120:{94,100}]
wire [4:0] _reduced4CExtra_T_2 = CAlignDist[6:2]; // @[MulAddRecFN.scala:112:12, :124:28]
wire [32:0] reduced4CExtra_shift = $signed(33'sh100000000 >>> _reduced4CExtra_T_2); // @[primitives.scala:76:56]
wire [5:0] _reduced4CExtra_T_3 = reduced4CExtra_shift[19:14]; // @[primitives.scala:76:56, :78:22]
wire [3:0] _reduced4CExtra_T_4 = _reduced4CExtra_T_3[3:0]; // @[primitives.scala:77:20, :78:22]
wire [1:0] _reduced4CExtra_T_5 = _reduced4CExtra_T_4[1:0]; // @[primitives.scala:77:20]
wire _reduced4CExtra_T_6 = _reduced4CExtra_T_5[0]; // @[primitives.scala:77:20]
wire _reduced4CExtra_T_7 = _reduced4CExtra_T_5[1]; // @[primitives.scala:77:20]
wire [1:0] _reduced4CExtra_T_8 = {_reduced4CExtra_T_6, _reduced4CExtra_T_7}; // @[primitives.scala:77:20]
wire [1:0] _reduced4CExtra_T_9 = _reduced4CExtra_T_4[3:2]; // @[primitives.scala:77:20]
wire _reduced4CExtra_T_10 = _reduced4CExtra_T_9[0]; // @[primitives.scala:77:20]
wire _reduced4CExtra_T_11 = _reduced4CExtra_T_9[1]; // @[primitives.scala:77:20]
wire [1:0] _reduced4CExtra_T_12 = {_reduced4CExtra_T_10, _reduced4CExtra_T_11}; // @[primitives.scala:77:20]
wire [3:0] _reduced4CExtra_T_13 = {_reduced4CExtra_T_8, _reduced4CExtra_T_12}; // @[primitives.scala:77:20]
wire [1:0] _reduced4CExtra_T_14 = _reduced4CExtra_T_3[5:4]; // @[primitives.scala:77:20, :78:22]
wire _reduced4CExtra_T_15 = _reduced4CExtra_T_14[0]; // @[primitives.scala:77:20]
wire _reduced4CExtra_T_16 = _reduced4CExtra_T_14[1]; // @[primitives.scala:77:20]
wire [1:0] _reduced4CExtra_T_17 = {_reduced4CExtra_T_15, _reduced4CExtra_T_16}; // @[primitives.scala:77:20]
wire [5:0] _reduced4CExtra_T_18 = {_reduced4CExtra_T_13, _reduced4CExtra_T_17}; // @[primitives.scala:77:20]
wire [74:0] _alignedSigC_T = mainAlignedSigC[77:3]; // @[MulAddRecFN.scala:120:100, :132:28]
wire [74:0] alignedSigC_hi = _alignedSigC_T; // @[MulAddRecFN.scala:132:{12,28}]
wire [2:0] _alignedSigC_T_1 = mainAlignedSigC[2:0]; // @[MulAddRecFN.scala:120:100, :134:32]
wire [2:0] _alignedSigC_T_5 = mainAlignedSigC[2:0]; // @[MulAddRecFN.scala:120:100, :134:32, :135:32]
wire _alignedSigC_T_2 = &_alignedSigC_T_1; // @[MulAddRecFN.scala:134:{32,39}]
wire _alignedSigC_T_4 = _alignedSigC_T_2; // @[MulAddRecFN.scala:134:{39,44}]
wire _alignedSigC_T_6 = |_alignedSigC_T_5; // @[MulAddRecFN.scala:135:{32,39}]
wire _alignedSigC_T_7 = _alignedSigC_T_6; // @[MulAddRecFN.scala:135:{39,44}]
wire _alignedSigC_T_8 = doSubMags ? _alignedSigC_T_4 : _alignedSigC_T_7; // @[MulAddRecFN.scala:102:42, :133:16, :134:44, :135:44]
wire [75:0] alignedSigC = {alignedSigC_hi, _alignedSigC_T_8}; // @[MulAddRecFN.scala:132:12, :133:16]
assign io_mulAddA_0 = rawA_sig[23:0]; // @[rawFloatFromRecFN.scala:55:23]
assign _io_mulAddC_T = alignedSigC[48:1]; // @[MulAddRecFN.scala:132:12, :143:30]
assign io_mulAddC_0 = _io_mulAddC_T; // @[MulAddRecFN.scala:71:7, :143:30]
wire _io_toPostMul_isSigNaNAny_T = rawA_sig[22]; // @[rawFloatFromRecFN.scala:55:23]
wire _io_toPostMul_isSigNaNAny_T_1 = ~_io_toPostMul_isSigNaNAny_T; // @[common.scala:82:{49,56}]
wire _io_toPostMul_isSigNaNAny_T_2 = rawA_isNaN & _io_toPostMul_isSigNaNAny_T_1; // @[rawFloatFromRecFN.scala:55:23]
wire _io_toPostMul_isSigNaNAny_T_6 = _io_toPostMul_isSigNaNAny_T_2; // @[common.scala:82:46]
assign _io_toPostMul_isSigNaNAny_T_10 = _io_toPostMul_isSigNaNAny_T_6; // @[MulAddRecFN.scala:146:{32,58}]
assign io_toPostMul_isSigNaNAny_0 = _io_toPostMul_isSigNaNAny_T_10; // @[MulAddRecFN.scala:71:7, :146:58]
assign io_toPostMul_isNaNAOrB_0 = _io_toPostMul_isNaNAOrB_T; // @[MulAddRecFN.scala:71:7, :148:42]
wire [11:0] _io_toPostMul_sExpSum_T = _GEN - 12'h18; // @[MulAddRecFN.scala:106:42, :158:53]
wire [10:0] _io_toPostMul_sExpSum_T_1 = _io_toPostMul_sExpSum_T[10:0]; // @[MulAddRecFN.scala:158:53]
wire [10:0] _io_toPostMul_sExpSum_T_2 = _io_toPostMul_sExpSum_T_1; // @[MulAddRecFN.scala:158:53]
wire [10:0] _io_toPostMul_sExpSum_T_3 = _io_toPostMul_sExpSum_T_2; // @[MulAddRecFN.scala:158:{12,53}]
assign io_toPostMul_sExpSum_0 = _io_toPostMul_sExpSum_T_3[9:0]; // @[MulAddRecFN.scala:71:7, :157:28, :158:12]
assign _io_toPostMul_CDom_CAlignDist_T = CAlignDist[4:0]; // @[MulAddRecFN.scala:112:12, :161:47]
assign io_toPostMul_CDom_CAlignDist_0 = _io_toPostMul_CDom_CAlignDist_T; // @[MulAddRecFN.scala:71:7, :161:47]
assign _io_toPostMul_highAlignedSigC_T = alignedSigC[74:49]; // @[MulAddRecFN.scala:132:12, :163:20]
assign io_toPostMul_highAlignedSigC_0 = _io_toPostMul_highAlignedSigC_T; // @[MulAddRecFN.scala:71:7, :163:20]
assign _io_toPostMul_bit0AlignedSigC_T = alignedSigC[0]; // @[MulAddRecFN.scala:132:12, :164:48]
assign io_toPostMul_bit0AlignedSigC_0 = _io_toPostMul_bit0AlignedSigC_T; // @[MulAddRecFN.scala:71:7, :164:48]
assign io_mulAddA = io_mulAddA_0; // @[MulAddRecFN.scala:71:7]
assign io_mulAddC = io_mulAddC_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_isSigNaNAny = io_toPostMul_isSigNaNAny_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_isNaNAOrB = io_toPostMul_isNaNAOrB_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_isInfA = io_toPostMul_isInfA_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_isZeroA = io_toPostMul_isZeroA_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_signProd = io_toPostMul_signProd_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_sExpSum = io_toPostMul_sExpSum_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_doSubMags = io_toPostMul_doSubMags_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_CDom_CAlignDist = io_toPostMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_highAlignedSigC = io_toPostMul_highAlignedSigC_0; // @[MulAddRecFN.scala:71:7]
assign io_toPostMul_bit0AlignedSigC = io_toPostMul_bit0AlignedSigC_0; // @[MulAddRecFN.scala:71:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File PE.scala:
// See README.md for license details.
package gemmini
import chisel3._
import chisel3.util._
class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle {
val dataflow = UInt(1.W) // TODO make this an Enum
val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)?
val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats
}
class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module {
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(inputType)
val in_c = Input(cType)
val out_d = Output(dType)
})
io.out_d := io.in_c.mac(io.in_a, io.in_b)
}
// TODO update documentation
/**
* A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh.
* @param width Data width of operands
*/
class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int)
(implicit ev: Arithmetic[T]) extends Module { // Debugging variables
import ev._
val io = IO(new Bundle {
val in_a = Input(inputType)
val in_b = Input(outputType)
val in_d = Input(outputType)
val out_a = Output(inputType)
val out_b = Output(outputType)
val out_c = Output(outputType)
val in_control = Input(new PEControl(accType))
val out_control = Output(new PEControl(accType))
val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W))
val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W))
val in_last = Input(Bool())
val out_last = Output(Bool())
val in_valid = Input(Bool())
val out_valid = Output(Bool())
val bad_dataflow = Output(Bool())
})
val cType = if (df == Dataflow.WS) inputType else accType
// When creating PEs that support multiple dataflows, the
// elaboration/synthesis tools often fail to consolidate and de-duplicate
// MAC units. To force mac circuitry to be re-used, we create a "mac_unit"
// module here which just performs a single MAC operation
val mac_unit = Module(new MacUnit(inputType,
if (df == Dataflow.WS) outputType else accType, outputType))
val a = io.in_a
val b = io.in_b
val d = io.in_d
val c1 = Reg(cType)
val c2 = Reg(cType)
val dataflow = io.in_control.dataflow
val prop = io.in_control.propagate
val shift = io.in_control.shift
val id = io.in_id
val last = io.in_last
val valid = io.in_valid
io.out_a := a
io.out_control.dataflow := dataflow
io.out_control.propagate := prop
io.out_control.shift := shift
io.out_id := id
io.out_last := last
io.out_valid := valid
mac_unit.io.in_a := a
val last_s = RegEnable(prop, valid)
val flip = last_s =/= prop
val shift_offset = Mux(flip, shift, 0.U)
// Which dataflow are we using?
val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W)
val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W)
// Is c1 being computed on, or propagated forward (in the output-stationary dataflow)?
val COMPUTE = 0.U(1.W)
val PROPAGATE = 1.U(1.W)
io.bad_dataflow := false.B
when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
c2 := mac_unit.io.out_d
c1 := d.withWidthOf(cType)
}.otherwise {
io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType)
io.out_b := b
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c1
c1 := mac_unit.io.out_d
c2 := d.withWidthOf(cType)
}
}.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) {
when(prop === PROPAGATE) {
io.out_c := c1
mac_unit.io.in_b := c2.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c1 := d
}.otherwise {
io.out_c := c2
mac_unit.io.in_b := c1.asTypeOf(inputType)
mac_unit.io.in_c := b
io.out_b := mac_unit.io.out_d
c2 := d
}
}.otherwise {
io.bad_dataflow := true.B
//assert(false.B, "unknown dataflow")
io.out_c := DontCare
io.out_b := DontCare
mac_unit.io.in_b := b.asTypeOf(inputType)
mac_unit.io.in_c := c2
}
when (!valid) {
c1 := c1
c2 := c2
mac_unit.io.in_b := DontCare
mac_unit.io.in_c := DontCare
}
}
File Arithmetic.scala:
// A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own:
// implicit MyTypeArithmetic extends Arithmetic[MyType] { ... }
package gemmini
import chisel3._
import chisel3.util._
import hardfloat._
// Bundles that represent the raw bits of custom datatypes
case class Float(expWidth: Int, sigWidth: Int) extends Bundle {
val bits = UInt((expWidth + sigWidth).W)
val bias: Int = (1 << (expWidth-1)) - 1
}
case class DummySInt(w: Int) extends Bundle {
val bits = UInt(w.W)
def dontCare: DummySInt = {
val o = Wire(new DummySInt(w))
o.bits := 0.U
o
}
}
// The Arithmetic typeclass which implements various arithmetic operations on custom datatypes
abstract class Arithmetic[T <: Data] {
implicit def cast(t: T): ArithmeticOps[T]
}
abstract class ArithmeticOps[T <: Data](self: T) {
def *(t: T): T
def mac(m1: T, m2: T): T // Returns (m1 * m2 + self)
def +(t: T): T
def -(t: T): T
def >>(u: UInt): T // This is a rounding shift! Rounds away from 0
def >(t: T): Bool
def identity: T
def withWidthOf(t: T): T
def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates
def relu: T
def zero: T
def minimum: T
// Optional parameters, which only need to be defined if you want to enable various optimizations for transformers
def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None
def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None
def mult_with_reciprocal[U <: Data](reciprocal: U) = self
}
object Arithmetic {
implicit object UIntArithmetic extends Arithmetic[UInt] {
override implicit def cast(self: UInt) = new ArithmeticOps(self) {
override def *(t: UInt) = self * t
override def mac(m1: UInt, m2: UInt) = m1 * m2 + self
override def +(t: UInt) = self + t
override def -(t: UInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = point_five & (zeros | ones_digit)
(self >> u).asUInt + r
}
override def >(t: UInt): Bool = self > t
override def withWidthOf(t: UInt) = self.asTypeOf(t)
override def clippedToWidthOf(t: UInt) = {
val sat = ((1 << (t.getWidth-1))-1).U
Mux(self > sat, sat, self)(t.getWidth-1, 0)
}
override def relu: UInt = self
override def zero: UInt = 0.U
override def identity: UInt = 1.U
override def minimum: UInt = 0.U
}
}
implicit object SIntArithmetic extends Arithmetic[SInt] {
override implicit def cast(self: SInt) = new ArithmeticOps(self) {
override def *(t: SInt) = self * t
override def mac(m1: SInt, m2: SInt) = m1 * m2 + self
override def +(t: SInt) = self + t
override def -(t: SInt) = self - t
override def >>(u: UInt) = {
// The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm
// TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here?
val point_five = Mux(u === 0.U, 0.U, self(u - 1.U))
val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U
val ones_digit = self(u)
val r = (point_five & (zeros | ones_digit)).asBool
(self >> u).asSInt + Mux(r, 1.S, 0.S)
}
override def >(t: SInt): Bool = self > t
override def withWidthOf(t: SInt) = {
if (self.getWidth >= t.getWidth)
self(t.getWidth-1, 0).asSInt
else {
val sign_bits = t.getWidth - self.getWidth
val sign = self(self.getWidth-1)
Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t)
}
}
override def clippedToWidthOf(t: SInt): SInt = {
val maxsat = ((1 << (t.getWidth-1))-1).S
val minsat = (-(1 << (t.getWidth-1))).S
MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt
}
override def relu: SInt = Mux(self >= 0.S, self, 0.S)
override def zero: SInt = 0.S
override def identity: SInt = 1.S
override def minimum: SInt = (-(1 << (self.getWidth-1))).S
override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(denom_t.cloneType))
val output = Wire(Decoupled(self.cloneType))
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def sin_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def uin_to_float(x: UInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := x
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = sin_to_float(self)
val denom_rec = uin_to_float(input.bits)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := self_rec
divider.io.b := denom_rec
divider.io.roundingMode := consts.round_minMag
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := float_to_in(divider.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = {
// TODO this uses a floating point divider, but we should use an integer divider instead
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(self.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
val expWidth = log2Up(self.getWidth) + 1
val sigWidth = self.getWidth
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
// Instantiate the hardloat sqrt
val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0))
input.ready := sqrter.io.inReady
sqrter.io.inValid := input.valid
sqrter.io.sqrtOp := true.B
sqrter.io.a := self_rec
sqrter.io.b := DontCare
sqrter.io.roundingMode := consts.round_minMag
sqrter.io.detectTininess := consts.tininess_afterRounding
output.valid := sqrter.io.outValid_sqrt
output.bits := float_to_in(sqrter.io.out)
assert(!output.valid || output.ready)
Some((input, output))
}
override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match {
case Float(expWidth, sigWidth) =>
val input = Wire(Decoupled(UInt(0.W)))
val output = Wire(Decoupled(u.cloneType))
input.bits := DontCare
// We translate our integer to floating-point form so that we can use the hardfloat divider
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
val self_rec = in_to_float(self)
val one_rec = in_to_float(1.S)
// Instantiate the hardloat divider
val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options))
input.ready := divider.io.inReady
divider.io.inValid := input.valid
divider.io.sqrtOp := false.B
divider.io.a := one_rec
divider.io.b := self_rec
divider.io.roundingMode := consts.round_near_even
divider.io.detectTininess := consts.tininess_afterRounding
output.valid := divider.io.outValid_div
output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u)
assert(!output.valid || output.ready)
Some((input, output))
case _ => None
}
override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match {
case recip @ Float(expWidth, sigWidth) =>
def in_to_float(x: SInt) = {
val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth))
in_to_rec_fn.io.signedIn := true.B
in_to_rec_fn.io.in := x.asUInt
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
in_to_rec_fn.io.out
}
def float_to_in(x: UInt) = {
val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth))
rec_fn_to_in.io.signedOut := true.B
rec_fn_to_in.io.in := x
rec_fn_to_in.io.roundingMode := consts.round_minMag
rec_fn_to_in.io.out.asSInt
}
val self_rec = in_to_float(self)
val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits)
// Instantiate the hardloat divider
val muladder = Module(new MulRecFN(expWidth, sigWidth))
muladder.io.roundingMode := consts.round_near_even
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := reciprocal_rec
float_to_in(muladder.io.out)
case _ => self
}
}
}
implicit object FloatArithmetic extends Arithmetic[Float] {
// TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array
override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) {
override def *(t: Float): Float = {
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := t_rec_resized
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def mac(m1: Float, m2: Float): Float = {
// Recode all operands
val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits)
val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize m1 to self's width
val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth))
m1_resizer.io.in := m1_rec
m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m1_resizer.io.detectTininess := consts.tininess_afterRounding
val m1_rec_resized = m1_resizer.io.out
// Resize m2 to self's width
val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth))
m2_resizer.io.in := m2_rec
m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
m2_resizer.io.detectTininess := consts.tininess_afterRounding
val m2_rec_resized = m2_resizer.io.out
// Perform multiply-add
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := m1_rec_resized
muladder.io.b := m2_rec_resized
muladder.io.c := self_rec
// Convert result to standard format // TODO remove these intermediate recodings
val out = Wire(Float(self.expWidth, self.sigWidth))
out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
out
}
override def +(t: Float): Float = {
require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Generate 1 as a float
val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth))
in_to_rec_fn.io.signedIn := false.B
in_to_rec_fn.io.in := 1.U
in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding
val one_rec = in_to_rec_fn.io.out
// Resize t
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
// Perform addition
val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth))
muladder.io.op := 0.U
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := t_rec_resized
muladder.io.b := one_rec
muladder.io.c := self_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def -(t: Float): Float = {
val t_sgn = t.bits(t.getWidth-1)
val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t)
self + neg_t
}
override def >>(u: UInt): Float = {
// Recode self
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Get 2^(-u) as a recoded float
val shift_exp = Wire(UInt(self.expWidth.W))
shift_exp := self.bias.U - u
val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W))
val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn)
assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported")
// Multiply self and 2^(-u)
val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth))
muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
muladder.io.detectTininess := consts.tininess_afterRounding
muladder.io.a := self_rec
muladder.io.b := shift_rec
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out)
result
}
override def >(t: Float): Bool = {
// Recode all operands
val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits)
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
// Resize t to self's width
val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth))
t_resizer.io.in := t_rec
t_resizer.io.roundingMode := consts.round_near_even
t_resizer.io.detectTininess := consts.tininess_afterRounding
val t_rec_resized = t_resizer.io.out
val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth))
comparator.io.a := self_rec
comparator.io.b := t_rec_resized
comparator.io.signaling := false.B
comparator.io.gt
}
override def withWidthOf(t: Float): Float = {
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def clippedToWidthOf(t: Float): Float = {
// TODO check for overflow. Right now, we just assume that overflow doesn't happen
val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits)
val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth))
resizer.io.in := self_rec
resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag
resizer.io.detectTininess := consts.tininess_afterRounding
val result = Wire(Float(t.expWidth, t.sigWidth))
result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out)
result
}
override def relu: Float = {
val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits)
val result = Wire(Float(self.expWidth, self.sigWidth))
result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits)
result
}
override def zero: Float = 0.U.asTypeOf(self)
override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self)
}
}
implicit object DummySIntArithmetic extends Arithmetic[DummySInt] {
override implicit def cast(self: DummySInt) = new ArithmeticOps(self) {
override def *(t: DummySInt) = self.dontCare
override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare
override def +(t: DummySInt) = self.dontCare
override def -(t: DummySInt) = self.dontCare
override def >>(t: UInt) = self.dontCare
override def >(t: DummySInt): Bool = false.B
override def identity = self.dontCare
override def withWidthOf(t: DummySInt) = self.dontCare
override def clippedToWidthOf(t: DummySInt) = self.dontCare
override def relu = self.dontCare
override def zero = self.dontCare
override def minimum: DummySInt = self.dontCare
}
}
}
| module PE_504( // @[PE.scala:31:7]
input clock, // @[PE.scala:31:7]
input reset, // @[PE.scala:31:7]
input [7:0] io_in_a, // @[PE.scala:35:14]
input [19:0] io_in_b, // @[PE.scala:35:14]
input [19:0] io_in_d, // @[PE.scala:35:14]
output [7:0] io_out_a, // @[PE.scala:35:14]
output [19:0] io_out_b, // @[PE.scala:35:14]
output [19:0] io_out_c, // @[PE.scala:35:14]
input io_in_control_dataflow, // @[PE.scala:35:14]
input io_in_control_propagate, // @[PE.scala:35:14]
input [4:0] io_in_control_shift, // @[PE.scala:35:14]
output io_out_control_dataflow, // @[PE.scala:35:14]
output io_out_control_propagate, // @[PE.scala:35:14]
output [4:0] io_out_control_shift, // @[PE.scala:35:14]
input [2:0] io_in_id, // @[PE.scala:35:14]
output [2:0] io_out_id, // @[PE.scala:35:14]
input io_in_last, // @[PE.scala:35:14]
output io_out_last, // @[PE.scala:35:14]
input io_in_valid, // @[PE.scala:35:14]
output io_out_valid // @[PE.scala:35:14]
);
wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7]
wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7]
wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7]
wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7]
wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7]
wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7]
wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7]
wire io_in_last_0 = io_in_last; // @[PE.scala:31:7]
wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7]
wire io_bad_dataflow = 1'h0; // @[PE.scala:31:7]
wire _io_out_c_T_5 = 1'h0; // @[Arithmetic.scala:125:33]
wire _io_out_c_T_6 = 1'h0; // @[Arithmetic.scala:125:60]
wire _io_out_c_T_16 = 1'h0; // @[Arithmetic.scala:125:33]
wire _io_out_c_T_17 = 1'h0; // @[Arithmetic.scala:125:60]
wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7]
wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37]
wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37]
wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35]
wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7]
wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7]
wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7]
wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7]
wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7]
wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7]
wire [19:0] io_out_b_0; // @[PE.scala:31:7]
wire [19:0] io_out_c_0; // @[PE.scala:31:7]
reg [7:0] c1; // @[PE.scala:70:15]
wire [7:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15]
wire [7:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38]
reg [7:0] c2; // @[PE.scala:71:15]
wire [7:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15]
wire [7:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38]
reg last_s; // @[PE.scala:89:25]
wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21]
wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25]
wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25]
wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32]
wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32]
assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32]
wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25]
wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53]
assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53]
wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66]
assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66]
wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53]
wire [7:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15]
wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}]
wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25]
wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27]
wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27]
assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27]
wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_7 = {24'h0, _io_out_c_zeros_T_6[7:0] & _io_out_c_zeros_T_1}; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}]
wire [7:0] _GEN_2 = {3'h0, shift_offset}; // @[PE.scala:91:25]
wire [7:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15]
wire [7:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30]
wire [7:0] _io_out_c_T; // @[Arithmetic.scala:107:15]
assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33]
wire [8:0] _io_out_c_T_2 = {_io_out_c_T[7], _io_out_c_T} + {{7{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}]
wire [7:0] _io_out_c_T_3 = _io_out_c_T_2[7:0]; // @[Arithmetic.scala:107:28]
wire [7:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28]
wire [19:0] _io_out_c_T_7 = {{12{_io_out_c_T_4[7]}}, _io_out_c_T_4}; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_8 = _io_out_c_T_7; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_9 = _io_out_c_T_8; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37]
wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37]
wire [7:0] _c1_T = io_in_d_0[7:0]; // @[PE.scala:31:7]
wire [7:0] _c2_T = io_in_d_0[7:0]; // @[PE.scala:31:7]
wire [7:0] _c1_T_1 = _c1_T; // @[Arithmetic.scala:114:{15,33}]
wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53]
wire [7:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15]
wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50]
wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}]
wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66]
wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}]
wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}]
wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81]
wire [31:0] _io_out_c_zeros_T_16 = {24'h0, _io_out_c_zeros_T_15[7:0] & _io_out_c_zeros_T_10}; // @[Arithmetic.scala:102:{45,52,81}]
wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}]
wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}]
wire [7:0] _GEN_4 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15]
wire [7:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30]
assign _io_out_c_ones_digit_T_1 = _GEN_4; // @[Arithmetic.scala:103:30]
wire [7:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15]
assign _io_out_c_T_11 = _GEN_4; // @[Arithmetic.scala:103:30, :107:15]
wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30]
wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38]
wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}]
wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}]
wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33]
wire [8:0] _io_out_c_T_13 = {_io_out_c_T_11[7], _io_out_c_T_11} + {{7{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}]
wire [7:0] _io_out_c_T_14 = _io_out_c_T_13[7:0]; // @[Arithmetic.scala:107:28]
wire [7:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28]
wire [19:0] _io_out_c_T_18 = {{12{_io_out_c_T_15[7]}}, _io_out_c_T_15}; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_19 = _io_out_c_T_18; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_20 = _io_out_c_T_19; // @[Mux.scala:126:16]
wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}]
wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37]
wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37]
wire [7:0] _c2_T_1 = _c2_T; // @[Arithmetic.scala:114:{15,33}]
wire [7:0] _mac_unit_io_in_b_T_5; // @[PE.scala:121:38]
assign _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38]
wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5; // @[PE.scala:121:38]
assign io_out_c_0 = io_in_control_propagate_0 ? {{12{c1[7]}}, c1} : {{12{c2[7]}}, c2}; // @[PE.scala:31:7, :70:15, :71:15, :119:30, :120:16, :126:16]
wire [7:0] _mac_unit_io_in_b_T_7; // @[PE.scala:127:38]
assign _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38]
wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7; // @[PE.scala:127:38]
wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35]
wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35]
always @(posedge clock) begin // @[PE.scala:31:7]
if (io_in_valid_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :102:95, :141:17, :142:8]
c1 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :70:15]
if (~(~io_in_valid_0 | io_in_control_propagate_0)) // @[PE.scala:31:7, :71:15, :102:95, :119:30, :130:10, :141:{9,17}, :143:8]
c2 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :71:15]
if (io_in_valid_0) // @[PE.scala:31:7]
last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25]
always @(posedge)
MacUnit_248 mac_unit ( // @[PE.scala:64:24]
.clock (clock),
.reset (reset),
.io_in_a (io_in_a_0), // @[PE.scala:31:7]
.io_in_b (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3), // @[PE.scala:31:7, :119:30, :121:{24,38}, :127:{24,38}]
.io_in_c (io_in_b_0), // @[PE.scala:31:7]
.io_out_d (io_out_b_0)
); // @[PE.scala:64:24]
assign io_out_a = io_out_a_0; // @[PE.scala:31:7]
assign io_out_b = io_out_b_0; // @[PE.scala:31:7]
assign io_out_c = io_out_c_0; // @[PE.scala:31:7]
assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7]
assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7]
assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7]
assign io_out_id = io_out_id_0; // @[PE.scala:31:7]
assign io_out_last = io_out_last_0; // @[PE.scala:31:7]
assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File SinkX.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
class SinkXRequest(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val address = UInt(params.inner.bundle.addressBits.W)
}
class SinkX(params: InclusiveCacheParameters) extends Module
{
val io = IO(new Bundle {
val req = Decoupled(new FullRequest(params))
val x = Flipped(Decoupled(new SinkXRequest(params)))
})
val x = Queue(io.x, 1)
val (tag, set, offset) = params.parseAddress(x.bits.address)
x.ready := io.req.ready
io.req.valid := x.valid
params.ccover(x.valid && !x.ready, "SINKX_STALL", "Backpressure when accepting a control message")
io.req.bits.prio := VecInit(1.U(3.W).asBools) // same prio as A
io.req.bits.control:= true.B
io.req.bits.opcode := 0.U
io.req.bits.param := 0.U
io.req.bits.size := params.offsetBits.U
// The source does not matter, because a flush command never allocates a way.
// However, it must be a legal source, otherwise assertions might spuriously fire.
io.req.bits.source := params.inner.client.clients.map(_.sourceId.start).min.U
io.req.bits.offset := 0.U
io.req.bits.set := set
io.req.bits.tag := tag
io.req.bits.put := 0.U
}
File Parameters.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util._
import freechips.rocketchip.util.property.cover
import scala.math.{min,max}
case class CacheParameters(
level: Int,
ways: Int,
sets: Int,
blockBytes: Int,
beatBytes: Int, // inner
hintsSkipProbe: Boolean)
{
require (ways > 0)
require (sets > 0)
require (blockBytes > 0 && isPow2(blockBytes))
require (beatBytes > 0 && isPow2(beatBytes))
require (blockBytes >= beatBytes)
val blocks = ways * sets
val sizeBytes = blocks * blockBytes
val blockBeats = blockBytes/beatBytes
}
case class InclusiveCachePortParameters(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)
{
def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new TLBuffer(a, b, c, d, e))
}
object InclusiveCachePortParameters
{
val none = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.none)
val full = InclusiveCachePortParameters(
a = BufferParams.default,
b = BufferParams.default,
c = BufferParams.default,
d = BufferParams.default,
e = BufferParams.default)
// This removes feed-through paths from C=>A and A=>C
val fullC = InclusiveCachePortParameters(
a = BufferParams.none,
b = BufferParams.none,
c = BufferParams.default,
d = BufferParams.none,
e = BufferParams.none)
val flowAD = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.flow,
e = BufferParams.none)
val flowAE = InclusiveCachePortParameters(
a = BufferParams.flow,
b = BufferParams.none,
c = BufferParams.none,
d = BufferParams.none,
e = BufferParams.flow)
// For innerBuf:
// SinkA: no restrictions, flows into scheduler+putbuffer
// SourceB: no restrictions, flows out of scheduler
// sinkC: no restrictions, flows into scheduler+putbuffer & buffered to bankedStore
// SourceD: no restrictions, flows out of bankedStore/regout
// SinkE: no restrictions, flows into scheduler
//
// ... so while none is possible, you probably want at least flowAC to cut ready
// from the scheduler delay and flowD to ease SourceD back-pressure
// For outerBufer:
// SourceA: must not be pipe, flows out of scheduler
// SinkB: no restrictions, flows into scheduler
// SourceC: pipe is useless, flows out of bankedStore/regout, parameter depth ignored
// SinkD: no restrictions, flows into scheduler & bankedStore
// SourceE: must not be pipe, flows out of scheduler
//
// ... AE take the channel ready into the scheduler, so you need at least flowAE
}
case class InclusiveCacheMicroParameters(
writeBytes: Int, // backing store update granularity
memCycles: Int = 40, // # of L2 clock cycles for a memory round-trip (50ns @ 800MHz)
portFactor: Int = 4, // numSubBanks = (widest TL port * portFactor) / writeBytes
dirReg: Boolean = false,
innerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.fullC, // or none
outerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.full) // or flowAE
{
require (writeBytes > 0 && isPow2(writeBytes))
require (memCycles > 0)
require (portFactor >= 2) // for inner RMW and concurrent outer Relase + Grant
}
case class InclusiveCacheControlParameters(
address: BigInt,
beatBytes: Int,
bankedControl: Boolean)
case class InclusiveCacheParameters(
cache: CacheParameters,
micro: InclusiveCacheMicroParameters,
control: Boolean,
inner: TLEdgeIn,
outer: TLEdgeOut)(implicit val p: Parameters)
{
require (cache.ways > 1)
require (cache.sets > 1 && isPow2(cache.sets))
require (micro.writeBytes <= inner.manager.beatBytes)
require (micro.writeBytes <= outer.manager.beatBytes)
require (inner.manager.beatBytes <= cache.blockBytes)
require (outer.manager.beatBytes <= cache.blockBytes)
// Require that all cached address ranges have contiguous blocks
outer.manager.managers.flatMap(_.address).foreach { a =>
require (a.alignment >= cache.blockBytes)
}
// If we are the first level cache, we do not need to support inner-BCE
val firstLevel = !inner.client.clients.exists(_.supports.probe)
// If we are the last level cache, we do not need to support outer-B
val lastLevel = !outer.manager.managers.exists(_.regionType > RegionType.UNCACHED)
require (lastLevel)
// Provision enough resources to achieve full throughput with missing single-beat accesses
val mshrs = InclusiveCacheParameters.all_mshrs(cache, micro)
val secondary = max(mshrs, micro.memCycles - mshrs)
val putLists = micro.memCycles // allow every request to be single beat
val putBeats = max(2*cache.blockBeats, micro.memCycles)
val relLists = 2
val relBeats = relLists*cache.blockBeats
val flatAddresses = AddressSet.unify(outer.manager.managers.flatMap(_.address))
val pickMask = AddressDecoder(flatAddresses.map(Seq(_)), flatAddresses.map(_.mask).reduce(_|_))
def bitOffsets(x: BigInt, offset: Int = 0, tail: List[Int] = List.empty[Int]): List[Int] =
if (x == 0) tail.reverse else bitOffsets(x >> 1, offset + 1, if ((x & 1) == 1) offset :: tail else tail)
val addressMapping = bitOffsets(pickMask)
val addressBits = addressMapping.size
// println(s"addresses: ${flatAddresses} => ${pickMask} => ${addressBits}")
val allClients = inner.client.clients.size
val clientBitsRaw = inner.client.clients.filter(_.supports.probe).size
val clientBits = max(1, clientBitsRaw)
val stateBits = 2
val wayBits = log2Ceil(cache.ways)
val setBits = log2Ceil(cache.sets)
val offsetBits = log2Ceil(cache.blockBytes)
val tagBits = addressBits - setBits - offsetBits
val putBits = log2Ceil(max(putLists, relLists))
require (tagBits > 0)
require (offsetBits > 0)
val innerBeatBits = (offsetBits - log2Ceil(inner.manager.beatBytes)) max 1
val outerBeatBits = (offsetBits - log2Ceil(outer.manager.beatBytes)) max 1
val innerMaskBits = inner.manager.beatBytes / micro.writeBytes
val outerMaskBits = outer.manager.beatBytes / micro.writeBytes
def clientBit(source: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Cat(inner.client.clients.filter(_.supports.probe).map(_.sourceId.contains(source)).reverse)
}
}
def clientSource(bit: UInt): UInt = {
if (clientBitsRaw == 0) {
0.U
} else {
Mux1H(bit, inner.client.clients.filter(_.supports.probe).map(c => c.sourceId.start.U))
}
}
def parseAddress(x: UInt): (UInt, UInt, UInt) = {
val offset = Cat(addressMapping.map(o => x(o,o)).reverse)
val set = offset >> offsetBits
val tag = set >> setBits
(tag(tagBits-1, 0), set(setBits-1, 0), offset(offsetBits-1, 0))
}
def widen(x: UInt, width: Int): UInt = {
val y = x | 0.U(width.W)
assert (y >> width === 0.U)
y(width-1, 0)
}
def expandAddress(tag: UInt, set: UInt, offset: UInt): UInt = {
val base = Cat(widen(tag, tagBits), widen(set, setBits), widen(offset, offsetBits))
val bits = Array.fill(outer.bundle.addressBits) { 0.U(1.W) }
addressMapping.zipWithIndex.foreach { case (a, i) => bits(a) = base(i,i) }
Cat(bits.reverse)
}
def restoreAddress(expanded: UInt): UInt = {
val missingBits = flatAddresses
.map { a => (a.widen(pickMask).base, a.widen(~pickMask)) } // key is the bits to restore on match
.groupBy(_._1)
.view
.mapValues(_.map(_._2))
val muxMask = AddressDecoder(missingBits.values.toList)
val mux = missingBits.toList.map { case (bits, addrs) =>
val widen = addrs.map(_.widen(~muxMask))
val matches = AddressSet
.unify(widen.distinct)
.map(_.contains(expanded))
.reduce(_ || _)
(matches, bits.U)
}
expanded | Mux1H(mux)
}
def dirReg[T <: Data](x: T, en: Bool = true.B): T = {
if (micro.dirReg) RegEnable(x, en) else x
}
def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) =
cover(cond, "CCACHE_L" + cache.level + "_" + label, "MemorySystem;;" + desc)
}
object MetaData
{
val stateBits = 2
def INVALID: UInt = 0.U(stateBits.W) // way is empty
def BRANCH: UInt = 1.U(stateBits.W) // outer slave cache is trunk
def TRUNK: UInt = 2.U(stateBits.W) // unique inner master cache is trunk
def TIP: UInt = 3.U(stateBits.W) // we are trunk, inner masters are branch
// Does a request need trunk?
def needT(opcode: UInt, param: UInt): Bool = {
!opcode(2) ||
(opcode === TLMessages.Hint && param === TLHints.PREFETCH_WRITE) ||
((opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm) && param =/= TLPermissions.NtoB)
}
// Does a request prove the client need not be probed?
def skipProbeN(opcode: UInt, hintsSkipProbe: Boolean): Bool = {
// Acquire(toB) and Get => is N, so no probe
// Acquire(*toT) => is N or B, but need T, so no probe
// Hint => could be anything, so probe IS needed, if hintsSkipProbe is enabled, skip probe the same client
// Put* => is N or B, so probe IS needed
opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm || opcode === TLMessages.Get || (opcode === TLMessages.Hint && hintsSkipProbe.B)
}
def isToN(param: UInt): Bool = {
param === TLPermissions.TtoN || param === TLPermissions.BtoN || param === TLPermissions.NtoN
}
def isToB(param: UInt): Bool = {
param === TLPermissions.TtoB || param === TLPermissions.BtoB
}
}
object InclusiveCacheParameters
{
val lfsrBits = 10
val L2ControlAddress = 0x2010000
val L2ControlSize = 0x1000
def out_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = {
// We need 2-3 normal MSHRs to cover the Directory latency
// To fully exploit memory bandwidth-delay-product, we need memCyles/blockBeats MSHRs
max(if (micro.dirReg) 3 else 2, (micro.memCycles + cache.blockBeats - 1) / cache.blockBeats)
}
def all_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int =
// We need a dedicated MSHR for B+C each
2 + out_mshrs(cache, micro)
}
class InclusiveCacheBundle(params: InclusiveCacheParameters) extends Bundle
| module SinkX( // @[SinkX.scala:28:7]
input clock, // @[SinkX.scala:28:7]
input reset, // @[SinkX.scala:28:7]
input io_req_ready, // @[SinkX.scala:30:14]
output io_req_valid, // @[SinkX.scala:30:14]
output [12:0] io_req_bits_tag, // @[SinkX.scala:30:14]
output [9:0] io_req_bits_set, // @[SinkX.scala:30:14]
output io_x_ready, // @[SinkX.scala:30:14]
input io_x_valid, // @[SinkX.scala:30:14]
input [31:0] io_x_bits_address // @[SinkX.scala:30:14]
);
wire [31:0] _x_q_io_deq_bits_address; // @[Decoupled.scala:362:21]
wire io_req_ready_0 = io_req_ready; // @[SinkX.scala:28:7]
wire io_x_valid_0 = io_x_valid; // @[SinkX.scala:28:7]
wire [31:0] io_x_bits_address_0 = io_x_bits_address; // @[SinkX.scala:28:7]
wire [5:0] io_req_bits_offset = 6'h0; // @[SinkX.scala:28:7]
wire [5:0] io_req_bits_put = 6'h0; // @[SinkX.scala:28:7]
wire [8:0] io_req_bits_source = 9'h0; // @[SinkX.scala:28:7]
wire [2:0] io_req_bits_size = 3'h6; // @[SinkX.scala:28:7]
wire [2:0] io_req_bits_opcode = 3'h0; // @[SinkX.scala:28:7]
wire [2:0] io_req_bits_param = 3'h0; // @[SinkX.scala:28:7]
wire io_req_bits_prio_1 = 1'h0; // @[SinkX.scala:28:7]
wire io_req_bits_prio_2 = 1'h0; // @[SinkX.scala:28:7]
wire io_req_bits_prio_0 = 1'h1; // @[SinkX.scala:28:7]
wire io_req_bits_control = 1'h1; // @[SinkX.scala:28:7]
wire [12:0] tag_1; // @[Parameters.scala:217:9]
wire [9:0] set_1; // @[Parameters.scala:217:28]
wire [12:0] io_req_bits_tag_0; // @[SinkX.scala:28:7]
wire [9:0] io_req_bits_set_0; // @[SinkX.scala:28:7]
wire io_req_valid_0; // @[SinkX.scala:28:7]
wire io_x_ready_0; // @[SinkX.scala:28:7]
wire _offset_T = _x_q_io_deq_bits_address[0]; // @[Decoupled.scala:362:21]
wire _offset_T_1 = _x_q_io_deq_bits_address[1]; // @[Decoupled.scala:362:21]
wire _offset_T_2 = _x_q_io_deq_bits_address[2]; // @[Decoupled.scala:362:21]
wire _offset_T_3 = _x_q_io_deq_bits_address[3]; // @[Decoupled.scala:362:21]
wire _offset_T_4 = _x_q_io_deq_bits_address[4]; // @[Decoupled.scala:362:21]
wire _offset_T_5 = _x_q_io_deq_bits_address[5]; // @[Decoupled.scala:362:21]
wire _offset_T_6 = _x_q_io_deq_bits_address[6]; // @[Decoupled.scala:362:21]
wire _offset_T_7 = _x_q_io_deq_bits_address[7]; // @[Decoupled.scala:362:21]
wire _offset_T_8 = _x_q_io_deq_bits_address[8]; // @[Decoupled.scala:362:21]
wire _offset_T_9 = _x_q_io_deq_bits_address[9]; // @[Decoupled.scala:362:21]
wire _offset_T_10 = _x_q_io_deq_bits_address[10]; // @[Decoupled.scala:362:21]
wire _offset_T_11 = _x_q_io_deq_bits_address[11]; // @[Decoupled.scala:362:21]
wire _offset_T_12 = _x_q_io_deq_bits_address[12]; // @[Decoupled.scala:362:21]
wire _offset_T_13 = _x_q_io_deq_bits_address[13]; // @[Decoupled.scala:362:21]
wire _offset_T_14 = _x_q_io_deq_bits_address[14]; // @[Decoupled.scala:362:21]
wire _offset_T_15 = _x_q_io_deq_bits_address[15]; // @[Decoupled.scala:362:21]
wire _offset_T_16 = _x_q_io_deq_bits_address[16]; // @[Decoupled.scala:362:21]
wire _offset_T_17 = _x_q_io_deq_bits_address[17]; // @[Decoupled.scala:362:21]
wire _offset_T_18 = _x_q_io_deq_bits_address[18]; // @[Decoupled.scala:362:21]
wire _offset_T_19 = _x_q_io_deq_bits_address[19]; // @[Decoupled.scala:362:21]
wire _offset_T_20 = _x_q_io_deq_bits_address[20]; // @[Decoupled.scala:362:21]
wire _offset_T_21 = _x_q_io_deq_bits_address[21]; // @[Decoupled.scala:362:21]
wire _offset_T_22 = _x_q_io_deq_bits_address[22]; // @[Decoupled.scala:362:21]
wire _offset_T_23 = _x_q_io_deq_bits_address[23]; // @[Decoupled.scala:362:21]
wire _offset_T_24 = _x_q_io_deq_bits_address[24]; // @[Decoupled.scala:362:21]
wire _offset_T_25 = _x_q_io_deq_bits_address[25]; // @[Decoupled.scala:362:21]
wire _offset_T_26 = _x_q_io_deq_bits_address[26]; // @[Decoupled.scala:362:21]
wire _offset_T_27 = _x_q_io_deq_bits_address[27]; // @[Decoupled.scala:362:21]
wire _offset_T_28 = _x_q_io_deq_bits_address[31]; // @[Decoupled.scala:362:21]
wire [1:0] offset_lo_lo_lo_hi = {_offset_T_2, _offset_T_1}; // @[Parameters.scala:214:{21,47}]
wire [2:0] offset_lo_lo_lo = {offset_lo_lo_lo_hi, _offset_T}; // @[Parameters.scala:214:{21,47}]
wire [1:0] offset_lo_lo_hi_lo = {_offset_T_4, _offset_T_3}; // @[Parameters.scala:214:{21,47}]
wire [1:0] offset_lo_lo_hi_hi = {_offset_T_6, _offset_T_5}; // @[Parameters.scala:214:{21,47}]
wire [3:0] offset_lo_lo_hi = {offset_lo_lo_hi_hi, offset_lo_lo_hi_lo}; // @[Parameters.scala:214:21]
wire [6:0] offset_lo_lo = {offset_lo_lo_hi, offset_lo_lo_lo}; // @[Parameters.scala:214:21]
wire [1:0] offset_lo_hi_lo_hi = {_offset_T_9, _offset_T_8}; // @[Parameters.scala:214:{21,47}]
wire [2:0] offset_lo_hi_lo = {offset_lo_hi_lo_hi, _offset_T_7}; // @[Parameters.scala:214:{21,47}]
wire [1:0] offset_lo_hi_hi_lo = {_offset_T_11, _offset_T_10}; // @[Parameters.scala:214:{21,47}]
wire [1:0] offset_lo_hi_hi_hi = {_offset_T_13, _offset_T_12}; // @[Parameters.scala:214:{21,47}]
wire [3:0] offset_lo_hi_hi = {offset_lo_hi_hi_hi, offset_lo_hi_hi_lo}; // @[Parameters.scala:214:21]
wire [6:0] offset_lo_hi = {offset_lo_hi_hi, offset_lo_hi_lo}; // @[Parameters.scala:214:21]
wire [13:0] offset_lo = {offset_lo_hi, offset_lo_lo}; // @[Parameters.scala:214:21]
wire [1:0] offset_hi_lo_lo_hi = {_offset_T_16, _offset_T_15}; // @[Parameters.scala:214:{21,47}]
wire [2:0] offset_hi_lo_lo = {offset_hi_lo_lo_hi, _offset_T_14}; // @[Parameters.scala:214:{21,47}]
wire [1:0] offset_hi_lo_hi_lo = {_offset_T_18, _offset_T_17}; // @[Parameters.scala:214:{21,47}]
wire [1:0] offset_hi_lo_hi_hi = {_offset_T_20, _offset_T_19}; // @[Parameters.scala:214:{21,47}]
wire [3:0] offset_hi_lo_hi = {offset_hi_lo_hi_hi, offset_hi_lo_hi_lo}; // @[Parameters.scala:214:21]
wire [6:0] offset_hi_lo = {offset_hi_lo_hi, offset_hi_lo_lo}; // @[Parameters.scala:214:21]
wire [1:0] offset_hi_hi_lo_lo = {_offset_T_22, _offset_T_21}; // @[Parameters.scala:214:{21,47}]
wire [1:0] offset_hi_hi_lo_hi = {_offset_T_24, _offset_T_23}; // @[Parameters.scala:214:{21,47}]
wire [3:0] offset_hi_hi_lo = {offset_hi_hi_lo_hi, offset_hi_hi_lo_lo}; // @[Parameters.scala:214:21]
wire [1:0] offset_hi_hi_hi_lo = {_offset_T_26, _offset_T_25}; // @[Parameters.scala:214:{21,47}]
wire [1:0] offset_hi_hi_hi_hi = {_offset_T_28, _offset_T_27}; // @[Parameters.scala:214:{21,47}]
wire [3:0] offset_hi_hi_hi = {offset_hi_hi_hi_hi, offset_hi_hi_hi_lo}; // @[Parameters.scala:214:21]
wire [7:0] offset_hi_hi = {offset_hi_hi_hi, offset_hi_hi_lo}; // @[Parameters.scala:214:21]
wire [14:0] offset_hi = {offset_hi_hi, offset_hi_lo}; // @[Parameters.scala:214:21]
wire [28:0] offset = {offset_hi, offset_lo}; // @[Parameters.scala:214:21]
wire [22:0] set = offset[28:6]; // @[Parameters.scala:214:21, :215:22]
wire [12:0] tag = set[22:10]; // @[Parameters.scala:215:22, :216:19]
assign tag_1 = tag; // @[Parameters.scala:216:19, :217:9]
assign io_req_bits_tag_0 = tag_1; // @[SinkX.scala:28:7]
assign set_1 = set[9:0]; // @[Parameters.scala:215:22, :217:28]
assign io_req_bits_set_0 = set_1; // @[SinkX.scala:28:7]
wire [5:0] offset_1 = offset[5:0]; // @[Parameters.scala:214:21, :217:50]
Queue1_SinkXRequest x_q ( // @[Decoupled.scala:362:21]
.clock (clock),
.reset (reset),
.io_enq_ready (io_x_ready_0),
.io_enq_valid (io_x_valid_0), // @[SinkX.scala:28:7]
.io_enq_bits_address (io_x_bits_address_0), // @[SinkX.scala:28:7]
.io_deq_ready (io_req_ready_0), // @[SinkX.scala:28:7]
.io_deq_valid (io_req_valid_0),
.io_deq_bits_address (_x_q_io_deq_bits_address)
); // @[Decoupled.scala:362:21]
assign io_req_valid = io_req_valid_0; // @[SinkX.scala:28:7]
assign io_req_bits_tag = io_req_bits_tag_0; // @[SinkX.scala:28:7]
assign io_req_bits_set = io_req_bits_set_0; // @[SinkX.scala:28:7]
assign io_x_ready = io_x_ready_0; // @[SinkX.scala:28:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File AddrGen.scala:
package saturn.mem
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util._
import freechips.rocketchip.tile._
import saturn.common._
class AddrGen(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams {
val io = IO(new Bundle {
val valid = Input(Bool())
val lsiq_id = Input(UInt(lsiqIdBits.W))
val done = Output(Bool())
val tag = Flipped(Decoupled(UInt(dmemTagBits.W)))
val op = Input(new VectorMemMacroOp)
val maskindex = new Bundle {
val index = Input(UInt(64.W))
val mask = Input(Bool())
val eew = Output(UInt(2.W))
val needs_mask = Output(Bool())
val needs_index = Output(Bool())
val valid = Input(Bool())
val ready = Output(Bool())
}
val req = Decoupled(new MemRequest(dLenB, dmemTagBits))
val out = Decoupled(new IFQEntry)
})
def min(a: UInt, b: UInt) = Mux(a > b, b, a)
def getElems(off: UInt, eew: UInt): UInt = {
(dLenB.U - off(dLenOffBits-1,0)) >> eew
}
val r_eaddr = Reg(UInt(paddrBits.W))
val r_saddr = Reg(UInt(paddrBits.W))
val r_eidx = Reg(UInt((1+log2Ceil(8*maxVLMax)).W))
val r_sidx = Reg(UInt(3.W))
val r_head = RegInit(true.B)
val fast_segmented = io.op.mop === mopUnit && io.op.segend === io.op.seg_nf && io.op.segstart === 0.U
val eidx = Mux(r_head,
io.op.vstart * (Mux(fast_segmented, io.op.seg_nf, 0.U) +& 1.U),
r_eidx)
val sidx = Mux(r_head, io.op.segstart , r_sidx)
val start_offset = (io.op.vstart * Mux(io.op.mop === mopStrided,
io.op.stride,
(io.op.seg_nf +& 1.U) << io.op.elem_size))(pgIdxBits-1,0)
val start_addr = io.op.base_offset + start_offset + (io.op.segstart << io.op.elem_size)
val index_offset = io.maskindex.index & eewBitMask(io.op.idx_size)
val eaddr = Mux(io.op.indexed,
io.op.base_offset + index_offset + Mux(r_head, io.op.segstart << io.op.elem_size, 0.U),
Mux(r_head, start_addr, r_eaddr))
val saddr = Mux(io.op.seg_nf =/= 0.U && !fast_segmented, Mux(r_head, eaddr, r_saddr), eaddr)
val mem_size = io.op.elem_size
val max_eidx = Mux(fast_segmented,
io.op.vl * (io.op.seg_nf +& 1.U),
io.op.vl)
val next_max_elems = getElems(saddr, mem_size)
val next_contig_elems = Mux(fast_segmented,
max_eidx - eidx,
io.op.seg_nf +& 1.U - sidx)
val next_act_elems = min(next_contig_elems, next_max_elems)(dLenOffBits,0)
val next_act_bytes = next_act_elems << mem_size
val next_sidx = sidx +& next_act_elems
val next_eidx = eidx +& Mux(fast_segmented, next_act_elems, 1.U)
val next_eaddr = eaddr + Mux(io.op.mop === mopUnit, next_act_bytes, Mux(io.op.mop === mopStrided, io.op.stride, 0.U))
val next_saddr = saddr + next_act_bytes
val needs_mask = !io.op.vm && io.op.mop =/= mopUnit
val needs_index = io.op.mop(0)
val block_maskindex = (needs_mask || needs_index) && !io.maskindex.valid
val masked = (needs_mask && !io.maskindex.mask) || (io.op.seg_nf > 0.U && sidx > io.op.segend)
val may_clear = (fast_segmented || next_sidx > io.op.seg_nf) && next_eidx >= max_eidx
io.done := false.B
io.maskindex.ready := false.B
io.maskindex.needs_mask := needs_mask
io.maskindex.needs_index := needs_index
io.maskindex.eew := io.op.idx_size
io.out.valid := io.valid && !block_maskindex && (masked || io.req.ready) && io.tag.valid
io.out.bits.head := saddr
io.out.bits.tail := saddr + next_act_bytes
io.out.bits.masked := masked
io.out.bits.last := may_clear
io.out.bits.lsiq_id := io.lsiq_id
io.out.bits.page_offset := saddr(pgIdxBits-1,0)
io.req.valid := io.valid && io.out.ready && !block_maskindex && !masked && io.tag.valid
io.req.bits.addr := Cat(io.op.page, saddr(pgIdxBits-1,0))
io.req.bits.data := DontCare
io.req.bits.mask := ((1.U << next_act_bytes) - 1.U) << saddr(dLenOffBits-1,0)
io.req.bits.tag := io.tag.bits
io.req.bits.store := DontCare
io.tag.ready := io.valid && (io.req.ready || masked) && io.out.ready && !block_maskindex
when (io.out.fire) {
when (next_sidx > io.op.seg_nf || fast_segmented) {
r_eaddr := next_eaddr
r_saddr := next_eaddr
r_eidx := next_eidx
r_sidx := 0.U
io.maskindex.ready := needs_mask || needs_index
} .otherwise {
r_eaddr := eaddr
r_saddr := next_saddr
r_eidx := io.op.vstart
r_sidx := next_sidx
}
r_head := false.B
when (may_clear) {
io.done := true.B
r_head := true.B
}
}
}
| module AddrGen( // @[AddrGen.scala:11:7]
input clock, // @[AddrGen.scala:11:7]
input reset, // @[AddrGen.scala:11:7]
input io_valid, // @[AddrGen.scala:12:14]
input [1:0] io_lsiq_id, // @[AddrGen.scala:12:14]
output io_done, // @[AddrGen.scala:12:14]
output io_tag_ready, // @[AddrGen.scala:12:14]
input io_tag_valid, // @[AddrGen.scala:12:14]
input [3:0] io_tag_bits, // @[AddrGen.scala:12:14]
input [11:0] io_op_base_offset, // @[AddrGen.scala:12:14]
input [19:0] io_op_page, // @[AddrGen.scala:12:14]
input [11:0] io_op_stride, // @[AddrGen.scala:12:14]
input [2:0] io_op_segstart, // @[AddrGen.scala:12:14]
input [2:0] io_op_segend, // @[AddrGen.scala:12:14]
input [6:0] io_op_vstart, // @[AddrGen.scala:12:14]
input [7:0] io_op_vl, // @[AddrGen.scala:12:14]
input [1:0] io_op_mop, // @[AddrGen.scala:12:14]
input io_op_vm, // @[AddrGen.scala:12:14]
input [2:0] io_op_nf, // @[AddrGen.scala:12:14]
input [1:0] io_op_idx_size, // @[AddrGen.scala:12:14]
input [1:0] io_op_elem_size, // @[AddrGen.scala:12:14]
input io_op_whole_reg, // @[AddrGen.scala:12:14]
input [63:0] io_maskindex_index, // @[AddrGen.scala:12:14]
input io_maskindex_mask, // @[AddrGen.scala:12:14]
output [1:0] io_maskindex_eew, // @[AddrGen.scala:12:14]
output io_maskindex_needs_mask, // @[AddrGen.scala:12:14]
output io_maskindex_needs_index, // @[AddrGen.scala:12:14]
input io_maskindex_valid, // @[AddrGen.scala:12:14]
output io_maskindex_ready, // @[AddrGen.scala:12:14]
input io_req_ready, // @[AddrGen.scala:12:14]
output io_req_valid, // @[AddrGen.scala:12:14]
output [39:0] io_req_bits_addr, // @[AddrGen.scala:12:14]
output [15:0] io_req_bits_mask, // @[AddrGen.scala:12:14]
output [3:0] io_req_bits_tag, // @[AddrGen.scala:12:14]
input io_out_ready, // @[AddrGen.scala:12:14]
output io_out_valid, // @[AddrGen.scala:12:14]
output [3:0] io_out_bits_head, // @[AddrGen.scala:12:14]
output [3:0] io_out_bits_tail, // @[AddrGen.scala:12:14]
output io_out_bits_masked, // @[AddrGen.scala:12:14]
output io_out_bits_last, // @[AddrGen.scala:12:14]
output [1:0] io_out_bits_lsiq_id, // @[AddrGen.scala:12:14]
output [11:0] io_out_bits_page_offset // @[AddrGen.scala:12:14]
);
reg [31:0] r_eaddr; // @[AddrGen.scala:38:20]
reg [31:0] r_saddr; // @[AddrGen.scala:39:20]
reg [10:0] r_eidx; // @[AddrGen.scala:40:19]
reg [2:0] r_sidx; // @[AddrGen.scala:41:19]
reg r_head; // @[AddrGen.scala:42:23]
wire _next_eaddr_T = io_op_mop == 2'h0; // @[AddrGen.scala:11:7, :44:34]
wire [2:0] _may_clear_T = io_op_whole_reg ? 3'h0 : io_op_nf; // @[AddrGen.scala:81:68]
wire fast_segmented = _next_eaddr_T & io_op_segend == _may_clear_T & io_op_segstart == 3'h0; // @[AddrGen.scala:44:{34,46,62,79,97}, :81:68]
wire [10:0] _GEN = {4'h0, io_op_vstart}; // @[AddrGen.scala:46:18]
wire [2:0] sidx = r_head ? io_op_segstart : r_sidx; // @[AddrGen.scala:41:19, :42:23, :48:17]
wire _next_eaddr_T_1 = io_op_mop == 2'h2; // @[AddrGen.scala:11:7, :49:52]
wire [3:0] _GEN_0 = {1'h0, _may_clear_T}; // @[AddrGen.scala:51:19]
wire [5:0] _eaddr_T_6 = {3'h0, io_op_segstart} << io_op_elem_size; // @[AddrGen.scala:52:71, :81:68]
wire [3:0] _index_offset_T_11 = {2'h0, {1'h0, io_op_idx_size == 2'h0} | {2{io_op_idx_size == 2'h1}}} | {4{io_op_idx_size == 2'h2}} | {4{&io_op_idx_size}}; // @[AddrGen.scala:11:7]
wire [31:0] eaddr = _next_eaddr_T | _next_eaddr_T_1 ? (r_head ? {20'h0, io_op_base_offset + {5'h0, io_op_vstart} * (_next_eaddr_T_1 ? io_op_stride : {5'h0, {3'h0, _GEN_0 + 4'h1} << io_op_elem_size}) + {6'h0, _eaddr_T_6}} : r_eaddr) : {20'h0, io_op_base_offset} + (io_maskindex_index[31:0] & {{8{_index_offset_T_11[3]}}, {8{_index_offset_T_11[2]}}, {8{_index_offset_T_11[1]}}, {8{_index_offset_T_11[0]}}}) + {26'h0, r_head ? _eaddr_T_6 : 6'h0}; // @[AddrGen.scala:12:14, :38:20, :42:23, :44:34, :49:{36,41,52}, :51:{19,27}, :52:{38,53,71}, :53:41, :54:18, :55:{23,38,43}, :56:8, :81:68]
wire [31:0] saddr = ~((|_may_clear_T) & ~fast_segmented) | r_head ? eaddr : r_saddr; // @[AddrGen.scala:39:20, :42:23, :44:{46,79}, :54:18, :57:{18,32,40,43}]
wire [11:0] _GEN_1 = {4'h0, io_op_vl}; // @[AddrGen.scala:61:14]
wire [11:0] max_eidx = fast_segmented ? _GEN_1 * {8'h0, _GEN_0 + 4'h1} : _GEN_1; // @[AddrGen.scala:44:{46,79}, :51:19, :60:21, :61:{14,30}]
wire [4:0] next_max_elems = 5'h10 - {1'h0, saddr[3:0]} >> io_op_elem_size; // @[AddrGen.scala:35:{14,19,38}, :57:18]
wire [11:0] _GEN_2 = {1'h0, r_head ? _GEN * {7'h0, {1'h0, ~fast_segmented | io_op_whole_reg ? 3'h0 : io_op_nf} + 4'h1} : r_eidx}; // @[AddrGen.scala:40:19, :42:23, :44:{46,79}, :45:17, :46:{18,24,60}, :66:14, :81:68]
wire [11:0] next_contig_elems = fast_segmented ? max_eidx - _GEN_2 : {8'h0, _GEN_0 + 4'h1 - {1'h0, sidx}}; // @[AddrGen.scala:44:{46,79}, :48:17, :51:19, :60:21, :65:30, :66:14, :67:{18,25}]
wire [4:0] _next_act_elems_T_1 = next_contig_elems > {7'h0, next_max_elems} ? next_max_elems : next_contig_elems[4:0]; // @[AddrGen.scala:32:{34,37}, :35:38, :46:18, :65:30]
wire [7:0] next_act_bytes = {3'h0, _next_act_elems_T_1} << io_op_elem_size; // @[AddrGen.scala:32:34, :69:39, :81:68]
wire [5:0] next_sidx = {3'h0, sidx} + {1'h0, _next_act_elems_T_1}; // @[AddrGen.scala:32:34, :48:17, :71:24, :81:68]
wire [11:0] next_eidx = _GEN_2 + {7'h0, fast_segmented ? _next_act_elems_T_1 : 5'h1}; // @[AddrGen.scala:32:34, :44:{46,79}, :46:18, :66:14, :72:{24,30}]
wire [31:0] _io_out_bits_tail_T = saddr + {24'h0, next_act_bytes}; // @[AddrGen.scala:57:18, :69:39, :75:26]
wire needs_mask = ~io_op_vm & (|io_op_mop); // @[AddrGen.scala:77:{20,30,43}]
wire _io_maskindex_ready_T = needs_mask | io_op_mop[0]; // @[AddrGen.scala:77:30, :78:30, :79:37]
wire block_maskindex = _io_maskindex_ready_T & ~io_maskindex_valid; // @[AddrGen.scala:79:{37,53,56}]
wire masked = needs_mask & ~io_maskindex_mask | (|_may_clear_T) & sidx > io_op_segend; // @[AddrGen.scala:48:17, :77:30, :81:{28,31,51,68,74,82}]
wire [5:0] _GEN_3 = {3'h0, _may_clear_T}; // @[AddrGen.scala:81:68, :82:48]
wire may_clear = (fast_segmented | next_sidx > _GEN_3) & next_eidx >= max_eidx; // @[AddrGen.scala:44:{46,79}, :60:21, :71:24, :72:24, :82:{35,48,64,77}]
wire _io_tag_ready_T = masked | io_req_ready; // @[AddrGen.scala:81:51, :90:59]
wire io_out_valid_0 = io_valid & ~block_maskindex & _io_tag_ready_T & io_tag_valid; // @[AddrGen.scala:79:53, :90:{28,31,48,59,76}]
wire [270:0] _io_req_bits_mask_T_4 = {15'h0, (256'h1 << next_act_bytes) - 256'h1} << saddr[3:0]; // @[AddrGen.scala:35:19, :57:18, :69:39, :101:{29,48,55}]
wire _GEN_4 = io_out_ready & io_out_valid_0; // @[Decoupled.scala:51:35]
wire _GEN_5 = next_sidx > _GEN_3 | fast_segmented; // @[AddrGen.scala:44:{46,79}, :71:24, :82:48, :108:{21,36}]
wire [31:0] _next_eaddr_T_4 = eaddr + {20'h0, _next_eaddr_T ? {4'h0, next_act_bytes} : _next_eaddr_T_1 ? io_op_stride : 12'h0}; // @[AddrGen.scala:44:34, :49:52, :54:18, :69:39, :74:{26,31,74}]
always @(posedge clock) begin // @[AddrGen.scala:11:7]
if (_GEN_4) begin // @[Decoupled.scala:51:35]
if (_GEN_5) // @[AddrGen.scala:108:36]
r_eaddr <= _next_eaddr_T_4; // @[AddrGen.scala:38:20, :74:26]
else // @[AddrGen.scala:108:36]
r_eaddr <= eaddr; // @[AddrGen.scala:38:20, :54:18]
r_saddr <= _GEN_5 ? _next_eaddr_T_4 : _io_out_bits_tail_T; // @[AddrGen.scala:39:20, :74:26, :75:26, :108:{36,55}, :110:15, :116:15]
r_eidx <= _GEN_5 ? next_eidx[10:0] : _GEN; // @[AddrGen.scala:40:19, :46:18, :72:24, :108:{36,55}, :111:14, :117:14]
r_sidx <= _GEN_5 ? 3'h0 : next_sidx[2:0]; // @[AddrGen.scala:41:19, :71:24, :81:68, :108:{36,55}, :112:14, :118:14]
end
if (reset) // @[AddrGen.scala:11:7]
r_head <= 1'h1; // @[AddrGen.scala:42:23]
else if (_GEN_4) // @[Decoupled.scala:51:35]
r_head <= may_clear; // @[AddrGen.scala:42:23, :82:64]
always @(posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
/** Implements the same interface as chisel3.util.Queue, but uses a shift
* register internally. It is less energy efficient whenever the queue
* has more than one entry populated, but is faster on the dequeue side.
* It is efficient for usually-empty flow-through queues. */
class ShiftQueue[T <: Data](gen: T,
val entries: Int,
pipe: Boolean = false,
flow: Boolean = false)
extends Module {
val io = IO(new QueueIO(gen, entries) {
val mask = Output(UInt(entries.W))
})
private val valid = RegInit(VecInit(Seq.fill(entries) { false.B }))
private val elts = Reg(Vec(entries, gen))
for (i <- 0 until entries) {
def paddedValid(i: Int) = if (i == -1) true.B else if (i == entries) false.B else valid(i)
val wdata = if (i == entries-1) io.enq.bits else Mux(valid(i+1), elts(i+1), io.enq.bits)
val wen =
Mux(io.deq.ready,
paddedValid(i+1) || io.enq.fire && ((i == 0 && !flow).B || valid(i)),
io.enq.fire && paddedValid(i-1) && !valid(i))
when (wen) { elts(i) := wdata }
valid(i) :=
Mux(io.deq.ready,
paddedValid(i+1) || io.enq.fire && ((i == 0 && !flow).B || valid(i)),
io.enq.fire && paddedValid(i-1) || valid(i))
}
io.enq.ready := !valid(entries-1)
io.deq.valid := valid(0)
io.deq.bits := elts.head
if (flow) {
when (io.enq.valid) { io.deq.valid := true.B }
when (!valid(0)) { io.deq.bits := io.enq.bits }
}
if (pipe) {
when (io.deq.ready) { io.enq.ready := true.B }
}
io.mask := valid.asUInt
io.count := PopCount(io.mask)
}
object ShiftQueue
{
def apply[T <: Data](enq: DecoupledIO[T], entries: Int = 2, pipe: Boolean = false, flow: Boolean = false): DecoupledIO[T] = {
val q = Module(new ShiftQueue(enq.bits.cloneType, entries, pipe, flow))
q.io.enq <> enq
q.io.deq
}
}
| module ShiftQueue_6( // @[ShiftQueue.scala:12:7]
input clock, // @[ShiftQueue.scala:12:7]
input reset, // @[ShiftQueue.scala:12:7]
output io_enq_ready, // @[ShiftQueue.scala:17:14]
input io_enq_valid, // @[ShiftQueue.scala:17:14]
input [1:0] io_enq_bits_btb_cfiType, // @[ShiftQueue.scala:17:14]
input io_enq_bits_btb_taken, // @[ShiftQueue.scala:17:14]
input [1:0] io_enq_bits_btb_mask, // @[ShiftQueue.scala:17:14]
input io_enq_bits_btb_bridx, // @[ShiftQueue.scala:17:14]
input [38:0] io_enq_bits_btb_target, // @[ShiftQueue.scala:17:14]
input [4:0] io_enq_bits_btb_entry, // @[ShiftQueue.scala:17:14]
input [7:0] io_enq_bits_btb_bht_history, // @[ShiftQueue.scala:17:14]
input io_enq_bits_btb_bht_value, // @[ShiftQueue.scala:17:14]
input [39:0] io_enq_bits_pc, // @[ShiftQueue.scala:17:14]
input [31:0] io_enq_bits_data, // @[ShiftQueue.scala:17:14]
input [1:0] io_enq_bits_mask, // @[ShiftQueue.scala:17:14]
input io_enq_bits_xcpt_pf_inst, // @[ShiftQueue.scala:17:14]
input io_enq_bits_xcpt_ae_inst, // @[ShiftQueue.scala:17:14]
input io_enq_bits_replay, // @[ShiftQueue.scala:17:14]
input io_deq_ready, // @[ShiftQueue.scala:17:14]
output io_deq_valid, // @[ShiftQueue.scala:17:14]
output [1:0] io_deq_bits_btb_cfiType, // @[ShiftQueue.scala:17:14]
output io_deq_bits_btb_taken, // @[ShiftQueue.scala:17:14]
output [1:0] io_deq_bits_btb_mask, // @[ShiftQueue.scala:17:14]
output io_deq_bits_btb_bridx, // @[ShiftQueue.scala:17:14]
output [38:0] io_deq_bits_btb_target, // @[ShiftQueue.scala:17:14]
output [4:0] io_deq_bits_btb_entry, // @[ShiftQueue.scala:17:14]
output [7:0] io_deq_bits_btb_bht_history, // @[ShiftQueue.scala:17:14]
output io_deq_bits_btb_bht_value, // @[ShiftQueue.scala:17:14]
output [39:0] io_deq_bits_pc, // @[ShiftQueue.scala:17:14]
output [31:0] io_deq_bits_data, // @[ShiftQueue.scala:17:14]
output [1:0] io_deq_bits_mask, // @[ShiftQueue.scala:17:14]
output io_deq_bits_xcpt_pf_inst, // @[ShiftQueue.scala:17:14]
output io_deq_bits_xcpt_gf_inst, // @[ShiftQueue.scala:17:14]
output io_deq_bits_xcpt_ae_inst, // @[ShiftQueue.scala:17:14]
output io_deq_bits_replay, // @[ShiftQueue.scala:17:14]
output [4:0] io_mask // @[ShiftQueue.scala:17:14]
);
wire io_enq_valid_0 = io_enq_valid; // @[ShiftQueue.scala:12:7]
wire [1:0] io_enq_bits_btb_cfiType_0 = io_enq_bits_btb_cfiType; // @[ShiftQueue.scala:12:7]
wire io_enq_bits_btb_taken_0 = io_enq_bits_btb_taken; // @[ShiftQueue.scala:12:7]
wire [1:0] io_enq_bits_btb_mask_0 = io_enq_bits_btb_mask; // @[ShiftQueue.scala:12:7]
wire io_enq_bits_btb_bridx_0 = io_enq_bits_btb_bridx; // @[ShiftQueue.scala:12:7]
wire [38:0] io_enq_bits_btb_target_0 = io_enq_bits_btb_target; // @[ShiftQueue.scala:12:7]
wire [4:0] io_enq_bits_btb_entry_0 = io_enq_bits_btb_entry; // @[ShiftQueue.scala:12:7]
wire [7:0] io_enq_bits_btb_bht_history_0 = io_enq_bits_btb_bht_history; // @[ShiftQueue.scala:12:7]
wire io_enq_bits_btb_bht_value_0 = io_enq_bits_btb_bht_value; // @[ShiftQueue.scala:12:7]
wire [39:0] io_enq_bits_pc_0 = io_enq_bits_pc; // @[ShiftQueue.scala:12:7]
wire [31:0] io_enq_bits_data_0 = io_enq_bits_data; // @[ShiftQueue.scala:12:7]
wire [1:0] io_enq_bits_mask_0 = io_enq_bits_mask; // @[ShiftQueue.scala:12:7]
wire io_enq_bits_xcpt_pf_inst_0 = io_enq_bits_xcpt_pf_inst; // @[ShiftQueue.scala:12:7]
wire io_enq_bits_xcpt_ae_inst_0 = io_enq_bits_xcpt_ae_inst; // @[ShiftQueue.scala:12:7]
wire io_enq_bits_replay_0 = io_enq_bits_replay; // @[ShiftQueue.scala:12:7]
wire io_deq_ready_0 = io_deq_ready; // @[ShiftQueue.scala:12:7]
wire io_enq_bits_xcpt_gf_inst = 1'h0; // @[ShiftQueue.scala:12:7]
wire _valid_WIRE_0 = 1'h0; // @[ShiftQueue.scala:21:38]
wire _valid_WIRE_1 = 1'h0; // @[ShiftQueue.scala:21:38]
wire _valid_WIRE_2 = 1'h0; // @[ShiftQueue.scala:21:38]
wire _valid_WIRE_3 = 1'h0; // @[ShiftQueue.scala:21:38]
wire _valid_WIRE_4 = 1'h0; // @[ShiftQueue.scala:21:38]
wire _io_enq_ready_T; // @[ShiftQueue.scala:40:19]
wire [2:0] _io_count_T_12; // @[ShiftQueue.scala:54:23]
wire [4:0] _io_mask_T; // @[ShiftQueue.scala:53:20]
wire io_enq_ready_0; // @[ShiftQueue.scala:12:7]
wire [7:0] io_deq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7]
wire io_deq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7]
wire [1:0] io_deq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7]
wire io_deq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7]
wire [1:0] io_deq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7]
wire io_deq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7]
wire [38:0] io_deq_bits_btb_target_0; // @[ShiftQueue.scala:12:7]
wire [4:0] io_deq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7]
wire io_deq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7]
wire io_deq_bits_xcpt_gf_inst_0; // @[ShiftQueue.scala:12:7]
wire io_deq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7]
wire [39:0] io_deq_bits_pc_0; // @[ShiftQueue.scala:12:7]
wire [31:0] io_deq_bits_data_0; // @[ShiftQueue.scala:12:7]
wire [1:0] io_deq_bits_mask_0; // @[ShiftQueue.scala:12:7]
wire io_deq_bits_replay_0; // @[ShiftQueue.scala:12:7]
wire io_deq_valid_0; // @[ShiftQueue.scala:12:7]
wire [2:0] io_count; // @[ShiftQueue.scala:12:7]
wire [4:0] io_mask_0; // @[ShiftQueue.scala:12:7]
reg valid_0; // @[ShiftQueue.scala:21:30]
wire _wen_T_1 = valid_0; // @[ShiftQueue.scala:21:30, :30:67]
wire _valid_0_T_1 = valid_0; // @[ShiftQueue.scala:21:30, :36:67]
reg valid_1; // @[ShiftQueue.scala:21:30]
wire _wen_T_9 = valid_1; // @[ShiftQueue.scala:21:30, :30:67]
wire _valid_1_T_1 = valid_1; // @[ShiftQueue.scala:21:30, :36:67]
reg valid_2; // @[ShiftQueue.scala:21:30]
wire _wen_T_17 = valid_2; // @[ShiftQueue.scala:21:30, :30:67]
wire _valid_2_T_1 = valid_2; // @[ShiftQueue.scala:21:30, :36:67]
reg valid_3; // @[ShiftQueue.scala:21:30]
wire _wen_T_25 = valid_3; // @[ShiftQueue.scala:21:30, :30:67]
wire _valid_3_T_1 = valid_3; // @[ShiftQueue.scala:21:30, :36:67]
reg valid_4; // @[ShiftQueue.scala:21:30]
wire _wen_T_33 = valid_4; // @[ShiftQueue.scala:21:30, :30:67]
wire _valid_4_T_1 = valid_4; // @[ShiftQueue.scala:21:30, :36:67]
reg [1:0] elts_0_btb_cfiType; // @[ShiftQueue.scala:22:25]
reg elts_0_btb_taken; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_0_btb_mask; // @[ShiftQueue.scala:22:25]
reg elts_0_btb_bridx; // @[ShiftQueue.scala:22:25]
reg [38:0] elts_0_btb_target; // @[ShiftQueue.scala:22:25]
reg [4:0] elts_0_btb_entry; // @[ShiftQueue.scala:22:25]
reg [7:0] elts_0_btb_bht_history; // @[ShiftQueue.scala:22:25]
reg elts_0_btb_bht_value; // @[ShiftQueue.scala:22:25]
reg [39:0] elts_0_pc; // @[ShiftQueue.scala:22:25]
reg [31:0] elts_0_data; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_0_mask; // @[ShiftQueue.scala:22:25]
reg elts_0_xcpt_pf_inst; // @[ShiftQueue.scala:22:25]
reg elts_0_xcpt_gf_inst; // @[ShiftQueue.scala:22:25]
reg elts_0_xcpt_ae_inst; // @[ShiftQueue.scala:22:25]
reg elts_0_replay; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_1_btb_cfiType; // @[ShiftQueue.scala:22:25]
reg elts_1_btb_taken; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_1_btb_mask; // @[ShiftQueue.scala:22:25]
reg elts_1_btb_bridx; // @[ShiftQueue.scala:22:25]
reg [38:0] elts_1_btb_target; // @[ShiftQueue.scala:22:25]
reg [4:0] elts_1_btb_entry; // @[ShiftQueue.scala:22:25]
reg [7:0] elts_1_btb_bht_history; // @[ShiftQueue.scala:22:25]
reg elts_1_btb_bht_value; // @[ShiftQueue.scala:22:25]
reg [39:0] elts_1_pc; // @[ShiftQueue.scala:22:25]
reg [31:0] elts_1_data; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_1_mask; // @[ShiftQueue.scala:22:25]
reg elts_1_xcpt_pf_inst; // @[ShiftQueue.scala:22:25]
reg elts_1_xcpt_gf_inst; // @[ShiftQueue.scala:22:25]
reg elts_1_xcpt_ae_inst; // @[ShiftQueue.scala:22:25]
reg elts_1_replay; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_2_btb_cfiType; // @[ShiftQueue.scala:22:25]
reg elts_2_btb_taken; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_2_btb_mask; // @[ShiftQueue.scala:22:25]
reg elts_2_btb_bridx; // @[ShiftQueue.scala:22:25]
reg [38:0] elts_2_btb_target; // @[ShiftQueue.scala:22:25]
reg [4:0] elts_2_btb_entry; // @[ShiftQueue.scala:22:25]
reg [7:0] elts_2_btb_bht_history; // @[ShiftQueue.scala:22:25]
reg elts_2_btb_bht_value; // @[ShiftQueue.scala:22:25]
reg [39:0] elts_2_pc; // @[ShiftQueue.scala:22:25]
reg [31:0] elts_2_data; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_2_mask; // @[ShiftQueue.scala:22:25]
reg elts_2_xcpt_pf_inst; // @[ShiftQueue.scala:22:25]
reg elts_2_xcpt_gf_inst; // @[ShiftQueue.scala:22:25]
reg elts_2_xcpt_ae_inst; // @[ShiftQueue.scala:22:25]
reg elts_2_replay; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_3_btb_cfiType; // @[ShiftQueue.scala:22:25]
reg elts_3_btb_taken; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_3_btb_mask; // @[ShiftQueue.scala:22:25]
reg elts_3_btb_bridx; // @[ShiftQueue.scala:22:25]
reg [38:0] elts_3_btb_target; // @[ShiftQueue.scala:22:25]
reg [4:0] elts_3_btb_entry; // @[ShiftQueue.scala:22:25]
reg [7:0] elts_3_btb_bht_history; // @[ShiftQueue.scala:22:25]
reg elts_3_btb_bht_value; // @[ShiftQueue.scala:22:25]
reg [39:0] elts_3_pc; // @[ShiftQueue.scala:22:25]
reg [31:0] elts_3_data; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_3_mask; // @[ShiftQueue.scala:22:25]
reg elts_3_xcpt_pf_inst; // @[ShiftQueue.scala:22:25]
reg elts_3_xcpt_gf_inst; // @[ShiftQueue.scala:22:25]
reg elts_3_xcpt_ae_inst; // @[ShiftQueue.scala:22:25]
reg elts_3_replay; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_4_btb_cfiType; // @[ShiftQueue.scala:22:25]
reg elts_4_btb_taken; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_4_btb_mask; // @[ShiftQueue.scala:22:25]
reg elts_4_btb_bridx; // @[ShiftQueue.scala:22:25]
reg [38:0] elts_4_btb_target; // @[ShiftQueue.scala:22:25]
reg [4:0] elts_4_btb_entry; // @[ShiftQueue.scala:22:25]
reg [7:0] elts_4_btb_bht_history; // @[ShiftQueue.scala:22:25]
reg elts_4_btb_bht_value; // @[ShiftQueue.scala:22:25]
reg [39:0] elts_4_pc; // @[ShiftQueue.scala:22:25]
reg [31:0] elts_4_data; // @[ShiftQueue.scala:22:25]
reg [1:0] elts_4_mask; // @[ShiftQueue.scala:22:25]
reg elts_4_xcpt_pf_inst; // @[ShiftQueue.scala:22:25]
reg elts_4_xcpt_gf_inst; // @[ShiftQueue.scala:22:25]
reg elts_4_xcpt_ae_inst; // @[ShiftQueue.scala:22:25]
reg elts_4_replay; // @[ShiftQueue.scala:22:25]
wire [1:0] wdata_btb_cfiType = valid_1 ? elts_1_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_btb_taken = valid_1 ? elts_1_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [1:0] wdata_btb_mask = valid_1 ? elts_1_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_btb_bridx = valid_1 ? elts_1_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [38:0] wdata_btb_target = valid_1 ? elts_1_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [4:0] wdata_btb_entry = valid_1 ? elts_1_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [7:0] wdata_btb_bht_history = valid_1 ? elts_1_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_btb_bht_value = valid_1 ? elts_1_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [39:0] wdata_pc = valid_1 ? elts_1_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [31:0] wdata_data = valid_1 ? elts_1_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [1:0] wdata_mask = valid_1 ? elts_1_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_xcpt_pf_inst = valid_1 ? elts_1_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_xcpt_gf_inst = valid_1 & elts_1_xcpt_gf_inst; // @[ShiftQueue.scala:21:30, :22:25, :27:57]
wire wdata_xcpt_ae_inst = valid_1 ? elts_1_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_replay = valid_1 ? elts_1_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire _GEN = io_enq_ready_0 & io_enq_valid_0; // @[Decoupled.scala:51:35]
wire _wen_T; // @[Decoupled.scala:51:35]
assign _wen_T = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_4; // @[Decoupled.scala:51:35]
assign _wen_T_4 = _GEN; // @[Decoupled.scala:51:35]
wire _valid_0_T; // @[Decoupled.scala:51:35]
assign _valid_0_T = _GEN; // @[Decoupled.scala:51:35]
wire _valid_0_T_4; // @[Decoupled.scala:51:35]
assign _valid_0_T_4 = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_8; // @[Decoupled.scala:51:35]
assign _wen_T_8 = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_12; // @[Decoupled.scala:51:35]
assign _wen_T_12 = _GEN; // @[Decoupled.scala:51:35]
wire _valid_1_T; // @[Decoupled.scala:51:35]
assign _valid_1_T = _GEN; // @[Decoupled.scala:51:35]
wire _valid_1_T_4; // @[Decoupled.scala:51:35]
assign _valid_1_T_4 = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_16; // @[Decoupled.scala:51:35]
assign _wen_T_16 = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_20; // @[Decoupled.scala:51:35]
assign _wen_T_20 = _GEN; // @[Decoupled.scala:51:35]
wire _valid_2_T; // @[Decoupled.scala:51:35]
assign _valid_2_T = _GEN; // @[Decoupled.scala:51:35]
wire _valid_2_T_4; // @[Decoupled.scala:51:35]
assign _valid_2_T_4 = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_24; // @[Decoupled.scala:51:35]
assign _wen_T_24 = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_28; // @[Decoupled.scala:51:35]
assign _wen_T_28 = _GEN; // @[Decoupled.scala:51:35]
wire _valid_3_T; // @[Decoupled.scala:51:35]
assign _valid_3_T = _GEN; // @[Decoupled.scala:51:35]
wire _valid_3_T_4; // @[Decoupled.scala:51:35]
assign _valid_3_T_4 = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_32; // @[Decoupled.scala:51:35]
assign _wen_T_32 = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_36; // @[Decoupled.scala:51:35]
assign _wen_T_36 = _GEN; // @[Decoupled.scala:51:35]
wire _valid_4_T; // @[Decoupled.scala:51:35]
assign _valid_4_T = _GEN; // @[Decoupled.scala:51:35]
wire _valid_4_T_4; // @[Decoupled.scala:51:35]
assign _valid_4_T_4 = _GEN; // @[Decoupled.scala:51:35]
wire _wen_T_2 = _wen_T & _wen_T_1; // @[Decoupled.scala:51:35]
wire _wen_T_3 = valid_1 | _wen_T_2; // @[ShiftQueue.scala:21:30, :30:{28,43}]
wire _wen_T_5 = _wen_T_4; // @[Decoupled.scala:51:35]
wire _wen_T_6 = ~valid_0; // @[ShiftQueue.scala:21:30, :31:46]
wire _wen_T_7 = _wen_T_5 & _wen_T_6; // @[ShiftQueue.scala:31:{23,43,46}]
wire wen = io_deq_ready_0 ? _wen_T_3 : _wen_T_7; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43]
wire _valid_0_T_2 = _valid_0_T & _valid_0_T_1; // @[Decoupled.scala:51:35]
wire _valid_0_T_3 = valid_1 | _valid_0_T_2; // @[ShiftQueue.scala:21:30, :36:{28,43}]
wire _valid_0_T_5 = _valid_0_T_4; // @[Decoupled.scala:51:35]
wire _valid_0_T_6 = _valid_0_T_5 | valid_0; // @[ShiftQueue.scala:21:30, :37:{23,43}]
wire _valid_0_T_7 = io_deq_ready_0 ? _valid_0_T_3 : _valid_0_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43]
wire [1:0] wdata_1_btb_cfiType = valid_2 ? elts_2_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_1_btb_taken = valid_2 ? elts_2_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [1:0] wdata_1_btb_mask = valid_2 ? elts_2_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_1_btb_bridx = valid_2 ? elts_2_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [38:0] wdata_1_btb_target = valid_2 ? elts_2_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [4:0] wdata_1_btb_entry = valid_2 ? elts_2_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [7:0] wdata_1_btb_bht_history = valid_2 ? elts_2_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_1_btb_bht_value = valid_2 ? elts_2_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [39:0] wdata_1_pc = valid_2 ? elts_2_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [31:0] wdata_1_data = valid_2 ? elts_2_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [1:0] wdata_1_mask = valid_2 ? elts_2_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_1_xcpt_pf_inst = valid_2 ? elts_2_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_1_xcpt_gf_inst = valid_2 & elts_2_xcpt_gf_inst; // @[ShiftQueue.scala:21:30, :22:25, :27:57]
wire wdata_1_xcpt_ae_inst = valid_2 ? elts_2_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_1_replay = valid_2 ? elts_2_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire _wen_T_10 = _wen_T_8 & _wen_T_9; // @[Decoupled.scala:51:35]
wire _wen_T_11 = valid_2 | _wen_T_10; // @[ShiftQueue.scala:21:30, :30:{28,43}]
wire _wen_T_13 = _wen_T_12 & valid_0; // @[Decoupled.scala:51:35]
wire _wen_T_14 = ~valid_1; // @[ShiftQueue.scala:21:30, :31:46]
wire _wen_T_15 = _wen_T_13 & _wen_T_14; // @[ShiftQueue.scala:31:{23,43,46}]
wire wen_1 = io_deq_ready_0 ? _wen_T_11 : _wen_T_15; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43]
wire _valid_1_T_2 = _valid_1_T & _valid_1_T_1; // @[Decoupled.scala:51:35]
wire _valid_1_T_3 = valid_2 | _valid_1_T_2; // @[ShiftQueue.scala:21:30, :36:{28,43}]
wire _valid_1_T_5 = _valid_1_T_4 & valid_0; // @[Decoupled.scala:51:35]
wire _valid_1_T_6 = _valid_1_T_5 | valid_1; // @[ShiftQueue.scala:21:30, :37:{23,43}]
wire _valid_1_T_7 = io_deq_ready_0 ? _valid_1_T_3 : _valid_1_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43]
wire [1:0] wdata_2_btb_cfiType = valid_3 ? elts_3_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_2_btb_taken = valid_3 ? elts_3_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [1:0] wdata_2_btb_mask = valid_3 ? elts_3_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_2_btb_bridx = valid_3 ? elts_3_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [38:0] wdata_2_btb_target = valid_3 ? elts_3_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [4:0] wdata_2_btb_entry = valid_3 ? elts_3_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [7:0] wdata_2_btb_bht_history = valid_3 ? elts_3_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_2_btb_bht_value = valid_3 ? elts_3_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [39:0] wdata_2_pc = valid_3 ? elts_3_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [31:0] wdata_2_data = valid_3 ? elts_3_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [1:0] wdata_2_mask = valid_3 ? elts_3_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_2_xcpt_pf_inst = valid_3 ? elts_3_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_2_xcpt_gf_inst = valid_3 & elts_3_xcpt_gf_inst; // @[ShiftQueue.scala:21:30, :22:25, :27:57]
wire wdata_2_xcpt_ae_inst = valid_3 ? elts_3_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_2_replay = valid_3 ? elts_3_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire _wen_T_18 = _wen_T_16 & _wen_T_17; // @[Decoupled.scala:51:35]
wire _wen_T_19 = valid_3 | _wen_T_18; // @[ShiftQueue.scala:21:30, :30:{28,43}]
wire _wen_T_21 = _wen_T_20 & valid_1; // @[Decoupled.scala:51:35]
wire _wen_T_22 = ~valid_2; // @[ShiftQueue.scala:21:30, :31:46]
wire _wen_T_23 = _wen_T_21 & _wen_T_22; // @[ShiftQueue.scala:31:{23,43,46}]
wire wen_2 = io_deq_ready_0 ? _wen_T_19 : _wen_T_23; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43]
wire _valid_2_T_2 = _valid_2_T & _valid_2_T_1; // @[Decoupled.scala:51:35]
wire _valid_2_T_3 = valid_3 | _valid_2_T_2; // @[ShiftQueue.scala:21:30, :36:{28,43}]
wire _valid_2_T_5 = _valid_2_T_4 & valid_1; // @[Decoupled.scala:51:35]
wire _valid_2_T_6 = _valid_2_T_5 | valid_2; // @[ShiftQueue.scala:21:30, :37:{23,43}]
wire _valid_2_T_7 = io_deq_ready_0 ? _valid_2_T_3 : _valid_2_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43]
wire [1:0] wdata_3_btb_cfiType = valid_4 ? elts_4_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_3_btb_taken = valid_4 ? elts_4_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [1:0] wdata_3_btb_mask = valid_4 ? elts_4_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_3_btb_bridx = valid_4 ? elts_4_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [38:0] wdata_3_btb_target = valid_4 ? elts_4_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [4:0] wdata_3_btb_entry = valid_4 ? elts_4_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [7:0] wdata_3_btb_bht_history = valid_4 ? elts_4_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_3_btb_bht_value = valid_4 ? elts_4_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [39:0] wdata_3_pc = valid_4 ? elts_4_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [31:0] wdata_3_data = valid_4 ? elts_4_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire [1:0] wdata_3_mask = valid_4 ? elts_4_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_3_xcpt_pf_inst = valid_4 ? elts_4_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_3_xcpt_gf_inst = valid_4 & elts_4_xcpt_gf_inst; // @[ShiftQueue.scala:21:30, :22:25, :27:57]
wire wdata_3_xcpt_ae_inst = valid_4 ? elts_4_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire wdata_3_replay = valid_4 ? elts_4_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57]
wire _wen_T_26 = _wen_T_24 & _wen_T_25; // @[Decoupled.scala:51:35]
wire _wen_T_27 = valid_4 | _wen_T_26; // @[ShiftQueue.scala:21:30, :30:{28,43}]
wire _wen_T_29 = _wen_T_28 & valid_2; // @[Decoupled.scala:51:35]
wire _wen_T_30 = ~valid_3; // @[ShiftQueue.scala:21:30, :31:46]
wire _wen_T_31 = _wen_T_29 & _wen_T_30; // @[ShiftQueue.scala:31:{23,43,46}]
wire wen_3 = io_deq_ready_0 ? _wen_T_27 : _wen_T_31; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43]
wire _valid_3_T_2 = _valid_3_T & _valid_3_T_1; // @[Decoupled.scala:51:35]
wire _valid_3_T_3 = valid_4 | _valid_3_T_2; // @[ShiftQueue.scala:21:30, :36:{28,43}]
wire _valid_3_T_5 = _valid_3_T_4 & valid_2; // @[Decoupled.scala:51:35]
wire _valid_3_T_6 = _valid_3_T_5 | valid_3; // @[ShiftQueue.scala:21:30, :37:{23,43}]
wire _valid_3_T_7 = io_deq_ready_0 ? _valid_3_T_3 : _valid_3_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43]
wire _wen_T_34 = _wen_T_32 & _wen_T_33; // @[Decoupled.scala:51:35]
wire _wen_T_35 = _wen_T_34; // @[ShiftQueue.scala:30:{28,43}]
wire _wen_T_37 = _wen_T_36 & valid_3; // @[Decoupled.scala:51:35]
wire _wen_T_38 = ~valid_4; // @[ShiftQueue.scala:21:30, :31:46]
wire _wen_T_39 = _wen_T_37 & _wen_T_38; // @[ShiftQueue.scala:31:{23,43,46}]
wire wen_4 = io_deq_ready_0 ? _wen_T_35 : _wen_T_39; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43]
wire _valid_4_T_2 = _valid_4_T & _valid_4_T_1; // @[Decoupled.scala:51:35]
wire _valid_4_T_3 = _valid_4_T_2; // @[ShiftQueue.scala:36:{28,43}]
wire _valid_4_T_5 = _valid_4_T_4 & valid_3; // @[Decoupled.scala:51:35]
wire _valid_4_T_6 = _valid_4_T_5 | valid_4; // @[ShiftQueue.scala:21:30, :37:{23,43}]
wire _valid_4_T_7 = io_deq_ready_0 ? _valid_4_T_3 : _valid_4_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43]
assign _io_enq_ready_T = ~valid_4; // @[ShiftQueue.scala:21:30, :31:46, :40:19]
assign io_enq_ready_0 = _io_enq_ready_T; // @[ShiftQueue.scala:12:7, :40:19]
assign io_deq_valid_0 = io_enq_valid_0 | valid_0; // @[ShiftQueue.scala:12:7, :21:30, :41:16, :45:{25,40}]
assign io_deq_bits_btb_cfiType_0 = valid_0 ? elts_0_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_btb_taken_0 = valid_0 ? elts_0_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_btb_mask_0 = valid_0 ? elts_0_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_btb_bridx_0 = valid_0 ? elts_0_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_btb_target_0 = valid_0 ? elts_0_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_btb_entry_0 = valid_0 ? elts_0_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_btb_bht_history_0 = valid_0 ? elts_0_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_btb_bht_value_0 = valid_0 ? elts_0_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_pc_0 = valid_0 ? elts_0_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_data_0 = valid_0 ? elts_0_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_mask_0 = valid_0 ? elts_0_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_xcpt_pf_inst_0 = valid_0 ? elts_0_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_xcpt_gf_inst_0 = valid_0 & elts_0_xcpt_gf_inst; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_xcpt_ae_inst_0 = valid_0 ? elts_0_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
assign io_deq_bits_replay_0 = valid_0 ? elts_0_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}]
wire [1:0] io_mask_lo = {valid_1, valid_0}; // @[ShiftQueue.scala:21:30, :53:20]
wire [1:0] io_mask_hi_hi = {valid_4, valid_3}; // @[ShiftQueue.scala:21:30, :53:20]
wire [2:0] io_mask_hi = {io_mask_hi_hi, valid_2}; // @[ShiftQueue.scala:21:30, :53:20]
assign _io_mask_T = {io_mask_hi, io_mask_lo}; // @[ShiftQueue.scala:53:20]
assign io_mask_0 = _io_mask_T; // @[ShiftQueue.scala:12:7, :53:20]
wire _io_count_T = io_mask_0[0]; // @[ShiftQueue.scala:12:7, :54:23]
wire _io_count_T_1 = io_mask_0[1]; // @[ShiftQueue.scala:12:7, :54:23]
wire _io_count_T_2 = io_mask_0[2]; // @[ShiftQueue.scala:12:7, :54:23]
wire _io_count_T_3 = io_mask_0[3]; // @[ShiftQueue.scala:12:7, :54:23]
wire _io_count_T_4 = io_mask_0[4]; // @[ShiftQueue.scala:12:7, :54:23]
wire [1:0] _io_count_T_5 = {1'h0, _io_count_T} + {1'h0, _io_count_T_1}; // @[ShiftQueue.scala:54:23]
wire [1:0] _io_count_T_6 = _io_count_T_5; // @[ShiftQueue.scala:54:23]
wire [1:0] _io_count_T_7 = {1'h0, _io_count_T_3} + {1'h0, _io_count_T_4}; // @[ShiftQueue.scala:54:23]
wire [1:0] _io_count_T_8 = _io_count_T_7; // @[ShiftQueue.scala:54:23]
wire [2:0] _io_count_T_9 = {2'h0, _io_count_T_2} + {1'h0, _io_count_T_8}; // @[ShiftQueue.scala:54:23]
wire [1:0] _io_count_T_10 = _io_count_T_9[1:0]; // @[ShiftQueue.scala:54:23]
wire [2:0] _io_count_T_11 = {1'h0, _io_count_T_6} + {1'h0, _io_count_T_10}; // @[ShiftQueue.scala:54:23]
assign _io_count_T_12 = _io_count_T_11; // @[ShiftQueue.scala:54:23]
assign io_count = _io_count_T_12; // @[ShiftQueue.scala:12:7, :54:23]
always @(posedge clock) begin // @[ShiftQueue.scala:12:7]
if (reset) begin // @[ShiftQueue.scala:12:7]
valid_0 <= 1'h0; // @[ShiftQueue.scala:21:30]
valid_1 <= 1'h0; // @[ShiftQueue.scala:21:30]
valid_2 <= 1'h0; // @[ShiftQueue.scala:21:30]
valid_3 <= 1'h0; // @[ShiftQueue.scala:21:30]
valid_4 <= 1'h0; // @[ShiftQueue.scala:21:30]
end
else begin // @[ShiftQueue.scala:12:7]
valid_0 <= _valid_0_T_7; // @[ShiftQueue.scala:21:30, :35:10]
valid_1 <= _valid_1_T_7; // @[ShiftQueue.scala:21:30, :35:10]
valid_2 <= _valid_2_T_7; // @[ShiftQueue.scala:21:30, :35:10]
valid_3 <= _valid_3_T_7; // @[ShiftQueue.scala:21:30, :35:10]
valid_4 <= _valid_4_T_7; // @[ShiftQueue.scala:21:30, :35:10]
end
if (wen) begin // @[ShiftQueue.scala:29:10]
elts_0_btb_cfiType <= wdata_btb_cfiType; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_btb_taken <= wdata_btb_taken; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_btb_mask <= wdata_btb_mask; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_btb_bridx <= wdata_btb_bridx; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_btb_target <= wdata_btb_target; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_btb_entry <= wdata_btb_entry; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_btb_bht_history <= wdata_btb_bht_history; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_btb_bht_value <= wdata_btb_bht_value; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_pc <= wdata_pc; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_data <= wdata_data; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_mask <= wdata_mask; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_xcpt_pf_inst <= wdata_xcpt_pf_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_xcpt_gf_inst <= wdata_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_xcpt_ae_inst <= wdata_xcpt_ae_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_0_replay <= wdata_replay; // @[ShiftQueue.scala:22:25, :27:57]
end
if (wen_1) begin // @[ShiftQueue.scala:29:10]
elts_1_btb_cfiType <= wdata_1_btb_cfiType; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_btb_taken <= wdata_1_btb_taken; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_btb_mask <= wdata_1_btb_mask; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_btb_bridx <= wdata_1_btb_bridx; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_btb_target <= wdata_1_btb_target; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_btb_entry <= wdata_1_btb_entry; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_btb_bht_history <= wdata_1_btb_bht_history; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_btb_bht_value <= wdata_1_btb_bht_value; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_pc <= wdata_1_pc; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_data <= wdata_1_data; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_mask <= wdata_1_mask; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_xcpt_pf_inst <= wdata_1_xcpt_pf_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_xcpt_gf_inst <= wdata_1_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_xcpt_ae_inst <= wdata_1_xcpt_ae_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_1_replay <= wdata_1_replay; // @[ShiftQueue.scala:22:25, :27:57]
end
if (wen_2) begin // @[ShiftQueue.scala:29:10]
elts_2_btb_cfiType <= wdata_2_btb_cfiType; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_btb_taken <= wdata_2_btb_taken; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_btb_mask <= wdata_2_btb_mask; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_btb_bridx <= wdata_2_btb_bridx; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_btb_target <= wdata_2_btb_target; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_btb_entry <= wdata_2_btb_entry; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_btb_bht_history <= wdata_2_btb_bht_history; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_btb_bht_value <= wdata_2_btb_bht_value; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_pc <= wdata_2_pc; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_data <= wdata_2_data; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_mask <= wdata_2_mask; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_xcpt_pf_inst <= wdata_2_xcpt_pf_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_xcpt_gf_inst <= wdata_2_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_xcpt_ae_inst <= wdata_2_xcpt_ae_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_2_replay <= wdata_2_replay; // @[ShiftQueue.scala:22:25, :27:57]
end
if (wen_3) begin // @[ShiftQueue.scala:29:10]
elts_3_btb_cfiType <= wdata_3_btb_cfiType; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_btb_taken <= wdata_3_btb_taken; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_btb_mask <= wdata_3_btb_mask; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_btb_bridx <= wdata_3_btb_bridx; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_btb_target <= wdata_3_btb_target; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_btb_entry <= wdata_3_btb_entry; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_btb_bht_history <= wdata_3_btb_bht_history; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_btb_bht_value <= wdata_3_btb_bht_value; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_pc <= wdata_3_pc; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_data <= wdata_3_data; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_mask <= wdata_3_mask; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_xcpt_pf_inst <= wdata_3_xcpt_pf_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_xcpt_gf_inst <= wdata_3_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_xcpt_ae_inst <= wdata_3_xcpt_ae_inst; // @[ShiftQueue.scala:22:25, :27:57]
elts_3_replay <= wdata_3_replay; // @[ShiftQueue.scala:22:25, :27:57]
end
if (wen_4) begin // @[ShiftQueue.scala:29:10]
elts_4_btb_cfiType <= io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_btb_taken <= io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_btb_mask <= io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_btb_bridx <= io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_btb_target <= io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_btb_entry <= io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_btb_bht_history <= io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_btb_bht_value <= io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_pc <= io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_data <= io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_mask <= io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_xcpt_pf_inst <= io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_xcpt_ae_inst <= io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :22:25]
elts_4_replay <= io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :22:25]
end
elts_4_xcpt_gf_inst <= ~wen_4 & elts_4_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :29:10, :32:{16,26}]
always @(posedge)
assign io_enq_ready = io_enq_ready_0; // @[ShiftQueue.scala:12:7]
assign io_deq_valid = io_deq_valid_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_btb_cfiType = io_deq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_btb_taken = io_deq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_btb_mask = io_deq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_btb_bridx = io_deq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_btb_target = io_deq_bits_btb_target_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_btb_entry = io_deq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_btb_bht_history = io_deq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_btb_bht_value = io_deq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_pc = io_deq_bits_pc_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_data = io_deq_bits_data_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_mask = io_deq_bits_mask_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_xcpt_pf_inst = io_deq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_xcpt_gf_inst = io_deq_bits_xcpt_gf_inst_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_xcpt_ae_inst = io_deq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7]
assign io_deq_bits_replay = io_deq_bits_replay_0; // @[ShiftQueue.scala:12:7]
assign io_mask = io_mask_0; // @[ShiftQueue.scala:12:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_53( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7]
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_73 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_d (_output_T_1), // @[SynchronizerReg.scala:87:41]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_145( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7]
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_257 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_d (_output_T_1), // @[SynchronizerReg.scala:87:41]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Transposer.scala:
package gemmini
import chisel3._
import chisel3.util._
import Util._
trait Transposer[T <: Data] extends Module {
def dim: Int
def dataType: T
val io = IO(new Bundle {
val inRow = Flipped(Decoupled(Vec(dim, dataType)))
val outCol = Decoupled(Vec(dim, dataType))
})
}
class PipelinedTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] {
require(isPow2(dim))
val regArray = Seq.fill(dim, dim)(Reg(dataType))
val regArrayT = regArray.transpose
val sMoveUp :: sMoveLeft :: Nil = Enum(2)
val state = RegInit(sMoveUp)
val leftCounter = RegInit(0.U(log2Ceil(dim+1).W)) //(io.inRow.fire && state === sMoveLeft, dim+1)
val upCounter = RegInit(0.U(log2Ceil(dim+1).W)) //Counter(io.inRow.fire && state === sMoveUp, dim+1)
io.outCol.valid := 0.U
io.inRow.ready := 0.U
switch(state) {
is(sMoveUp) {
io.inRow.ready := upCounter <= dim.U
io.outCol.valid := leftCounter > 0.U
when(io.inRow.fire) {
upCounter := upCounter + 1.U
}
when(upCounter === (dim-1).U) {
state := sMoveLeft
leftCounter := 0.U
}
when(io.outCol.fire) {
leftCounter := leftCounter - 1.U
}
}
is(sMoveLeft) {
io.inRow.ready := leftCounter <= dim.U // TODO: this is naive
io.outCol.valid := upCounter > 0.U
when(leftCounter === (dim-1).U) {
state := sMoveUp
}
when(io.inRow.fire) {
leftCounter := leftCounter + 1.U
upCounter := 0.U
}
when(io.outCol.fire) {
upCounter := upCounter - 1.U
}
}
}
// Propagate input from bottom row to top row systolically in the move up phase
// TODO: need to iterate over columns to connect Chisel values of type T
// Should be able to operate directly on the Vec, but Seq and Vec don't mix (try Array?)
for (colIdx <- 0 until dim) {
regArray.foldRight(io.inRow.bits(colIdx)) {
case (regRow, prevReg) =>
when (state === sMoveUp) {
regRow(colIdx) := prevReg
}
regRow(colIdx)
}
}
// Propagate input from right side to left side systolically in the move left phase
for (rowIdx <- 0 until dim) {
regArrayT.foldRight(io.inRow.bits(rowIdx)) {
case (regCol, prevReg) =>
when (state === sMoveLeft) {
regCol(rowIdx) := prevReg
}
regCol(rowIdx)
}
}
// Pull from the left side or the top side based on the state
for (idx <- 0 until dim) {
when (state === sMoveUp) {
io.outCol.bits(idx) := regArray(0)(idx)
}.elsewhen(state === sMoveLeft) {
io.outCol.bits(idx) := regArrayT(0)(idx)
}.otherwise {
io.outCol.bits(idx) := DontCare
}
}
}
class AlwaysOutTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] {
require(isPow2(dim))
val LEFT_DIR = 0.U(1.W)
val UP_DIR = 1.U(1.W)
class PE extends Module {
val io = IO(new Bundle {
val inR = Input(dataType)
val inD = Input(dataType)
val outL = Output(dataType)
val outU = Output(dataType)
val dir = Input(UInt(1.W))
val en = Input(Bool())
})
val reg = RegEnable(Mux(io.dir === LEFT_DIR, io.inR, io.inD), io.en)
io.outU := reg
io.outL := reg
}
val pes = Seq.fill(dim,dim)(Module(new PE))
val counter = RegInit(0.U((log2Ceil(dim) max 1).W)) // TODO replace this with a standard Chisel counter
val dir = RegInit(LEFT_DIR)
// Wire up horizontal signals
for (row <- 0 until dim; col <- 0 until dim) {
val right_in = if (col == dim-1) io.inRow.bits(row) else pes(row)(col+1).io.outL
pes(row)(col).io.inR := right_in
}
// Wire up vertical signals
for (row <- 0 until dim; col <- 0 until dim) {
val down_in = if (row == dim-1) io.inRow.bits(col) else pes(row+1)(col).io.outU
pes(row)(col).io.inD := down_in
}
// Wire up global signals
pes.flatten.foreach(_.io.dir := dir)
pes.flatten.foreach(_.io.en := io.inRow.fire)
io.outCol.valid := true.B
io.inRow.ready := true.B
val left_out = VecInit(pes.transpose.head.map(_.io.outL))
val up_out = VecInit(pes.head.map(_.io.outU))
io.outCol.bits := Mux(dir === LEFT_DIR, left_out, up_out)
when (io.inRow.fire) {
counter := wrappingAdd(counter, 1.U, dim)
}
when (counter === (dim-1).U && io.inRow.fire) {
dir := ~dir
}
}
class NaiveTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] {
val regArray = Seq.fill(dim, dim)(Reg(dataType))
val regArrayT = regArray.transpose
// state = 0 => filling regArray row-wise, state = 1 => draining regArray column-wise
val state = RegInit(0.U(1.W))
val countInc = io.inRow.fire || io.outCol.fire
val (countValue, countWrap) = Counter(countInc, dim)
io.inRow.ready := state === 0.U
io.outCol.valid := state === 1.U
for (i <- 0 until dim) {
for (j <- 0 until dim) {
when(countValue === i.U && io.inRow.fire) {
regArray(i)(j) := io.inRow.bits(j)
}
}
}
for (i <- 0 until dim) {
io.outCol.bits(i) := 0.U
for (j <- 0 until dim) {
when(countValue === j.U) {
io.outCol.bits(i) := regArrayT(j)(i)
}
}
}
when (io.inRow.fire && countWrap) {
state := 1.U
}
when (io.outCol.fire && countWrap) {
state := 0.U
}
assert(!(state === 0.U) || !io.outCol.fire)
assert(!(state === 1.U) || !io.inRow.fire)
}
| module PE_191( // @[Transposer.scala:100:9]
input clock, // @[Transposer.scala:100:9]
input reset, // @[Transposer.scala:100:9]
input [7:0] io_inR, // @[Transposer.scala:101:16]
input [7:0] io_inD, // @[Transposer.scala:101:16]
output [7:0] io_outL, // @[Transposer.scala:101:16]
output [7:0] io_outU, // @[Transposer.scala:101:16]
input io_dir, // @[Transposer.scala:101:16]
input io_en // @[Transposer.scala:101:16]
);
wire [7:0] io_inR_0 = io_inR; // @[Transposer.scala:100:9]
wire [7:0] io_inD_0 = io_inD; // @[Transposer.scala:100:9]
wire io_dir_0 = io_dir; // @[Transposer.scala:100:9]
wire io_en_0 = io_en; // @[Transposer.scala:100:9]
wire [7:0] io_outL_0; // @[Transposer.scala:100:9]
wire [7:0] io_outU_0; // @[Transposer.scala:100:9]
wire _reg_T = ~io_dir_0; // @[Transposer.scala:100:9, :110:36]
wire [7:0] _reg_T_1 = _reg_T ? io_inR_0 : io_inD_0; // @[Transposer.scala:100:9, :110:{28,36}]
reg [7:0] reg_0; // @[Transposer.scala:110:24]
assign io_outL_0 = reg_0; // @[Transposer.scala:100:9, :110:24]
assign io_outU_0 = reg_0; // @[Transposer.scala:100:9, :110:24]
always @(posedge clock) begin // @[Transposer.scala:100:9]
if (io_en_0) // @[Transposer.scala:100:9]
reg_0 <= _reg_T_1; // @[Transposer.scala:110:{24,28}]
always @(posedge)
assign io_outL = io_outL_0; // @[Transposer.scala:100:9]
assign io_outU = io_outU_0; // @[Transposer.scala:100:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_9( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [7:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [28:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [7:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27]
wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25]
wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_29 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_31 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_35 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_37 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_53 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_55 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_59 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_61 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_65 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_67 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_71 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_73 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_79 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_81 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_85 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_87 = 1'h1; // @[Parameters.scala:57:20]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28]
wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28]
wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_first_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_first_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_first_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_first_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_set_wo_ready_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_set_wo_ready_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_opcodes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_opcodes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_sizes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_sizes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_opcodes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_opcodes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_sizes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_sizes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_probe_ack_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_probe_ack_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _c_probe_ack_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _c_probe_ack_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [28:0] _same_cycle_resp_WIRE_4_bits_address = 29'h0; // @[Bundles.scala:265:74]
wire [28:0] _same_cycle_resp_WIRE_5_bits_address = 29'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_first_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_first_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_first_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_first_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_set_wo_ready_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_set_wo_ready_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_opcodes_set_interm_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_opcodes_set_interm_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_sizes_set_interm_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_sizes_set_interm_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_opcodes_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_opcodes_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_sizes_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_sizes_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_probe_ack_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_probe_ack_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _c_probe_ack_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _c_probe_ack_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _same_cycle_resp_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _same_cycle_resp_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _same_cycle_resp_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _same_cycle_resp_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [7:0] _same_cycle_resp_WIRE_4_bits_source = 8'h0; // @[Bundles.scala:265:74]
wire [7:0] _same_cycle_resp_WIRE_5_bits_source = 8'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [2050:0] _c_opcodes_set_T_1 = 2051'h0; // @[Monitor.scala:767:54]
wire [2050:0] _c_sizes_set_T_1 = 2051'h0; // @[Monitor.scala:768:52]
wire [10:0] _c_opcodes_set_T = 11'h0; // @[Monitor.scala:767:79]
wire [10:0] _c_sizes_set_T = 11'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51]
wire [255:0] _c_set_wo_ready_T = 256'h1; // @[OneHot.scala:58:35]
wire [255:0] _c_set_T = 256'h1; // @[OneHot.scala:58:35]
wire [515:0] c_opcodes_set = 516'h0; // @[Monitor.scala:740:34]
wire [515:0] c_sizes_set = 516'h0; // @[Monitor.scala:741:34]
wire [128:0] c_set = 129'h0; // @[Monitor.scala:738:34]
wire [128:0] c_set_wo_ready = 129'h0; // @[Monitor.scala:739:34]
wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [7:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_55 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_56 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_57 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_58 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_59 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_60 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_61 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_62 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_63 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_64 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _uncommonBits_T_65 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_10 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [7:0] _source_ok_uncommonBits_T_11 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_T = io_in_a_bits_source_0 == 8'h50; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] _source_ok_T_1 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_7 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_13 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_19 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_2 = _source_ok_T_1 == 6'h10; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_8 = _source_ok_T_7 == 6'h11; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_14 = _source_ok_T_13 == 6'h12; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_20 = _source_ok_T_19 == 6'h13; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31]
wire _source_ok_T_25 = io_in_a_bits_source_0 == 8'h20; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31]
wire _source_ok_T_26 = io_in_a_bits_source_0 == 8'h21; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_6 = _source_ok_T_26; // @[Parameters.scala:1138:31]
wire [3:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _source_ok_T_27 = io_in_a_bits_source_0[7:4]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_33 = io_in_a_bits_source_0[7:4]; // @[Monitor.scala:36:7]
wire _source_ok_T_28 = _source_ok_T_27 == 4'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_30 = _source_ok_T_28; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_32 = _source_ok_T_30; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_7 = _source_ok_T_32; // @[Parameters.scala:1138:31]
wire [3:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[3:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_34 = _source_ok_T_33 == 4'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_36 = _source_ok_T_34; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_38 = _source_ok_T_36; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_8 = _source_ok_T_38; // @[Parameters.scala:1138:31]
wire _source_ok_T_39 = io_in_a_bits_source_0 == 8'h22; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_9 = _source_ok_T_39; // @[Parameters.scala:1138:31]
wire _source_ok_T_40 = io_in_a_bits_source_0 == 8'h80; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_10 = _source_ok_T_40; // @[Parameters.scala:1138:31]
wire _source_ok_T_41 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_42 = _source_ok_T_41 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_43 = _source_ok_T_42 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_44 = _source_ok_T_43 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_45 = _source_ok_T_44 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_46 = _source_ok_T_45 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_47 = _source_ok_T_46 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_48 = _source_ok_T_47 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_49 = _source_ok_T_48 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_49 | _source_ok_WIRE_10; // @[Parameters.scala:1138:31, :1139:46]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [28:0] _is_aligned_T = {23'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 29'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_4 = _uncommonBits_T_4[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_5 = _uncommonBits_T_5[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_10 = _uncommonBits_T_10[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_11 = _uncommonBits_T_11[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_16 = _uncommonBits_T_16[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_17 = _uncommonBits_T_17[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_22 = _uncommonBits_T_22[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_23 = _uncommonBits_T_23[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_28 = _uncommonBits_T_28[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_29 = _uncommonBits_T_29[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_34 = _uncommonBits_T_34[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_35 = _uncommonBits_T_35[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_40 = _uncommonBits_T_40[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_41 = _uncommonBits_T_41[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_44 = _uncommonBits_T_44[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_46 = _uncommonBits_T_46[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_47 = _uncommonBits_T_47[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_48 = _uncommonBits_T_48[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_49 = _uncommonBits_T_49[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_52 = _uncommonBits_T_52[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_53 = _uncommonBits_T_53[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_54 = _uncommonBits_T_54[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_55 = _uncommonBits_T_55[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_56 = _uncommonBits_T_56[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_57 = _uncommonBits_T_57[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_58 = _uncommonBits_T_58[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_59 = _uncommonBits_T_59[3:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_60 = _uncommonBits_T_60[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_61 = _uncommonBits_T_61[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_62 = _uncommonBits_T_62[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_63 = _uncommonBits_T_63[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_64 = _uncommonBits_T_64[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_65 = _uncommonBits_T_65[3:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_50 = io_in_d_bits_source_0 == 8'h50; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_50; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire [5:0] _source_ok_T_51 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_57 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_63 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_T_69 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_52 = _source_ok_T_51 == 6'h10; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_54 = _source_ok_T_52; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_56 = _source_ok_T_54; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_1 = _source_ok_T_56; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_58 = _source_ok_T_57 == 6'h11; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_60 = _source_ok_T_58; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_62 = _source_ok_T_60; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_2 = _source_ok_T_62; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_64 = _source_ok_T_63 == 6'h12; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_66 = _source_ok_T_64; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_68 = _source_ok_T_66; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_3 = _source_ok_T_68; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_70 = _source_ok_T_69 == 6'h13; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_72 = _source_ok_T_70; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_74 = _source_ok_T_72; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_4 = _source_ok_T_74; // @[Parameters.scala:1138:31]
wire _source_ok_T_75 = io_in_d_bits_source_0 == 8'h20; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_5 = _source_ok_T_75; // @[Parameters.scala:1138:31]
wire _source_ok_T_76 = io_in_d_bits_source_0 == 8'h21; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_6 = _source_ok_T_76; // @[Parameters.scala:1138:31]
wire [3:0] source_ok_uncommonBits_10 = _source_ok_uncommonBits_T_10[3:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _source_ok_T_77 = io_in_d_bits_source_0[7:4]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_83 = io_in_d_bits_source_0[7:4]; // @[Monitor.scala:36:7]
wire _source_ok_T_78 = _source_ok_T_77 == 4'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_80 = _source_ok_T_78; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_82 = _source_ok_T_80; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_7 = _source_ok_T_82; // @[Parameters.scala:1138:31]
wire [3:0] source_ok_uncommonBits_11 = _source_ok_uncommonBits_T_11[3:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_84 = _source_ok_T_83 == 4'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_86 = _source_ok_T_84; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_88 = _source_ok_T_86; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_8 = _source_ok_T_88; // @[Parameters.scala:1138:31]
wire _source_ok_T_89 = io_in_d_bits_source_0 == 8'h22; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_9 = _source_ok_T_89; // @[Parameters.scala:1138:31]
wire _source_ok_T_90 = io_in_d_bits_source_0 == 8'h80; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_10 = _source_ok_T_90; // @[Parameters.scala:1138:31]
wire _source_ok_T_91 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_92 = _source_ok_T_91 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_93 = _source_ok_T_92 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_94 = _source_ok_T_93 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_95 = _source_ok_T_94 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_96 = _source_ok_T_95 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_97 = _source_ok_T_96 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_98 = _source_ok_T_97 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_99 = _source_ok_T_98 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_99 | _source_ok_WIRE_1_10; // @[Parameters.scala:1138:31, :1139:46]
wire _T_1266 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1266; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1266; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [7:0] source; // @[Monitor.scala:390:22]
reg [28:0] address; // @[Monitor.scala:391:22]
wire _T_1334 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_1334; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_1334; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_1334; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [7:0] source_1; // @[Monitor.scala:541:22]
reg [128:0] inflight; // @[Monitor.scala:614:27]
reg [515:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [515:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [128:0] a_set; // @[Monitor.scala:626:34]
wire [128:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [515:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [515:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [10:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [10:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [10:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [10:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [10:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [10:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [10:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [10:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [10:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [515:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [515:0] _a_opcode_lookup_T_6 = {512'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [515:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[515:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [515:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [515:0] _a_size_lookup_T_6 = {512'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [515:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[515:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [255:0] _GEN_2 = 256'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [255:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35]
wire [255:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire _T_1199 = _T_1266 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_1199 ? _a_set_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_1199 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_1199 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [10:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [10:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79]
wire [10:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77]
wire [2050:0] _a_opcodes_set_T_1 = {2047'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_1199 ? _a_opcodes_set_T_1[515:0] : 516'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [2050:0] _a_sizes_set_T_1 = {2047'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_1199 ? _a_sizes_set_T_1[515:0] : 516'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [128:0] d_clr; // @[Monitor.scala:664:34]
wire [128:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [515:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [515:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46]
wire _T_1245 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [255:0] _GEN_5 = 256'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [255:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [255:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [255:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [255:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_1245 & ~d_release_ack ? _d_clr_wo_ready_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire _T_1214 = _T_1334 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_1214 ? _d_clr_T[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire [2062:0] _d_opcodes_clr_T_5 = 2063'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_1214 ? _d_opcodes_clr_T_5[515:0] : 516'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [2062:0] _d_sizes_clr_T_5 = 2063'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_1214 ? _d_sizes_clr_T_5[515:0] : 516'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [128:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [128:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [128:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [515:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [515:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [515:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [515:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [515:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [515:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [128:0] inflight_1; // @[Monitor.scala:726:35]
wire [128:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [515:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [515:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [515:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [515:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [515:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [515:0] _c_opcode_lookup_T_6 = {512'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [515:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[515:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [515:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [515:0] _c_size_lookup_T_6 = {512'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [515:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[515:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [128:0] d_clr_1; // @[Monitor.scala:774:34]
wire [128:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [515:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [515:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1310 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1310 & d_release_ack_1 ? _d_clr_wo_ready_T_1[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire _T_1292 = _T_1334 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_1292 ? _d_clr_T_1[128:0] : 129'h0; // @[OneHot.scala:58:35]
wire [2062:0] _d_opcodes_clr_T_11 = 2063'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_1292 ? _d_opcodes_clr_T_11[515:0] : 516'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [2062:0] _d_sizes_clr_T_11 = 2063'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_1292 ? _d_sizes_clr_T_11[515:0] : 516'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 8'h0; // @[Monitor.scala:36:7, :795:113]
wire [128:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [128:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [515:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [515:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [515:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [515:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_30( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [11:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [6:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [11:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [6:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27]
wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25]
wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_27 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_29 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_33 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_35 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_39 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_41 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_54 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_56 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_60 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_62 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_66 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_68 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_72 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_74 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_78 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_80 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_84 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_86 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_90 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_92 = 1'h1; // @[Parameters.scala:57:20]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28]
wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28]
wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_first_WIRE_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_first_WIRE_1_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_first_WIRE_2_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_first_WIRE_3_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_set_wo_ready_WIRE_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_set_wo_ready_WIRE_1_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_set_WIRE_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_set_WIRE_1_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_opcodes_set_interm_WIRE_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_opcodes_set_interm_WIRE_1_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_sizes_set_interm_WIRE_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_sizes_set_interm_WIRE_1_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_opcodes_set_WIRE_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_opcodes_set_WIRE_1_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_sizes_set_WIRE_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_sizes_set_WIRE_1_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_probe_ack_WIRE_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_probe_ack_WIRE_1_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _c_probe_ack_WIRE_2_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _c_probe_ack_WIRE_3_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _same_cycle_resp_WIRE_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _same_cycle_resp_WIRE_1_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _same_cycle_resp_WIRE_2_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _same_cycle_resp_WIRE_3_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [11:0] _same_cycle_resp_WIRE_4_bits_address = 12'h0; // @[Bundles.scala:265:74]
wire [11:0] _same_cycle_resp_WIRE_5_bits_address = 12'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_first_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_first_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_first_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_first_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_set_wo_ready_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_set_wo_ready_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_opcodes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_opcodes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_sizes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_sizes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_opcodes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_opcodes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_sizes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_sizes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_probe_ack_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_probe_ack_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _c_probe_ack_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _c_probe_ack_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [6:0] _same_cycle_resp_WIRE_4_bits_source = 7'h0; // @[Bundles.scala:265:74]
wire [6:0] _same_cycle_resp_WIRE_5_bits_source = 7'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [1026:0] _c_opcodes_set_T_1 = 1027'h0; // @[Monitor.scala:767:54]
wire [1026:0] _c_sizes_set_T_1 = 1027'h0; // @[Monitor.scala:768:52]
wire [9:0] _c_opcodes_set_T = 10'h0; // @[Monitor.scala:767:79]
wire [9:0] _c_sizes_set_T = 10'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51]
wire [127:0] _c_set_wo_ready_T = 128'h1; // @[OneHot.scala:58:35]
wire [127:0] _c_set_T = 128'h1; // @[OneHot.scala:58:35]
wire [259:0] c_opcodes_set = 260'h0; // @[Monitor.scala:740:34]
wire [259:0] c_sizes_set = 260'h0; // @[Monitor.scala:741:34]
wire [64:0] c_set = 65'h0; // @[Monitor.scala:738:34]
wire [64:0] c_set_wo_ready = 65'h0; // @[Monitor.scala:739:34]
wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [6:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_55 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_56 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_57 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_58 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_59 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_60 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_61 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_62 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_63 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_64 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_65 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_66 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_67 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_68 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_69 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_70 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_71 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_72 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_73 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_74 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_75 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _uncommonBits_T_76 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_10 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_11 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_12 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [6:0] _source_ok_uncommonBits_T_13 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_T = io_in_a_bits_source_0 == 7'h30; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_1 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_7 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_13 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_19 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_2 = _source_ok_T_1 == 5'h8; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_8 = _source_ok_T_7 == 5'h9; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_14 = _source_ok_T_13 == 5'hA; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_20 = _source_ok_T_19 == 5'hB; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[2:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _source_ok_T_25 = io_in_a_bits_source_0[6:3]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_31 = io_in_a_bits_source_0[6:3]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_37 = io_in_a_bits_source_0[6:3]; // @[Monitor.scala:36:7]
wire _source_ok_T_26 = _source_ok_T_25 == 4'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_28 = _source_ok_T_26; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_30 = _source_ok_T_28; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_5 = _source_ok_T_30; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_32 = _source_ok_T_31 == 4'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_34 = _source_ok_T_32; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_36 = _source_ok_T_34; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_6 = _source_ok_T_36; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_38 = _source_ok_T_37 == 4'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_40 = _source_ok_T_38; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_42 = _source_ok_T_40; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_7 = _source_ok_T_42; // @[Parameters.scala:1138:31]
wire _source_ok_T_43 = io_in_a_bits_source_0 == 7'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_8 = _source_ok_T_43; // @[Parameters.scala:1138:31]
wire _source_ok_T_44 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_45 = _source_ok_T_44 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_46 = _source_ok_T_45 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_47 = _source_ok_T_46 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_48 = _source_ok_T_47 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_49 = _source_ok_T_48 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_50 = _source_ok_T_49 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_50 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [11:0] _is_aligned_T = {6'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 12'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_4 = _uncommonBits_T_4[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_5 = _uncommonBits_T_5[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_6 = _uncommonBits_T_6[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_11 = _uncommonBits_T_11[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_12 = _uncommonBits_T_12[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_13 = _uncommonBits_T_13[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_18 = _uncommonBits_T_18[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_19 = _uncommonBits_T_19[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_20 = _uncommonBits_T_20[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_25 = _uncommonBits_T_25[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_26 = _uncommonBits_T_26[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_27 = _uncommonBits_T_27[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_29 = _uncommonBits_T_29[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_32 = _uncommonBits_T_32[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_33 = _uncommonBits_T_33[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_34 = _uncommonBits_T_34[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_39 = _uncommonBits_T_39[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_40 = _uncommonBits_T_40[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_41 = _uncommonBits_T_41[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_44 = _uncommonBits_T_44[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_46 = _uncommonBits_T_46[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_47 = _uncommonBits_T_47[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_48 = _uncommonBits_T_48[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_49 = _uncommonBits_T_49[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_52 = _uncommonBits_T_52[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_53 = _uncommonBits_T_53[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_54 = _uncommonBits_T_54[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_55 = _uncommonBits_T_55[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_56 = _uncommonBits_T_56[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_57 = _uncommonBits_T_57[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_58 = _uncommonBits_T_58[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_59 = _uncommonBits_T_59[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_60 = _uncommonBits_T_60[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_61 = _uncommonBits_T_61[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_62 = _uncommonBits_T_62[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_63 = _uncommonBits_T_63[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_64 = _uncommonBits_T_64[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_65 = _uncommonBits_T_65[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_66 = _uncommonBits_T_66[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_67 = _uncommonBits_T_67[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_68 = _uncommonBits_T_68[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_69 = _uncommonBits_T_69[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_70 = _uncommonBits_T_70[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_71 = _uncommonBits_T_71[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_72 = _uncommonBits_T_72[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_73 = _uncommonBits_T_73[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_74 = _uncommonBits_T_74[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_75 = _uncommonBits_T_75[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_76 = _uncommonBits_T_76[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_51 = io_in_d_bits_source_0 == 7'h30; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_51; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [4:0] _source_ok_T_52 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_58 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_64 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire [4:0] _source_ok_T_70 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_53 = _source_ok_T_52 == 5'h8; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_55 = _source_ok_T_53; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_57 = _source_ok_T_55; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_1 = _source_ok_T_57; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_59 = _source_ok_T_58 == 5'h9; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_61 = _source_ok_T_59; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_63 = _source_ok_T_61; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_2 = _source_ok_T_63; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_65 = _source_ok_T_64 == 5'hA; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_67 = _source_ok_T_65; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_69 = _source_ok_T_67; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_3 = _source_ok_T_69; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_10 = _source_ok_uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_71 = _source_ok_T_70 == 5'hB; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_73 = _source_ok_T_71; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_75 = _source_ok_T_73; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_4 = _source_ok_T_75; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_11 = _source_ok_uncommonBits_T_11[2:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _source_ok_T_76 = io_in_d_bits_source_0[6:3]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_82 = io_in_d_bits_source_0[6:3]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_88 = io_in_d_bits_source_0[6:3]; // @[Monitor.scala:36:7]
wire _source_ok_T_77 = _source_ok_T_76 == 4'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_79 = _source_ok_T_77; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_81 = _source_ok_T_79; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_5 = _source_ok_T_81; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_12 = _source_ok_uncommonBits_T_12[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_83 = _source_ok_T_82 == 4'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_85 = _source_ok_T_83; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_87 = _source_ok_T_85; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_6 = _source_ok_T_87; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_13 = _source_ok_uncommonBits_T_13[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_89 = _source_ok_T_88 == 4'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_91 = _source_ok_T_89; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_93 = _source_ok_T_91; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_7 = _source_ok_T_93; // @[Parameters.scala:1138:31]
wire _source_ok_T_94 = io_in_d_bits_source_0 == 7'h40; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_8 = _source_ok_T_94; // @[Parameters.scala:1138:31]
wire _source_ok_T_95 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_96 = _source_ok_T_95 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_97 = _source_ok_T_96 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_98 = _source_ok_T_97 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_99 = _source_ok_T_98 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_100 = _source_ok_T_99 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_101 = _source_ok_T_100 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_101 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46]
wire _T_1259 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1259; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1259; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [6:0] source; // @[Monitor.scala:390:22]
reg [11:0] address; // @[Monitor.scala:391:22]
wire _T_1327 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_1327; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_1327; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_1327; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [6:0] source_1; // @[Monitor.scala:541:22]
reg [64:0] inflight; // @[Monitor.scala:614:27]
reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [259:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [64:0] a_set; // @[Monitor.scala:626:34]
wire [64:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [259:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [259:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [9:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [9:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [9:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [9:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [9:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [9:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [9:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [9:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [9:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [259:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [259:0] _a_opcode_lookup_T_6 = {256'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [259:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [259:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [259:0] _a_size_lookup_T_6 = {256'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [259:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[259:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [127:0] _GEN_2 = 128'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [127:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35]
wire [127:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1192 = _T_1259 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_1192 ? _a_set_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_1192 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_1192 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [9:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [9:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79]
wire [9:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77]
wire [1026:0] _a_opcodes_set_T_1 = {1023'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_1192 ? _a_opcodes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [1026:0] _a_sizes_set_T_1 = {1023'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_1192 ? _a_sizes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [64:0] d_clr; // @[Monitor.scala:664:34]
wire [64:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [259:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [259:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46]
wire _T_1238 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [127:0] _GEN_5 = 128'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [127:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_1238 & ~d_release_ack ? _d_clr_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1207 = _T_1327 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_1207 ? _d_clr_T[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [1038:0] _d_opcodes_clr_T_5 = 1039'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_1207 ? _d_opcodes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [1038:0] _d_sizes_clr_T_5 = 1039'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_1207 ? _d_sizes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [64:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [64:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [64:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [259:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [259:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [259:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [259:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [259:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [259:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [64:0] inflight_1; // @[Monitor.scala:726:35]
wire [64:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [259:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [259:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [259:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [259:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [259:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [259:0] _c_opcode_lookup_T_6 = {256'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [259:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [259:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [259:0] _c_size_lookup_T_6 = {256'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [259:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[259:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [64:0] d_clr_1; // @[Monitor.scala:774:34]
wire [64:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [259:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [259:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1303 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1303 & d_release_ack_1 ? _d_clr_wo_ready_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire _T_1285 = _T_1327 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_1285 ? _d_clr_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35]
wire [1038:0] _d_opcodes_clr_T_11 = 1039'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_1285 ? _d_opcodes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [1038:0] _d_sizes_clr_T_11 = 1039'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_1285 ? _d_sizes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 7'h0; // @[Monitor.scala:36:7, :795:113]
wire [64:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [64:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [259:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [259:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [259:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [259:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v3.common.{MicroOp}
import boom.v3.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v3.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U}
def apply(ip: UInt, isel: UInt): SInt = {
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0).asSInt
}
}
/**
* Object to get the FP rounding mode out of a packed immediate.
*/
object ImmGenRm { def apply(ip: UInt): UInt = { return ip(2,0) } }
/**
* Object to get the FP function fype from a packed immediate.
* Note: only works if !(IS_B or IS_S)
*/
object ImmGenTyp { def apply(ip: UInt): UInt = { return ip(9,8) } }
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v3.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v3.common.MicroOp => Bool = u => true.B, flow: Boolean = true)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v3.common.BoomModule()(p)
with boom.v3.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire)
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B //!IsKilledByBranch(io.brupdate, io.enq.bits.uop)
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value) && !IsKilledByBranch(io.brupdate, out.uop) && !(io.flush && flush_fn(out.uop))
io.deq.bits := out
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, out.uop)
// For flow queue behavior.
if (flow) {
when (io.empty) {
io.deq.valid := io.enq.valid //&& !IsKilledByBranch(io.brupdate, io.enq.bits.uop)
io.deq.bits := io.enq.bits
io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
do_deq := false.B
when (io.deq.ready) { do_enq := false.B }
}
}
private val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
File consts.scala:
//******************************************************************************
// Copyright (c) 2011 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Constants
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v3.common.constants
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util.Str
import freechips.rocketchip.rocket.RVCExpander
/**
* Mixin for issue queue types
*/
trait IQType
{
val IQT_SZ = 3
val IQT_INT = 1.U(IQT_SZ.W)
val IQT_MEM = 2.U(IQT_SZ.W)
val IQT_FP = 4.U(IQT_SZ.W)
val IQT_MFP = 6.U(IQT_SZ.W)
}
/**
* Mixin for scalar operation constants
*/
trait ScalarOpConstants
{
val X = BitPat("b?")
val Y = BitPat("b1")
val N = BitPat("b0")
//************************************
// Extra Constants
// Which branch predictor predicted us
val BSRC_SZ = 2
val BSRC_1 = 0.U(BSRC_SZ.W) // 1-cycle branch pred
val BSRC_2 = 1.U(BSRC_SZ.W) // 2-cycle branch pred
val BSRC_3 = 2.U(BSRC_SZ.W) // 3-cycle branch pred
val BSRC_C = 3.U(BSRC_SZ.W) // core branch resolution
//************************************
// Control Signals
// CFI types
val CFI_SZ = 3
val CFI_X = 0.U(CFI_SZ.W) // Not a CFI instruction
val CFI_BR = 1.U(CFI_SZ.W) // Branch
val CFI_JAL = 2.U(CFI_SZ.W) // JAL
val CFI_JALR = 3.U(CFI_SZ.W) // JALR
// PC Select Signal
val PC_PLUS4 = 0.U(2.W) // PC + 4
val PC_BRJMP = 1.U(2.W) // brjmp_target
val PC_JALR = 2.U(2.W) // jump_reg_target
// Branch Type
val BR_N = 0.U(4.W) // Next
val BR_NE = 1.U(4.W) // Branch on NotEqual
val BR_EQ = 2.U(4.W) // Branch on Equal
val BR_GE = 3.U(4.W) // Branch on Greater/Equal
val BR_GEU = 4.U(4.W) // Branch on Greater/Equal Unsigned
val BR_LT = 5.U(4.W) // Branch on Less Than
val BR_LTU = 6.U(4.W) // Branch on Less Than Unsigned
val BR_J = 7.U(4.W) // Jump
val BR_JR = 8.U(4.W) // Jump Register
// RS1 Operand Select Signal
val OP1_RS1 = 0.U(2.W) // Register Source #1
val OP1_ZERO= 1.U(2.W)
val OP1_PC = 2.U(2.W)
val OP1_X = BitPat("b??")
// RS2 Operand Select Signal
val OP2_RS2 = 0.U(3.W) // Register Source #2
val OP2_IMM = 1.U(3.W) // immediate
val OP2_ZERO= 2.U(3.W) // constant 0
val OP2_NEXT= 3.U(3.W) // constant 2/4 (for PC+2/4)
val OP2_IMMC= 4.U(3.W) // for CSR imm found in RS1
val OP2_X = BitPat("b???")
// Register File Write Enable Signal
val REN_0 = false.B
val REN_1 = true.B
// Is 32b Word or 64b Doubldword?
val SZ_DW = 1
val DW_X = true.B // Bool(xLen==64)
val DW_32 = false.B
val DW_64 = true.B
val DW_XPR = true.B // Bool(xLen==64)
// Memory Enable Signal
val MEN_0 = false.B
val MEN_1 = true.B
val MEN_X = false.B
// Immediate Extend Select
val IS_I = 0.U(3.W) // I-Type (LD,ALU)
val IS_S = 1.U(3.W) // S-Type (ST)
val IS_B = 2.U(3.W) // SB-Type (BR)
val IS_U = 3.U(3.W) // U-Type (LUI/AUIPC)
val IS_J = 4.U(3.W) // UJ-Type (J/JAL)
val IS_X = BitPat("b???")
// Decode Stage Control Signals
val RT_FIX = 0.U(2.W)
val RT_FLT = 1.U(2.W)
val RT_PAS = 3.U(2.W) // pass-through (prs1 := lrs1, etc)
val RT_X = 2.U(2.W) // not-a-register (but shouldn't get a busy-bit, etc.)
// TODO rename RT_NAR
// Micro-op opcodes
// TODO change micro-op opcodes into using enum
val UOPC_SZ = 7
val uopX = BitPat.dontCare(UOPC_SZ)
val uopNOP = 0.U(UOPC_SZ.W)
val uopLD = 1.U(UOPC_SZ.W)
val uopSTA = 2.U(UOPC_SZ.W) // store address generation
val uopSTD = 3.U(UOPC_SZ.W) // store data generation
val uopLUI = 4.U(UOPC_SZ.W)
val uopADDI = 5.U(UOPC_SZ.W)
val uopANDI = 6.U(UOPC_SZ.W)
val uopORI = 7.U(UOPC_SZ.W)
val uopXORI = 8.U(UOPC_SZ.W)
val uopSLTI = 9.U(UOPC_SZ.W)
val uopSLTIU= 10.U(UOPC_SZ.W)
val uopSLLI = 11.U(UOPC_SZ.W)
val uopSRAI = 12.U(UOPC_SZ.W)
val uopSRLI = 13.U(UOPC_SZ.W)
val uopSLL = 14.U(UOPC_SZ.W)
val uopADD = 15.U(UOPC_SZ.W)
val uopSUB = 16.U(UOPC_SZ.W)
val uopSLT = 17.U(UOPC_SZ.W)
val uopSLTU = 18.U(UOPC_SZ.W)
val uopAND = 19.U(UOPC_SZ.W)
val uopOR = 20.U(UOPC_SZ.W)
val uopXOR = 21.U(UOPC_SZ.W)
val uopSRA = 22.U(UOPC_SZ.W)
val uopSRL = 23.U(UOPC_SZ.W)
val uopBEQ = 24.U(UOPC_SZ.W)
val uopBNE = 25.U(UOPC_SZ.W)
val uopBGE = 26.U(UOPC_SZ.W)
val uopBGEU = 27.U(UOPC_SZ.W)
val uopBLT = 28.U(UOPC_SZ.W)
val uopBLTU = 29.U(UOPC_SZ.W)
val uopCSRRW= 30.U(UOPC_SZ.W)
val uopCSRRS= 31.U(UOPC_SZ.W)
val uopCSRRC= 32.U(UOPC_SZ.W)
val uopCSRRWI=33.U(UOPC_SZ.W)
val uopCSRRSI=34.U(UOPC_SZ.W)
val uopCSRRCI=35.U(UOPC_SZ.W)
val uopJ = 36.U(UOPC_SZ.W)
val uopJAL = 37.U(UOPC_SZ.W)
val uopJALR = 38.U(UOPC_SZ.W)
val uopAUIPC= 39.U(UOPC_SZ.W)
//val uopSRET = 40.U(UOPC_SZ.W)
val uopCFLSH= 41.U(UOPC_SZ.W)
val uopFENCE= 42.U(UOPC_SZ.W)
val uopADDIW= 43.U(UOPC_SZ.W)
val uopADDW = 44.U(UOPC_SZ.W)
val uopSUBW = 45.U(UOPC_SZ.W)
val uopSLLIW= 46.U(UOPC_SZ.W)
val uopSLLW = 47.U(UOPC_SZ.W)
val uopSRAIW= 48.U(UOPC_SZ.W)
val uopSRAW = 49.U(UOPC_SZ.W)
val uopSRLIW= 50.U(UOPC_SZ.W)
val uopSRLW = 51.U(UOPC_SZ.W)
val uopMUL = 52.U(UOPC_SZ.W)
val uopMULH = 53.U(UOPC_SZ.W)
val uopMULHU= 54.U(UOPC_SZ.W)
val uopMULHSU=55.U(UOPC_SZ.W)
val uopMULW = 56.U(UOPC_SZ.W)
val uopDIV = 57.U(UOPC_SZ.W)
val uopDIVU = 58.U(UOPC_SZ.W)
val uopREM = 59.U(UOPC_SZ.W)
val uopREMU = 60.U(UOPC_SZ.W)
val uopDIVW = 61.U(UOPC_SZ.W)
val uopDIVUW= 62.U(UOPC_SZ.W)
val uopREMW = 63.U(UOPC_SZ.W)
val uopREMUW= 64.U(UOPC_SZ.W)
val uopFENCEI = 65.U(UOPC_SZ.W)
// = 66.U(UOPC_SZ.W)
val uopAMO_AG = 67.U(UOPC_SZ.W) // AMO-address gen (use normal STD for datagen)
val uopFMV_W_X = 68.U(UOPC_SZ.W)
val uopFMV_D_X = 69.U(UOPC_SZ.W)
val uopFMV_X_W = 70.U(UOPC_SZ.W)
val uopFMV_X_D = 71.U(UOPC_SZ.W)
val uopFSGNJ_S = 72.U(UOPC_SZ.W)
val uopFSGNJ_D = 73.U(UOPC_SZ.W)
val uopFCVT_S_D = 74.U(UOPC_SZ.W)
val uopFCVT_D_S = 75.U(UOPC_SZ.W)
val uopFCVT_S_X = 76.U(UOPC_SZ.W)
val uopFCVT_D_X = 77.U(UOPC_SZ.W)
val uopFCVT_X_S = 78.U(UOPC_SZ.W)
val uopFCVT_X_D = 79.U(UOPC_SZ.W)
val uopCMPR_S = 80.U(UOPC_SZ.W)
val uopCMPR_D = 81.U(UOPC_SZ.W)
val uopFCLASS_S = 82.U(UOPC_SZ.W)
val uopFCLASS_D = 83.U(UOPC_SZ.W)
val uopFMINMAX_S = 84.U(UOPC_SZ.W)
val uopFMINMAX_D = 85.U(UOPC_SZ.W)
// = 86.U(UOPC_SZ.W)
val uopFADD_S = 87.U(UOPC_SZ.W)
val uopFSUB_S = 88.U(UOPC_SZ.W)
val uopFMUL_S = 89.U(UOPC_SZ.W)
val uopFADD_D = 90.U(UOPC_SZ.W)
val uopFSUB_D = 91.U(UOPC_SZ.W)
val uopFMUL_D = 92.U(UOPC_SZ.W)
val uopFMADD_S = 93.U(UOPC_SZ.W)
val uopFMSUB_S = 94.U(UOPC_SZ.W)
val uopFNMADD_S = 95.U(UOPC_SZ.W)
val uopFNMSUB_S = 96.U(UOPC_SZ.W)
val uopFMADD_D = 97.U(UOPC_SZ.W)
val uopFMSUB_D = 98.U(UOPC_SZ.W)
val uopFNMADD_D = 99.U(UOPC_SZ.W)
val uopFNMSUB_D = 100.U(UOPC_SZ.W)
val uopFDIV_S = 101.U(UOPC_SZ.W)
val uopFDIV_D = 102.U(UOPC_SZ.W)
val uopFSQRT_S = 103.U(UOPC_SZ.W)
val uopFSQRT_D = 104.U(UOPC_SZ.W)
val uopWFI = 105.U(UOPC_SZ.W) // pass uop down the CSR pipeline
val uopERET = 106.U(UOPC_SZ.W) // pass uop down the CSR pipeline, also is ERET
val uopSFENCE = 107.U(UOPC_SZ.W)
val uopROCC = 108.U(UOPC_SZ.W)
val uopMOV = 109.U(UOPC_SZ.W) // conditional mov decoded from "add rd, x0, rs2"
// The Bubble Instruction (Machine generated NOP)
// Insert (XOR x0,x0,x0) which is different from software compiler
// generated NOPs which are (ADDI x0, x0, 0).
// Reasoning for this is to let visualizers and stat-trackers differentiate
// between software NOPs and machine-generated Bubbles in the pipeline.
val BUBBLE = (0x4033).U(32.W)
def NullMicroOp()(implicit p: Parameters): boom.v3.common.MicroOp = {
val uop = Wire(new boom.v3.common.MicroOp)
uop := DontCare // Overridden in the following lines
uop.uopc := uopNOP // maybe not required, but helps on asserts that try to catch spurious behavior
uop.bypassable := false.B
uop.fp_val := false.B
uop.uses_stq := false.B
uop.uses_ldq := false.B
uop.pdst := 0.U
uop.dst_rtype := RT_X
val cs = Wire(new boom.v3.common.CtrlSignals())
cs := DontCare // Overridden in the following lines
cs.br_type := BR_N
cs.csr_cmd := freechips.rocketchip.rocket.CSR.N
cs.is_load := false.B
cs.is_sta := false.B
cs.is_std := false.B
uop.ctrl := cs
uop
}
}
/**
* Mixin for RISCV constants
*/
trait RISCVConstants
{
// abstract out instruction decode magic numbers
val RD_MSB = 11
val RD_LSB = 7
val RS1_MSB = 19
val RS1_LSB = 15
val RS2_MSB = 24
val RS2_LSB = 20
val RS3_MSB = 31
val RS3_LSB = 27
val CSR_ADDR_MSB = 31
val CSR_ADDR_LSB = 20
val CSR_ADDR_SZ = 12
// location of the fifth bit in the shamt (for checking for illegal ops for SRAIW,etc.)
val SHAMT_5_BIT = 25
val LONGEST_IMM_SZ = 20
val X0 = 0.U
val RA = 1.U // return address register
// memory consistency model
// The C/C++ atomics MCM requires that two loads to the same address maintain program order.
// The Cortex A9 does NOT enforce load/load ordering (which leads to buggy behavior).
val MCM_ORDER_DEPENDENT_LOADS = true
val jal_opc = (0x6f).U
val jalr_opc = (0x67).U
def GetUop(inst: UInt): UInt = inst(6,0)
def GetRd (inst: UInt): UInt = inst(RD_MSB,RD_LSB)
def GetRs1(inst: UInt): UInt = inst(RS1_MSB,RS1_LSB)
def ExpandRVC(inst: UInt)(implicit p: Parameters): UInt = {
val rvc_exp = Module(new RVCExpander)
rvc_exp.io.in := inst
Mux(rvc_exp.io.rvc, rvc_exp.io.out.bits, inst)
}
// Note: Accepts only EXPANDED rvc instructions
def ComputeBranchTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = {
val b_imm32 = Cat(Fill(20,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
((pc.asSInt + b_imm32.asSInt).asSInt & (-2).S).asUInt
}
// Note: Accepts only EXPANDED rvc instructions
def ComputeJALTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = {
val j_imm32 = Cat(Fill(12,inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
((pc.asSInt + j_imm32.asSInt).asSInt & (-2).S).asUInt
}
// Note: Accepts only EXPANDED rvc instructions
def GetCfiType(inst: UInt)(implicit p: Parameters): UInt = {
val bdecode = Module(new boom.v3.exu.BranchDecode)
bdecode.io.inst := inst
bdecode.io.pc := 0.U
bdecode.io.out.cfi_type
}
}
/**
* Mixin for exception cause constants
*/
trait ExcCauseConstants
{
// a memory disambigious misspeculation occurred
val MINI_EXCEPTION_MEM_ORDERING = 16.U
val MINI_EXCEPTION_CSR_REPLAY = 17.U
require (!freechips.rocketchip.rocket.Causes.all.contains(16))
require (!freechips.rocketchip.rocket.Causes.all.contains(17))
}
File issue-slot.scala:
//******************************************************************************
// Copyright (c) 2015 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Issue Slot Logic
//--------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Note: stores (and AMOs) are "broken down" into 2 uops, but stored within a single issue-slot.
// TODO XXX make a separate issueSlot for MemoryIssueSlots, and only they break apart stores.
// TODO Disable ldspec for FP queue.
package boom.v3.exu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import boom.v3.common._
import boom.v3.util._
import FUConstants._
/**
* IO bundle to interact with Issue slot
*
* @param numWakeupPorts number of wakeup ports for the slot
*/
class IssueSlotIO(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomBundle
{
val valid = Output(Bool())
val will_be_valid = Output(Bool()) // TODO code review, do we need this signal so explicitely?
val request = Output(Bool())
val request_hp = Output(Bool())
val grant = Input(Bool())
val brupdate = Input(new BrUpdateInfo())
val kill = Input(Bool()) // pipeline flush
val clear = Input(Bool()) // entry being moved elsewhere (not mutually exclusive with grant)
val ldspec_miss = Input(Bool()) // Previous cycle's speculative load wakeup was mispredicted.
val wakeup_ports = Flipped(Vec(numWakeupPorts, Valid(new IqWakeup(maxPregSz))))
val pred_wakeup_port = Flipped(Valid(UInt(log2Ceil(ftqSz).W)))
val spec_ld_wakeup = Flipped(Vec(memWidth, Valid(UInt(width=maxPregSz.W))))
val in_uop = Flipped(Valid(new MicroOp())) // if valid, this WILL overwrite an entry!
val out_uop = Output(new MicroOp()) // the updated slot uop; will be shifted upwards in a collasping queue.
val uop = Output(new MicroOp()) // the current Slot's uop. Sent down the pipeline when issued.
val debug = {
val result = new Bundle {
val p1 = Bool()
val p2 = Bool()
val p3 = Bool()
val ppred = Bool()
val state = UInt(width=2.W)
}
Output(result)
}
}
/**
* Single issue slot. Holds a uop within the issue queue
*
* @param numWakeupPorts number of wakeup ports
*/
class IssueSlot(val numWakeupPorts: Int)(implicit p: Parameters)
extends BoomModule
with IssueUnitConstants
{
val io = IO(new IssueSlotIO(numWakeupPorts))
// slot invalid?
// slot is valid, holding 1 uop
// slot is valid, holds 2 uops (like a store)
def is_invalid = state === s_invalid
def is_valid = state =/= s_invalid
val next_state = Wire(UInt()) // the next state of this slot (which might then get moved to a new slot)
val next_uopc = Wire(UInt()) // the next uopc of this slot (which might then get moved to a new slot)
val next_lrs1_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot)
val next_lrs2_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot)
val state = RegInit(s_invalid)
val p1 = RegInit(false.B)
val p2 = RegInit(false.B)
val p3 = RegInit(false.B)
val ppred = RegInit(false.B)
// Poison if woken up by speculative load.
// Poison lasts 1 cycle (as ldMiss will come on the next cycle).
// SO if poisoned is true, set it to false!
val p1_poisoned = RegInit(false.B)
val p2_poisoned = RegInit(false.B)
p1_poisoned := false.B
p2_poisoned := false.B
val next_p1_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p1_poisoned, p1_poisoned)
val next_p2_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p2_poisoned, p2_poisoned)
val slot_uop = RegInit(NullMicroOp)
val next_uop = Mux(io.in_uop.valid, io.in_uop.bits, slot_uop)
//-----------------------------------------------------------------------------
// next slot state computation
// compute the next state for THIS entry slot (in a collasping queue, the
// current uop may get moved elsewhere, and a new uop can enter
when (io.kill) {
state := s_invalid
} .elsewhen (io.in_uop.valid) {
state := io.in_uop.bits.iw_state
} .elsewhen (io.clear) {
state := s_invalid
} .otherwise {
state := next_state
}
//-----------------------------------------------------------------------------
// "update" state
// compute the next state for the micro-op in this slot. This micro-op may
// be moved elsewhere, so the "next_state" travels with it.
// defaults
next_state := state
next_uopc := slot_uop.uopc
next_lrs1_rtype := slot_uop.lrs1_rtype
next_lrs2_rtype := slot_uop.lrs2_rtype
when (io.kill) {
next_state := s_invalid
} .elsewhen ((io.grant && (state === s_valid_1)) ||
(io.grant && (state === s_valid_2) && p1 && p2 && ppred)) {
// try to issue this uop.
when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) {
next_state := s_invalid
}
} .elsewhen (io.grant && (state === s_valid_2)) {
when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) {
next_state := s_valid_1
when (p1) {
slot_uop.uopc := uopSTD
next_uopc := uopSTD
slot_uop.lrs1_rtype := RT_X
next_lrs1_rtype := RT_X
} .otherwise {
slot_uop.lrs2_rtype := RT_X
next_lrs2_rtype := RT_X
}
}
}
when (io.in_uop.valid) {
slot_uop := io.in_uop.bits
assert (is_invalid || io.clear || io.kill, "trying to overwrite a valid issue slot.")
}
// Wakeup Compare Logic
// these signals are the "next_p*" for the current slot's micro-op.
// they are important for shifting the current slot_uop up to an other entry.
val next_p1 = WireInit(p1)
val next_p2 = WireInit(p2)
val next_p3 = WireInit(p3)
val next_ppred = WireInit(ppred)
when (io.in_uop.valid) {
p1 := !(io.in_uop.bits.prs1_busy)
p2 := !(io.in_uop.bits.prs2_busy)
p3 := !(io.in_uop.bits.prs3_busy)
ppred := !(io.in_uop.bits.ppred_busy)
}
when (io.ldspec_miss && next_p1_poisoned) {
assert(next_uop.prs1 =/= 0.U, "Poison bit can't be set for prs1=x0!")
p1 := false.B
}
when (io.ldspec_miss && next_p2_poisoned) {
assert(next_uop.prs2 =/= 0.U, "Poison bit can't be set for prs2=x0!")
p2 := false.B
}
for (i <- 0 until numWakeupPorts) {
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs1)) {
p1 := true.B
}
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs2)) {
p2 := true.B
}
when (io.wakeup_ports(i).valid &&
(io.wakeup_ports(i).bits.pdst === next_uop.prs3)) {
p3 := true.B
}
}
when (io.pred_wakeup_port.valid && io.pred_wakeup_port.bits === next_uop.ppred) {
ppred := true.B
}
for (w <- 0 until memWidth) {
assert (!(io.spec_ld_wakeup(w).valid && io.spec_ld_wakeup(w).bits === 0.U),
"Loads to x0 should never speculatively wakeup other instructions")
}
// TODO disable if FP IQ.
for (w <- 0 until memWidth) {
when (io.spec_ld_wakeup(w).valid &&
io.spec_ld_wakeup(w).bits === next_uop.prs1 &&
next_uop.lrs1_rtype === RT_FIX) {
p1 := true.B
p1_poisoned := true.B
assert (!next_p1_poisoned)
}
when (io.spec_ld_wakeup(w).valid &&
io.spec_ld_wakeup(w).bits === next_uop.prs2 &&
next_uop.lrs2_rtype === RT_FIX) {
p2 := true.B
p2_poisoned := true.B
assert (!next_p2_poisoned)
}
}
// Handle branch misspeculations
val next_br_mask = GetNewBrMask(io.brupdate, slot_uop)
// was this micro-op killed by a branch? if yes, we can't let it be valid if
// we compact it into an other entry
when (IsKilledByBranch(io.brupdate, slot_uop)) {
next_state := s_invalid
}
when (!io.in_uop.valid) {
slot_uop.br_mask := next_br_mask
}
//-------------------------------------------------------------
// Request Logic
io.request := is_valid && p1 && p2 && p3 && ppred && !io.kill
val high_priority = slot_uop.is_br || slot_uop.is_jal || slot_uop.is_jalr
io.request_hp := io.request && high_priority
when (state === s_valid_1) {
io.request := p1 && p2 && p3 && ppred && !io.kill
} .elsewhen (state === s_valid_2) {
io.request := (p1 || p2) && ppred && !io.kill
} .otherwise {
io.request := false.B
}
//assign outputs
io.valid := is_valid
io.uop := slot_uop
io.uop.iw_p1_poisoned := p1_poisoned
io.uop.iw_p2_poisoned := p2_poisoned
// micro-op will vacate due to grant.
val may_vacate = io.grant && ((state === s_valid_1) || (state === s_valid_2) && p1 && p2 && ppred)
val squash_grant = io.ldspec_miss && (p1_poisoned || p2_poisoned)
io.will_be_valid := is_valid && !(may_vacate && !squash_grant)
io.out_uop := slot_uop
io.out_uop.iw_state := next_state
io.out_uop.uopc := next_uopc
io.out_uop.lrs1_rtype := next_lrs1_rtype
io.out_uop.lrs2_rtype := next_lrs2_rtype
io.out_uop.br_mask := next_br_mask
io.out_uop.prs1_busy := !p1
io.out_uop.prs2_busy := !p2
io.out_uop.prs3_busy := !p3
io.out_uop.ppred_busy := !ppred
io.out_uop.iw_p1_poisoned := p1_poisoned
io.out_uop.iw_p2_poisoned := p2_poisoned
when (state === s_valid_2) {
when (p1 && p2 && ppred) {
; // send out the entire instruction as one uop
} .elsewhen (p1 && ppred) {
io.uop.uopc := slot_uop.uopc
io.uop.lrs2_rtype := RT_X
} .elsewhen (p2 && ppred) {
io.uop.uopc := uopSTD
io.uop.lrs1_rtype := RT_X
}
}
// debug outputs
io.debug.p1 := p1
io.debug.p2 := p2
io.debug.p3 := p3
io.debug.ppred := ppred
io.debug.state := state
}
| module IssueSlot_67( // @[issue-slot.scala:69:7]
input clock, // @[issue-slot.scala:69:7]
input reset, // @[issue-slot.scala:69:7]
output io_valid, // @[issue-slot.scala:73:14]
output io_will_be_valid, // @[issue-slot.scala:73:14]
output io_request, // @[issue-slot.scala:73:14]
output io_request_hp, // @[issue-slot.scala:73:14]
input io_grant, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b1_resolve_mask, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b1_mispredict_mask, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_uopc, // @[issue-slot.scala:73:14]
input [31:0] io_brupdate_b2_uop_inst, // @[issue-slot.scala:73:14]
input [31:0] io_brupdate_b2_uop_debug_inst, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_rvc, // @[issue-slot.scala:73:14]
input [39:0] io_brupdate_b2_uop_debug_pc, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_iq_type, // @[issue-slot.scala:73:14]
input [9:0] io_brupdate_b2_uop_fu_code, // @[issue-slot.scala:73:14]
input [3:0] io_brupdate_b2_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_iw_state, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_br, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_jalr, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_jal, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_sfb, // @[issue-slot.scala:73:14]
input [15:0] io_brupdate_b2_uop_br_mask, // @[issue-slot.scala:73:14]
input [3:0] io_brupdate_b2_uop_br_tag, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ftq_idx, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_edge_inst, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_pc_lob, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_taken, // @[issue-slot.scala:73:14]
input [19:0] io_brupdate_b2_uop_imm_packed, // @[issue-slot.scala:73:14]
input [11:0] io_brupdate_b2_uop_csr_addr, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_rob_idx, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ldq_idx, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_stq_idx, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_rxq_idx, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_pdst, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs1, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs2, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_prs3, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_ppred, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs1_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs2_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_prs3_busy, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ppred_busy, // @[issue-slot.scala:73:14]
input [6:0] io_brupdate_b2_uop_stale_pdst, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_exception, // @[issue-slot.scala:73:14]
input [63:0] io_brupdate_b2_uop_exc_cause, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bypassable, // @[issue-slot.scala:73:14]
input [4:0] io_brupdate_b2_uop_mem_cmd, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_mem_size, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_mem_signed, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_fence, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_fencei, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_amo, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_uses_ldq, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_uses_stq, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_is_unique, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_flush_on_commit, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_ldst, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs1, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs2, // @[issue-slot.scala:73:14]
input [5:0] io_brupdate_b2_uop_lrs3, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_ldst_val, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_dst_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_frs3_en, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_fp_val, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_fp_single, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bp_debug_if, // @[issue-slot.scala:73:14]
input io_brupdate_b2_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_debug_fsrc, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_uop_debug_tsrc, // @[issue-slot.scala:73:14]
input io_brupdate_b2_valid, // @[issue-slot.scala:73:14]
input io_brupdate_b2_mispredict, // @[issue-slot.scala:73:14]
input io_brupdate_b2_taken, // @[issue-slot.scala:73:14]
input [2:0] io_brupdate_b2_cfi_type, // @[issue-slot.scala:73:14]
input [1:0] io_brupdate_b2_pc_sel, // @[issue-slot.scala:73:14]
input [39:0] io_brupdate_b2_jalr_target, // @[issue-slot.scala:73:14]
input [20:0] io_brupdate_b2_target_offset, // @[issue-slot.scala:73:14]
input io_kill, // @[issue-slot.scala:73:14]
input io_clear, // @[issue-slot.scala:73:14]
input io_ldspec_miss, // @[issue-slot.scala:73:14]
input io_wakeup_ports_0_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_0_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_0_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_1_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_1_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_1_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_2_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_2_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_2_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_3_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_3_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_3_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_4_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_4_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_4_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_5_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_5_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_5_bits_poisoned, // @[issue-slot.scala:73:14]
input io_wakeup_ports_6_valid, // @[issue-slot.scala:73:14]
input [6:0] io_wakeup_ports_6_bits_pdst, // @[issue-slot.scala:73:14]
input io_wakeup_ports_6_bits_poisoned, // @[issue-slot.scala:73:14]
input io_spec_ld_wakeup_0_valid, // @[issue-slot.scala:73:14]
input [6:0] io_spec_ld_wakeup_0_bits, // @[issue-slot.scala:73:14]
input io_in_uop_valid, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_uopc, // @[issue-slot.scala:73:14]
input [31:0] io_in_uop_bits_inst, // @[issue-slot.scala:73:14]
input [31:0] io_in_uop_bits_debug_inst, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_rvc, // @[issue-slot.scala:73:14]
input [39:0] io_in_uop_bits_debug_pc, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_iq_type, // @[issue-slot.scala:73:14]
input [9:0] io_in_uop_bits_fu_code, // @[issue-slot.scala:73:14]
input [3:0] io_in_uop_bits_ctrl_br_type, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_ctrl_op1_sel, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_op2_sel, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_imm_sel, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ctrl_op_fcn, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
input [2:0] io_in_uop_bits_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_load, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_sta, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ctrl_is_std, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_iw_state, // @[issue-slot.scala:73:14]
input io_in_uop_bits_iw_p1_poisoned, // @[issue-slot.scala:73:14]
input io_in_uop_bits_iw_p2_poisoned, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_br, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_jalr, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_jal, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_sfb, // @[issue-slot.scala:73:14]
input [15:0] io_in_uop_bits_br_mask, // @[issue-slot.scala:73:14]
input [3:0] io_in_uop_bits_br_tag, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ftq_idx, // @[issue-slot.scala:73:14]
input io_in_uop_bits_edge_inst, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_pc_lob, // @[issue-slot.scala:73:14]
input io_in_uop_bits_taken, // @[issue-slot.scala:73:14]
input [19:0] io_in_uop_bits_imm_packed, // @[issue-slot.scala:73:14]
input [11:0] io_in_uop_bits_csr_addr, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_rob_idx, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ldq_idx, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_stq_idx, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_rxq_idx, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_pdst, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs1, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs2, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_prs3, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_ppred, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs1_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs2_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_prs3_busy, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ppred_busy, // @[issue-slot.scala:73:14]
input [6:0] io_in_uop_bits_stale_pdst, // @[issue-slot.scala:73:14]
input io_in_uop_bits_exception, // @[issue-slot.scala:73:14]
input [63:0] io_in_uop_bits_exc_cause, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bypassable, // @[issue-slot.scala:73:14]
input [4:0] io_in_uop_bits_mem_cmd, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_mem_size, // @[issue-slot.scala:73:14]
input io_in_uop_bits_mem_signed, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_fence, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_fencei, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_amo, // @[issue-slot.scala:73:14]
input io_in_uop_bits_uses_ldq, // @[issue-slot.scala:73:14]
input io_in_uop_bits_uses_stq, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_sys_pc2epc, // @[issue-slot.scala:73:14]
input io_in_uop_bits_is_unique, // @[issue-slot.scala:73:14]
input io_in_uop_bits_flush_on_commit, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ldst_is_rs1, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_ldst, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs1, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs2, // @[issue-slot.scala:73:14]
input [5:0] io_in_uop_bits_lrs3, // @[issue-slot.scala:73:14]
input io_in_uop_bits_ldst_val, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_dst_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_lrs1_rtype, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_lrs2_rtype, // @[issue-slot.scala:73:14]
input io_in_uop_bits_frs3_en, // @[issue-slot.scala:73:14]
input io_in_uop_bits_fp_val, // @[issue-slot.scala:73:14]
input io_in_uop_bits_fp_single, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_pf_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_ae_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_xcpt_ma_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bp_debug_if, // @[issue-slot.scala:73:14]
input io_in_uop_bits_bp_xcpt_if, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_debug_fsrc, // @[issue-slot.scala:73:14]
input [1:0] io_in_uop_bits_debug_tsrc, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_uopc, // @[issue-slot.scala:73:14]
output [31:0] io_out_uop_inst, // @[issue-slot.scala:73:14]
output [31:0] io_out_uop_debug_inst, // @[issue-slot.scala:73:14]
output io_out_uop_is_rvc, // @[issue-slot.scala:73:14]
output [39:0] io_out_uop_debug_pc, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_iq_type, // @[issue-slot.scala:73:14]
output [9:0] io_out_uop_fu_code, // @[issue-slot.scala:73:14]
output [3:0] io_out_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
output [2:0] io_out_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
output io_out_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_iw_state, // @[issue-slot.scala:73:14]
output io_out_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
output io_out_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
output io_out_uop_is_br, // @[issue-slot.scala:73:14]
output io_out_uop_is_jalr, // @[issue-slot.scala:73:14]
output io_out_uop_is_jal, // @[issue-slot.scala:73:14]
output io_out_uop_is_sfb, // @[issue-slot.scala:73:14]
output [15:0] io_out_uop_br_mask, // @[issue-slot.scala:73:14]
output [3:0] io_out_uop_br_tag, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ftq_idx, // @[issue-slot.scala:73:14]
output io_out_uop_edge_inst, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_pc_lob, // @[issue-slot.scala:73:14]
output io_out_uop_taken, // @[issue-slot.scala:73:14]
output [19:0] io_out_uop_imm_packed, // @[issue-slot.scala:73:14]
output [11:0] io_out_uop_csr_addr, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_rob_idx, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ldq_idx, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_stq_idx, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_rxq_idx, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_pdst, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs1, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs2, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_prs3, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_ppred, // @[issue-slot.scala:73:14]
output io_out_uop_prs1_busy, // @[issue-slot.scala:73:14]
output io_out_uop_prs2_busy, // @[issue-slot.scala:73:14]
output io_out_uop_prs3_busy, // @[issue-slot.scala:73:14]
output io_out_uop_ppred_busy, // @[issue-slot.scala:73:14]
output [6:0] io_out_uop_stale_pdst, // @[issue-slot.scala:73:14]
output io_out_uop_exception, // @[issue-slot.scala:73:14]
output [63:0] io_out_uop_exc_cause, // @[issue-slot.scala:73:14]
output io_out_uop_bypassable, // @[issue-slot.scala:73:14]
output [4:0] io_out_uop_mem_cmd, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_mem_size, // @[issue-slot.scala:73:14]
output io_out_uop_mem_signed, // @[issue-slot.scala:73:14]
output io_out_uop_is_fence, // @[issue-slot.scala:73:14]
output io_out_uop_is_fencei, // @[issue-slot.scala:73:14]
output io_out_uop_is_amo, // @[issue-slot.scala:73:14]
output io_out_uop_uses_ldq, // @[issue-slot.scala:73:14]
output io_out_uop_uses_stq, // @[issue-slot.scala:73:14]
output io_out_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
output io_out_uop_is_unique, // @[issue-slot.scala:73:14]
output io_out_uop_flush_on_commit, // @[issue-slot.scala:73:14]
output io_out_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_ldst, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs1, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs2, // @[issue-slot.scala:73:14]
output [5:0] io_out_uop_lrs3, // @[issue-slot.scala:73:14]
output io_out_uop_ldst_val, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_dst_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
output io_out_uop_frs3_en, // @[issue-slot.scala:73:14]
output io_out_uop_fp_val, // @[issue-slot.scala:73:14]
output io_out_uop_fp_single, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
output io_out_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
output io_out_uop_bp_debug_if, // @[issue-slot.scala:73:14]
output io_out_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_debug_fsrc, // @[issue-slot.scala:73:14]
output [1:0] io_out_uop_debug_tsrc, // @[issue-slot.scala:73:14]
output [6:0] io_uop_uopc, // @[issue-slot.scala:73:14]
output [31:0] io_uop_inst, // @[issue-slot.scala:73:14]
output [31:0] io_uop_debug_inst, // @[issue-slot.scala:73:14]
output io_uop_is_rvc, // @[issue-slot.scala:73:14]
output [39:0] io_uop_debug_pc, // @[issue-slot.scala:73:14]
output [2:0] io_uop_iq_type, // @[issue-slot.scala:73:14]
output [9:0] io_uop_fu_code, // @[issue-slot.scala:73:14]
output [3:0] io_uop_ctrl_br_type, // @[issue-slot.scala:73:14]
output [1:0] io_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14]
output io_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14]
output [2:0] io_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_load, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_sta, // @[issue-slot.scala:73:14]
output io_uop_ctrl_is_std, // @[issue-slot.scala:73:14]
output [1:0] io_uop_iw_state, // @[issue-slot.scala:73:14]
output io_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14]
output io_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14]
output io_uop_is_br, // @[issue-slot.scala:73:14]
output io_uop_is_jalr, // @[issue-slot.scala:73:14]
output io_uop_is_jal, // @[issue-slot.scala:73:14]
output io_uop_is_sfb, // @[issue-slot.scala:73:14]
output [15:0] io_uop_br_mask, // @[issue-slot.scala:73:14]
output [3:0] io_uop_br_tag, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ftq_idx, // @[issue-slot.scala:73:14]
output io_uop_edge_inst, // @[issue-slot.scala:73:14]
output [5:0] io_uop_pc_lob, // @[issue-slot.scala:73:14]
output io_uop_taken, // @[issue-slot.scala:73:14]
output [19:0] io_uop_imm_packed, // @[issue-slot.scala:73:14]
output [11:0] io_uop_csr_addr, // @[issue-slot.scala:73:14]
output [6:0] io_uop_rob_idx, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ldq_idx, // @[issue-slot.scala:73:14]
output [4:0] io_uop_stq_idx, // @[issue-slot.scala:73:14]
output [1:0] io_uop_rxq_idx, // @[issue-slot.scala:73:14]
output [6:0] io_uop_pdst, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs1, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs2, // @[issue-slot.scala:73:14]
output [6:0] io_uop_prs3, // @[issue-slot.scala:73:14]
output [4:0] io_uop_ppred, // @[issue-slot.scala:73:14]
output io_uop_prs1_busy, // @[issue-slot.scala:73:14]
output io_uop_prs2_busy, // @[issue-slot.scala:73:14]
output io_uop_prs3_busy, // @[issue-slot.scala:73:14]
output io_uop_ppred_busy, // @[issue-slot.scala:73:14]
output [6:0] io_uop_stale_pdst, // @[issue-slot.scala:73:14]
output io_uop_exception, // @[issue-slot.scala:73:14]
output [63:0] io_uop_exc_cause, // @[issue-slot.scala:73:14]
output io_uop_bypassable, // @[issue-slot.scala:73:14]
output [4:0] io_uop_mem_cmd, // @[issue-slot.scala:73:14]
output [1:0] io_uop_mem_size, // @[issue-slot.scala:73:14]
output io_uop_mem_signed, // @[issue-slot.scala:73:14]
output io_uop_is_fence, // @[issue-slot.scala:73:14]
output io_uop_is_fencei, // @[issue-slot.scala:73:14]
output io_uop_is_amo, // @[issue-slot.scala:73:14]
output io_uop_uses_ldq, // @[issue-slot.scala:73:14]
output io_uop_uses_stq, // @[issue-slot.scala:73:14]
output io_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14]
output io_uop_is_unique, // @[issue-slot.scala:73:14]
output io_uop_flush_on_commit, // @[issue-slot.scala:73:14]
output io_uop_ldst_is_rs1, // @[issue-slot.scala:73:14]
output [5:0] io_uop_ldst, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs1, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs2, // @[issue-slot.scala:73:14]
output [5:0] io_uop_lrs3, // @[issue-slot.scala:73:14]
output io_uop_ldst_val, // @[issue-slot.scala:73:14]
output [1:0] io_uop_dst_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_uop_lrs1_rtype, // @[issue-slot.scala:73:14]
output [1:0] io_uop_lrs2_rtype, // @[issue-slot.scala:73:14]
output io_uop_frs3_en, // @[issue-slot.scala:73:14]
output io_uop_fp_val, // @[issue-slot.scala:73:14]
output io_uop_fp_single, // @[issue-slot.scala:73:14]
output io_uop_xcpt_pf_if, // @[issue-slot.scala:73:14]
output io_uop_xcpt_ae_if, // @[issue-slot.scala:73:14]
output io_uop_xcpt_ma_if, // @[issue-slot.scala:73:14]
output io_uop_bp_debug_if, // @[issue-slot.scala:73:14]
output io_uop_bp_xcpt_if, // @[issue-slot.scala:73:14]
output [1:0] io_uop_debug_fsrc, // @[issue-slot.scala:73:14]
output [1:0] io_uop_debug_tsrc, // @[issue-slot.scala:73:14]
output io_debug_p1, // @[issue-slot.scala:73:14]
output io_debug_p2, // @[issue-slot.scala:73:14]
output io_debug_p3, // @[issue-slot.scala:73:14]
output io_debug_ppred, // @[issue-slot.scala:73:14]
output [1:0] io_debug_state // @[issue-slot.scala:73:14]
);
wire io_grant_0 = io_grant; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_uopc_0 = io_brupdate_b2_uop_uopc; // @[issue-slot.scala:69:7]
wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[issue-slot.scala:69:7]
wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[issue-slot.scala:69:7]
wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_iq_type_0 = io_brupdate_b2_uop_iq_type; // @[issue-slot.scala:69:7]
wire [9:0] io_brupdate_b2_uop_fu_code_0 = io_brupdate_b2_uop_fu_code; // @[issue-slot.scala:69:7]
wire [3:0] io_brupdate_b2_uop_ctrl_br_type_0 = io_brupdate_b2_uop_ctrl_br_type; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_ctrl_op1_sel_0 = io_brupdate_b2_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_op2_sel_0 = io_brupdate_b2_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_imm_sel_0 = io_brupdate_b2_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ctrl_op_fcn_0 = io_brupdate_b2_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_fcn_dw_0 = io_brupdate_b2_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_uop_ctrl_csr_cmd_0 = io_brupdate_b2_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_load_0 = io_brupdate_b2_uop_ctrl_is_load; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_sta_0 = io_brupdate_b2_uop_ctrl_is_sta; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ctrl_is_std_0 = io_brupdate_b2_uop_ctrl_is_std; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_iw_state_0 = io_brupdate_b2_uop_iw_state; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_iw_p1_poisoned_0 = io_brupdate_b2_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_iw_p2_poisoned_0 = io_brupdate_b2_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_br_0 = io_brupdate_b2_uop_is_br; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_jalr_0 = io_brupdate_b2_uop_is_jalr; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_jal_0 = io_brupdate_b2_uop_is_jal; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[issue-slot.scala:69:7]
wire [15:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[issue-slot.scala:69:7]
wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[issue-slot.scala:69:7]
wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[issue-slot.scala:69:7]
wire [11:0] io_brupdate_b2_uop_csr_addr_0 = io_brupdate_b2_uop_csr_addr; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[issue-slot.scala:69:7]
wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[issue-slot.scala:69:7]
wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bypassable_0 = io_brupdate_b2_uop_bypassable; // @[issue-slot.scala:69:7]
wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[issue-slot.scala:69:7]
wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_ldst_val_0 = io_brupdate_b2_uop_ldst_val; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_fp_single_0 = io_brupdate_b2_uop_fp_single; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_valid_0 = io_brupdate_b2_valid; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[issue-slot.scala:69:7]
wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[issue-slot.scala:69:7]
wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[issue-slot.scala:69:7]
wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[issue-slot.scala:69:7]
wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[issue-slot.scala:69:7]
wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[issue-slot.scala:69:7]
wire io_kill_0 = io_kill; // @[issue-slot.scala:69:7]
wire io_clear_0 = io_clear; // @[issue-slot.scala:69:7]
wire io_ldspec_miss_0 = io_ldspec_miss; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_0_valid_0 = io_wakeup_ports_0_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_0_bits_pdst_0 = io_wakeup_ports_0_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_0_bits_poisoned_0 = io_wakeup_ports_0_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_1_valid_0 = io_wakeup_ports_1_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_1_bits_pdst_0 = io_wakeup_ports_1_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_1_bits_poisoned_0 = io_wakeup_ports_1_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_2_valid_0 = io_wakeup_ports_2_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_2_bits_pdst_0 = io_wakeup_ports_2_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_2_bits_poisoned_0 = io_wakeup_ports_2_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_3_valid_0 = io_wakeup_ports_3_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_3_bits_pdst_0 = io_wakeup_ports_3_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_3_bits_poisoned_0 = io_wakeup_ports_3_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_4_valid_0 = io_wakeup_ports_4_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_4_bits_pdst_0 = io_wakeup_ports_4_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_4_bits_poisoned_0 = io_wakeup_ports_4_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_5_valid_0 = io_wakeup_ports_5_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_5_bits_pdst_0 = io_wakeup_ports_5_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_5_bits_poisoned_0 = io_wakeup_ports_5_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_6_valid_0 = io_wakeup_ports_6_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_wakeup_ports_6_bits_pdst_0 = io_wakeup_ports_6_bits_pdst; // @[issue-slot.scala:69:7]
wire io_wakeup_ports_6_bits_poisoned_0 = io_wakeup_ports_6_bits_poisoned; // @[issue-slot.scala:69:7]
wire io_spec_ld_wakeup_0_valid_0 = io_spec_ld_wakeup_0_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_spec_ld_wakeup_0_bits_0 = io_spec_ld_wakeup_0_bits; // @[issue-slot.scala:69:7]
wire io_in_uop_valid_0 = io_in_uop_valid; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_uopc_0 = io_in_uop_bits_uopc; // @[issue-slot.scala:69:7]
wire [31:0] io_in_uop_bits_inst_0 = io_in_uop_bits_inst; // @[issue-slot.scala:69:7]
wire [31:0] io_in_uop_bits_debug_inst_0 = io_in_uop_bits_debug_inst; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_rvc_0 = io_in_uop_bits_is_rvc; // @[issue-slot.scala:69:7]
wire [39:0] io_in_uop_bits_debug_pc_0 = io_in_uop_bits_debug_pc; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_iq_type_0 = io_in_uop_bits_iq_type; // @[issue-slot.scala:69:7]
wire [9:0] io_in_uop_bits_fu_code_0 = io_in_uop_bits_fu_code; // @[issue-slot.scala:69:7]
wire [3:0] io_in_uop_bits_ctrl_br_type_0 = io_in_uop_bits_ctrl_br_type; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_ctrl_op1_sel_0 = io_in_uop_bits_ctrl_op1_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_op2_sel_0 = io_in_uop_bits_ctrl_op2_sel; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_imm_sel_0 = io_in_uop_bits_ctrl_imm_sel; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ctrl_op_fcn_0 = io_in_uop_bits_ctrl_op_fcn; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_fcn_dw_0 = io_in_uop_bits_ctrl_fcn_dw; // @[issue-slot.scala:69:7]
wire [2:0] io_in_uop_bits_ctrl_csr_cmd_0 = io_in_uop_bits_ctrl_csr_cmd; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_load_0 = io_in_uop_bits_ctrl_is_load; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_sta_0 = io_in_uop_bits_ctrl_is_sta; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ctrl_is_std_0 = io_in_uop_bits_ctrl_is_std; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_iw_state_0 = io_in_uop_bits_iw_state; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_iw_p1_poisoned_0 = io_in_uop_bits_iw_p1_poisoned; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_iw_p2_poisoned_0 = io_in_uop_bits_iw_p2_poisoned; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_br_0 = io_in_uop_bits_is_br; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_jalr_0 = io_in_uop_bits_is_jalr; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_jal_0 = io_in_uop_bits_is_jal; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_sfb_0 = io_in_uop_bits_is_sfb; // @[issue-slot.scala:69:7]
wire [15:0] io_in_uop_bits_br_mask_0 = io_in_uop_bits_br_mask; // @[issue-slot.scala:69:7]
wire [3:0] io_in_uop_bits_br_tag_0 = io_in_uop_bits_br_tag; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ftq_idx_0 = io_in_uop_bits_ftq_idx; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_edge_inst_0 = io_in_uop_bits_edge_inst; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_pc_lob_0 = io_in_uop_bits_pc_lob; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_taken_0 = io_in_uop_bits_taken; // @[issue-slot.scala:69:7]
wire [19:0] io_in_uop_bits_imm_packed_0 = io_in_uop_bits_imm_packed; // @[issue-slot.scala:69:7]
wire [11:0] io_in_uop_bits_csr_addr_0 = io_in_uop_bits_csr_addr; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_rob_idx_0 = io_in_uop_bits_rob_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ldq_idx_0 = io_in_uop_bits_ldq_idx; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_stq_idx_0 = io_in_uop_bits_stq_idx; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_rxq_idx_0 = io_in_uop_bits_rxq_idx; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_pdst_0 = io_in_uop_bits_pdst; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs1_0 = io_in_uop_bits_prs1; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs2_0 = io_in_uop_bits_prs2; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_prs3_0 = io_in_uop_bits_prs3; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_ppred_0 = io_in_uop_bits_ppred; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs1_busy_0 = io_in_uop_bits_prs1_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs2_busy_0 = io_in_uop_bits_prs2_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_prs3_busy_0 = io_in_uop_bits_prs3_busy; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ppred_busy_0 = io_in_uop_bits_ppred_busy; // @[issue-slot.scala:69:7]
wire [6:0] io_in_uop_bits_stale_pdst_0 = io_in_uop_bits_stale_pdst; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_exception_0 = io_in_uop_bits_exception; // @[issue-slot.scala:69:7]
wire [63:0] io_in_uop_bits_exc_cause_0 = io_in_uop_bits_exc_cause; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bypassable_0 = io_in_uop_bits_bypassable; // @[issue-slot.scala:69:7]
wire [4:0] io_in_uop_bits_mem_cmd_0 = io_in_uop_bits_mem_cmd; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_mem_size_0 = io_in_uop_bits_mem_size; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_mem_signed_0 = io_in_uop_bits_mem_signed; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_fence_0 = io_in_uop_bits_is_fence; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_fencei_0 = io_in_uop_bits_is_fencei; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_amo_0 = io_in_uop_bits_is_amo; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_uses_ldq_0 = io_in_uop_bits_uses_ldq; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_uses_stq_0 = io_in_uop_bits_uses_stq; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_sys_pc2epc_0 = io_in_uop_bits_is_sys_pc2epc; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_is_unique_0 = io_in_uop_bits_is_unique; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_flush_on_commit_0 = io_in_uop_bits_flush_on_commit; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ldst_is_rs1_0 = io_in_uop_bits_ldst_is_rs1; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_ldst_0 = io_in_uop_bits_ldst; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs1_0 = io_in_uop_bits_lrs1; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs2_0 = io_in_uop_bits_lrs2; // @[issue-slot.scala:69:7]
wire [5:0] io_in_uop_bits_lrs3_0 = io_in_uop_bits_lrs3; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_ldst_val_0 = io_in_uop_bits_ldst_val; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_dst_rtype_0 = io_in_uop_bits_dst_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_lrs1_rtype_0 = io_in_uop_bits_lrs1_rtype; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_lrs2_rtype_0 = io_in_uop_bits_lrs2_rtype; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_frs3_en_0 = io_in_uop_bits_frs3_en; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_fp_val_0 = io_in_uop_bits_fp_val; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_fp_single_0 = io_in_uop_bits_fp_single; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_pf_if_0 = io_in_uop_bits_xcpt_pf_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_ae_if_0 = io_in_uop_bits_xcpt_ae_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_xcpt_ma_if_0 = io_in_uop_bits_xcpt_ma_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bp_debug_if_0 = io_in_uop_bits_bp_debug_if; // @[issue-slot.scala:69:7]
wire io_in_uop_bits_bp_xcpt_if_0 = io_in_uop_bits_bp_xcpt_if; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_debug_fsrc_0 = io_in_uop_bits_debug_fsrc; // @[issue-slot.scala:69:7]
wire [1:0] io_in_uop_bits_debug_tsrc_0 = io_in_uop_bits_debug_tsrc; // @[issue-slot.scala:69:7]
wire io_pred_wakeup_port_valid = 1'h0; // @[issue-slot.scala:69:7]
wire slot_uop_uop_is_rvc = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_fcn_dw = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_load = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_sta = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ctrl_is_std = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_iw_p1_poisoned = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_iw_p2_poisoned = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_br = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_jalr = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_jal = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_sfb = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_edge_inst = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_taken = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs1_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs2_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_prs3_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ppred_busy = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_exception = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bypassable = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_mem_signed = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_fence = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_fencei = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_amo = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_uses_ldq = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_uses_stq = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_sys_pc2epc = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_is_unique = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_flush_on_commit = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ldst_is_rs1 = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_ldst_val = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_frs3_en = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_fp_val = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_fp_single = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_pf_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_ae_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_xcpt_ma_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bp_debug_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_uop_bp_xcpt_if = 1'h0; // @[consts.scala:269:19]
wire slot_uop_cs_fcn_dw = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_load = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_sta = 1'h0; // @[consts.scala:279:18]
wire slot_uop_cs_is_std = 1'h0; // @[consts.scala:279:18]
wire [4:0] io_pred_wakeup_port_bits = 5'h0; // @[issue-slot.scala:69:7]
wire [4:0] slot_uop_uop_ctrl_op_fcn = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ftq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ldq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_stq_idx = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_ppred = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_uop_mem_cmd = 5'h0; // @[consts.scala:269:19]
wire [4:0] slot_uop_cs_op_fcn = 5'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_uop_iq_type = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_op2_sel = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_imm_sel = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_uop_ctrl_csr_cmd = 3'h0; // @[consts.scala:269:19]
wire [2:0] slot_uop_cs_op2_sel = 3'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_cs_imm_sel = 3'h0; // @[consts.scala:279:18]
wire [2:0] slot_uop_cs_csr_cmd = 3'h0; // @[consts.scala:279:18]
wire [1:0] slot_uop_uop_ctrl_op1_sel = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_iw_state = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_rxq_idx = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_mem_size = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_lrs1_rtype = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_lrs2_rtype = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_debug_fsrc = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_uop_debug_tsrc = 2'h0; // @[consts.scala:269:19]
wire [1:0] slot_uop_cs_op1_sel = 2'h0; // @[consts.scala:279:18]
wire [3:0] slot_uop_uop_ctrl_br_type = 4'h0; // @[consts.scala:269:19]
wire [3:0] slot_uop_uop_br_tag = 4'h0; // @[consts.scala:269:19]
wire [3:0] slot_uop_cs_br_type = 4'h0; // @[consts.scala:279:18]
wire [1:0] slot_uop_uop_dst_rtype = 2'h2; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_pc_lob = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_ldst = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs1 = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs2 = 6'h0; // @[consts.scala:269:19]
wire [5:0] slot_uop_uop_lrs3 = 6'h0; // @[consts.scala:269:19]
wire [63:0] slot_uop_uop_exc_cause = 64'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_uopc = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_rob_idx = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_pdst = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs1 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs2 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_prs3 = 7'h0; // @[consts.scala:269:19]
wire [6:0] slot_uop_uop_stale_pdst = 7'h0; // @[consts.scala:269:19]
wire [11:0] slot_uop_uop_csr_addr = 12'h0; // @[consts.scala:269:19]
wire [19:0] slot_uop_uop_imm_packed = 20'h0; // @[consts.scala:269:19]
wire [15:0] slot_uop_uop_br_mask = 16'h0; // @[consts.scala:269:19]
wire [9:0] slot_uop_uop_fu_code = 10'h0; // @[consts.scala:269:19]
wire [39:0] slot_uop_uop_debug_pc = 40'h0; // @[consts.scala:269:19]
wire [31:0] slot_uop_uop_inst = 32'h0; // @[consts.scala:269:19]
wire [31:0] slot_uop_uop_debug_inst = 32'h0; // @[consts.scala:269:19]
wire _io_valid_T; // @[issue-slot.scala:79:24]
wire _io_will_be_valid_T_4; // @[issue-slot.scala:262:32]
wire _io_request_hp_T; // @[issue-slot.scala:243:31]
wire [6:0] next_uopc; // @[issue-slot.scala:82:29]
wire [1:0] next_state; // @[issue-slot.scala:81:29]
wire [15:0] next_br_mask; // @[util.scala:85:25]
wire _io_out_uop_prs1_busy_T; // @[issue-slot.scala:270:28]
wire _io_out_uop_prs2_busy_T; // @[issue-slot.scala:271:28]
wire _io_out_uop_prs3_busy_T; // @[issue-slot.scala:272:28]
wire _io_out_uop_ppred_busy_T; // @[issue-slot.scala:273:28]
wire [1:0] next_lrs1_rtype; // @[issue-slot.scala:83:29]
wire [1:0] next_lrs2_rtype; // @[issue-slot.scala:84:29]
wire [3:0] io_out_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_uopc_0; // @[issue-slot.scala:69:7]
wire [31:0] io_out_uop_inst_0; // @[issue-slot.scala:69:7]
wire [31:0] io_out_uop_debug_inst_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_rvc_0; // @[issue-slot.scala:69:7]
wire [39:0] io_out_uop_debug_pc_0; // @[issue-slot.scala:69:7]
wire [2:0] io_out_uop_iq_type_0; // @[issue-slot.scala:69:7]
wire [9:0] io_out_uop_fu_code_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_iw_state_0; // @[issue-slot.scala:69:7]
wire io_out_uop_iw_p1_poisoned_0; // @[issue-slot.scala:69:7]
wire io_out_uop_iw_p2_poisoned_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_br_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_jalr_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_jal_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_sfb_0; // @[issue-slot.scala:69:7]
wire [15:0] io_out_uop_br_mask_0; // @[issue-slot.scala:69:7]
wire [3:0] io_out_uop_br_tag_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ftq_idx_0; // @[issue-slot.scala:69:7]
wire io_out_uop_edge_inst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_pc_lob_0; // @[issue-slot.scala:69:7]
wire io_out_uop_taken_0; // @[issue-slot.scala:69:7]
wire [19:0] io_out_uop_imm_packed_0; // @[issue-slot.scala:69:7]
wire [11:0] io_out_uop_csr_addr_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_rob_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ldq_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_stq_idx_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_rxq_idx_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_pdst_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs1_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs2_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_prs3_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_ppred_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs1_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs2_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_prs3_busy_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ppred_busy_0; // @[issue-slot.scala:69:7]
wire [6:0] io_out_uop_stale_pdst_0; // @[issue-slot.scala:69:7]
wire io_out_uop_exception_0; // @[issue-slot.scala:69:7]
wire [63:0] io_out_uop_exc_cause_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bypassable_0; // @[issue-slot.scala:69:7]
wire [4:0] io_out_uop_mem_cmd_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_mem_size_0; // @[issue-slot.scala:69:7]
wire io_out_uop_mem_signed_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_fence_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_fencei_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_amo_0; // @[issue-slot.scala:69:7]
wire io_out_uop_uses_ldq_0; // @[issue-slot.scala:69:7]
wire io_out_uop_uses_stq_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7]
wire io_out_uop_is_unique_0; // @[issue-slot.scala:69:7]
wire io_out_uop_flush_on_commit_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_ldst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs2_0; // @[issue-slot.scala:69:7]
wire [5:0] io_out_uop_lrs3_0; // @[issue-slot.scala:69:7]
wire io_out_uop_ldst_val_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_dst_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7]
wire io_out_uop_frs3_en_0; // @[issue-slot.scala:69:7]
wire io_out_uop_fp_val_0; // @[issue-slot.scala:69:7]
wire io_out_uop_fp_single_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bp_debug_if_0; // @[issue-slot.scala:69:7]
wire io_out_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_debug_fsrc_0; // @[issue-slot.scala:69:7]
wire [1:0] io_out_uop_debug_tsrc_0; // @[issue-slot.scala:69:7]
wire [3:0] io_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7]
wire io_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_uopc_0; // @[issue-slot.scala:69:7]
wire [31:0] io_uop_inst_0; // @[issue-slot.scala:69:7]
wire [31:0] io_uop_debug_inst_0; // @[issue-slot.scala:69:7]
wire io_uop_is_rvc_0; // @[issue-slot.scala:69:7]
wire [39:0] io_uop_debug_pc_0; // @[issue-slot.scala:69:7]
wire [2:0] io_uop_iq_type_0; // @[issue-slot.scala:69:7]
wire [9:0] io_uop_fu_code_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_iw_state_0; // @[issue-slot.scala:69:7]
wire io_uop_iw_p1_poisoned_0; // @[issue-slot.scala:69:7]
wire io_uop_iw_p2_poisoned_0; // @[issue-slot.scala:69:7]
wire io_uop_is_br_0; // @[issue-slot.scala:69:7]
wire io_uop_is_jalr_0; // @[issue-slot.scala:69:7]
wire io_uop_is_jal_0; // @[issue-slot.scala:69:7]
wire io_uop_is_sfb_0; // @[issue-slot.scala:69:7]
wire [15:0] io_uop_br_mask_0; // @[issue-slot.scala:69:7]
wire [3:0] io_uop_br_tag_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ftq_idx_0; // @[issue-slot.scala:69:7]
wire io_uop_edge_inst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_pc_lob_0; // @[issue-slot.scala:69:7]
wire io_uop_taken_0; // @[issue-slot.scala:69:7]
wire [19:0] io_uop_imm_packed_0; // @[issue-slot.scala:69:7]
wire [11:0] io_uop_csr_addr_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_rob_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ldq_idx_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_stq_idx_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_rxq_idx_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_pdst_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs1_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs2_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_prs3_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_ppred_0; // @[issue-slot.scala:69:7]
wire io_uop_prs1_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_prs2_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_prs3_busy_0; // @[issue-slot.scala:69:7]
wire io_uop_ppred_busy_0; // @[issue-slot.scala:69:7]
wire [6:0] io_uop_stale_pdst_0; // @[issue-slot.scala:69:7]
wire io_uop_exception_0; // @[issue-slot.scala:69:7]
wire [63:0] io_uop_exc_cause_0; // @[issue-slot.scala:69:7]
wire io_uop_bypassable_0; // @[issue-slot.scala:69:7]
wire [4:0] io_uop_mem_cmd_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_mem_size_0; // @[issue-slot.scala:69:7]
wire io_uop_mem_signed_0; // @[issue-slot.scala:69:7]
wire io_uop_is_fence_0; // @[issue-slot.scala:69:7]
wire io_uop_is_fencei_0; // @[issue-slot.scala:69:7]
wire io_uop_is_amo_0; // @[issue-slot.scala:69:7]
wire io_uop_uses_ldq_0; // @[issue-slot.scala:69:7]
wire io_uop_uses_stq_0; // @[issue-slot.scala:69:7]
wire io_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7]
wire io_uop_is_unique_0; // @[issue-slot.scala:69:7]
wire io_uop_flush_on_commit_0; // @[issue-slot.scala:69:7]
wire io_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_ldst_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs1_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs2_0; // @[issue-slot.scala:69:7]
wire [5:0] io_uop_lrs3_0; // @[issue-slot.scala:69:7]
wire io_uop_ldst_val_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_dst_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7]
wire io_uop_frs3_en_0; // @[issue-slot.scala:69:7]
wire io_uop_fp_val_0; // @[issue-slot.scala:69:7]
wire io_uop_fp_single_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7]
wire io_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7]
wire io_uop_bp_debug_if_0; // @[issue-slot.scala:69:7]
wire io_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_debug_fsrc_0; // @[issue-slot.scala:69:7]
wire [1:0] io_uop_debug_tsrc_0; // @[issue-slot.scala:69:7]
wire io_debug_p1_0; // @[issue-slot.scala:69:7]
wire io_debug_p2_0; // @[issue-slot.scala:69:7]
wire io_debug_p3_0; // @[issue-slot.scala:69:7]
wire io_debug_ppred_0; // @[issue-slot.scala:69:7]
wire [1:0] io_debug_state_0; // @[issue-slot.scala:69:7]
wire io_valid_0; // @[issue-slot.scala:69:7]
wire io_will_be_valid_0; // @[issue-slot.scala:69:7]
wire io_request_0; // @[issue-slot.scala:69:7]
wire io_request_hp_0; // @[issue-slot.scala:69:7]
assign io_out_uop_iw_state_0 = next_state; // @[issue-slot.scala:69:7, :81:29]
assign io_out_uop_uopc_0 = next_uopc; // @[issue-slot.scala:69:7, :82:29]
assign io_out_uop_lrs1_rtype_0 = next_lrs1_rtype; // @[issue-slot.scala:69:7, :83:29]
assign io_out_uop_lrs2_rtype_0 = next_lrs2_rtype; // @[issue-slot.scala:69:7, :84:29]
reg [1:0] state; // @[issue-slot.scala:86:22]
assign io_debug_state_0 = state; // @[issue-slot.scala:69:7, :86:22]
reg p1; // @[issue-slot.scala:87:22]
assign io_debug_p1_0 = p1; // @[issue-slot.scala:69:7, :87:22]
wire next_p1 = p1; // @[issue-slot.scala:87:22, :163:25]
reg p2; // @[issue-slot.scala:88:22]
assign io_debug_p2_0 = p2; // @[issue-slot.scala:69:7, :88:22]
wire next_p2 = p2; // @[issue-slot.scala:88:22, :164:25]
reg p3; // @[issue-slot.scala:89:22]
assign io_debug_p3_0 = p3; // @[issue-slot.scala:69:7, :89:22]
wire next_p3 = p3; // @[issue-slot.scala:89:22, :165:25]
reg ppred; // @[issue-slot.scala:90:22]
assign io_debug_ppred_0 = ppred; // @[issue-slot.scala:69:7, :90:22]
wire next_ppred = ppred; // @[issue-slot.scala:90:22, :166:28]
reg p1_poisoned; // @[issue-slot.scala:95:28]
assign io_out_uop_iw_p1_poisoned_0 = p1_poisoned; // @[issue-slot.scala:69:7, :95:28]
assign io_uop_iw_p1_poisoned_0 = p1_poisoned; // @[issue-slot.scala:69:7, :95:28]
reg p2_poisoned; // @[issue-slot.scala:96:28]
assign io_out_uop_iw_p2_poisoned_0 = p2_poisoned; // @[issue-slot.scala:69:7, :96:28]
assign io_uop_iw_p2_poisoned_0 = p2_poisoned; // @[issue-slot.scala:69:7, :96:28]
wire next_p1_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p1_poisoned_0 : p1_poisoned; // @[issue-slot.scala:69:7, :95:28, :99:29]
wire next_p2_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p2_poisoned_0 : p2_poisoned; // @[issue-slot.scala:69:7, :96:28, :100:29]
reg [6:0] slot_uop_uopc; // @[issue-slot.scala:102:25]
reg [31:0] slot_uop_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25]
reg [31:0] slot_uop_debug_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_rvc; // @[issue-slot.scala:102:25]
assign io_out_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25]
reg [39:0] slot_uop_debug_pc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_iq_type; // @[issue-slot.scala:102:25]
assign io_out_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25]
reg [9:0] slot_uop_fu_code; // @[issue-slot.scala:102:25]
assign io_out_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25]
reg [3:0] slot_uop_ctrl_br_type; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_ctrl_op1_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_op2_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_imm_sel; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ctrl_op_fcn; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25]
reg [2:0] slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_load; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_sta; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ctrl_is_std; // @[issue-slot.scala:102:25]
assign io_out_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_iw_state; // @[issue-slot.scala:102:25]
assign io_uop_iw_state_0 = slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_iw_p1_poisoned; // @[issue-slot.scala:102:25]
reg slot_uop_iw_p2_poisoned; // @[issue-slot.scala:102:25]
reg slot_uop_is_br; // @[issue-slot.scala:102:25]
assign io_out_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_jalr; // @[issue-slot.scala:102:25]
assign io_out_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_jal; // @[issue-slot.scala:102:25]
assign io_out_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_sfb; // @[issue-slot.scala:102:25]
assign io_out_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25]
reg [15:0] slot_uop_br_mask; // @[issue-slot.scala:102:25]
assign io_uop_br_mask_0 = slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25]
reg [3:0] slot_uop_br_tag; // @[issue-slot.scala:102:25]
assign io_out_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ftq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_edge_inst; // @[issue-slot.scala:102:25]
assign io_out_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_pc_lob; // @[issue-slot.scala:102:25]
assign io_out_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_taken; // @[issue-slot.scala:102:25]
assign io_out_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25]
reg [19:0] slot_uop_imm_packed; // @[issue-slot.scala:102:25]
assign io_out_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25]
reg [11:0] slot_uop_csr_addr; // @[issue-slot.scala:102:25]
assign io_out_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_rob_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ldq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_stq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_rxq_idx; // @[issue-slot.scala:102:25]
assign io_out_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_pdst; // @[issue-slot.scala:102:25]
assign io_out_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs1; // @[issue-slot.scala:102:25]
assign io_out_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs2; // @[issue-slot.scala:102:25]
assign io_out_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_prs3; // @[issue-slot.scala:102:25]
assign io_out_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_ppred; // @[issue-slot.scala:102:25]
assign io_out_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs1_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs1_busy_0 = slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs2_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs2_busy_0 = slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_prs3_busy; // @[issue-slot.scala:102:25]
assign io_uop_prs3_busy_0 = slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ppred_busy; // @[issue-slot.scala:102:25]
assign io_uop_ppred_busy_0 = slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25]
reg [6:0] slot_uop_stale_pdst; // @[issue-slot.scala:102:25]
assign io_out_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_exception; // @[issue-slot.scala:102:25]
assign io_out_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25]
reg [63:0] slot_uop_exc_cause; // @[issue-slot.scala:102:25]
assign io_out_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bypassable; // @[issue-slot.scala:102:25]
assign io_out_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25]
reg [4:0] slot_uop_mem_cmd; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_mem_size; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_mem_signed; // @[issue-slot.scala:102:25]
assign io_out_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_fence; // @[issue-slot.scala:102:25]
assign io_out_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_fencei; // @[issue-slot.scala:102:25]
assign io_out_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_amo; // @[issue-slot.scala:102:25]
assign io_out_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_uses_ldq; // @[issue-slot.scala:102:25]
assign io_out_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_uses_stq; // @[issue-slot.scala:102:25]
assign io_out_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_sys_pc2epc; // @[issue-slot.scala:102:25]
assign io_out_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_is_unique; // @[issue-slot.scala:102:25]
assign io_out_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_flush_on_commit; // @[issue-slot.scala:102:25]
assign io_out_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ldst_is_rs1; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_ldst; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs1; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs2; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25]
reg [5:0] slot_uop_lrs3; // @[issue-slot.scala:102:25]
assign io_out_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_ldst_val; // @[issue-slot.scala:102:25]
assign io_out_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_dst_rtype; // @[issue-slot.scala:102:25]
assign io_out_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_lrs1_rtype; // @[issue-slot.scala:102:25]
reg [1:0] slot_uop_lrs2_rtype; // @[issue-slot.scala:102:25]
reg slot_uop_frs3_en; // @[issue-slot.scala:102:25]
assign io_out_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_fp_val; // @[issue-slot.scala:102:25]
assign io_out_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_fp_single; // @[issue-slot.scala:102:25]
assign io_out_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_pf_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_ae_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_xcpt_ma_if; // @[issue-slot.scala:102:25]
assign io_out_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bp_debug_if; // @[issue-slot.scala:102:25]
assign io_out_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25]
reg slot_uop_bp_xcpt_if; // @[issue-slot.scala:102:25]
assign io_out_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_debug_fsrc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25]
reg [1:0] slot_uop_debug_tsrc; // @[issue-slot.scala:102:25]
assign io_out_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25]
assign io_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25]
wire [6:0] next_uop_uopc = io_in_uop_valid_0 ? io_in_uop_bits_uopc_0 : slot_uop_uopc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [31:0] next_uop_inst = io_in_uop_valid_0 ? io_in_uop_bits_inst_0 : slot_uop_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [31:0] next_uop_debug_inst = io_in_uop_valid_0 ? io_in_uop_bits_debug_inst_0 : slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_rvc = io_in_uop_valid_0 ? io_in_uop_bits_is_rvc_0 : slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [39:0] next_uop_debug_pc = io_in_uop_valid_0 ? io_in_uop_bits_debug_pc_0 : slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_iq_type = io_in_uop_valid_0 ? io_in_uop_bits_iq_type_0 : slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [9:0] next_uop_fu_code = io_in_uop_valid_0 ? io_in_uop_bits_fu_code_0 : slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [3:0] next_uop_ctrl_br_type = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_br_type_0 : slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_ctrl_op1_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op1_sel_0 : slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_op2_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op2_sel_0 : slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_imm_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_imm_sel_0 : slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ctrl_op_fcn = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op_fcn_0 : slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_fcn_dw = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_fcn_dw_0 : slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [2:0] next_uop_ctrl_csr_cmd = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_csr_cmd_0 : slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_load = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_load_0 : slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_sta = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_sta_0 : slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ctrl_is_std = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_std_0 : slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_iw_state = io_in_uop_valid_0 ? io_in_uop_bits_iw_state_0 : slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_iw_p1_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p1_poisoned_0 : slot_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_iw_p2_poisoned = io_in_uop_valid_0 ? io_in_uop_bits_iw_p2_poisoned_0 : slot_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_br = io_in_uop_valid_0 ? io_in_uop_bits_is_br_0 : slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_jalr = io_in_uop_valid_0 ? io_in_uop_bits_is_jalr_0 : slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_jal = io_in_uop_valid_0 ? io_in_uop_bits_is_jal_0 : slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_sfb = io_in_uop_valid_0 ? io_in_uop_bits_is_sfb_0 : slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [15:0] next_uop_br_mask = io_in_uop_valid_0 ? io_in_uop_bits_br_mask_0 : slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [3:0] next_uop_br_tag = io_in_uop_valid_0 ? io_in_uop_bits_br_tag_0 : slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ftq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ftq_idx_0 : slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_edge_inst = io_in_uop_valid_0 ? io_in_uop_bits_edge_inst_0 : slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_pc_lob = io_in_uop_valid_0 ? io_in_uop_bits_pc_lob_0 : slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_taken = io_in_uop_valid_0 ? io_in_uop_bits_taken_0 : slot_uop_taken; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [19:0] next_uop_imm_packed = io_in_uop_valid_0 ? io_in_uop_bits_imm_packed_0 : slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [11:0] next_uop_csr_addr = io_in_uop_valid_0 ? io_in_uop_bits_csr_addr_0 : slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_rob_idx = io_in_uop_valid_0 ? io_in_uop_bits_rob_idx_0 : slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ldq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ldq_idx_0 : slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_stq_idx = io_in_uop_valid_0 ? io_in_uop_bits_stq_idx_0 : slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_rxq_idx = io_in_uop_valid_0 ? io_in_uop_bits_rxq_idx_0 : slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_pdst = io_in_uop_valid_0 ? io_in_uop_bits_pdst_0 : slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs1 = io_in_uop_valid_0 ? io_in_uop_bits_prs1_0 : slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs2 = io_in_uop_valid_0 ? io_in_uop_bits_prs2_0 : slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_prs3 = io_in_uop_valid_0 ? io_in_uop_bits_prs3_0 : slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_ppred = io_in_uop_valid_0 ? io_in_uop_bits_ppred_0 : slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs1_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs1_busy_0 : slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs2_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs2_busy_0 : slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_prs3_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs3_busy_0 : slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ppred_busy = io_in_uop_valid_0 ? io_in_uop_bits_ppred_busy_0 : slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [6:0] next_uop_stale_pdst = io_in_uop_valid_0 ? io_in_uop_bits_stale_pdst_0 : slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_exception = io_in_uop_valid_0 ? io_in_uop_bits_exception_0 : slot_uop_exception; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [63:0] next_uop_exc_cause = io_in_uop_valid_0 ? io_in_uop_bits_exc_cause_0 : slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bypassable = io_in_uop_valid_0 ? io_in_uop_bits_bypassable_0 : slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [4:0] next_uop_mem_cmd = io_in_uop_valid_0 ? io_in_uop_bits_mem_cmd_0 : slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_mem_size = io_in_uop_valid_0 ? io_in_uop_bits_mem_size_0 : slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_mem_signed = io_in_uop_valid_0 ? io_in_uop_bits_mem_signed_0 : slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_fence = io_in_uop_valid_0 ? io_in_uop_bits_is_fence_0 : slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_fencei = io_in_uop_valid_0 ? io_in_uop_bits_is_fencei_0 : slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_amo = io_in_uop_valid_0 ? io_in_uop_bits_is_amo_0 : slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_uses_ldq = io_in_uop_valid_0 ? io_in_uop_bits_uses_ldq_0 : slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_uses_stq = io_in_uop_valid_0 ? io_in_uop_bits_uses_stq_0 : slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_sys_pc2epc = io_in_uop_valid_0 ? io_in_uop_bits_is_sys_pc2epc_0 : slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_is_unique = io_in_uop_valid_0 ? io_in_uop_bits_is_unique_0 : slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_flush_on_commit = io_in_uop_valid_0 ? io_in_uop_bits_flush_on_commit_0 : slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ldst_is_rs1 = io_in_uop_valid_0 ? io_in_uop_bits_ldst_is_rs1_0 : slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_ldst = io_in_uop_valid_0 ? io_in_uop_bits_ldst_0 : slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs1 = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_0 : slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs2 = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_0 : slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [5:0] next_uop_lrs3 = io_in_uop_valid_0 ? io_in_uop_bits_lrs3_0 : slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_ldst_val = io_in_uop_valid_0 ? io_in_uop_bits_ldst_val_0 : slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_dst_rtype = io_in_uop_valid_0 ? io_in_uop_bits_dst_rtype_0 : slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_lrs1_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_rtype_0 : slot_uop_lrs1_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_lrs2_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_rtype_0 : slot_uop_lrs2_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_frs3_en = io_in_uop_valid_0 ? io_in_uop_bits_frs3_en_0 : slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_fp_val = io_in_uop_valid_0 ? io_in_uop_bits_fp_val_0 : slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_fp_single = io_in_uop_valid_0 ? io_in_uop_bits_fp_single_0 : slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_pf_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_pf_if_0 : slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_ae_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ae_if_0 : slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_xcpt_ma_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ma_if_0 : slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bp_debug_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_debug_if_0 : slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire next_uop_bp_xcpt_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_xcpt_if_0 : slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_debug_fsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_fsrc_0 : slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire [1:0] next_uop_debug_tsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_tsrc_0 : slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25, :103:21]
wire _T_11 = state == 2'h2; // @[issue-slot.scala:86:22, :134:25]
wire _T_7 = io_grant_0 & state == 2'h1 | io_grant_0 & _T_11 & p1 & p2 & ppred; // @[issue-slot.scala:69:7, :86:22, :87:22, :88:22, :90:22, :133:{26,36,52}, :134:{15,25,40,46,52}]
wire _T_12 = io_grant_0 & _T_11; // @[issue-slot.scala:69:7, :134:25, :139:25]
wire _T_14 = io_ldspec_miss_0 & (p1_poisoned | p2_poisoned); // @[issue-slot.scala:69:7, :95:28, :96:28, :140:{28,44}]
wire _GEN = _T_12 & ~_T_14; // @[issue-slot.scala:126:14, :139:{25,51}, :140:{11,28,62}, :141:18]
wire _GEN_0 = io_kill_0 | _T_7; // @[issue-slot.scala:69:7, :102:25, :131:18, :133:52, :134:63, :139:51]
wire _GEN_1 = _GEN_0 | ~(_T_12 & ~_T_14 & p1); // @[issue-slot.scala:87:22, :102:25, :131:18, :134:63, :139:{25,51}, :140:{11,28,62}, :142:17, :143:23]
assign next_uopc = _GEN_1 ? slot_uop_uopc : 7'h3; // @[issue-slot.scala:82:29, :102:25, :131:18, :134:63, :139:51]
assign next_lrs1_rtype = _GEN_1 ? slot_uop_lrs1_rtype : 2'h2; // @[issue-slot.scala:83:29, :102:25, :131:18, :134:63, :139:51]
wire _GEN_2 = _GEN_0 | ~_GEN | p1; // @[issue-slot.scala:87:22, :102:25, :126:14, :131:18, :134:63, :139:51, :140:62, :141:18, :142:17]
assign next_lrs2_rtype = _GEN_2 ? slot_uop_lrs2_rtype : 2'h2; // @[issue-slot.scala:84:29, :102:25, :131:18, :134:63, :139:51, :140:62, :142:17]
wire _p1_T = ~io_in_uop_bits_prs1_busy_0; // @[issue-slot.scala:69:7, :169:11]
wire _p2_T = ~io_in_uop_bits_prs2_busy_0; // @[issue-slot.scala:69:7, :170:11]
wire _p3_T = ~io_in_uop_bits_prs3_busy_0; // @[issue-slot.scala:69:7, :171:11]
wire _ppred_T = ~io_in_uop_bits_ppred_busy_0; // @[issue-slot.scala:69:7, :172:14]
wire _T_22 = io_ldspec_miss_0 & next_p1_poisoned; // @[issue-slot.scala:69:7, :99:29, :175:24]
wire _T_27 = io_ldspec_miss_0 & next_p2_poisoned; // @[issue-slot.scala:69:7, :100:29, :179:24]
wire _T_85 = io_spec_ld_wakeup_0_valid_0 & io_spec_ld_wakeup_0_bits_0 == next_uop_prs1 & next_uop_lrs1_rtype == 2'h0; // @[issue-slot.scala:69:7, :103:21, :209:38, :210:{33,51}, :211:27]
wire _T_93 = io_spec_ld_wakeup_0_valid_0 & io_spec_ld_wakeup_0_bits_0 == next_uop_prs2 & next_uop_lrs2_rtype == 2'h0; // @[issue-slot.scala:69:7, :103:21, :216:38, :217:{33,51}, :218:27] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_145( // @[AsyncQueue.scala:58:7]
input io_in, // @[AsyncQueue.scala:59:14]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_160 io_out_source_valid_1 ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_d (io_in_0), // @[AsyncQueue.scala:58:7]
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.nodes._
import freechips.rocketchip.diplomacy.{
AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry,
IdRange, RegionType, TransferSizes
}
import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions}
import freechips.rocketchip.util.{
AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase,
CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct
}
import scala.math.max
//These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel
case class TLMasterToSlaveTransferSizes(
// Supports both Acquire+Release of the following two sizes:
acquireT: TransferSizes = TransferSizes.none,
acquireB: TransferSizes = TransferSizes.none,
arithmetic: TransferSizes = TransferSizes.none,
logical: TransferSizes = TransferSizes.none,
get: TransferSizes = TransferSizes.none,
putFull: TransferSizes = TransferSizes.none,
putPartial: TransferSizes = TransferSizes.none,
hint: TransferSizes = TransferSizes.none)
extends TLCommonTransferSizes {
def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes(
acquireT = acquireT .intersect(rhs.acquireT),
acquireB = acquireB .intersect(rhs.acquireB),
arithmetic = arithmetic.intersect(rhs.arithmetic),
logical = logical .intersect(rhs.logical),
get = get .intersect(rhs.get),
putFull = putFull .intersect(rhs.putFull),
putPartial = putPartial.intersect(rhs.putPartial),
hint = hint .intersect(rhs.hint))
def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes(
acquireT = acquireT .mincover(rhs.acquireT),
acquireB = acquireB .mincover(rhs.acquireB),
arithmetic = arithmetic.mincover(rhs.arithmetic),
logical = logical .mincover(rhs.logical),
get = get .mincover(rhs.get),
putFull = putFull .mincover(rhs.putFull),
putPartial = putPartial.mincover(rhs.putPartial),
hint = hint .mincover(rhs.hint))
// Reduce rendering to a simple yes/no per field
override def toString = {
def str(x: TransferSizes, flag: String) = if (x.none) "" else flag
def flags = Vector(
str(acquireT, "T"),
str(acquireB, "B"),
str(arithmetic, "A"),
str(logical, "L"),
str(get, "G"),
str(putFull, "F"),
str(putPartial, "P"),
str(hint, "H"))
flags.mkString
}
// Prints out the actual information in a user readable way
def infoString = {
s"""acquireT = ${acquireT}
|acquireB = ${acquireB}
|arithmetic = ${arithmetic}
|logical = ${logical}
|get = ${get}
|putFull = ${putFull}
|putPartial = ${putPartial}
|hint = ${hint}
|
|""".stripMargin
}
}
object TLMasterToSlaveTransferSizes {
def unknownEmits = TLMasterToSlaveTransferSizes(
acquireT = TransferSizes(1, 4096),
acquireB = TransferSizes(1, 4096),
arithmetic = TransferSizes(1, 4096),
logical = TransferSizes(1, 4096),
get = TransferSizes(1, 4096),
putFull = TransferSizes(1, 4096),
putPartial = TransferSizes(1, 4096),
hint = TransferSizes(1, 4096))
def unknownSupports = TLMasterToSlaveTransferSizes()
}
//These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel
case class TLSlaveToMasterTransferSizes(
probe: TransferSizes = TransferSizes.none,
arithmetic: TransferSizes = TransferSizes.none,
logical: TransferSizes = TransferSizes.none,
get: TransferSizes = TransferSizes.none,
putFull: TransferSizes = TransferSizes.none,
putPartial: TransferSizes = TransferSizes.none,
hint: TransferSizes = TransferSizes.none
) extends TLCommonTransferSizes {
def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes(
probe = probe .intersect(rhs.probe),
arithmetic = arithmetic.intersect(rhs.arithmetic),
logical = logical .intersect(rhs.logical),
get = get .intersect(rhs.get),
putFull = putFull .intersect(rhs.putFull),
putPartial = putPartial.intersect(rhs.putPartial),
hint = hint .intersect(rhs.hint)
)
def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes(
probe = probe .mincover(rhs.probe),
arithmetic = arithmetic.mincover(rhs.arithmetic),
logical = logical .mincover(rhs.logical),
get = get .mincover(rhs.get),
putFull = putFull .mincover(rhs.putFull),
putPartial = putPartial.mincover(rhs.putPartial),
hint = hint .mincover(rhs.hint)
)
// Reduce rendering to a simple yes/no per field
override def toString = {
def str(x: TransferSizes, flag: String) = if (x.none) "" else flag
def flags = Vector(
str(probe, "P"),
str(arithmetic, "A"),
str(logical, "L"),
str(get, "G"),
str(putFull, "F"),
str(putPartial, "P"),
str(hint, "H"))
flags.mkString
}
// Prints out the actual information in a user readable way
def infoString = {
s"""probe = ${probe}
|arithmetic = ${arithmetic}
|logical = ${logical}
|get = ${get}
|putFull = ${putFull}
|putPartial = ${putPartial}
|hint = ${hint}
|
|""".stripMargin
}
}
object TLSlaveToMasterTransferSizes {
def unknownEmits = TLSlaveToMasterTransferSizes(
arithmetic = TransferSizes(1, 4096),
logical = TransferSizes(1, 4096),
get = TransferSizes(1, 4096),
putFull = TransferSizes(1, 4096),
putPartial = TransferSizes(1, 4096),
hint = TransferSizes(1, 4096),
probe = TransferSizes(1, 4096))
def unknownSupports = TLSlaveToMasterTransferSizes()
}
trait TLCommonTransferSizes {
def arithmetic: TransferSizes
def logical: TransferSizes
def get: TransferSizes
def putFull: TransferSizes
def putPartial: TransferSizes
def hint: TransferSizes
}
class TLSlaveParameters private(
val nodePath: Seq[BaseNode],
val resources: Seq[Resource],
setName: Option[String],
val address: Seq[AddressSet],
val regionType: RegionType.T,
val executable: Boolean,
val fifoId: Option[Int],
val supports: TLMasterToSlaveTransferSizes,
val emits: TLSlaveToMasterTransferSizes,
// By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation)
val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData
// If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order
// Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo
val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData
val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck
// ReleaseAck may NEVER be denied
extends SimpleProduct
{
def sortedAddress = address.sorted
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters]
override def productPrefix = "TLSlaveParameters"
// We intentionally omit nodePath for equality testing / formatting
def productArity: Int = 11
def productElement(n: Int): Any = n match {
case 0 => name
case 1 => address
case 2 => resources
case 3 => regionType
case 4 => executable
case 5 => fifoId
case 6 => supports
case 7 => emits
case 8 => alwaysGrantsT
case 9 => mayDenyGet
case 10 => mayDenyPut
case _ => throw new IndexOutOfBoundsException(n.toString)
}
def supportsAcquireT: TransferSizes = supports.acquireT
def supportsAcquireB: TransferSizes = supports.acquireB
def supportsArithmetic: TransferSizes = supports.arithmetic
def supportsLogical: TransferSizes = supports.logical
def supportsGet: TransferSizes = supports.get
def supportsPutFull: TransferSizes = supports.putFull
def supportsPutPartial: TransferSizes = supports.putPartial
def supportsHint: TransferSizes = supports.hint
require (!address.isEmpty, "Address cannot be empty")
address.foreach { a => require (a.finite, "Address must be finite") }
address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") }
require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)")
require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)")
require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)")
require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)")
require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)")
require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)")
require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT")
// Make sure that the regionType agrees with the capabilities
require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached
require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire
require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet
val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected")
val maxTransfer = List( // Largest supported transfer of all types
supportsAcquireT.max,
supportsAcquireB.max,
supportsArithmetic.max,
supportsLogical.max,
supportsGet.max,
supportsPutFull.max,
supportsPutPartial.max).max
val maxAddress = address.map(_.max).max
val minAlignment = address.map(_.alignment).min
// The device had better not support a transfer larger than its alignment
require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)")
def toResource: ResourceAddress = {
ResourceAddress(address, ResourcePermissions(
r = supportsAcquireB || supportsGet,
w = supportsAcquireT || supportsPutFull,
x = executable,
c = supportsAcquireB,
a = supportsArithmetic && supportsLogical))
}
def findTreeViolation() = nodePath.find {
case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false
case _: SinkNode[_, _, _, _, _] => false
case node => node.inputs.size != 1
}
def isTree = findTreeViolation() == None
def infoString = {
s"""Slave Name = ${name}
|Slave Address = ${address}
|supports = ${supports.infoString}
|
|""".stripMargin
}
def v1copy(
address: Seq[AddressSet] = address,
resources: Seq[Resource] = resources,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
nodePath: Seq[BaseNode] = nodePath,
supportsAcquireT: TransferSizes = supports.acquireT,
supportsAcquireB: TransferSizes = supports.acquireB,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut,
alwaysGrantsT: Boolean = alwaysGrantsT,
fifoId: Option[Int] = fifoId) =
{
new TLSlaveParameters(
setName = setName,
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supports = TLMasterToSlaveTransferSizes(
acquireT = supportsAcquireT,
acquireB = supportsAcquireB,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = emits,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
def v2copy(
nodePath: Seq[BaseNode] = nodePath,
resources: Seq[Resource] = resources,
name: Option[String] = setName,
address: Seq[AddressSet] = address,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
fifoId: Option[Int] = fifoId,
supports: TLMasterToSlaveTransferSizes = supports,
emits: TLSlaveToMasterTransferSizes = emits,
alwaysGrantsT: Boolean = alwaysGrantsT,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut) =
{
new TLSlaveParameters(
nodePath = nodePath,
resources = resources,
setName = name,
address = address,
regionType = regionType,
executable = executable,
fifoId = fifoId,
supports = supports,
emits = emits,
alwaysGrantsT = alwaysGrantsT,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut)
}
@deprecated("Use v1copy instead of copy","")
def copy(
address: Seq[AddressSet] = address,
resources: Seq[Resource] = resources,
regionType: RegionType.T = regionType,
executable: Boolean = executable,
nodePath: Seq[BaseNode] = nodePath,
supportsAcquireT: TransferSizes = supports.acquireT,
supportsAcquireB: TransferSizes = supports.acquireB,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint,
mayDenyGet: Boolean = mayDenyGet,
mayDenyPut: Boolean = mayDenyPut,
alwaysGrantsT: Boolean = alwaysGrantsT,
fifoId: Option[Int] = fifoId) =
{
v1copy(
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supportsAcquireT = supportsAcquireT,
supportsAcquireB = supportsAcquireB,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
}
object TLSlaveParameters {
def v1(
address: Seq[AddressSet],
resources: Seq[Resource] = Seq(),
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
nodePath: Seq[BaseNode] = Seq(),
supportsAcquireT: TransferSizes = TransferSizes.none,
supportsAcquireB: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false,
alwaysGrantsT: Boolean = false,
fifoId: Option[Int] = None) =
{
new TLSlaveParameters(
setName = None,
address = address,
resources = resources,
regionType = regionType,
executable = executable,
nodePath = nodePath,
supports = TLMasterToSlaveTransferSizes(
acquireT = supportsAcquireT,
acquireB = supportsAcquireB,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = TLSlaveToMasterTransferSizes.unknownEmits,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut,
alwaysGrantsT = alwaysGrantsT,
fifoId = fifoId)
}
def v2(
address: Seq[AddressSet],
nodePath: Seq[BaseNode] = Seq(),
resources: Seq[Resource] = Seq(),
name: Option[String] = None,
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
fifoId: Option[Int] = None,
supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports,
emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits,
alwaysGrantsT: Boolean = false,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false) =
{
new TLSlaveParameters(
nodePath = nodePath,
resources = resources,
setName = name,
address = address,
regionType = regionType,
executable = executable,
fifoId = fifoId,
supports = supports,
emits = emits,
alwaysGrantsT = alwaysGrantsT,
mayDenyGet = mayDenyGet,
mayDenyPut = mayDenyPut)
}
}
object TLManagerParameters {
@deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","")
def apply(
address: Seq[AddressSet],
resources: Seq[Resource] = Seq(),
regionType: RegionType.T = RegionType.GET_EFFECTS,
executable: Boolean = false,
nodePath: Seq[BaseNode] = Seq(),
supportsAcquireT: TransferSizes = TransferSizes.none,
supportsAcquireB: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none,
mayDenyGet: Boolean = false,
mayDenyPut: Boolean = false,
alwaysGrantsT: Boolean = false,
fifoId: Option[Int] = None) =
TLSlaveParameters.v1(
address,
resources,
regionType,
executable,
nodePath,
supportsAcquireT,
supportsAcquireB,
supportsArithmetic,
supportsLogical,
supportsGet,
supportsPutFull,
supportsPutPartial,
supportsHint,
mayDenyGet,
mayDenyPut,
alwaysGrantsT,
fifoId,
)
}
case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int])
{
def members = Seq(a, b, c, d)
members.collect { case Some(beatBytes) =>
require (isPow2(beatBytes), "Data channel width must be a power of 2")
}
}
object TLChannelBeatBytes{
def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes(
Some(beatBytes),
Some(beatBytes),
Some(beatBytes),
Some(beatBytes))
def apply(): TLChannelBeatBytes = TLChannelBeatBytes(
None,
None,
None,
None)
}
class TLSlavePortParameters private(
val slaves: Seq[TLSlaveParameters],
val channelBytes: TLChannelBeatBytes,
val endSinkId: Int,
val minLatency: Int,
val responseFields: Seq[BundleFieldBase],
val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct
{
def sortedSlaves = slaves.sortBy(_.sortedAddress.head)
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters]
override def productPrefix = "TLSlavePortParameters"
def productArity: Int = 6
def productElement(n: Int): Any = n match {
case 0 => slaves
case 1 => channelBytes
case 2 => endSinkId
case 3 => minLatency
case 4 => responseFields
case 5 => requestKeys
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!slaves.isEmpty, "Slave ports must have slaves")
require (endSinkId >= 0, "Sink ids cannot be negative")
require (minLatency >= 0, "Minimum required latency cannot be negative")
// Using this API implies you cannot handle mixed-width busses
def beatBytes = {
channelBytes.members.foreach { width =>
require (width.isDefined && width == channelBytes.a)
}
channelBytes.a.get
}
// TODO this should be deprecated
def managers = slaves
def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = {
val relevant = slaves.filter(m => policy(m))
relevant.foreach { m =>
require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ")
}
}
// Bounds on required sizes
def maxAddress = slaves.map(_.maxAddress).max
def maxTransfer = slaves.map(_.maxTransfer).max
def mayDenyGet = slaves.exists(_.mayDenyGet)
def mayDenyPut = slaves.exists(_.mayDenyPut)
// Diplomatically determined operation sizes emitted by all outward Slaves
// as opposed to emits* which generate circuitry to check which specific addresses
val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _)
// Operation Emitted by at least one outward Slaves
// as opposed to emits* which generate circuitry to check which specific addresses
val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _)
// Diplomatically determined operation sizes supported by all outward Slaves
// as opposed to supports* which generate circuitry to check which specific addresses
val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _)
val allSupportAcquireT = allSupportClaims.acquireT
val allSupportAcquireB = allSupportClaims.acquireB
val allSupportArithmetic = allSupportClaims.arithmetic
val allSupportLogical = allSupportClaims.logical
val allSupportGet = allSupportClaims.get
val allSupportPutFull = allSupportClaims.putFull
val allSupportPutPartial = allSupportClaims.putPartial
val allSupportHint = allSupportClaims.hint
// Operation supported by at least one outward Slaves
// as opposed to supports* which generate circuitry to check which specific addresses
val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _)
val anySupportAcquireT = !anySupportClaims.acquireT.none
val anySupportAcquireB = !anySupportClaims.acquireB.none
val anySupportArithmetic = !anySupportClaims.arithmetic.none
val anySupportLogical = !anySupportClaims.logical.none
val anySupportGet = !anySupportClaims.get.none
val anySupportPutFull = !anySupportClaims.putFull.none
val anySupportPutPartial = !anySupportClaims.putPartial.none
val anySupportHint = !anySupportClaims.hint.none
// Supporting Acquire means being routable for GrantAck
require ((endSinkId == 0) == !anySupportAcquireB)
// These return Option[TLSlaveParameters] for your convenience
def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address)))
// The safe version will check the entire address
def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _)))
// The fast version assumes the address is valid (you probably want fastProperty instead of this function)
def findFast(address: UInt) = {
val routingMask = AddressDecoder(slaves.map(_.address))
VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _)))
}
// Compute the simplest AddressSets that decide a key
def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = {
val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) =>
k -> vs.flatMap(_._2)
}
val reductionMask = AddressDecoder(groups.map(_._2))
groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) }
}
// Select a property
def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D =
Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) })
// Note: returns the actual fifoId + 1 or 0 if None
def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U)
def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B)
// Does this Port manage this ID/address?
def containsSafe(address: UInt) = findSafe(address).reduce(_ || _)
private def addressHelper(
// setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity
safe: Boolean,
// member filters out the sizes being checked based on the opcode being emitted or supported
member: TLSlaveParameters => TransferSizes,
address: UInt,
lgSize: UInt,
// range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity
range: Option[TransferSizes]): Bool = {
// trim reduces circuit complexity by intersecting checked sizes with the range argument
def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x)
// groupBy returns an unordered map, convert back to Seq and sort the result for determinism
// groupByIntoSeq is turning slaves into trimmed membership sizes
// We are grouping all the slaves by their transfer size where
// if they support the trimmed size then
// member is the type of transfer that you are looking for (What you are trying to filter on)
// When you consider membership, you are trimming the sizes to only the ones that you care about
// you are filtering the slaves based on both whether they support a particular opcode and the size
// Grouping the slaves based on the actual transfer size range they support
// intersecting the range and checking their membership
// FOR SUPPORTCASES instead of returning the list of slaves,
// you are returning a map from transfer size to the set of
// address sets that are supported for that transfer size
// find all the slaves that support a certain type of operation and then group their addresses by the supported size
// for every size there could be multiple address ranges
// safety is a trade off between checking between all possible addresses vs only the addresses
// that are known to have supported sizes
// the trade off is 'checking all addresses is a more expensive circuit but will always give you
// the right answer even if you give it an illegal address'
// the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer
// fast presumes address legality
// This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies.
// In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size.
val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) =>
k -> vs.flatMap(_.address)
}
// safe produces a circuit that compares against all possible addresses,
// whereas fast presumes that the address is legal but uses an efficient address decoder
val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2))
// Simplified creates the most concise possible representation of each cases' address sets based on the mask.
val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) }
simplified.map { case (s, a) =>
// s is a size, you are checking for this size either the size of the operation is in s
// We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire.
((Some(s) == range).B || s.containsLg(lgSize)) &&
a.map(_.contains(address)).reduce(_||_)
}.foldLeft(false.B)(_||_)
}
def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range)
def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range)
def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range)
def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range)
def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range)
def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range)
def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range)
def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range)
def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range)
def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range)
def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range)
def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range)
def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range)
def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range)
def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range)
def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range)
def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range)
def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range)
def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range)
def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range)
def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range)
def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range)
def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range)
def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption
def isTree = !slaves.exists(!_.isTree)
def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString
def v1copy(
managers: Seq[TLSlaveParameters] = slaves,
beatBytes: Int = -1,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
new TLSlavePortParameters(
slaves = managers,
channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes,
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
def v2copy(
slaves: Seq[TLSlaveParameters] = slaves,
channelBytes: TLChannelBeatBytes = channelBytes,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
new TLSlavePortParameters(
slaves = slaves,
channelBytes = channelBytes,
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
@deprecated("Use v1copy instead of copy","")
def copy(
managers: Seq[TLSlaveParameters] = slaves,
beatBytes: Int = -1,
endSinkId: Int = endSinkId,
minLatency: Int = minLatency,
responseFields: Seq[BundleFieldBase] = responseFields,
requestKeys: Seq[BundleKeyBase] = requestKeys) =
{
v1copy(
managers,
beatBytes,
endSinkId,
minLatency,
responseFields,
requestKeys)
}
}
object TLSlavePortParameters {
def v1(
managers: Seq[TLSlaveParameters],
beatBytes: Int,
endSinkId: Int = 0,
minLatency: Int = 0,
responseFields: Seq[BundleFieldBase] = Nil,
requestKeys: Seq[BundleKeyBase] = Nil) =
{
new TLSlavePortParameters(
slaves = managers,
channelBytes = TLChannelBeatBytes(beatBytes),
endSinkId = endSinkId,
minLatency = minLatency,
responseFields = responseFields,
requestKeys = requestKeys)
}
}
object TLManagerPortParameters {
@deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","")
def apply(
managers: Seq[TLSlaveParameters],
beatBytes: Int,
endSinkId: Int = 0,
minLatency: Int = 0,
responseFields: Seq[BundleFieldBase] = Nil,
requestKeys: Seq[BundleKeyBase] = Nil) =
{
TLSlavePortParameters.v1(
managers,
beatBytes,
endSinkId,
minLatency,
responseFields,
requestKeys)
}
}
class TLMasterParameters private(
val nodePath: Seq[BaseNode],
val resources: Seq[Resource],
val name: String,
val visibility: Seq[AddressSet],
val unusedRegionTypes: Set[RegionType.T],
val executesOnly: Boolean,
val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C.
val supports: TLSlaveToMasterTransferSizes,
val emits: TLMasterToSlaveTransferSizes,
val neverReleasesData: Boolean,
val sourceId: IdRange) extends SimpleProduct
{
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters]
override def productPrefix = "TLMasterParameters"
// We intentionally omit nodePath for equality testing / formatting
def productArity: Int = 10
def productElement(n: Int): Any = n match {
case 0 => name
case 1 => sourceId
case 2 => resources
case 3 => visibility
case 4 => unusedRegionTypes
case 5 => executesOnly
case 6 => requestFifo
case 7 => supports
case 8 => emits
case 9 => neverReleasesData
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!sourceId.isEmpty)
require (!visibility.isEmpty)
require (supports.putFull.contains(supports.putPartial))
// We only support these operations if we support Probe (ie: we're a cache)
require (supports.probe.contains(supports.arithmetic))
require (supports.probe.contains(supports.logical))
require (supports.probe.contains(supports.get))
require (supports.probe.contains(supports.putFull))
require (supports.probe.contains(supports.putPartial))
require (supports.probe.contains(supports.hint))
visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") }
val maxTransfer = List(
supports.probe.max,
supports.arithmetic.max,
supports.logical.max,
supports.get.max,
supports.putFull.max,
supports.putPartial.max).max
def infoString = {
s"""Master Name = ${name}
|visibility = ${visibility}
|emits = ${emits.infoString}
|sourceId = ${sourceId}
|
|""".stripMargin
}
def v1copy(
name: String = name,
sourceId: IdRange = sourceId,
nodePath: Seq[BaseNode] = nodePath,
requestFifo: Boolean = requestFifo,
visibility: Seq[AddressSet] = visibility,
supportsProbe: TransferSizes = supports.probe,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = this.resources,
name = name,
visibility = visibility,
unusedRegionTypes = this.unusedRegionTypes,
executesOnly = this.executesOnly,
requestFifo = requestFifo,
supports = TLSlaveToMasterTransferSizes(
probe = supportsProbe,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = this.emits,
neverReleasesData = this.neverReleasesData,
sourceId = sourceId)
}
def v2copy(
nodePath: Seq[BaseNode] = nodePath,
resources: Seq[Resource] = resources,
name: String = name,
visibility: Seq[AddressSet] = visibility,
unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes,
executesOnly: Boolean = executesOnly,
requestFifo: Boolean = requestFifo,
supports: TLSlaveToMasterTransferSizes = supports,
emits: TLMasterToSlaveTransferSizes = emits,
neverReleasesData: Boolean = neverReleasesData,
sourceId: IdRange = sourceId) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = resources,
name = name,
visibility = visibility,
unusedRegionTypes = unusedRegionTypes,
executesOnly = executesOnly,
requestFifo = requestFifo,
supports = supports,
emits = emits,
neverReleasesData = neverReleasesData,
sourceId = sourceId)
}
@deprecated("Use v1copy instead of copy","")
def copy(
name: String = name,
sourceId: IdRange = sourceId,
nodePath: Seq[BaseNode] = nodePath,
requestFifo: Boolean = requestFifo,
visibility: Seq[AddressSet] = visibility,
supportsProbe: TransferSizes = supports.probe,
supportsArithmetic: TransferSizes = supports.arithmetic,
supportsLogical: TransferSizes = supports.logical,
supportsGet: TransferSizes = supports.get,
supportsPutFull: TransferSizes = supports.putFull,
supportsPutPartial: TransferSizes = supports.putPartial,
supportsHint: TransferSizes = supports.hint) =
{
v1copy(
name = name,
sourceId = sourceId,
nodePath = nodePath,
requestFifo = requestFifo,
visibility = visibility,
supportsProbe = supportsProbe,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint)
}
}
object TLMasterParameters {
def v1(
name: String,
sourceId: IdRange = IdRange(0,1),
nodePath: Seq[BaseNode] = Seq(),
requestFifo: Boolean = false,
visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)),
supportsProbe: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = Nil,
name = name,
visibility = visibility,
unusedRegionTypes = Set(),
executesOnly = false,
requestFifo = requestFifo,
supports = TLSlaveToMasterTransferSizes(
probe = supportsProbe,
arithmetic = supportsArithmetic,
logical = supportsLogical,
get = supportsGet,
putFull = supportsPutFull,
putPartial = supportsPutPartial,
hint = supportsHint),
emits = TLMasterToSlaveTransferSizes.unknownEmits,
neverReleasesData = false,
sourceId = sourceId)
}
def v2(
nodePath: Seq[BaseNode] = Seq(),
resources: Seq[Resource] = Nil,
name: String,
visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)),
unusedRegionTypes: Set[RegionType.T] = Set(),
executesOnly: Boolean = false,
requestFifo: Boolean = false,
supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports,
emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits,
neverReleasesData: Boolean = false,
sourceId: IdRange = IdRange(0,1)) =
{
new TLMasterParameters(
nodePath = nodePath,
resources = resources,
name = name,
visibility = visibility,
unusedRegionTypes = unusedRegionTypes,
executesOnly = executesOnly,
requestFifo = requestFifo,
supports = supports,
emits = emits,
neverReleasesData = neverReleasesData,
sourceId = sourceId)
}
}
object TLClientParameters {
@deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","")
def apply(
name: String,
sourceId: IdRange = IdRange(0,1),
nodePath: Seq[BaseNode] = Seq(),
requestFifo: Boolean = false,
visibility: Seq[AddressSet] = Seq(AddressSet.everything),
supportsProbe: TransferSizes = TransferSizes.none,
supportsArithmetic: TransferSizes = TransferSizes.none,
supportsLogical: TransferSizes = TransferSizes.none,
supportsGet: TransferSizes = TransferSizes.none,
supportsPutFull: TransferSizes = TransferSizes.none,
supportsPutPartial: TransferSizes = TransferSizes.none,
supportsHint: TransferSizes = TransferSizes.none) =
{
TLMasterParameters.v1(
name = name,
sourceId = sourceId,
nodePath = nodePath,
requestFifo = requestFifo,
visibility = visibility,
supportsProbe = supportsProbe,
supportsArithmetic = supportsArithmetic,
supportsLogical = supportsLogical,
supportsGet = supportsGet,
supportsPutFull = supportsPutFull,
supportsPutPartial = supportsPutPartial,
supportsHint = supportsHint)
}
}
class TLMasterPortParameters private(
val masters: Seq[TLMasterParameters],
val channelBytes: TLChannelBeatBytes,
val minLatency: Int,
val echoFields: Seq[BundleFieldBase],
val requestFields: Seq[BundleFieldBase],
val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct
{
override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters]
override def productPrefix = "TLMasterPortParameters"
def productArity: Int = 6
def productElement(n: Int): Any = n match {
case 0 => masters
case 1 => channelBytes
case 2 => minLatency
case 3 => echoFields
case 4 => requestFields
case 5 => responseKeys
case _ => throw new IndexOutOfBoundsException(n.toString)
}
require (!masters.isEmpty)
require (minLatency >= 0)
def clients = masters
// Require disjoint ranges for Ids
IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) =>
require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}")
}
// Bounds on required sizes
def endSourceId = masters.map(_.sourceId.end).max
def maxTransfer = masters.map(_.maxTransfer).max
// The unused sources < endSourceId
def unusedSources: Seq[Int] = {
val usedSources = masters.map(_.sourceId).sortBy(_.start)
((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) =>
end until start
}
}
// Diplomatically determined operation sizes emitted by all inward Masters
// as opposed to emits* which generate circuitry to check which specific addresses
val allEmitClaims = masters.map(_.emits).reduce( _ intersect _)
// Diplomatically determined operation sizes Emitted by at least one inward Masters
// as opposed to emits* which generate circuitry to check which specific addresses
val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _)
// Diplomatically determined operation sizes supported by all inward Masters
// as opposed to supports* which generate circuitry to check which specific addresses
val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _)
val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _)
val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _)
val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _)
val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _)
val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _)
val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _)
// Diplomatically determined operation sizes supported by at least one master
// as opposed to supports* which generate circuitry to check which specific addresses
val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _)
val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _)
val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _)
val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _)
val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _)
val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _)
val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _)
// These return Option[TLMasterParameters] for your convenience
def find(id: Int) = masters.find(_.sourceId.contains(id))
// Synthesizable lookup methods
def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id)))
def contains(id: UInt) = find(id).reduce(_ || _)
def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B))
// Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters
private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = {
val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _)
// this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version;
// the case where there is only one group.
if (allSame) member(masters(0)).containsLg(lgSize) else {
// Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize
Mux1H(find(id), masters.map(member(_).containsLg(lgSize)))
}
}
// Check for support of a given operation at a specific id
val supportsProbe = sourceIdHelper(_.supports.probe) _
val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _
val supportsLogical = sourceIdHelper(_.supports.logical) _
val supportsGet = sourceIdHelper(_.supports.get) _
val supportsPutFull = sourceIdHelper(_.supports.putFull) _
val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _
val supportsHint = sourceIdHelper(_.supports.hint) _
// TODO: Merge sourceIdHelper2 with sourceIdHelper
private def sourceIdHelper2(
member: TLMasterParameters => TransferSizes,
sourceId: UInt,
lgSize: UInt): Bool = {
// Because sourceIds are uniquely owned by each master, we use them to group the
// cases that have to be checked.
val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) =>
k -> vs.map(_.sourceId)
}
emitCases.map { case (s, a) =>
(s.containsLg(lgSize)) &&
a.map(_.contains(sourceId)).reduce(_||_)
}.foldLeft(false.B)(_||_)
}
// Check for emit of a given operation at a specific id
def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize)
def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize)
def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize)
def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize)
def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize)
def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize)
def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize)
def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize)
def infoString = masters.map(_.infoString).mkString
def v1copy(
clients: Seq[TLMasterParameters] = masters,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
new TLMasterPortParameters(
masters = clients,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
def v2copy(
masters: Seq[TLMasterParameters] = masters,
channelBytes: TLChannelBeatBytes = channelBytes,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
new TLMasterPortParameters(
masters = masters,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
@deprecated("Use v1copy instead of copy","")
def copy(
clients: Seq[TLMasterParameters] = masters,
minLatency: Int = minLatency,
echoFields: Seq[BundleFieldBase] = echoFields,
requestFields: Seq[BundleFieldBase] = requestFields,
responseKeys: Seq[BundleKeyBase] = responseKeys) =
{
v1copy(
clients,
minLatency,
echoFields,
requestFields,
responseKeys)
}
}
object TLClientPortParameters {
@deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","")
def apply(
clients: Seq[TLMasterParameters],
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
TLMasterPortParameters.v1(
clients,
minLatency,
echoFields,
requestFields,
responseKeys)
}
}
object TLMasterPortParameters {
def v1(
clients: Seq[TLMasterParameters],
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
new TLMasterPortParameters(
masters = clients,
channelBytes = TLChannelBeatBytes(),
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
def v2(
masters: Seq[TLMasterParameters],
channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(),
minLatency: Int = 0,
echoFields: Seq[BundleFieldBase] = Nil,
requestFields: Seq[BundleFieldBase] = Nil,
responseKeys: Seq[BundleKeyBase] = Nil) =
{
new TLMasterPortParameters(
masters = masters,
channelBytes = channelBytes,
minLatency = minLatency,
echoFields = echoFields,
requestFields = requestFields,
responseKeys = responseKeys)
}
}
case class TLBundleParameters(
addressBits: Int,
dataBits: Int,
sourceBits: Int,
sinkBits: Int,
sizeBits: Int,
echoFields: Seq[BundleFieldBase],
requestFields: Seq[BundleFieldBase],
responseFields: Seq[BundleFieldBase],
hasBCE: Boolean)
{
// Chisel has issues with 0-width wires
require (addressBits >= 1)
require (dataBits >= 8)
require (sourceBits >= 1)
require (sinkBits >= 1)
require (sizeBits >= 1)
require (isPow2(dataBits))
echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") }
val addrLoBits = log2Up(dataBits/8)
// Used to uniquify bus IP names
def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u")
def union(x: TLBundleParameters) =
TLBundleParameters(
max(addressBits, x.addressBits),
max(dataBits, x.dataBits),
max(sourceBits, x.sourceBits),
max(sinkBits, x.sinkBits),
max(sizeBits, x.sizeBits),
echoFields = BundleField.union(echoFields ++ x.echoFields),
requestFields = BundleField.union(requestFields ++ x.requestFields),
responseFields = BundleField.union(responseFields ++ x.responseFields),
hasBCE || x.hasBCE)
}
object TLBundleParameters
{
val emptyBundleParams = TLBundleParameters(
addressBits = 1,
dataBits = 8,
sourceBits = 1,
sinkBits = 1,
sizeBits = 1,
echoFields = Nil,
requestFields = Nil,
responseFields = Nil,
hasBCE = false)
def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y))
def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) =
new TLBundleParameters(
addressBits = log2Up(slave.maxAddress + 1),
dataBits = slave.beatBytes * 8,
sourceBits = log2Up(master.endSourceId),
sinkBits = log2Up(slave.endSinkId),
sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1),
echoFields = master.echoFields,
requestFields = BundleField.accept(master.requestFields, slave.requestKeys),
responseFields = BundleField.accept(slave.responseFields, master.responseKeys),
hasBCE = master.anySupportProbe && slave.anySupportAcquireB)
}
case class TLEdgeParameters(
master: TLMasterPortParameters,
slave: TLSlavePortParameters,
params: Parameters,
sourceInfo: SourceInfo) extends FormatEdge
{
// legacy names:
def manager = slave
def client = master
val maxTransfer = max(master.maxTransfer, slave.maxTransfer)
val maxLgSize = log2Ceil(maxTransfer)
// Sanity check the link...
require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})")
def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims)
val bundle = TLBundleParameters(master, slave)
def formatEdge = master.infoString + "\n" + slave.infoString
}
case class TLCreditedDelay(
a: CreditedDelay,
b: CreditedDelay,
c: CreditedDelay,
d: CreditedDelay,
e: CreditedDelay)
{
def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay(
a = a + that.a,
b = b + that.b,
c = c + that.c,
d = d + that.d,
e = e + that.e)
override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})"
}
object TLCreditedDelay {
def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay)
}
case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val delay = client.delay + manager.delay
val bundle = TLBundleParameters(client.base, manager.base)
def formatEdge = client.infoString + "\n" + manager.infoString
}
case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters)
case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base))
def formatEdge = client.infoString + "\n" + manager.infoString
}
case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString}
case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString}
case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge
{
val bundle = TLBundleParameters(client.base, manager.base)
def formatEdge = client.infoString + "\n" + manager.infoString
}
// To be unified, devices must agree on all of these terms
case class ManagerUnificationKey(
resources: Seq[Resource],
regionType: RegionType.T,
executable: Boolean,
supportsAcquireT: TransferSizes,
supportsAcquireB: TransferSizes,
supportsArithmetic: TransferSizes,
supportsLogical: TransferSizes,
supportsGet: TransferSizes,
supportsPutFull: TransferSizes,
supportsPutPartial: TransferSizes,
supportsHint: TransferSizes)
object ManagerUnificationKey
{
def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey(
resources = x.resources,
regionType = x.regionType,
executable = x.executable,
supportsAcquireT = x.supportsAcquireT,
supportsAcquireB = x.supportsAcquireB,
supportsArithmetic = x.supportsArithmetic,
supportsLogical = x.supportsLogical,
supportsGet = x.supportsGet,
supportsPutFull = x.supportsPutFull,
supportsPutPartial = x.supportsPutPartial,
supportsHint = x.supportsHint)
}
object ManagerUnification
{
def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = {
slaves.groupBy(ManagerUnificationKey.apply).values.map { seq =>
val agree = seq.forall(_.fifoId == seq.head.fifoId)
seq(0).v1copy(
address = AddressSet.unify(seq.flatMap(_.address)),
fifoId = if (agree) seq(0).fifoId else None)
}.toList
}
}
case class TLBufferParams(
a: BufferParams = BufferParams.none,
b: BufferParams = BufferParams.none,
c: BufferParams = BufferParams.none,
d: BufferParams = BufferParams.none,
e: BufferParams = BufferParams.none
) extends DirectedBuffers[TLBufferParams] {
def copyIn(x: BufferParams) = this.copy(b = x, d = x)
def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x)
def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x)
}
/** Pretty printing of TL source id maps */
class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] {
private val tlDigits = String.valueOf(tl.endSourceId-1).length()
protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s"
private val sorted = tl.masters.sortBy(_.sourceId)
val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c =>
TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo)
}
}
case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean)
extends IdMapEntry
{
val from = tlId
val to = tlId
val maxTransactionsInFlight = Some(tlId.size)
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_52( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [5:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [15:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [127:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_b_ready, // @[Monitor.scala:20:14]
input io_in_b_valid, // @[Monitor.scala:20:14]
input [1:0] io_in_b_bits_param, // @[Monitor.scala:20:14]
input [31:0] io_in_b_bits_address, // @[Monitor.scala:20:14]
input io_in_c_ready, // @[Monitor.scala:20:14]
input io_in_c_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_size, // @[Monitor.scala:20:14]
input [5:0] io_in_c_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_c_bits_address, // @[Monitor.scala:20:14]
input [127:0] io_in_c_bits_data, // @[Monitor.scala:20:14]
input io_in_c_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [5:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input [127:0] io_in_d_bits_data, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_e_valid, // @[Monitor.scala:20:14]
input [3:0] io_in_e_bits_sink // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [5:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [15:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [127:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_b_ready_0 = io_in_b_ready; // @[Monitor.scala:36:7]
wire io_in_b_valid_0 = io_in_b_valid; // @[Monitor.scala:36:7]
wire [1:0] io_in_b_bits_param_0 = io_in_b_bits_param; // @[Monitor.scala:36:7]
wire [31:0] io_in_b_bits_address_0 = io_in_b_bits_address; // @[Monitor.scala:36:7]
wire io_in_c_ready_0 = io_in_c_ready; // @[Monitor.scala:36:7]
wire io_in_c_valid_0 = io_in_c_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_c_bits_opcode_0 = io_in_c_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_c_bits_param_0 = io_in_c_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_c_bits_size_0 = io_in_c_bits_size; // @[Monitor.scala:36:7]
wire [5:0] io_in_c_bits_source_0 = io_in_c_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_c_bits_address_0 = io_in_c_bits_address; // @[Monitor.scala:36:7]
wire [127:0] io_in_c_bits_data_0 = io_in_c_bits_data; // @[Monitor.scala:36:7]
wire io_in_c_bits_corrupt_0 = io_in_c_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [5:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7]
wire [127:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_e_valid_0 = io_in_e_valid; // @[Monitor.scala:36:7]
wire [3:0] io_in_e_bits_sink_0 = io_in_e_bits_sink; // @[Monitor.scala:36:7]
wire io_in_e_ready = 1'h1; // @[Monitor.scala:36:7]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_27 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_29 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_42 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_44 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_48 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_50 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_54 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_56 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_60 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_62 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_66 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_68 = 1'h1; // @[Parameters.scala:57:20]
wire mask_sub_sub_sub_sub_0_1_1 = 1'h1; // @[Misc.scala:206:21]
wire mask_sub_sub_sub_0_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_sub_sub_1_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_sub_size_1 = 1'h1; // @[Misc.scala:209:26]
wire mask_sub_sub_0_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_sub_1_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_sub_2_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_sub_3_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_0_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_1_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_2_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_3_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_4_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_5_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_6_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_7_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_size_1 = 1'h1; // @[Misc.scala:209:26]
wire mask_acc_16 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_17 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_18 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_19 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_20 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_21 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_22 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_23 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_24 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_25 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_26 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_27 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_28 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_29 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_30 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_31 = 1'h1; // @[Misc.scala:215:29]
wire _legal_source_T_3 = 1'h1; // @[Parameters.scala:56:32]
wire _legal_source_T_5 = 1'h1; // @[Parameters.scala:57:20]
wire _legal_source_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _legal_source_T_11 = 1'h1; // @[Parameters.scala:57:20]
wire _legal_source_T_15 = 1'h1; // @[Parameters.scala:56:32]
wire _legal_source_T_17 = 1'h1; // @[Parameters.scala:57:20]
wire _legal_source_T_21 = 1'h1; // @[Parameters.scala:56:32]
wire _legal_source_T_23 = 1'h1; // @[Parameters.scala:57:20]
wire _legal_source_T_27 = 1'h1; // @[Parameters.scala:56:32]
wire _legal_source_T_29 = 1'h1; // @[Parameters.scala:57:20]
wire _legal_source_T_31 = 1'h1; // @[Parameters.scala:46:9]
wire _legal_source_WIRE_6 = 1'h1; // @[Parameters.scala:1138:31]
wire legal_source = 1'h1; // @[Monitor.scala:168:113]
wire _source_ok_T_81 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_83 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_87 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_89 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_93 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_95 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_99 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_101 = 1'h1; // @[Parameters.scala:57:20]
wire _source_ok_T_105 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_107 = 1'h1; // @[Parameters.scala:57:20]
wire _b_first_beats1_opdata_T = 1'h1; // @[Edges.scala:97:37]
wire _b_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire b_first_last = 1'h1; // @[Edges.scala:232:33]
wire [5:0] io_in_b_bits_source = 6'h28; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_55 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _uncommonBits_T_56 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _uncommonBits_T_57 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _uncommonBits_T_58 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _uncommonBits_T_59 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _legal_source_uncommonBits_T = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _legal_source_uncommonBits_T_1 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _legal_source_uncommonBits_T_2 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _legal_source_uncommonBits_T_3 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _legal_source_uncommonBits_T_4 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _legal_source_T_39 = 6'h28; // @[Mux.scala:30:73]
wire [5:0] _legal_source_T_46 = 6'h28; // @[Mux.scala:30:73]
wire [5:0] _legal_source_T_47 = 6'h28; // @[Mux.scala:30:73]
wire [5:0] _legal_source_WIRE_1 = 6'h28; // @[Mux.scala:30:73]
wire [5:0] _uncommonBits_T_60 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _uncommonBits_T_61 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _uncommonBits_T_62 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _uncommonBits_T_63 = 6'h28; // @[Parameters.scala:52:29]
wire [5:0] _uncommonBits_T_64 = 6'h28; // @[Parameters.scala:52:29]
wire [2:0] io_in_b_bits_opcode = 3'h6; // @[Monitor.scala:36:7]
wire [2:0] io_in_b_bits_size = 3'h6; // @[Monitor.scala:36:7]
wire [15:0] io_in_b_bits_mask = 16'hFFFF; // @[Monitor.scala:36:7]
wire [15:0] mask_1 = 16'hFFFF; // @[Misc.scala:222:10]
wire [127:0] io_in_b_bits_data = 128'h0; // @[Monitor.scala:36:7]
wire io_in_b_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire mask_sub_sub_sub_size_1 = 1'h0; // @[Misc.scala:209:26]
wire _mask_sub_sub_sub_acc_T_2 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_sub_sub_acc_T_3 = 1'h0; // @[Misc.scala:215:38]
wire mask_sub_size_1 = 1'h0; // @[Misc.scala:209:26]
wire _mask_sub_acc_T_8 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_9 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_10 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_11 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_12 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_13 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_14 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_15 = 1'h0; // @[Misc.scala:215:38]
wire _legal_source_T = 1'h0; // @[Parameters.scala:46:9]
wire _legal_source_T_2 = 1'h0; // @[Parameters.scala:54:32]
wire _legal_source_T_4 = 1'h0; // @[Parameters.scala:54:67]
wire _legal_source_T_6 = 1'h0; // @[Parameters.scala:56:48]
wire _legal_source_T_8 = 1'h0; // @[Parameters.scala:54:32]
wire _legal_source_T_10 = 1'h0; // @[Parameters.scala:54:67]
wire _legal_source_T_12 = 1'h0; // @[Parameters.scala:56:48]
wire _legal_source_T_14 = 1'h0; // @[Parameters.scala:54:32]
wire _legal_source_T_16 = 1'h0; // @[Parameters.scala:54:67]
wire _legal_source_T_18 = 1'h0; // @[Parameters.scala:56:48]
wire _legal_source_T_20 = 1'h0; // @[Parameters.scala:54:32]
wire _legal_source_T_22 = 1'h0; // @[Parameters.scala:54:67]
wire _legal_source_T_24 = 1'h0; // @[Parameters.scala:56:48]
wire _legal_source_T_26 = 1'h0; // @[Parameters.scala:54:32]
wire _legal_source_T_28 = 1'h0; // @[Parameters.scala:54:67]
wire _legal_source_T_30 = 1'h0; // @[Parameters.scala:56:48]
wire _legal_source_T_32 = 1'h0; // @[Parameters.scala:46:9]
wire _legal_source_WIRE_0 = 1'h0; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_1_0 = 1'h0; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_2 = 1'h0; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_3 = 1'h0; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_4 = 1'h0; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_5 = 1'h0; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_7 = 1'h0; // @[Parameters.scala:1138:31]
wire _legal_source_T_34 = 1'h0; // @[Mux.scala:30:73]
wire b_first_beats1_opdata = 1'h0; // @[Edges.scala:97:28]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [3:0] _mask_sizeOH_T_4 = 4'h4; // @[OneHot.scala:65:12]
wire [3:0] _mask_sizeOH_T_5 = 4'h4; // @[OneHot.scala:65:27]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] _legal_source_T_25 = 3'h5; // @[Parameters.scala:54:10]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] uncommonBits_59 = 3'h0; // @[Parameters.scala:52:56]
wire [2:0] legal_source_uncommonBits_4 = 3'h0; // @[Parameters.scala:52:56]
wire [2:0] _legal_source_T_35 = 3'h0; // @[Mux.scala:30:73]
wire [2:0] uncommonBits_64 = 3'h0; // @[Parameters.scala:52:56]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [1:0] uncommonBits_55 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] uncommonBits_56 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] uncommonBits_57 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] uncommonBits_58 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] legal_source_uncommonBits = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] legal_source_uncommonBits_1 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] legal_source_uncommonBits_2 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] legal_source_uncommonBits_3 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] uncommonBits_60 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] uncommonBits_61 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] uncommonBits_62 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] uncommonBits_63 = 2'h0; // @[Parameters.scala:52:56]
wire [1:0] b_first_beats1 = 2'h0; // @[Edges.scala:221:14]
wire [1:0] b_first_count = 2'h0; // @[Edges.scala:234:25]
wire [1:0] mask_lo_lo_lo_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_lo_lo_hi_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_lo_hi_lo_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_lo_hi_hi_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo_lo_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo_hi_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_hi_hi_lo_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_hi_hi_hi_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] b_first_beats1_decode = 2'h3; // @[Edges.scala:220:59]
wire [5:0] is_aligned_mask_1 = 6'h3F; // @[package.scala:243:46]
wire [5:0] _b_first_beats1_decode_T_2 = 6'h3F; // @[package.scala:243:46]
wire [5:0] _is_aligned_mask_T_3 = 6'h0; // @[package.scala:243:76]
wire [5:0] _legal_source_T_38 = 6'h0; // @[Mux.scala:30:73]
wire [5:0] _legal_source_T_40 = 6'h0; // @[Mux.scala:30:73]
wire [5:0] _legal_source_T_45 = 6'h0; // @[Mux.scala:30:73]
wire [5:0] _b_first_beats1_decode_T_1 = 6'h0; // @[package.scala:243:76]
wire [12:0] _is_aligned_mask_T_2 = 13'hFC0; // @[package.scala:243:71]
wire [12:0] _b_first_beats1_decode_T = 13'hFC0; // @[package.scala:243:71]
wire [4:0] _legal_source_T_33 = 5'h0; // @[Mux.scala:30:73]
wire [4:0] _legal_source_T_41 = 5'h0; // @[Mux.scala:30:73]
wire [4:0] _legal_source_T_42 = 5'h0; // @[Mux.scala:30:73]
wire [4:0] _legal_source_T_43 = 5'h0; // @[Mux.scala:30:73]
wire [4:0] _legal_source_T_44 = 5'h0; // @[Mux.scala:30:73]
wire [3:0] _legal_source_T_36 = 4'h0; // @[Mux.scala:30:73]
wire [3:0] _legal_source_T_37 = 4'h0; // @[Mux.scala:30:73]
wire [3:0] _legal_source_T_1 = 4'hA; // @[Parameters.scala:54:10]
wire [3:0] _legal_source_T_7 = 4'hA; // @[Parameters.scala:54:10]
wire [3:0] _legal_source_T_13 = 4'hA; // @[Parameters.scala:54:10]
wire [3:0] _legal_source_T_19 = 4'hA; // @[Parameters.scala:54:10]
wire [7:0] mask_lo_1 = 8'hFF; // @[Misc.scala:222:10]
wire [7:0] mask_hi_1 = 8'hFF; // @[Misc.scala:222:10]
wire [3:0] mask_lo_lo_1 = 4'hF; // @[Misc.scala:222:10]
wire [3:0] mask_lo_hi_1 = 4'hF; // @[Misc.scala:222:10]
wire [3:0] mask_hi_lo_1 = 4'hF; // @[Misc.scala:222:10]
wire [3:0] mask_hi_hi_1 = 4'hF; // @[Misc.scala:222:10]
wire [3:0] mask_sizeOH_1 = 4'h5; // @[Misc.scala:202:81]
wire [1:0] mask_sizeOH_shiftAmount_1 = 2'h2; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_3 = 4'h6; // @[Misc.scala:202:34]
wire [5:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_10 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_11 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_12 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_13 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_14 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_65 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_66 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_67 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_68 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_69 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_70 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_71 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_72 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_73 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_74 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_75 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_76 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_77 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_78 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_79 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_80 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_81 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_82 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_83 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_84 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_85 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_86 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_87 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_88 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _uncommonBits_T_89 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_5 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [5:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire _source_ok_T = io_in_a_bits_source_0 == 6'h10; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _source_ok_T_1 = io_in_a_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_7 = io_in_a_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_13 = io_in_a_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_19 = io_in_a_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_2 = _source_ok_T_1 == 4'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_8 = _source_ok_T_7 == 4'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_14 = _source_ok_T_13 == 4'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_20 = _source_ok_T_19 == 4'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] _source_ok_T_25 = io_in_a_bits_source_0[5:3]; // @[Monitor.scala:36:7]
wire _source_ok_T_26 = _source_ok_T_25 == 3'h4; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_28 = _source_ok_T_26; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_30 = _source_ok_T_28; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_5 = _source_ok_T_30; // @[Parameters.scala:1138:31]
wire _source_ok_T_31 = io_in_a_bits_source_0 == 6'h28; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_6 = _source_ok_T_31; // @[Parameters.scala:1138:31]
wire _source_ok_T_32 = io_in_a_bits_source_0 == 6'h2A; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_7 = _source_ok_T_32; // @[Parameters.scala:1138:31]
wire _source_ok_T_33 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_34 = _source_ok_T_33 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_35 = _source_ok_T_34 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_36 = _source_ok_T_35 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_37 = _source_ok_T_36 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_38 = _source_ok_T_37 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok = _source_ok_T_38 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T = {26'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}]
wire [3:0] _mask_sizeOH_T = {1'h0, io_in_a_bits_size_0}; // @[Misc.scala:202:34]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [3:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1; // @[OneHot.scala:65:{12,27}]
wire [3:0] mask_sizeOH = {_mask_sizeOH_T_2[3:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_sub_0_1 = io_in_a_bits_size_0[2]; // @[Misc.scala:206:21]
wire mask_sub_sub_sub_size = mask_sizeOH[3]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_sub_bit = io_in_a_bits_address_0[3]; // @[Misc.scala:210:26]
wire mask_sub_sub_sub_1_2 = mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_sub_nbit = ~mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_sub_0_2 = mask_sub_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_sub_acc_T = mask_sub_sub_sub_size & mask_sub_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_sub_0_1 = mask_sub_sub_sub_sub_0_1 | _mask_sub_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_sub_acc_T_1 = mask_sub_sub_sub_size & mask_sub_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_sub_1_1 = mask_sub_sub_sub_sub_0_1 | _mask_sub_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_sub_0_2 & mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_sub_1_2 = mask_sub_sub_sub_0_2 & mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_sub_2_2 = mask_sub_sub_sub_1_2 & mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T_2 = mask_sub_sub_size & mask_sub_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_2_1 = mask_sub_sub_sub_1_1 | _mask_sub_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_sub_3_2 = mask_sub_sub_sub_1_2 & mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_sub_acc_T_3 = mask_sub_sub_size & mask_sub_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_3_1 = mask_sub_sub_sub_1_1 | _mask_sub_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_sub_4_2 = mask_sub_sub_2_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_4 = mask_sub_size & mask_sub_4_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_4_1 = mask_sub_sub_2_1 | _mask_sub_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_sub_5_2 = mask_sub_sub_2_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_5 = mask_sub_size & mask_sub_5_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_5_1 = mask_sub_sub_2_1 | _mask_sub_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_sub_6_2 = mask_sub_sub_3_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_6 = mask_sub_size & mask_sub_6_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_6_1 = mask_sub_sub_3_1 | _mask_sub_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_sub_7_2 = mask_sub_sub_3_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_7 = mask_sub_size & mask_sub_7_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_7_1 = mask_sub_sub_3_1 | _mask_sub_acc_T_7; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire mask_eq_8 = mask_sub_4_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_8 = mask_size & mask_eq_8; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_8 = mask_sub_4_1 | _mask_acc_T_8; // @[Misc.scala:215:{29,38}]
wire mask_eq_9 = mask_sub_4_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_9 = mask_size & mask_eq_9; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_9 = mask_sub_4_1 | _mask_acc_T_9; // @[Misc.scala:215:{29,38}]
wire mask_eq_10 = mask_sub_5_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_10 = mask_size & mask_eq_10; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_10 = mask_sub_5_1 | _mask_acc_T_10; // @[Misc.scala:215:{29,38}]
wire mask_eq_11 = mask_sub_5_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_11 = mask_size & mask_eq_11; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_11 = mask_sub_5_1 | _mask_acc_T_11; // @[Misc.scala:215:{29,38}]
wire mask_eq_12 = mask_sub_6_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_12 = mask_size & mask_eq_12; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_12 = mask_sub_6_1 | _mask_acc_T_12; // @[Misc.scala:215:{29,38}]
wire mask_eq_13 = mask_sub_6_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_13 = mask_size & mask_eq_13; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_13 = mask_sub_6_1 | _mask_acc_T_13; // @[Misc.scala:215:{29,38}]
wire mask_eq_14 = mask_sub_7_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_14 = mask_size & mask_eq_14; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_14 = mask_sub_7_1 | _mask_acc_T_14; // @[Misc.scala:215:{29,38}]
wire mask_eq_15 = mask_sub_7_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_15 = mask_size & mask_eq_15; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_15 = mask_sub_7_1 | _mask_acc_T_15; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo_lo = {mask_lo_lo_hi, mask_lo_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_lo_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo_hi = {mask_lo_hi_hi, mask_lo_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo_lo = {mask_acc_9, mask_acc_8}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_lo_hi = {mask_acc_11, mask_acc_10}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi_lo = {mask_hi_lo_hi, mask_hi_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_hi_lo = {mask_acc_13, mask_acc_12}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi_hi = {mask_acc_15, mask_acc_14}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi_hi = {mask_hi_hi_hi, mask_hi_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [15:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_4 = _uncommonBits_T_4[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_9 = _uncommonBits_T_9[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_11 = _uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_14 = _uncommonBits_T_14[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_19 = _uncommonBits_T_19[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_24 = _uncommonBits_T_24[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_29 = _uncommonBits_T_29[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_34 = _uncommonBits_T_34[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_39 = _uncommonBits_T_39[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_40 = _uncommonBits_T_40[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_41 = _uncommonBits_T_41[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_44 = _uncommonBits_T_44[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_46 = _uncommonBits_T_46[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_47 = _uncommonBits_T_47[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_48 = _uncommonBits_T_48[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_49 = _uncommonBits_T_49[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_52 = _uncommonBits_T_52[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_53 = _uncommonBits_T_53[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_54 = _uncommonBits_T_54[2:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_39 = io_in_d_bits_source_0 == 6'h10; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_0 = _source_ok_T_39; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _source_ok_T_40 = io_in_d_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_46 = io_in_d_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_52 = io_in_d_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_58 = io_in_d_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_41 = _source_ok_T_40 == 4'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_43 = _source_ok_T_41; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_45 = _source_ok_T_43; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_1 = _source_ok_T_45; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_47 = _source_ok_T_46 == 4'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_49 = _source_ok_T_47; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_51 = _source_ok_T_49; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_2 = _source_ok_T_51; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_53 = _source_ok_T_52 == 4'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_55 = _source_ok_T_53; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_57 = _source_ok_T_55; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_3 = _source_ok_T_57; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_59 = _source_ok_T_58 == 4'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_61 = _source_ok_T_59; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_63 = _source_ok_T_61; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_4 = _source_ok_T_63; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] _source_ok_T_64 = io_in_d_bits_source_0[5:3]; // @[Monitor.scala:36:7]
wire _source_ok_T_65 = _source_ok_T_64 == 3'h4; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_67 = _source_ok_T_65; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_69 = _source_ok_T_67; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_1_5 = _source_ok_T_69; // @[Parameters.scala:1138:31]
wire _source_ok_T_70 = io_in_d_bits_source_0 == 6'h28; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_6 = _source_ok_T_70; // @[Parameters.scala:1138:31]
wire _source_ok_T_71 = io_in_d_bits_source_0 == 6'h2A; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_7 = _source_ok_T_71; // @[Parameters.scala:1138:31]
wire _source_ok_T_72 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_73 = _source_ok_T_72 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_74 = _source_ok_T_73 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_75 = _source_ok_T_74 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_76 = _source_ok_T_75 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_77 = _source_ok_T_76 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_1 = _source_ok_T_77 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46]
wire sink_ok = io_in_d_bits_sink_0[3:2] != 2'h3; // @[Monitor.scala:36:7, :309:31]
wire [27:0] _GEN_0 = io_in_b_bits_address_0[27:0] ^ 28'h8000080; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T = {io_in_b_bits_address_0[31:28], _GEN_0}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_1 = {1'h0, _address_ok_T}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_2 = _address_ok_T_1 & 33'h1FFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_3 = _address_ok_T_2; // @[Parameters.scala:137:46]
wire _address_ok_T_4 = _address_ok_T_3 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_0 = _address_ok_T_4; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_5 = io_in_b_bits_address_0 ^ 32'h80000080; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_6 = {1'h0, _address_ok_T_5}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_7 = _address_ok_T_6 & 33'h1F00001C0; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_8 = _address_ok_T_7; // @[Parameters.scala:137:46]
wire _address_ok_T_9 = _address_ok_T_8 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1 = _address_ok_T_9; // @[Parameters.scala:612:40]
wire address_ok = _address_ok_WIRE_0 | _address_ok_WIRE_1; // @[Parameters.scala:612:40, :636:64]
wire [31:0] _is_aligned_T_1 = {26'h0, io_in_b_bits_address_0[5:0]}; // @[Monitor.scala:36:7]
wire is_aligned_1 = _is_aligned_T_1 == 32'h0; // @[Edges.scala:21:{16,24}]
wire mask_sub_sub_sub_bit_1 = io_in_b_bits_address_0[3]; // @[Misc.scala:210:26]
wire mask_sub_sub_sub_1_2_1 = mask_sub_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_sub_nbit_1 = ~mask_sub_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_sub_0_2_1 = mask_sub_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire mask_sub_sub_bit_1 = io_in_b_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_nbit_1 = ~mask_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2_1 = mask_sub_sub_sub_0_2_1 & mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T_4 = mask_sub_sub_0_2_1; // @[Misc.scala:214:27, :215:38]
wire mask_sub_sub_1_2_1 = mask_sub_sub_sub_0_2_1 & mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_sub_acc_T_5 = mask_sub_sub_1_2_1; // @[Misc.scala:214:27, :215:38]
wire mask_sub_sub_2_2_1 = mask_sub_sub_sub_1_2_1 & mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T_6 = mask_sub_sub_2_2_1; // @[Misc.scala:214:27, :215:38]
wire mask_sub_sub_3_2_1 = mask_sub_sub_sub_1_2_1 & mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_sub_acc_T_7 = mask_sub_sub_3_2_1; // @[Misc.scala:214:27, :215:38]
wire mask_sub_bit_1 = io_in_b_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit_1 = ~mask_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2_1 = mask_sub_sub_0_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire mask_sub_1_2_1 = mask_sub_sub_0_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_sub_2_2_1 = mask_sub_sub_1_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire mask_sub_3_2_1 = mask_sub_sub_1_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_sub_4_2_1 = mask_sub_sub_2_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire mask_sub_5_2_1 = mask_sub_sub_2_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_sub_6_2_1 = mask_sub_sub_3_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire mask_sub_7_2_1 = mask_sub_sub_3_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_bit_1 = io_in_b_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit_1 = ~mask_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_eq_16 = mask_sub_0_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_16 = mask_eq_16; // @[Misc.scala:214:27, :215:38]
wire mask_eq_17 = mask_sub_0_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_17 = mask_eq_17; // @[Misc.scala:214:27, :215:38]
wire mask_eq_18 = mask_sub_1_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_18 = mask_eq_18; // @[Misc.scala:214:27, :215:38]
wire mask_eq_19 = mask_sub_1_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_19 = mask_eq_19; // @[Misc.scala:214:27, :215:38]
wire mask_eq_20 = mask_sub_2_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_20 = mask_eq_20; // @[Misc.scala:214:27, :215:38]
wire mask_eq_21 = mask_sub_2_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_21 = mask_eq_21; // @[Misc.scala:214:27, :215:38]
wire mask_eq_22 = mask_sub_3_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_22 = mask_eq_22; // @[Misc.scala:214:27, :215:38]
wire mask_eq_23 = mask_sub_3_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_23 = mask_eq_23; // @[Misc.scala:214:27, :215:38]
wire mask_eq_24 = mask_sub_4_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_24 = mask_eq_24; // @[Misc.scala:214:27, :215:38]
wire mask_eq_25 = mask_sub_4_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_25 = mask_eq_25; // @[Misc.scala:214:27, :215:38]
wire mask_eq_26 = mask_sub_5_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_26 = mask_eq_26; // @[Misc.scala:214:27, :215:38]
wire mask_eq_27 = mask_sub_5_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_27 = mask_eq_27; // @[Misc.scala:214:27, :215:38]
wire mask_eq_28 = mask_sub_6_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_28 = mask_eq_28; // @[Misc.scala:214:27, :215:38]
wire mask_eq_29 = mask_sub_6_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_29 = mask_eq_29; // @[Misc.scala:214:27, :215:38]
wire mask_eq_30 = mask_sub_7_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_30 = mask_eq_30; // @[Misc.scala:214:27, :215:38]
wire mask_eq_31 = mask_sub_7_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_31 = mask_eq_31; // @[Misc.scala:214:27, :215:38]
wire _source_ok_T_78 = io_in_c_bits_source_0 == 6'h10; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2_0 = _source_ok_T_78; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_10 = _source_ok_uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}]
wire [3:0] _source_ok_T_79 = io_in_c_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_85 = io_in_c_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_91 = io_in_c_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_T_97 = io_in_c_bits_source_0[5:2]; // @[Monitor.scala:36:7]
wire _source_ok_T_80 = _source_ok_T_79 == 4'h0; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_82 = _source_ok_T_80; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_84 = _source_ok_T_82; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2_1 = _source_ok_T_84; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_11 = _source_ok_uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_86 = _source_ok_T_85 == 4'h1; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_88 = _source_ok_T_86; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_90 = _source_ok_T_88; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2_2 = _source_ok_T_90; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_12 = _source_ok_uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_92 = _source_ok_T_91 == 4'h2; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_94 = _source_ok_T_92; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_96 = _source_ok_T_94; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2_3 = _source_ok_T_96; // @[Parameters.scala:1138:31]
wire [1:0] source_ok_uncommonBits_13 = _source_ok_uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_98 = _source_ok_T_97 == 4'h3; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_100 = _source_ok_T_98; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_102 = _source_ok_T_100; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2_4 = _source_ok_T_102; // @[Parameters.scala:1138:31]
wire [2:0] source_ok_uncommonBits_14 = _source_ok_uncommonBits_T_14[2:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] _source_ok_T_103 = io_in_c_bits_source_0[5:3]; // @[Monitor.scala:36:7]
wire _source_ok_T_104 = _source_ok_T_103 == 3'h4; // @[Parameters.scala:54:{10,32}]
wire _source_ok_T_106 = _source_ok_T_104; // @[Parameters.scala:54:{32,67}]
wire _source_ok_T_108 = _source_ok_T_106; // @[Parameters.scala:54:67, :56:48]
wire _source_ok_WIRE_2_5 = _source_ok_T_108; // @[Parameters.scala:1138:31]
wire _source_ok_T_109 = io_in_c_bits_source_0 == 6'h28; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2_6 = _source_ok_T_109; // @[Parameters.scala:1138:31]
wire _source_ok_T_110 = io_in_c_bits_source_0 == 6'h2A; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2_7 = _source_ok_T_110; // @[Parameters.scala:1138:31]
wire _source_ok_T_111 = _source_ok_WIRE_2_0 | _source_ok_WIRE_2_1; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_112 = _source_ok_T_111 | _source_ok_WIRE_2_2; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_113 = _source_ok_T_112 | _source_ok_WIRE_2_3; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_114 = _source_ok_T_113 | _source_ok_WIRE_2_4; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_115 = _source_ok_T_114 | _source_ok_WIRE_2_5; // @[Parameters.scala:1138:31, :1139:46]
wire _source_ok_T_116 = _source_ok_T_115 | _source_ok_WIRE_2_6; // @[Parameters.scala:1138:31, :1139:46]
wire source_ok_2 = _source_ok_T_116 | _source_ok_WIRE_2_7; // @[Parameters.scala:1138:31, :1139:46]
wire [12:0] _GEN_1 = 13'h3F << io_in_c_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T_4; // @[package.scala:243:71]
assign _is_aligned_mask_T_4 = _GEN_1; // @[package.scala:243:71]
wire [12:0] _c_first_beats1_decode_T; // @[package.scala:243:71]
assign _c_first_beats1_decode_T = _GEN_1; // @[package.scala:243:71]
wire [12:0] _c_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _c_first_beats1_decode_T_3 = _GEN_1; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_5 = _is_aligned_mask_T_4[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask_2 = ~_is_aligned_mask_T_5; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T_2 = {26'h0, io_in_c_bits_address_0[5:0] & is_aligned_mask_2}; // @[package.scala:243:46]
wire is_aligned_2 = _is_aligned_T_2 == 32'h0; // @[Edges.scala:21:{16,24}]
wire [27:0] _GEN_2 = io_in_c_bits_address_0[27:0] ^ 28'h8000080; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_10 = {io_in_c_bits_address_0[31:28], _GEN_2}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_11 = {1'h0, _address_ok_T_10}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_12 = _address_ok_T_11 & 33'h1FFFF01C0; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_13 = _address_ok_T_12; // @[Parameters.scala:137:46]
wire _address_ok_T_14 = _address_ok_T_13 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_0 = _address_ok_T_14; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_15 = io_in_c_bits_address_0 ^ 32'h80000080; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_16 = {1'h0, _address_ok_T_15}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_17 = _address_ok_T_16 & 33'h1F00001C0; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_18 = _address_ok_T_17; // @[Parameters.scala:137:46]
wire _address_ok_T_19 = _address_ok_T_18 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_1 = _address_ok_T_19; // @[Parameters.scala:612:40]
wire address_ok_1 = _address_ok_WIRE_1_0 | _address_ok_WIRE_1_1; // @[Parameters.scala:612:40, :636:64]
wire [1:0] uncommonBits_65 = _uncommonBits_T_65[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_66 = _uncommonBits_T_66[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_67 = _uncommonBits_T_67[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_68 = _uncommonBits_T_68[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_69 = _uncommonBits_T_69[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_70 = _uncommonBits_T_70[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_71 = _uncommonBits_T_71[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_72 = _uncommonBits_T_72[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_73 = _uncommonBits_T_73[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_74 = _uncommonBits_T_74[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_75 = _uncommonBits_T_75[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_76 = _uncommonBits_T_76[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_77 = _uncommonBits_T_77[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_78 = _uncommonBits_T_78[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_79 = _uncommonBits_T_79[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_80 = _uncommonBits_T_80[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_81 = _uncommonBits_T_81[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_82 = _uncommonBits_T_82[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_83 = _uncommonBits_T_83[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_84 = _uncommonBits_T_84[2:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_85 = _uncommonBits_T_85[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_86 = _uncommonBits_T_86[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_87 = _uncommonBits_T_87[1:0]; // @[Parameters.scala:52:{29,56}]
wire [1:0] uncommonBits_88 = _uncommonBits_T_88[1:0]; // @[Parameters.scala:52:{29,56}]
wire [2:0] uncommonBits_89 = _uncommonBits_T_89[2:0]; // @[Parameters.scala:52:{29,56}]
wire sink_ok_1 = io_in_e_bits_sink_0[3:2] != 2'h3; // @[Monitor.scala:36:7, :367:31]
wire _T_2165 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_2165; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_2165; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [1:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:4]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [1:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 2'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [1:0] a_first_counter; // @[Edges.scala:229:27]
wire [2:0] _a_first_counter1_T = {1'h0, a_first_counter} - 3'h1; // @[Edges.scala:229:27, :230:28]
wire [1:0] a_first_counter1 = _a_first_counter1_T[1:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 2'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 2'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 2'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [1:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [1:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [1:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [5:0] source; // @[Monitor.scala:390:22]
reg [31:0] address; // @[Monitor.scala:391:22]
wire _T_2239 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_2239; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_2239; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_2239; // @[Decoupled.scala:51:35]
wire _d_first_T_3; // @[Decoupled.scala:51:35]
assign _d_first_T_3 = _T_2239; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_3 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_3; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_3; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_3; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_9; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_9 = _GEN_3; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [1:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:4]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_3 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [1:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 2'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [1:0] d_first_counter; // @[Edges.scala:229:27]
wire [2:0] _d_first_counter1_T = {1'h0, d_first_counter} - 3'h1; // @[Edges.scala:229:27, :230:28]
wire [1:0] d_first_counter1 = _d_first_counter1_T[1:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 2'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 2'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 2'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [1:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [1:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [1:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [5:0] source_1; // @[Monitor.scala:541:22]
reg [3:0] sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
wire _b_first_T = io_in_b_ready_0 & io_in_b_valid_0; // @[Decoupled.scala:51:35]
wire b_first_done = _b_first_T; // @[Decoupled.scala:51:35]
reg [1:0] b_first_counter; // @[Edges.scala:229:27]
wire [2:0] _b_first_counter1_T = {1'h0, b_first_counter} - 3'h1; // @[Edges.scala:229:27, :230:28]
wire [1:0] b_first_counter1 = _b_first_counter1_T[1:0]; // @[Edges.scala:230:28]
wire b_first = b_first_counter == 2'h0; // @[Edges.scala:229:27, :231:25]
wire _b_first_last_T = b_first_counter == 2'h1; // @[Edges.scala:229:27, :232:25]
wire [1:0] _b_first_count_T = ~b_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [1:0] _b_first_counter_T = b_first ? 2'h0 : b_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21]
reg [1:0] param_2; // @[Monitor.scala:411:22]
reg [31:0] address_1; // @[Monitor.scala:414:22]
wire _T_2236 = io_in_c_ready_0 & io_in_c_valid_0; // @[Decoupled.scala:51:35]
wire _c_first_T; // @[Decoupled.scala:51:35]
assign _c_first_T = _T_2236; // @[Decoupled.scala:51:35]
wire _c_first_T_1; // @[Decoupled.scala:51:35]
assign _c_first_T_1 = _T_2236; // @[Decoupled.scala:51:35]
wire [5:0] _c_first_beats1_decode_T_1 = _c_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _c_first_beats1_decode_T_2 = ~_c_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [1:0] c_first_beats1_decode = _c_first_beats1_decode_T_2[5:4]; // @[package.scala:243:46]
wire c_first_beats1_opdata = io_in_c_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire c_first_beats1_opdata_1 = io_in_c_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [1:0] c_first_beats1 = c_first_beats1_opdata ? c_first_beats1_decode : 2'h0; // @[Edges.scala:102:36, :220:59, :221:14]
reg [1:0] c_first_counter; // @[Edges.scala:229:27]
wire [2:0] _c_first_counter1_T = {1'h0, c_first_counter} - 3'h1; // @[Edges.scala:229:27, :230:28]
wire [1:0] c_first_counter1 = _c_first_counter1_T[1:0]; // @[Edges.scala:230:28]
wire c_first = c_first_counter == 2'h0; // @[Edges.scala:229:27, :231:25]
wire _c_first_last_T = c_first_counter == 2'h1; // @[Edges.scala:229:27, :232:25]
wire _c_first_last_T_1 = c_first_beats1 == 2'h0; // @[Edges.scala:221:14, :232:43]
wire c_first_last = _c_first_last_T | _c_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire c_first_done = c_first_last & _c_first_T; // @[Decoupled.scala:51:35]
wire [1:0] _c_first_count_T = ~c_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [1:0] c_first_count = c_first_beats1 & _c_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [1:0] _c_first_counter_T = c_first ? c_first_beats1 : c_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_3; // @[Monitor.scala:515:22]
reg [2:0] param_3; // @[Monitor.scala:516:22]
reg [2:0] size_3; // @[Monitor.scala:517:22]
reg [5:0] source_3; // @[Monitor.scala:518:22]
reg [31:0] address_2; // @[Monitor.scala:519:22]
reg [42:0] inflight; // @[Monitor.scala:614:27]
reg [171:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [171:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [1:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:4]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [1:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 2'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [1:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [2:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 3'h1; // @[Edges.scala:229:27, :230:28]
wire [1:0] a_first_counter1_1 = _a_first_counter1_T_1[1:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 2'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 2'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 2'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [1:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [1:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [1:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [1:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:4]; // @[package.scala:243:46]
wire [1:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 2'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [1:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [2:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 3'h1; // @[Edges.scala:229:27, :230:28]
wire [1:0] d_first_counter1_1 = _d_first_counter1_T_1[1:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 2'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 2'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 2'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [1:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [1:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [1:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [42:0] a_set; // @[Monitor.scala:626:34]
wire [42:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [171:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [171:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [8:0] _GEN_4 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [8:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_4; // @[Monitor.scala:637:69]
wire [8:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_4; // @[Monitor.scala:637:69, :641:65]
wire [8:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_4; // @[Monitor.scala:637:69, :680:101]
wire [8:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_4; // @[Monitor.scala:637:69, :681:99]
wire [8:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_4; // @[Monitor.scala:637:69, :749:69]
wire [8:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_4; // @[Monitor.scala:637:69, :750:67]
wire [8:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_4; // @[Monitor.scala:637:69, :790:101]
wire [8:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_4; // @[Monitor.scala:637:69, :791:99]
wire [171:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [171:0] _a_opcode_lookup_T_6 = {168'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [171:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[171:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [171:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [171:0] _a_size_lookup_T_6 = {168'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [171:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[171:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [63:0] _GEN_5 = 64'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [63:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [63:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_5; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[42:0] : 43'h0; // @[OneHot.scala:58:35]
wire _T_2091 = _T_2165 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_2091 ? _a_set_T[42:0] : 43'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_2091 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_2091 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [8:0] _GEN_6 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [8:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_6; // @[Monitor.scala:659:79]
wire [8:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_6; // @[Monitor.scala:659:79, :660:77]
wire [514:0] _a_opcodes_set_T_1 = {511'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_2091 ? _a_opcodes_set_T_1[171:0] : 172'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [514:0] _a_sizes_set_T_1 = {511'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_2091 ? _a_sizes_set_T_1[171:0] : 172'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [42:0] d_clr; // @[Monitor.scala:664:34]
wire [42:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [171:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [171:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_7 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_7; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_7; // @[Monitor.scala:673:46, :783:46]
wire _T_2137 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [63:0] _GEN_8 = 64'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [63:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_8; // @[OneHot.scala:58:35]
wire [63:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_8; // @[OneHot.scala:58:35]
wire [63:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_8; // @[OneHot.scala:58:35]
wire [63:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_8; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_2137 & ~d_release_ack ? _d_clr_wo_ready_T[42:0] : 43'h0; // @[OneHot.scala:58:35]
wire _T_2106 = _T_2239 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_2106 ? _d_clr_T[42:0] : 43'h0; // @[OneHot.scala:58:35]
wire [526:0] _d_opcodes_clr_T_5 = 527'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_2106 ? _d_opcodes_clr_T_5[171:0] : 172'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [526:0] _d_sizes_clr_T_5 = 527'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_2106 ? _d_sizes_clr_T_5[171:0] : 172'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [42:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [42:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [42:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [171:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [171:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [171:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [171:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [171:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [171:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [42:0] inflight_1; // @[Monitor.scala:726:35]
reg [171:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
reg [171:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [5:0] _c_first_beats1_decode_T_4 = _c_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _c_first_beats1_decode_T_5 = ~_c_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [1:0] c_first_beats1_decode_1 = _c_first_beats1_decode_T_5[5:4]; // @[package.scala:243:46]
wire [1:0] c_first_beats1_1 = c_first_beats1_opdata_1 ? c_first_beats1_decode_1 : 2'h0; // @[Edges.scala:102:36, :220:59, :221:14]
reg [1:0] c_first_counter_1; // @[Edges.scala:229:27]
wire [2:0] _c_first_counter1_T_1 = {1'h0, c_first_counter_1} - 3'h1; // @[Edges.scala:229:27, :230:28]
wire [1:0] c_first_counter1_1 = _c_first_counter1_T_1[1:0]; // @[Edges.scala:230:28]
wire c_first_1 = c_first_counter_1 == 2'h0; // @[Edges.scala:229:27, :231:25]
wire _c_first_last_T_2 = c_first_counter_1 == 2'h1; // @[Edges.scala:229:27, :232:25]
wire _c_first_last_T_3 = c_first_beats1_1 == 2'h0; // @[Edges.scala:221:14, :232:43]
wire c_first_last_1 = _c_first_last_T_2 | _c_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire c_first_done_1 = c_first_last_1 & _c_first_T_1; // @[Decoupled.scala:51:35]
wire [1:0] _c_first_count_T_1 = ~c_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [1:0] c_first_count_1 = c_first_beats1_1 & _c_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [1:0] _c_first_counter_T_1 = c_first_1 ? c_first_beats1_1 : c_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [1:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:4]; // @[package.scala:243:46]
wire [1:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 2'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [1:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [2:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 3'h1; // @[Edges.scala:229:27, :230:28]
wire [1:0] d_first_counter1_2 = _d_first_counter1_T_2[1:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 2'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 2'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 2'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [1:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [1:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [1:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [42:0] c_set; // @[Monitor.scala:738:34]
wire [42:0] c_set_wo_ready; // @[Monitor.scala:739:34]
wire [171:0] c_opcodes_set; // @[Monitor.scala:740:34]
wire [171:0] c_sizes_set; // @[Monitor.scala:741:34]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [171:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [171:0] _c_opcode_lookup_T_6 = {168'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [171:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[171:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [171:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [171:0] _c_size_lookup_T_6 = {168'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [171:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[171:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [3:0] c_opcodes_set_interm; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm; // @[Monitor.scala:755:40]
wire _same_cycle_resp_T_3 = io_in_c_valid_0 & c_first_1; // @[Monitor.scala:36:7, :759:26, :795:44]
wire _same_cycle_resp_T_4 = io_in_c_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _same_cycle_resp_T_5 = io_in_c_bits_opcode_0[1]; // @[Monitor.scala:36:7]
wire [63:0] _GEN_9 = 64'h1 << io_in_c_bits_source_0; // @[OneHot.scala:58:35]
wire [63:0] _c_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _c_set_wo_ready_T = _GEN_9; // @[OneHot.scala:58:35]
wire [63:0] _c_set_T; // @[OneHot.scala:58:35]
assign _c_set_T = _GEN_9; // @[OneHot.scala:58:35]
assign c_set_wo_ready = _same_cycle_resp_T_3 & _same_cycle_resp_T_4 & _same_cycle_resp_T_5 ? _c_set_wo_ready_T[42:0] : 43'h0; // @[OneHot.scala:58:35]
wire _T_2178 = _T_2236 & c_first_1 & _same_cycle_resp_T_4 & _same_cycle_resp_T_5; // @[Decoupled.scala:51:35]
assign c_set = _T_2178 ? _c_set_T[42:0] : 43'h0; // @[OneHot.scala:58:35]
wire [3:0] _c_opcodes_set_interm_T = {io_in_c_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :765:53]
wire [3:0] _c_opcodes_set_interm_T_1 = {_c_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:765:{53,61}]
assign c_opcodes_set_interm = _T_2178 ? _c_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:754:40, :763:{25,36,70}, :765:{28,61}]
wire [3:0] _c_sizes_set_interm_T = {io_in_c_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :766:51]
wire [3:0] _c_sizes_set_interm_T_1 = {_c_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:766:{51,59}]
assign c_sizes_set_interm = _T_2178 ? _c_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:755:40, :763:{25,36,70}, :766:{28,59}]
wire [8:0] _GEN_10 = {1'h0, io_in_c_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :767:79]
wire [8:0] _c_opcodes_set_T; // @[Monitor.scala:767:79]
assign _c_opcodes_set_T = _GEN_10; // @[Monitor.scala:767:79]
wire [8:0] _c_sizes_set_T; // @[Monitor.scala:768:77]
assign _c_sizes_set_T = _GEN_10; // @[Monitor.scala:767:79, :768:77]
wire [514:0] _c_opcodes_set_T_1 = {511'h0, c_opcodes_set_interm} << _c_opcodes_set_T; // @[Monitor.scala:659:54, :754:40, :767:{54,79}]
assign c_opcodes_set = _T_2178 ? _c_opcodes_set_T_1[171:0] : 172'h0; // @[Monitor.scala:740:34, :763:{25,36,70}, :767:{28,54}]
wire [514:0] _c_sizes_set_T_1 = {511'h0, c_sizes_set_interm} << _c_sizes_set_T; // @[Monitor.scala:659:54, :755:40, :768:{52,77}]
assign c_sizes_set = _T_2178 ? _c_sizes_set_T_1[171:0] : 172'h0; // @[Monitor.scala:741:34, :763:{25,36,70}, :768:{28,52}]
wire _c_probe_ack_T = io_in_c_bits_opcode_0 == 3'h4; // @[Monitor.scala:36:7, :772:47]
wire _c_probe_ack_T_1 = io_in_c_bits_opcode_0 == 3'h5; // @[Monitor.scala:36:7, :772:95]
wire c_probe_ack = _c_probe_ack_T | _c_probe_ack_T_1; // @[Monitor.scala:772:{47,71,95}]
wire [42:0] d_clr_1; // @[Monitor.scala:774:34]
wire [42:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [171:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [171:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_2209 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_2209 & d_release_ack_1 ? _d_clr_wo_ready_T_1[42:0] : 43'h0; // @[OneHot.scala:58:35]
wire _T_2191 = _T_2239 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_2191 ? _d_clr_T_1[42:0] : 43'h0; // @[OneHot.scala:58:35]
wire [526:0] _d_opcodes_clr_T_11 = 527'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_2191 ? _d_opcodes_clr_T_11[171:0] : 172'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [526:0] _d_sizes_clr_T_11 = 527'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_2191 ? _d_sizes_clr_T_11[171:0] : 172'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_6 = _same_cycle_resp_T_4 & _same_cycle_resp_T_5; // @[Edges.scala:68:{36,40,51}]
wire _same_cycle_resp_T_7 = _same_cycle_resp_T_3 & _same_cycle_resp_T_6; // @[Monitor.scala:795:{44,55}]
wire _same_cycle_resp_T_8 = io_in_c_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :795:113]
wire same_cycle_resp_1 = _same_cycle_resp_T_7 & _same_cycle_resp_T_8; // @[Monitor.scala:795:{55,88,113}]
wire [42:0] _inflight_T_3 = inflight_1 | c_set; // @[Monitor.scala:726:35, :738:34, :814:35]
wire [42:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [42:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [171:0] _inflight_opcodes_T_3 = inflight_opcodes_1 | c_opcodes_set; // @[Monitor.scala:727:35, :740:34, :815:43]
wire [171:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [171:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [171:0] _inflight_sizes_T_3 = inflight_sizes_1 | c_sizes_set; // @[Monitor.scala:728:35, :741:34, :816:41]
wire [171:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [171:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
wire [32:0] _watchdog_T_2 = {1'h0, watchdog_1} + 33'h1; // @[Monitor.scala:818:27, :823:26]
wire [31:0] _watchdog_T_3 = _watchdog_T_2[31:0]; // @[Monitor.scala:823:26]
reg [11:0] inflight_2; // @[Monitor.scala:828:27]
wire [5:0] _d_first_beats1_decode_T_10 = _d_first_beats1_decode_T_9[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_11 = ~_d_first_beats1_decode_T_10; // @[package.scala:243:{46,76}]
wire [1:0] d_first_beats1_decode_3 = _d_first_beats1_decode_T_11[5:4]; // @[package.scala:243:46]
wire [1:0] d_first_beats1_3 = d_first_beats1_opdata_3 ? d_first_beats1_decode_3 : 2'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [1:0] d_first_counter_3; // @[Edges.scala:229:27]
wire [2:0] _d_first_counter1_T_3 = {1'h0, d_first_counter_3} - 3'h1; // @[Edges.scala:229:27, :230:28]
wire [1:0] d_first_counter1_3 = _d_first_counter1_T_3[1:0]; // @[Edges.scala:230:28]
wire d_first_3 = d_first_counter_3 == 2'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_6 = d_first_counter_3 == 2'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_7 = d_first_beats1_3 == 2'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_3 = _d_first_last_T_6 | _d_first_last_T_7; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_3 = d_first_last_3 & _d_first_T_3; // @[Decoupled.scala:51:35]
wire [1:0] _d_first_count_T_3 = ~d_first_counter1_3; // @[Edges.scala:230:28, :234:27]
wire [1:0] d_first_count_3 = d_first_beats1_3 & _d_first_count_T_3; // @[Edges.scala:221:14, :234:{25,27}]
wire [1:0] _d_first_counter_T_3 = d_first_3 ? d_first_beats1_3 : d_first_counter1_3; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [11:0] d_set; // @[Monitor.scala:833:25]
wire _T_2245 = _T_2239 & d_first_3 & io_in_d_bits_opcode_0[2] & ~(io_in_d_bits_opcode_0[1]); // @[Decoupled.scala:51:35]
wire [15:0] _d_set_T = 16'h1 << io_in_d_bits_sink_0; // @[OneHot.scala:58:35]
assign d_set = _T_2245 ? _d_set_T[11:0] : 12'h0; // @[OneHot.scala:58:35]
wire [11:0] e_clr; // @[Monitor.scala:839:25]
wire [15:0] _e_clr_T = 16'h1 << io_in_e_bits_sink_0; // @[OneHot.scala:58:35]
assign e_clr = io_in_e_valid_0 ? _e_clr_T[11:0] : 12'h0; // @[OneHot.scala:58:35] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_28( // @[AsyncQueue.scala:58:7]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in = 1'h1; // @[ShiftReg.scala:45:23]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_45 io_out_sink_valid_0 ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_24( // @[AsyncQueue.scala:58:7]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in = 1'h1; // @[ShiftReg.scala:45:23]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_34 io_out_source_valid_0 ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_36( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [9:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [20:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [9:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire [12:0] _GEN = {10'h0, io_in_a_bits_size}; // @[package.scala:243:71]
wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [9:0] source; // @[Monitor.scala:390:22]
reg [20:0] address; // @[Monitor.scala:391:22]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [9:0] source_1; // @[Monitor.scala:541:22]
reg sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
reg [512:0] inflight; // @[Monitor.scala:614:27]
reg [2051:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [2051:0] inflight_sizes; // @[Monitor.scala:618:33]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire [1023:0] _GEN_0 = {1014'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35]
wire _GEN_1 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35]
wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46]
wire _GEN_2 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74]
wire [1023:0] _GEN_3 = {1014'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
reg [512:0] inflight_1; // @[Monitor.scala:726:35]
reg [2051:0] inflight_sizes_1; // @[Monitor.scala:728:35]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File Repeater.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{Decoupled, DecoupledIO}
// A Repeater passes its input to its output, unless repeat is asserted.
// When repeat is asserted, the Repeater copies the input and repeats it next cycle.
class Repeater[T <: Data](gen: T) extends Module
{
override def desiredName = s"Repeater_${gen.typeName}"
val io = IO( new Bundle {
val repeat = Input(Bool())
val full = Output(Bool())
val enq = Flipped(Decoupled(gen.cloneType))
val deq = Decoupled(gen.cloneType)
} )
val full = RegInit(false.B)
val saved = Reg(gen.cloneType)
// When !full, a repeater is pass-through
io.deq.valid := io.enq.valid || full
io.enq.ready := io.deq.ready && !full
io.deq.bits := Mux(full, saved, io.enq.bits)
io.full := full
when (io.enq.fire && io.repeat) { full := true.B; saved := io.enq.bits }
when (io.deq.fire && !io.repeat) { full := false.B }
}
object Repeater
{
def apply[T <: Data](enq: DecoupledIO[T], repeat: Bool): DecoupledIO[T] = {
val repeater = Module(new Repeater(chiselTypeOf(enq.bits)))
repeater.io.repeat := repeat
repeater.io.enq <> enq
repeater.io.deq
}
}
| module Repeater_TLBundleA_a32d256s2k3z4u_1( // @[Repeater.scala:10:7]
input clock, // @[Repeater.scala:10:7]
input reset, // @[Repeater.scala:10:7]
input io_repeat, // @[Repeater.scala:13:14]
output io_enq_ready, // @[Repeater.scala:13:14]
input io_enq_valid, // @[Repeater.scala:13:14]
input [2:0] io_enq_bits_opcode, // @[Repeater.scala:13:14]
input [2:0] io_enq_bits_param, // @[Repeater.scala:13:14]
input [3:0] io_enq_bits_size, // @[Repeater.scala:13:14]
input [1:0] io_enq_bits_source, // @[Repeater.scala:13:14]
input [31:0] io_enq_bits_address, // @[Repeater.scala:13:14]
input [31:0] io_enq_bits_mask, // @[Repeater.scala:13:14]
input [255:0] io_enq_bits_data, // @[Repeater.scala:13:14]
input io_enq_bits_corrupt, // @[Repeater.scala:13:14]
input io_deq_ready, // @[Repeater.scala:13:14]
output io_deq_valid, // @[Repeater.scala:13:14]
output [2:0] io_deq_bits_opcode, // @[Repeater.scala:13:14]
output [2:0] io_deq_bits_param, // @[Repeater.scala:13:14]
output [3:0] io_deq_bits_size, // @[Repeater.scala:13:14]
output [1:0] io_deq_bits_source, // @[Repeater.scala:13:14]
output [31:0] io_deq_bits_address, // @[Repeater.scala:13:14]
output [31:0] io_deq_bits_mask, // @[Repeater.scala:13:14]
output [255:0] io_deq_bits_data, // @[Repeater.scala:13:14]
output io_deq_bits_corrupt // @[Repeater.scala:13:14]
);
wire io_repeat_0 = io_repeat; // @[Repeater.scala:10:7]
wire io_enq_valid_0 = io_enq_valid; // @[Repeater.scala:10:7]
wire [2:0] io_enq_bits_opcode_0 = io_enq_bits_opcode; // @[Repeater.scala:10:7]
wire [2:0] io_enq_bits_param_0 = io_enq_bits_param; // @[Repeater.scala:10:7]
wire [3:0] io_enq_bits_size_0 = io_enq_bits_size; // @[Repeater.scala:10:7]
wire [1:0] io_enq_bits_source_0 = io_enq_bits_source; // @[Repeater.scala:10:7]
wire [31:0] io_enq_bits_address_0 = io_enq_bits_address; // @[Repeater.scala:10:7]
wire [31:0] io_enq_bits_mask_0 = io_enq_bits_mask; // @[Repeater.scala:10:7]
wire [255:0] io_enq_bits_data_0 = io_enq_bits_data; // @[Repeater.scala:10:7]
wire io_enq_bits_corrupt_0 = io_enq_bits_corrupt; // @[Repeater.scala:10:7]
wire io_deq_ready_0 = io_deq_ready; // @[Repeater.scala:10:7]
wire _io_enq_ready_T_1; // @[Repeater.scala:25:32]
wire _io_deq_valid_T; // @[Repeater.scala:24:32]
wire [2:0] _io_deq_bits_T_opcode; // @[Repeater.scala:26:21]
wire [2:0] _io_deq_bits_T_param; // @[Repeater.scala:26:21]
wire [3:0] _io_deq_bits_T_size; // @[Repeater.scala:26:21]
wire [1:0] _io_deq_bits_T_source; // @[Repeater.scala:26:21]
wire [31:0] _io_deq_bits_T_address; // @[Repeater.scala:26:21]
wire [31:0] _io_deq_bits_T_mask; // @[Repeater.scala:26:21]
wire [255:0] _io_deq_bits_T_data; // @[Repeater.scala:26:21]
wire _io_deq_bits_T_corrupt; // @[Repeater.scala:26:21]
wire io_enq_ready_0; // @[Repeater.scala:10:7]
wire [2:0] io_deq_bits_opcode_0; // @[Repeater.scala:10:7]
wire [2:0] io_deq_bits_param_0; // @[Repeater.scala:10:7]
wire [3:0] io_deq_bits_size_0; // @[Repeater.scala:10:7]
wire [1:0] io_deq_bits_source_0; // @[Repeater.scala:10:7]
wire [31:0] io_deq_bits_address_0; // @[Repeater.scala:10:7]
wire [31:0] io_deq_bits_mask_0; // @[Repeater.scala:10:7]
wire [255:0] io_deq_bits_data_0; // @[Repeater.scala:10:7]
wire io_deq_bits_corrupt_0; // @[Repeater.scala:10:7]
wire io_deq_valid_0; // @[Repeater.scala:10:7]
wire io_full; // @[Repeater.scala:10:7]
reg full; // @[Repeater.scala:20:21]
assign io_full = full; // @[Repeater.scala:10:7, :20:21]
reg [2:0] saved_opcode; // @[Repeater.scala:21:18]
reg [2:0] saved_param; // @[Repeater.scala:21:18]
reg [3:0] saved_size; // @[Repeater.scala:21:18]
reg [1:0] saved_source; // @[Repeater.scala:21:18]
reg [31:0] saved_address; // @[Repeater.scala:21:18]
reg [31:0] saved_mask; // @[Repeater.scala:21:18]
reg [255:0] saved_data; // @[Repeater.scala:21:18]
reg saved_corrupt; // @[Repeater.scala:21:18]
assign _io_deq_valid_T = io_enq_valid_0 | full; // @[Repeater.scala:10:7, :20:21, :24:32]
assign io_deq_valid_0 = _io_deq_valid_T; // @[Repeater.scala:10:7, :24:32]
wire _io_enq_ready_T = ~full; // @[Repeater.scala:20:21, :25:35]
assign _io_enq_ready_T_1 = io_deq_ready_0 & _io_enq_ready_T; // @[Repeater.scala:10:7, :25:{32,35}]
assign io_enq_ready_0 = _io_enq_ready_T_1; // @[Repeater.scala:10:7, :25:32]
assign _io_deq_bits_T_opcode = full ? saved_opcode : io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_param = full ? saved_param : io_enq_bits_param_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_size = full ? saved_size : io_enq_bits_size_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_source = full ? saved_source : io_enq_bits_source_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_address = full ? saved_address : io_enq_bits_address_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_mask = full ? saved_mask : io_enq_bits_mask_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_data = full ? saved_data : io_enq_bits_data_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_corrupt = full ? saved_corrupt : io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign io_deq_bits_opcode_0 = _io_deq_bits_T_opcode; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_param_0 = _io_deq_bits_T_param; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_size_0 = _io_deq_bits_T_size; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_source_0 = _io_deq_bits_T_source; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_address_0 = _io_deq_bits_T_address; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_mask_0 = _io_deq_bits_T_mask; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_data_0 = _io_deq_bits_T_data; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_corrupt_0 = _io_deq_bits_T_corrupt; // @[Repeater.scala:10:7, :26:21]
wire _T_1 = io_enq_ready_0 & io_enq_valid_0 & io_repeat_0; // @[Decoupled.scala:51:35]
always @(posedge clock) begin // @[Repeater.scala:10:7]
if (reset) // @[Repeater.scala:10:7]
full <= 1'h0; // @[Repeater.scala:20:21]
else // @[Repeater.scala:10:7]
full <= ~(io_deq_ready_0 & io_deq_valid_0 & ~io_repeat_0) & (_T_1 | full); // @[Decoupled.scala:51:35]
if (_T_1) begin // @[Decoupled.scala:51:35]
saved_opcode <= io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :21:18]
saved_param <= io_enq_bits_param_0; // @[Repeater.scala:10:7, :21:18]
saved_size <= io_enq_bits_size_0; // @[Repeater.scala:10:7, :21:18]
saved_source <= io_enq_bits_source_0; // @[Repeater.scala:10:7, :21:18]
saved_address <= io_enq_bits_address_0; // @[Repeater.scala:10:7, :21:18]
saved_mask <= io_enq_bits_mask_0; // @[Repeater.scala:10:7, :21:18]
saved_data <= io_enq_bits_data_0; // @[Repeater.scala:10:7, :21:18]
saved_corrupt <= io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :21:18]
end
always @(posedge)
assign io_enq_ready = io_enq_ready_0; // @[Repeater.scala:10:7]
assign io_deq_valid = io_deq_valid_0; // @[Repeater.scala:10:7]
assign io_deq_bits_opcode = io_deq_bits_opcode_0; // @[Repeater.scala:10:7]
assign io_deq_bits_param = io_deq_bits_param_0; // @[Repeater.scala:10:7]
assign io_deq_bits_size = io_deq_bits_size_0; // @[Repeater.scala:10:7]
assign io_deq_bits_source = io_deq_bits_source_0; // @[Repeater.scala:10:7]
assign io_deq_bits_address = io_deq_bits_address_0; // @[Repeater.scala:10:7]
assign io_deq_bits_mask = io_deq_bits_mask_0; // @[Repeater.scala:10:7]
assign io_deq_bits_data = io_deq_bits_data_0; // @[Repeater.scala:10:7]
assign io_deq_bits_corrupt = io_deq_bits_corrupt_0; // @[Repeater.scala:10:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Buffer.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.BufferParams
class TLBufferNode (
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit valName: ValName) extends TLAdapterNode(
clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) },
managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) }
) {
override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}"
override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none)
}
class TLBuffer(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters) extends LazyModule
{
def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace)
def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde)
def this()(implicit p: Parameters) = this(BufferParams.default)
val node = new TLBufferNode(a, b, c, d, e)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def headBundle = node.out.head._2.bundle
override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.a <> a(in .a)
in .d <> d(out.d)
if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) {
in .b <> b(out.b)
out.c <> c(in .c)
out.e <> e(in .e)
} else {
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLBuffer
{
def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default)
def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde)
def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace)
def apply(
a: BufferParams,
b: BufferParams,
c: BufferParams,
d: BufferParams,
e: BufferParams)(implicit p: Parameters): TLNode =
{
val buffer = LazyModule(new TLBuffer(a, b, c, d, e))
buffer.node
}
def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = {
val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) }
name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } }
buffers.map(_.node)
}
def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = {
chain(depth, name)
.reduceLeftOption(_ :*=* _)
.getOrElse(TLNameNode("no_buffer"))
}
}
File Crossing.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.interrupts
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.util.{SynchronizerShiftReg, AsyncResetReg}
@deprecated("IntXing does not ensure interrupt source is glitch free. Use IntSyncSource and IntSyncSink", "rocket-chip 1.2")
class IntXing(sync: Int = 3)(implicit p: Parameters) extends LazyModule
{
val intnode = IntAdapterNode()
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
(intnode.in zip intnode.out) foreach { case ((in, _), (out, _)) =>
out := SynchronizerShiftReg(in, sync)
}
}
}
object IntSyncCrossingSource
{
def apply(alreadyRegistered: Boolean = false)(implicit p: Parameters) =
{
val intsource = LazyModule(new IntSyncCrossingSource(alreadyRegistered))
intsource.node
}
}
class IntSyncCrossingSource(alreadyRegistered: Boolean = false)(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSourceNode(alreadyRegistered)
lazy val module = if (alreadyRegistered) (new ImplRegistered) else (new Impl)
class Impl extends LazyModuleImp(this) {
def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0)
override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.sync := AsyncResetReg(Cat(in.reverse)).asBools
}
}
class ImplRegistered extends LazyRawModuleImp(this) {
def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0)
override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}_Registered"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out.sync := in
}
}
}
object IntSyncCrossingSink
{
@deprecated("IntSyncCrossingSink which used the `sync` parameter to determine crossing type is deprecated. Use IntSyncAsyncCrossingSink, IntSyncRationalCrossingSink, or IntSyncSyncCrossingSink instead for > 1, 1, and 0 sync values respectively", "rocket-chip 1.2")
def apply(sync: Int = 3)(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync))
intsink.node
}
}
class IntSyncAsyncCrossingSink(sync: Int = 3)(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSinkNode(sync)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = s"IntSyncAsyncCrossingSink_n${node.out.size}x${node.out.head._1.size}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out := SynchronizerShiftReg(in.sync, sync)
}
}
}
object IntSyncAsyncCrossingSink
{
def apply(sync: Int = 3)(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync))
intsink.node
}
}
class IntSyncSyncCrossingSink()(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSinkNode(0)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
def outSize = node.out.headOption.map(_._1.size).getOrElse(0)
override def desiredName = s"IntSyncSyncCrossingSink_n${node.out.size}x${outSize}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out := in.sync
}
}
}
object IntSyncSyncCrossingSink
{
def apply()(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncSyncCrossingSink())
intsink.node
}
}
class IntSyncRationalCrossingSink()(implicit p: Parameters) extends LazyModule
{
val node = IntSyncSinkNode(1)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
def outSize = node.out.headOption.map(_._1.size).getOrElse(0)
override def desiredName = s"IntSyncRationalCrossingSink_n${node.out.size}x${outSize}"
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
out := RegNext(in.sync)
}
}
}
object IntSyncRationalCrossingSink
{
def apply()(implicit p: Parameters) =
{
val intsink = LazyModule(new IntSyncRationalCrossingSink())
intsink.node
}
}
File ClockDomain.scala:
package freechips.rocketchip.prci
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing
{
def clockBundle: ClockBundle
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
childClock := clockBundle.clock
childReset := clockBundle.reset
override def provideImplicitClockToLazyChildren = true
// these are just for backwards compatibility with external devices
// that were manually wiring themselves to the domain's clock/reset input:
val clock = IO(Output(chiselTypeOf(clockBundle.clock)))
val reset = IO(Output(chiselTypeOf(clockBundle.reset)))
clock := clockBundle.clock
reset := clockBundle.reset
}
}
abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing
class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain
{
def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name))
val clockNode = ClockSinkNode(Seq(clockSinkParams))
def clockBundle = clockNode.in.head._1
override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString
}
class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain
{
def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name))
val clockNode = ClockSourceNode(Seq(clockSourceParams))
def clockBundle = clockNode.out.head._1
override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString
}
abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing
File NullIntSource.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.interrupts
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
/** Useful for stubbing out parts of an interrupt interface where certain devices might be missing */
class NullIntSource(num: Int = 1, ports: Int = 1, sources: Int = 1)(implicit p: Parameters) extends LazyModule
{
val intnode = IntSourceNode(IntSourcePortSimple(num, ports, sources))
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
intnode.out.foreach { case (o, _) => o.foreach { _ := false.B } }
}
}
object NullIntSource {
def apply(num: Int = 1, ports: Int = 1, sources: Int = 1)(implicit p: Parameters): IntOutwardNode = {
val null_int_source = LazyModule(new NullIntSource(num, ports, sources))
null_int_source.intnode
}
}
object NullIntSyncSource {
def apply(num: Int = 1, ports: Int = 1, sources: Int = 1)(implicit p: Parameters): IntSyncOutwardNode = {
IntSyncCrossingSource(alreadyRegistered = true) := NullIntSource(num, ports, sources)
}
}
File PeripheryBus.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.subsystem
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.devices.tilelink.{BuiltInZeroDeviceParams, BuiltInErrorDeviceParams, HasBuiltInDeviceParams, BuiltInDevices}
import freechips.rocketchip.diplomacy.BufferParams
import freechips.rocketchip.tilelink.{
RegionReplicator, ReplicatedRegion, HasTLBusParams, HasRegionReplicatorParams, TLBusWrapper,
TLBusWrapperInstantiationLike, TLFIFOFixer, TLNode, TLXbar, TLInwardNode, TLOutwardNode,
TLBuffer, TLWidthWidget, TLAtomicAutomata, TLEdge
}
import freechips.rocketchip.util.Location
case class BusAtomics(
arithmetic: Boolean = true,
buffer: BufferParams = BufferParams.default,
widenBytes: Option[Int] = None
)
case class PeripheryBusParams(
beatBytes: Int,
blockBytes: Int,
atomics: Option[BusAtomics] = Some(BusAtomics()),
dtsFrequency: Option[BigInt] = None,
zeroDevice: Option[BuiltInZeroDeviceParams] = None,
errorDevice: Option[BuiltInErrorDeviceParams] = None,
replication: Option[ReplicatedRegion] = None)
extends HasTLBusParams
with HasBuiltInDeviceParams
with HasRegionReplicatorParams
with TLBusWrapperInstantiationLike
{
def instantiate(context: HasTileLinkLocations, loc: Location[TLBusWrapper])(implicit p: Parameters): PeripheryBus = {
val pbus = LazyModule(new PeripheryBus(this, loc.name))
pbus.suggestName(loc.name)
context.tlBusWrapperLocationMap += (loc -> pbus)
pbus
}
}
class PeripheryBus(params: PeripheryBusParams, name: String)(implicit p: Parameters)
extends TLBusWrapper(params, name)
{
override lazy val desiredName = s"PeripheryBus_$name"
private val replicator = params.replication.map(r => LazyModule(new RegionReplicator(r)))
val prefixNode = replicator.map { r =>
r.prefix := addressPrefixNexusNode
addressPrefixNexusNode
}
private val fixer = LazyModule(new TLFIFOFixer(TLFIFOFixer.all))
private val node: TLNode = params.atomics.map { pa =>
val in_xbar = LazyModule(new TLXbar(nameSuffix = Some(s"${name}_in")))
val out_xbar = LazyModule(new TLXbar(nameSuffix = Some(s"${name}_out")))
val fixer_node = replicator.map(fixer.node :*= _.node).getOrElse(fixer.node)
(out_xbar.node
:*= fixer_node
:*= TLBuffer(pa.buffer)
:*= (pa.widenBytes.filter(_ > beatBytes).map { w =>
TLWidthWidget(w) :*= TLAtomicAutomata(arithmetic = pa.arithmetic, nameSuffix = Some(name))
} .getOrElse { TLAtomicAutomata(arithmetic = pa.arithmetic, nameSuffix = Some(name)) })
:*= in_xbar.node)
} .getOrElse { TLXbar() :*= fixer.node }
def inwardNode: TLInwardNode = node
def outwardNode: TLOutwardNode = node
def busView: TLEdge = fixer.node.edges.in.head
val builtInDevices: BuiltInDevices = BuiltInDevices.attach(params, outwardNode)
}
File HasTiles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.subsystem
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.bundlebridge._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.devices.debug.TLDebugModule
import freechips.rocketchip.diplomacy.{DisableMonitors, FlipRendering}
import freechips.rocketchip.interrupts.{IntXbar, IntSinkNode, IntSinkPortSimple, IntSyncAsyncCrossingSink}
import freechips.rocketchip.tile.{MaxHartIdBits, BaseTile, InstantiableTileParams, TileParams, TilePRCIDomain, TraceBundle, PriorityMuxHartIdFromSeq}
import freechips.rocketchip.tilelink.TLWidthWidget
import freechips.rocketchip.prci.{ClockGroup, BundleBridgeBlockDuringReset, NoCrossing, SynchronousCrossing, CreditedCrossing, RationalCrossing, AsynchronousCrossing}
import freechips.rocketchip.rocket.TracedInstruction
import freechips.rocketchip.util.TraceCoreInterface
import scala.collection.immutable.SortedMap
/** Entry point for Config-uring the presence of Tiles */
case class TilesLocated(loc: HierarchicalLocation) extends Field[Seq[CanAttachTile]](Nil)
/** List of HierarchicalLocations which might contain a Tile */
case object PossibleTileLocations extends Field[Seq[HierarchicalLocation]](Nil)
/** For determining static tile id */
case object NumTiles extends Field[Int](0)
/** Whether to add timing-closure registers along the path of the hart id
* as it propagates through the subsystem and into the tile.
*
* These are typically only desirable when a dynamically programmable prefix is being combined
* with the static hart id via [[freechips.rocketchip.subsystem.HasTiles.tileHartIdNexusNode]].
*/
case object InsertTimingClosureRegistersOnHartIds extends Field[Boolean](false)
/** Whether per-tile hart ids are going to be driven as inputs into a HasTiles block,
* and if so, what their width should be.
*/
case object HasTilesExternalHartIdWidthKey extends Field[Option[Int]](None)
/** Whether per-tile reset vectors are going to be driven as inputs into a HasTiles block.
*
* Unlike the hart ids, the reset vector width is determined by the sinks within the tiles,
* based on the size of the address map visible to the tiles.
*/
case object HasTilesExternalResetVectorKey extends Field[Boolean](true)
/** These are sources of "constants" that are driven into the tile.
*
* While they are not expected to change dyanmically while the tile is executing code,
* they may be either tied to a contant value or programmed during boot or reset.
* They need to be instantiated before tiles are attached within the subsystem containing them.
*/
trait HasTileInputConstants { this: LazyModule with Attachable with InstantiatesHierarchicalElements =>
/** tileHartIdNode is used to collect publishers and subscribers of hartids. */
val tileHartIdNodes: SortedMap[Int, BundleBridgeEphemeralNode[UInt]] = (0 until nTotalTiles).map { i =>
(i, BundleBridgeEphemeralNode[UInt]())
}.to(SortedMap)
/** tileHartIdNexusNode is a BundleBridgeNexus that collects dynamic hart prefixes.
*
* Each "prefix" input is actually the same full width as the outer hart id; the expected usage
* is that each prefix source would set only some non-overlapping portion of the bits to non-zero values.
* This node orReduces them, and further combines the reduction with the static ids assigned to each tile,
* producing a unique, dynamic hart id for each tile.
*
* If p(InsertTimingClosureRegistersOnHartIds) is set, the input and output values are registered.
*
* The output values are [[dontTouch]]'d to prevent constant propagation from pulling the values into
* the tiles if they are constant, which would ruin deduplication of tiles that are otherwise homogeneous.
*/
val tileHartIdNexusNode = LazyModule(new BundleBridgeNexus[UInt](
inputFn = BundleBridgeNexus.orReduction[UInt](registered = p(InsertTimingClosureRegistersOnHartIds)) _,
outputFn = (prefix: UInt, n: Int) => Seq.tabulate(n) { i =>
val y = dontTouch(prefix | totalTileIdList(i).U(p(MaxHartIdBits).W)) // dontTouch to keep constant prop from breaking tile dedup
if (p(InsertTimingClosureRegistersOnHartIds)) BundleBridgeNexus.safeRegNext(y) else y
},
default = Some(() => 0.U(p(MaxHartIdBits).W)),
inputRequiresOutput = true, // guard against this being driven but then ignored in tileHartIdIONodes below
shouldBeInlined = false // can't inline something whose output we are are dontTouching
)).node
// TODO: Replace the DebugModuleHartSelFuncs config key with logic to consume the dynamic hart IDs
/** tileResetVectorNode is used to collect publishers and subscribers of tile reset vector addresses. */
val tileResetVectorNodes: SortedMap[Int, BundleBridgeEphemeralNode[UInt]] = (0 until nTotalTiles).map { i =>
(i, BundleBridgeEphemeralNode[UInt]())
}.to(SortedMap)
/** tileResetVectorNexusNode is a BundleBridgeNexus that accepts a single reset vector source, and broadcasts it to all tiles. */
val tileResetVectorNexusNode = BundleBroadcast[UInt](
inputRequiresOutput = true // guard against this being driven but ignored in tileResetVectorIONodes below
)
/** tileHartIdIONodes may generate subsystem IOs, one per tile, allowing the parent to assign unique hart ids.
*
* Or, if such IOs are not configured to exist, tileHartIdNexusNode is used to supply an id to each tile.
*/
val tileHartIdIONodes: Seq[BundleBridgeSource[UInt]] = p(HasTilesExternalHartIdWidthKey) match {
case Some(w) => (0 until nTotalTiles).map { i =>
val hartIdSource = BundleBridgeSource(() => UInt(w.W))
tileHartIdNodes(i) := hartIdSource
hartIdSource
}
case None => {
(0 until nTotalTiles).map { i => tileHartIdNodes(i) :*= tileHartIdNexusNode }
Nil
}
}
/** tileResetVectorIONodes may generate subsystem IOs, one per tile, allowing the parent to assign unique reset vectors.
*
* Or, if such IOs are not configured to exist, tileResetVectorNexusNode is used to supply a single reset vector to every tile.
*/
val tileResetVectorIONodes: Seq[BundleBridgeSource[UInt]] = p(HasTilesExternalResetVectorKey) match {
case true => (0 until nTotalTiles).map { i =>
val resetVectorSource = BundleBridgeSource[UInt]()
tileResetVectorNodes(i) := resetVectorSource
resetVectorSource
}
case false => {
(0 until nTotalTiles).map { i => tileResetVectorNodes(i) :*= tileResetVectorNexusNode }
Nil
}
}
}
/** These are sinks of notifications that are driven out from the tile.
*
* They need to be instantiated before tiles are attached to the subsystem containing them.
*/
trait HasTileNotificationSinks { this: LazyModule =>
val tileHaltXbarNode = IntXbar()
val tileHaltSinkNode = IntSinkNode(IntSinkPortSimple())
tileHaltSinkNode := tileHaltXbarNode
val tileWFIXbarNode = IntXbar()
val tileWFISinkNode = IntSinkNode(IntSinkPortSimple())
tileWFISinkNode := tileWFIXbarNode
val tileCeaseXbarNode = IntXbar()
val tileCeaseSinkNode = IntSinkNode(IntSinkPortSimple())
tileCeaseSinkNode := tileCeaseXbarNode
}
/** Standardized interface by which parameterized tiles can be attached to contexts containing interconnect resources.
*
* Sub-classes of this trait can optionally override the individual connect functions in order to specialize
* their attachment behaviors, but most use cases should be be handled simply by changing the implementation
* of the injectNode functions in crossingParams.
*/
trait CanAttachTile {
type TileType <: BaseTile
type TileContextType <: DefaultHierarchicalElementContextType
def tileParams: InstantiableTileParams[TileType]
def crossingParams: HierarchicalElementCrossingParamsLike
/** Narrow waist through which all tiles are intended to pass while being instantiated. */
def instantiate(allTileParams: Seq[TileParams], instantiatedTiles: SortedMap[Int, TilePRCIDomain[_]])(implicit p: Parameters): TilePRCIDomain[TileType] = {
val clockSinkParams = tileParams.clockSinkParams.copy(name = Some(tileParams.uniqueName))
val tile_prci_domain = LazyModule(new TilePRCIDomain[TileType](clockSinkParams, crossingParams) { self =>
val element = self.element_reset_domain { LazyModule(tileParams.instantiate(crossingParams, PriorityMuxHartIdFromSeq(allTileParams))) }
})
tile_prci_domain
}
/** A default set of connections that need to occur for most tile types */
def connect(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = {
connectMasterPorts(domain, context)
connectSlavePorts(domain, context)
connectInterrupts(domain, context)
connectPRC(domain, context)
connectOutputNotifications(domain, context)
connectInputConstants(domain, context)
connectTrace(domain, context)
}
/** Connect the port where the tile is the master to a TileLink interconnect. */
def connectMasterPorts(domain: TilePRCIDomain[TileType], context: Attachable): Unit = {
implicit val p = context.p
val dataBus = context.locateTLBusWrapper(crossingParams.master.where)
dataBus.coupleFrom(tileParams.baseName) { bus =>
bus :=* crossingParams.master.injectNode(context) :=* domain.crossMasterPort(crossingParams.crossingType)
}
}
/** Connect the port where the tile is the slave to a TileLink interconnect. */
def connectSlavePorts(domain: TilePRCIDomain[TileType], context: Attachable): Unit = {
implicit val p = context.p
DisableMonitors { implicit p =>
val controlBus = context.locateTLBusWrapper(crossingParams.slave.where)
controlBus.coupleTo(tileParams.baseName) { bus =>
domain.crossSlavePort(crossingParams.crossingType) :*= crossingParams.slave.injectNode(context) :*= TLWidthWidget(controlBus.beatBytes) :*= bus
}
}
}
/** Connect the various interrupts sent to and and raised by the tile. */
def connectInterrupts(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = {
implicit val p = context.p
// NOTE: The order of calls to := matters! They must match how interrupts
// are decoded from tile.intInwardNode inside the tile. For this reason,
// we stub out missing interrupts with constant sources here.
// 1. Debug interrupt is definitely asynchronous in all cases.
domain.element.intInwardNode := domain { IntSyncAsyncCrossingSink(3) } :=
context.debugNodes(domain.element.tileId)
// 2. The CLINT and PLIC output interrupts are synchronous to the CLINT/PLIC respectively,
// so might need to be synchronized depending on the Tile's crossing type.
// From CLINT: "msip" and "mtip"
context.msipDomain {
domain.crossIntIn(crossingParams.crossingType, domain.element.intInwardNode) :=
context.msipNodes(domain.element.tileId)
}
// From PLIC: "meip"
context.meipDomain {
domain.crossIntIn(crossingParams.crossingType, domain.element.intInwardNode) :=
context.meipNodes(domain.element.tileId)
}
// From PLIC: "seip" (only if supervisor mode is enabled)
if (domain.element.tileParams.core.hasSupervisorMode) {
context.seipDomain {
domain.crossIntIn(crossingParams.crossingType, domain.element.intInwardNode) :=
context.seipNodes(domain.element.tileId)
}
}
// 3. Local Interrupts ("lip") are required to already be synchronous to the Tile's clock.
// (they are connected to domain.element.intInwardNode in a seperate trait)
// 4. Interrupts coming out of the tile are sent to the PLIC,
// so might need to be synchronized depending on the Tile's crossing type.
context.tileToPlicNodes.get(domain.element.tileId).foreach { node =>
FlipRendering { implicit p => domain.element.intOutwardNode.foreach { out =>
context.toPlicDomain { node := domain.crossIntOut(crossingParams.crossingType, out) }
}}
}
// 5. Connect NMI inputs to the tile. These inputs are synchronous to the respective core_clock.
domain.element.nmiNode.foreach(_ := context.nmiNodes(domain.element.tileId))
}
/** Notifications of tile status are connected to be broadcast without needing to be clock-crossed. */
def connectOutputNotifications(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = {
implicit val p = context.p
domain {
context.tileHaltXbarNode :=* domain.crossIntOut(NoCrossing, domain.element.haltNode)
context.tileWFIXbarNode :=* domain.crossIntOut(NoCrossing, domain.element.wfiNode)
context.tileCeaseXbarNode :=* domain.crossIntOut(NoCrossing, domain.element.ceaseNode)
}
// TODO should context be forced to have a trace sink connected here?
// for now this just ensures domain.trace[Core]Node has been crossed without connecting it externally
}
/** Connect inputs to the tile that are assumed to be constant during normal operation, and so are not clock-crossed. */
def connectInputConstants(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = {
implicit val p = context.p
val tlBusToGetPrefixFrom = context.locateTLBusWrapper(crossingParams.mmioBaseAddressPrefixWhere)
domain.element.hartIdNode := context.tileHartIdNodes(domain.element.tileId)
domain.element.resetVectorNode := context.tileResetVectorNodes(domain.element.tileId)
tlBusToGetPrefixFrom.prefixNode.foreach { domain.element.mmioAddressPrefixNode := _ }
}
/** Connect power/reset/clock resources. */
def connectPRC(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = {
implicit val p = context.p
val tlBusToGetClockDriverFrom = context.locateTLBusWrapper(crossingParams.master.where)
(crossingParams.crossingType match {
case _: SynchronousCrossing | _: CreditedCrossing =>
if (crossingParams.forceSeparateClockReset) {
domain.clockNode := tlBusToGetClockDriverFrom.clockNode
} else {
domain.clockNode := tlBusToGetClockDriverFrom.fixedClockNode
}
case _: RationalCrossing => domain.clockNode := tlBusToGetClockDriverFrom.clockNode
case _: AsynchronousCrossing => {
val tileClockGroup = ClockGroup()
tileClockGroup := context.allClockGroupsNode
domain.clockNode := tileClockGroup
}
})
domain {
domain.element_reset_domain.clockNode := crossingParams.resetCrossingType.injectClockNode := domain.clockNode
}
}
/** Function to handle all trace crossings when tile is instantiated inside domains */
def connectTrace(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = {
implicit val p = context.p
val traceCrossingNode = BundleBridgeBlockDuringReset[TraceBundle](
resetCrossingType = crossingParams.resetCrossingType)
context.traceNodes(domain.element.tileId) := traceCrossingNode := domain.element.traceNode
val traceCoreCrossingNode = BundleBridgeBlockDuringReset[TraceCoreInterface](
resetCrossingType = crossingParams.resetCrossingType)
context.traceCoreNodes(domain.element.tileId) :*= traceCoreCrossingNode := domain.element.traceCoreNode
}
}
case class CloneTileAttachParams(
sourceTileId: Int,
cloneParams: CanAttachTile
) extends CanAttachTile {
type TileType = cloneParams.TileType
type TileContextType = cloneParams.TileContextType
def tileParams = cloneParams.tileParams
def crossingParams = cloneParams.crossingParams
override def instantiate(allTileParams: Seq[TileParams], instantiatedTiles: SortedMap[Int, TilePRCIDomain[_]])(implicit p: Parameters): TilePRCIDomain[TileType] = {
require(instantiatedTiles.contains(sourceTileId))
val clockSinkParams = tileParams.clockSinkParams.copy(name = Some(tileParams.uniqueName))
val tile_prci_domain = CloneLazyModule(
new TilePRCIDomain[TileType](clockSinkParams, crossingParams) { self =>
val element = self.element_reset_domain { LazyModule(tileParams.instantiate(crossingParams, PriorityMuxHartIdFromSeq(allTileParams))) }
},
instantiatedTiles(sourceTileId).asInstanceOf[TilePRCIDomain[TileType]]
)
tile_prci_domain
}
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
File HierarchicalElement.scala:
package freechips.rocketchip.subsystem
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.devices.debug.TLDebugModule
import freechips.rocketchip.diplomacy.{BufferParams}
import freechips.rocketchip.interrupts.IntXbar
import freechips.rocketchip.prci.{ClockSinkParameters, ResetCrossingType, ClockCrossingType}
import freechips.rocketchip.tile.{LookupByHartIdImpl, TraceBundle}
import freechips.rocketchip.tilelink.{TLNode, TLIdentityNode, TLXbar, TLBuffer, TLInwardNode, TLOutwardNode}
trait HierarchicalElementParams {
val baseName: String // duplicated instances shouuld share a base name
val uniqueName: String
val clockSinkParams: ClockSinkParameters
}
abstract class InstantiableHierarchicalElementParams[ElementType <: BaseHierarchicalElement] extends HierarchicalElementParams
/** An interface for describing the parameteization of how HierarchicalElements are connected to interconnects */
trait HierarchicalElementCrossingParamsLike {
/** The type of clock crossing that should be inserted at the element boundary. */
def crossingType: ClockCrossingType
/** Parameters describing the contents and behavior of the point where the element is attached as an interconnect master. */
def master: HierarchicalElementPortParamsLike
/** Parameters describing the contents and behavior of the point where the element is attached as an interconnect slave. */
def slave: HierarchicalElementPortParamsLike
/** The subnetwork location of the device selecting the apparent base address of MMIO devices inside the element */
def mmioBaseAddressPrefixWhere: TLBusWrapperLocation
/** Inject a reset management subgraph that effects the element child reset only */
def resetCrossingType: ResetCrossingType
/** Keep the element clock separate from the interconnect clock (e.g. even if they are synchronous to one another) */
def forceSeparateClockReset: Boolean
}
/** An interface for describing the parameterization of how a particular element port is connected to an interconnect */
trait HierarchicalElementPortParamsLike {
/** The subnetwork location of the interconnect to which this element port should be connected. */
def where: TLBusWrapperLocation
/** Allows port-specific adapters to be injected into the interconnect side of the attachment point. */
def injectNode(context: Attachable)(implicit p: Parameters): TLNode
}
abstract class BaseHierarchicalElement (val crossing: ClockCrossingType)(implicit p: Parameters)
extends LazyModule()(p)
with CrossesToOnlyOneClockDomain
{
def module: BaseHierarchicalElementModuleImp[BaseHierarchicalElement]
protected val tlOtherMastersNode = TLIdentityNode()
protected val tlMasterXbar = LazyModule(new TLXbar(nameSuffix = Some(s"MasterXbar_$desiredName")))
protected val tlSlaveXbar = LazyModule(new TLXbar(nameSuffix = Some(s"SlaveXbar_$desiredName")))
protected val intXbar = LazyModule(new IntXbar)
def masterNode: TLOutwardNode
def slaveNode: TLInwardNode
/** Helper function to insert additional buffers on master ports at the boundary of the tile.
*
* The boundary buffering needed to cut feed-through paths is
* microarchitecture specific, so this may need to be overridden
* in subclasses of this class.
*/
def makeMasterBoundaryBuffers(crossing: ClockCrossingType)(implicit p: Parameters) = TLBuffer(BufferParams.none)
/** Helper function to insert additional buffers on slave ports at the boundary of the tile.
*
* The boundary buffering needed to cut feed-through paths is
* microarchitecture specific, so this may need to be overridden
* in subclasses of this class.
*/
def makeSlaveBoundaryBuffers(crossing: ClockCrossingType)(implicit p: Parameters) = TLBuffer(BufferParams.none)
}
abstract class BaseHierarchicalElementModuleImp[+L <: BaseHierarchicalElement](val outer: L) extends LazyModuleImp(outer)
File SystemBus.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.subsystem
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.devices.tilelink.{
BuiltInDevices, BuiltInZeroDeviceParams, BuiltInErrorDeviceParams, HasBuiltInDeviceParams
}
import freechips.rocketchip.tilelink.{
TLArbiter, RegionReplicator, ReplicatedRegion, HasTLBusParams, TLBusWrapper,
TLBusWrapperInstantiationLike, TLXbar, TLEdge, TLInwardNode, TLOutwardNode,
TLFIFOFixer, TLTempNode
}
import freechips.rocketchip.util.Location
case class SystemBusParams(
beatBytes: Int,
blockBytes: Int,
policy: TLArbiter.Policy = TLArbiter.roundRobin,
dtsFrequency: Option[BigInt] = None,
zeroDevice: Option[BuiltInZeroDeviceParams] = None,
errorDevice: Option[BuiltInErrorDeviceParams] = None,
replication: Option[ReplicatedRegion] = None)
extends HasTLBusParams
with HasBuiltInDeviceParams
with TLBusWrapperInstantiationLike
{
def instantiate(context: HasTileLinkLocations, loc: Location[TLBusWrapper])(implicit p: Parameters): SystemBus = {
val sbus = LazyModule(new SystemBus(this, loc.name))
sbus.suggestName(loc.name)
context.tlBusWrapperLocationMap += (loc -> sbus)
sbus
}
}
class SystemBus(params: SystemBusParams, name: String = "system_bus")(implicit p: Parameters)
extends TLBusWrapper(params, name)
{
private val replicator = params.replication.map(r => LazyModule(new RegionReplicator(r)))
val prefixNode = replicator.map { r =>
r.prefix := addressPrefixNexusNode
addressPrefixNexusNode
}
private val system_bus_xbar = LazyModule(new TLXbar(policy = params.policy, nameSuffix = Some(name)))
val inwardNode: TLInwardNode = system_bus_xbar.node :=* TLFIFOFixer(TLFIFOFixer.allVolatile) :=* replicator.map(_.node).getOrElse(TLTempNode())
val outwardNode: TLOutwardNode = system_bus_xbar.node
def busView: TLEdge = system_bus_xbar.node.edges.in.head
val builtInDevices: BuiltInDevices = BuiltInDevices.attach(params, outwardNode)
}
File InterruptBus.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.subsystem
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.resources.{Device, DeviceInterrupts, Description, ResourceBindings}
import freechips.rocketchip.interrupts.{IntInwardNode, IntOutwardNode, IntXbar, IntNameNode, IntSourceNode, IntSourcePortSimple}
import freechips.rocketchip.prci.{ClockCrossingType, AsynchronousCrossing, RationalCrossing, ClockSinkDomain}
import freechips.rocketchip.interrupts.IntClockDomainCrossing
/** Collects interrupts from internal and external devices and feeds them into the PLIC */
class InterruptBusWrapper(implicit p: Parameters) extends ClockSinkDomain {
override def shouldBeInlined = true
val int_bus = LazyModule(new IntXbar) // Interrupt crossbar
private val int_in_xing = this.crossIn(int_bus.intnode)
private val int_out_xing = this.crossOut(int_bus.intnode)
def from(name: Option[String])(xing: ClockCrossingType) = int_in_xing(xing) :=* IntNameNode(name)
def to(name: Option[String])(xing: ClockCrossingType) = IntNameNode(name) :*= int_out_xing(xing)
def fromAsync: IntInwardNode = from(None)(AsynchronousCrossing(8,3))
def fromRational: IntInwardNode = from(None)(RationalCrossing())
def fromSync: IntInwardNode = int_bus.intnode
def toPLIC: IntOutwardNode = int_bus.intnode
}
/** Specifies the number of external interrupts */
case object NExtTopInterrupts extends Field[Int](0)
/** This trait adds externally driven interrupts to the system.
* However, it should not be used directly; instead one of the below
* synchronization wiring child traits should be used.
*/
abstract trait HasExtInterrupts { this: BaseSubsystem =>
private val device = new Device with DeviceInterrupts {
def describe(resources: ResourceBindings): Description = {
Description("soc/external-interrupts", describeInterrupts(resources))
}
}
val nExtInterrupts = p(NExtTopInterrupts)
val extInterrupts = IntSourceNode(IntSourcePortSimple(num = nExtInterrupts, resources = device.int))
}
/** This trait should be used if the External Interrupts have NOT
* already been synchronized to the Periphery (PLIC) Clock.
*/
trait HasAsyncExtInterrupts extends HasExtInterrupts { this: BaseSubsystem =>
if (nExtInterrupts > 0) {
ibus { ibus.fromAsync := extInterrupts }
}
}
/** This trait can be used if the External Interrupts have already been synchronized
* to the Periphery (PLIC) Clock.
*/
trait HasSyncExtInterrupts extends HasExtInterrupts { this: BaseSubsystem =>
if (nExtInterrupts > 0) {
ibus { ibus.fromSync := extInterrupts }
}
}
/** Common io name and methods for propagating or tying off the port bundle */
trait HasExtInterruptsBundle {
val interrupts: UInt
def tieOffInterrupts(dummy: Int = 1): Unit = {
interrupts := 0.U
}
}
/** This trait performs the translation from a UInt IO into Diplomatic Interrupts.
* The wiring must be done in the concrete LazyModuleImp.
*/
trait HasExtInterruptsModuleImp extends LazyRawModuleImp with HasExtInterruptsBundle {
val outer: HasExtInterrupts
val interrupts = IO(Input(UInt(outer.nExtInterrupts.W)))
outer.extInterrupts.out.map(_._1).flatten.zipWithIndex.foreach { case(o, i) => o := interrupts(i) }
}
File BundleBridgeNexus.scala:
package org.chipsalliance.diplomacy.bundlebridge
import chisel3.{chiselTypeOf, ActualDirection, Data, Reg}
import chisel3.reflect.DataMirror
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.lazymodule.{LazyModule, LazyRawModuleImp}
class BundleBridgeNexus[T <: Data](
inputFn: Seq[T] => T,
outputFn: (T, Int) => Seq[T],
default: Option[() => T] = None,
inputRequiresOutput: Boolean = false,
override val shouldBeInlined: Boolean = true
)(
implicit p: Parameters)
extends LazyModule {
val node = BundleBridgeNexusNode[T](default, inputRequiresOutput)
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
val defaultWireOpt = default.map(_())
val inputs: Seq[T] = node.in.map(_._1)
inputs.foreach { i =>
require(
DataMirror.checkTypeEquivalence(i, inputs.head),
s"${node.context} requires all inputs have equivalent Chisel Data types, but got\n$i\nvs\n${inputs.head}"
)
}
inputs.flatMap(getElements).foreach { elt =>
DataMirror.directionOf(elt) match {
case ActualDirection.Output => ()
case ActualDirection.Unspecified => ()
case _ => require(false, s"${node.context} can only be used with Output-directed Bundles")
}
}
val outputs: Seq[T] =
if (node.out.size > 0) {
val broadcast: T = if (inputs.size >= 1) inputFn(inputs) else defaultWireOpt.get
outputFn(broadcast, node.out.size)
} else { Nil }
val typeName = outputs.headOption.map(_.typeName).getOrElse("NoOutput")
override def desiredName = s"BundleBridgeNexus_$typeName"
node.out.map(_._1).foreach { o =>
require(
DataMirror.checkTypeEquivalence(o, outputs.head),
s"${node.context} requires all outputs have equivalent Chisel Data types, but got\n$o\nvs\n${outputs.head}"
)
}
require(
outputs.size == node.out.size,
s"${node.context} outputFn must generate one output wire per edgeOut, but got ${outputs.size} vs ${node.out.size}"
)
node.out.zip(outputs).foreach { case ((out, _), bcast) => out := bcast }
}
}
object BundleBridgeNexus {
def safeRegNext[T <: Data](x: T): T = {
val reg = Reg(chiselTypeOf(x))
reg := x
reg
}
def requireOne[T <: Data](registered: Boolean)(seq: Seq[T]): T = {
require(seq.size == 1, "BundleBroadcast default requires one input")
if (registered) safeRegNext(seq.head) else seq.head
}
def orReduction[T <: Data](registered: Boolean)(seq: Seq[T]): T = {
val x = seq.reduce((a, b) => (a.asUInt | b.asUInt).asTypeOf(seq.head))
if (registered) safeRegNext(x) else x
}
def fillN[T <: Data](registered: Boolean)(x: T, n: Int): Seq[T] = Seq.fill(n) {
if (registered) safeRegNext(x) else x
}
def apply[T <: Data](
inputFn: Seq[T] => T = orReduction[T](false) _,
outputFn: (T, Int) => Seq[T] = fillN[T](false) _,
default: Option[() => T] = None,
inputRequiresOutput: Boolean = false,
shouldBeInlined: Boolean = true
)(
implicit p: Parameters
): BundleBridgeNexusNode[T] = {
val nexus = LazyModule(new BundleBridgeNexus[T](inputFn, outputFn, default, inputRequiresOutput, shouldBeInlined))
nexus.node
}
}
File Xbar.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.interrupts
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
class IntXbar()(implicit p: Parameters) extends LazyModule
{
val intnode = new IntNexusNode(
sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) },
sourceFn = { seq =>
IntSourcePortParameters((seq zip seq.map(_.num).scanLeft(0)(_+_).init).map {
case (s, o) => s.sources.map(z => z.copy(range = z.range.offset(o)))
}.flatten)
})
{
override def circuitIdentity = outputs == 1 && inputs == 1
}
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
override def desiredName = s"IntXbar_i${intnode.in.size}_o${intnode.out.size}"
val cat = intnode.in.map { case (i, e) => i.take(e.source.num) }.flatten
intnode.out.foreach { case (o, _) => o := cat }
}
}
class IntSyncXbar()(implicit p: Parameters) extends LazyModule
{
val intnode = new IntSyncNexusNode(
sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) },
sourceFn = { seq =>
IntSourcePortParameters((seq zip seq.map(_.num).scanLeft(0)(_+_).init).map {
case (s, o) => s.sources.map(z => z.copy(range = z.range.offset(o)))
}.flatten)
})
{
override def circuitIdentity = outputs == 1 && inputs == 1
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = s"IntSyncXbar_i${intnode.in.size}_o${intnode.out.size}"
val cat = intnode.in.map { case (i, e) => i.sync.take(e.source.num) }.flatten
intnode.out.foreach { case (o, _) => o.sync := cat }
}
}
object IntXbar {
def apply()(implicit p: Parameters): IntNode = {
val xbar = LazyModule(new IntXbar)
xbar.intnode
}
}
object IntSyncXbar {
def apply()(implicit p: Parameters): IntSyncNode = {
val xbar = LazyModule(new IntSyncXbar)
xbar.intnode
}
}
File Cluster.scala:
package freechips.rocketchip.subsystem
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.bundlebridge._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.devices.debug.{TLDebugModule}
import freechips.rocketchip.diplomacy.{FlipRendering}
import freechips.rocketchip.interrupts.{IntIdentityNode, IntSyncIdentityNode, NullIntSource}
import freechips.rocketchip.prci.{ClockCrossingType, NoCrossing, ClockSinkParameters, ClockGroupIdentityNode, BundleBridgeBlockDuringReset}
import freechips.rocketchip.tile.{RocketTile, NMI, TraceBundle}
import freechips.rocketchip.tilelink.TLWidthWidget
import freechips.rocketchip.util.TraceCoreInterface
import scala.collection.immutable.SortedMap
case class ClustersLocated(loc: HierarchicalLocation) extends Field[Seq[CanAttachCluster]](Nil)
case class ClusterParams(
val clusterId: Int,
val clockSinkParams: ClockSinkParameters = ClockSinkParameters()
) extends HierarchicalElementParams {
val baseName = "cluster"
val uniqueName = s"${baseName}_$clusterId"
def instantiate(crossing: HierarchicalElementCrossingParamsLike, lookup: LookupByClusterIdImpl)(implicit p: Parameters): Cluster = {
new Cluster(this, crossing.crossingType, lookup)
}
}
class Cluster(
val thisClusterParams: ClusterParams,
crossing: ClockCrossingType,
lookup: LookupByClusterIdImpl)(implicit p: Parameters) extends BaseHierarchicalElement(crossing)(p)
with Attachable
with HasConfigurableTLNetworkTopology
with InstantiatesHierarchicalElements
with HasHierarchicalElements
{
val busContextName = thisClusterParams.baseName
lazy val clusterId = thisClusterParams.clusterId
lazy val location = InCluster(clusterId)
lazy val allClockGroupsNode = ClockGroupIdentityNode()
val csbus = tlBusWrapperLocationMap(CSBUS(clusterId)) // like the sbus in the base subsystem
val ccbus = tlBusWrapperLocationMap(CCBUS(clusterId)) // like the cbus in the base subsystem
val cmbus = tlBusWrapperLocationMap.lift(CMBUS(clusterId)).getOrElse(csbus)
csbus.clockGroupNode := allClockGroupsNode
ccbus.clockGroupNode := allClockGroupsNode
val slaveNode = ccbus.inwardNode
val masterNode = cmbus.outwardNode
lazy val ibus = LazyModule(new InterruptBusWrapper)
ibus.clockNode := csbus.fixedClockNode
def msipDomain = this
def meipDomain = this
def seipDomain = this
def toPlicDomain = this
lazy val msipNodes = totalTileIdList.map { i => (i, IntIdentityNode()) }.to(SortedMap)
lazy val meipNodes = totalTileIdList.map { i => (i, IntIdentityNode()) }.to(SortedMap)
lazy val seipNodes = totalTileIdList.map { i => (i, IntIdentityNode()) }.to(SortedMap)
lazy val tileToPlicNodes = totalTileIdList.map { i => (i, IntIdentityNode()) }.to(SortedMap)
lazy val debugNodes = totalTileIdList.map { i => (i, IntSyncIdentityNode()) }.to(SortedMap)
lazy val nmiNodes = totalTiles.filter { case (i,t) => t.tileParams.core.useNMI }
.mapValues(_ => BundleBridgeIdentityNode[NMI]()).to(SortedMap)
lazy val tileHartIdNodes = totalTileIdList.map { i => (i, BundleBridgeIdentityNode[UInt]()) }.to(SortedMap)
lazy val tileResetVectorNodes = totalTileIdList.map { i => (i, BundleBridgeIdentityNode[UInt]()) }.to(SortedMap)
lazy val traceCoreNodes = totalTileIdList.map { i => (i, BundleBridgeIdentityNode[TraceCoreInterface]()) }.to(SortedMap)
lazy val traceNodes = totalTileIdList.map { i => (i, BundleBridgeIdentityNode[TraceBundle]()) }.to(SortedMap)
// TODO fix: shouldn't need to connect dummy notifications
tileHaltXbarNode := NullIntSource()
tileWFIXbarNode := NullIntSource()
tileCeaseXbarNode := NullIntSource()
override lazy val module = new ClusterModuleImp(this)
}
class ClusterModuleImp(outer: Cluster) extends BaseHierarchicalElementModuleImp[Cluster](outer)
case class InCluster(id: Int) extends HierarchicalLocation(s"Cluster$id")
class ClusterPRCIDomain(
clockSinkParams: ClockSinkParameters,
crossingParams: HierarchicalElementCrossingParamsLike,
clusterParams: ClusterParams,
lookup: LookupByClusterIdImpl)
(implicit p: Parameters) extends HierarchicalElementPRCIDomain[Cluster](clockSinkParams, crossingParams)
{
val element = element_reset_domain {
LazyModule(clusterParams.instantiate(crossingParams, lookup))
}
// Nothing should depend on the clocks coming from clockNode anyways
clockNode := element.csbus.fixedClockNode
}
trait CanAttachCluster {
type ClusterContextType <: DefaultHierarchicalElementContextType
def clusterParams: ClusterParams
def crossingParams: HierarchicalElementCrossingParamsLike
def instantiate(allClusterParams: Seq[ClusterParams], instantiatedClusters: SortedMap[Int, ClusterPRCIDomain])(implicit p: Parameters): ClusterPRCIDomain = {
val clockSinkParams = clusterParams.clockSinkParams.copy(name = Some(clusterParams.uniqueName))
val cluster_prci_domain = LazyModule(new ClusterPRCIDomain(
clockSinkParams, crossingParams, clusterParams, PriorityMuxClusterIdFromSeq(allClusterParams)))
cluster_prci_domain
}
def connect(domain: ClusterPRCIDomain, context: ClusterContextType): Unit = {
connectMasterPorts(domain, context)
connectSlavePorts(domain, context)
connectInterrupts(domain, context)
connectPRC(domain, context)
connectOutputNotifications(domain, context)
connectInputConstants(domain, context)
connectTrace(domain, context)
}
def connectMasterPorts(domain: ClusterPRCIDomain, context: Attachable): Unit = {
implicit val p = context.p
val dataBus = context.locateTLBusWrapper(crossingParams.master.where)
dataBus.coupleFrom(clusterParams.baseName) { bus =>
bus :=* crossingParams.master.injectNode(context) :=* domain.crossMasterPort(crossingParams.crossingType)
}
}
def connectSlavePorts(domain: ClusterPRCIDomain, context: Attachable): Unit = {
implicit val p = context.p
val controlBus = context.locateTLBusWrapper(crossingParams.slave.where)
controlBus.coupleTo(clusterParams.baseName) { bus =>
domain.crossSlavePort(crossingParams.crossingType) :*= crossingParams.slave.injectNode(context) :*= TLWidthWidget(controlBus.beatBytes) :*= bus
}
}
def connectInterrupts(domain: ClusterPRCIDomain, context: ClusterContextType): Unit = {
implicit val p = context.p
domain.element.debugNodes.foreach { case (hartid, node) =>
node := context.debugNodes(hartid)
}
domain.element.msipNodes.foreach { case (hartid, node) => context.msipDomain {
domain.crossIntIn(crossingParams.crossingType, node) := context.msipNodes(hartid)
}}
domain.element.meipNodes.foreach { case (hartid, node) => context.meipDomain {
domain.crossIntIn(crossingParams.crossingType, node) := context.meipNodes(hartid)
}}
domain.element.seipNodes.foreach { case (hartid, node) => context.seipDomain {
domain.crossIntIn(crossingParams.crossingType, node) := context.seipNodes(hartid)
}}
domain.element.tileToPlicNodes.foreach { case (hartid, node) =>
FlipRendering { implicit p =>
context.tileToPlicNodes(hartid) :=* domain.crossIntOut(crossingParams.crossingType, node) }
}
context.ibus.fromSync :=* domain.crossIntOut(crossingParams.crossingType, domain.element.ibus.toPLIC)
domain.element.nmiNodes.foreach { case (hartid, node) =>
node := context.nmiNodes(hartid)
}
}
def connectPRC(domain: ClusterPRCIDomain, context: ClusterContextType): Unit = {
implicit val p = context.p
domain.element.allClockGroupsNode :*= context.allClockGroupsNode
domain {
domain.element_reset_domain.clockNode := crossingParams.resetCrossingType.injectClockNode := domain.clockNode
}
}
def connectOutputNotifications(domain: ClusterPRCIDomain, context: ClusterContextType): Unit = {
implicit val p = context.p
context.tileHaltXbarNode :=* domain.crossIntOut(NoCrossing, domain.element.tileHaltXbarNode)
context.tileWFIXbarNode :=* domain.crossIntOut(NoCrossing, domain.element.tileWFIXbarNode)
context.tileCeaseXbarNode :=* domain.crossIntOut(NoCrossing, domain.element.tileCeaseXbarNode)
}
def connectInputConstants(domain: ClusterPRCIDomain, context: ClusterContextType): Unit = {
implicit val p = context.p
val tlBusToGetPrefixFrom = context.locateTLBusWrapper(crossingParams.mmioBaseAddressPrefixWhere)
domain.element.tileHartIdNodes.foreach { case (hartid, node) =>
node := context.tileHartIdNodes(hartid)
}
domain.element.tileResetVectorNodes.foreach { case (hartid, node) =>
node := context.tileResetVectorNodes(hartid)
}
}
def connectTrace(domain: ClusterPRCIDomain, context: ClusterContextType): Unit = {
implicit val p = context.p
domain.element.traceNodes.foreach { case (hartid, node) =>
val traceNexusNode = BundleBridgeBlockDuringReset[TraceBundle](
resetCrossingType = crossingParams.resetCrossingType)
context.traceNodes(hartid) := traceNexusNode := node
}
domain.element.traceCoreNodes.foreach { case (hartid, node) =>
val traceCoreNexusNode = BundleBridgeBlockDuringReset[TraceCoreInterface](
resetCrossingType = crossingParams.resetCrossingType)
context.traceCoreNodes(hartid) :*= traceCoreNexusNode := node
}
}
}
case class ClusterAttachParams(
clusterParams: ClusterParams,
crossingParams: HierarchicalElementCrossingParamsLike
) extends CanAttachCluster
case class CloneClusterAttachParams(
sourceClusterId: Int,
cloneParams: CanAttachCluster
) extends CanAttachCluster {
def clusterParams = cloneParams.clusterParams
def crossingParams = cloneParams.crossingParams
override def instantiate(allClusterParams: Seq[ClusterParams], instantiatedClusters: SortedMap[Int, ClusterPRCIDomain])(implicit p: Parameters): ClusterPRCIDomain = {
require(instantiatedClusters.contains(sourceClusterId))
val clockSinkParams = clusterParams.clockSinkParams.copy(name = Some(clusterParams.uniqueName))
val cluster_prci_domain = CloneLazyModule(
new ClusterPRCIDomain(clockSinkParams, crossingParams, clusterParams, PriorityMuxClusterIdFromSeq(allClusterParams)),
instantiatedClusters(sourceClusterId)
)
cluster_prci_domain
}
}
| module Cluster( // @[Cluster.scala:87:7]
input clock, // @[Cluster.scala:87:7]
input reset, // @[Cluster.scala:87:7]
input auto_buffer_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_buffer_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_buffer_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_buffer_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_buffer_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_buffer_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_buffer_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_buffer_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_b_ready, // @[LazyModuleImp.scala:107:25]
input auto_buffer_out_b_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_buffer_out_b_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_buffer_out_b_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_buffer_out_b_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_buffer_out_b_bits_source, // @[LazyModuleImp.scala:107:25]
input [31:0] auto_buffer_out_b_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_buffer_out_b_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_buffer_out_b_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_buffer_out_b_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_buffer_out_c_ready, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_c_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_buffer_out_c_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_buffer_out_c_bits_param, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_buffer_out_c_bits_size, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_buffer_out_c_bits_source, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_buffer_out_c_bits_address, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_buffer_out_c_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_c_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_buffer_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_buffer_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_buffer_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_buffer_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_buffer_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_buffer_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_buffer_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_buffer_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_buffer_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_buffer_out_e_ready, // @[LazyModuleImp.scala:107:25]
output auto_buffer_out_e_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_buffer_out_e_bits_sink, // @[LazyModuleImp.scala:107:25]
output auto_xbar_anon_out_1_0, // @[LazyModuleImp.scala:107:25]
output auto_xbar_anon_out_1_1, // @[LazyModuleImp.scala:107:25]
output auto_xbar_anon_out_1_2, // @[LazyModuleImp.scala:107:25]
output auto_xbar_anon_out_1_3, // @[LazyModuleImp.scala:107:25]
output auto_csbus0_fixedClockNode_anon_out_clock, // @[LazyModuleImp.scala:107:25]
output auto_csbus0_fixedClockNode_anon_out_reset, // @[LazyModuleImp.scala:107:25]
input auto_all_clock_groups_in_1_member_ccbus0_0_clock, // @[LazyModuleImp.scala:107:25]
input auto_all_clock_groups_in_1_member_ccbus0_0_reset, // @[LazyModuleImp.scala:107:25]
input auto_all_clock_groups_in_0_member_csbus0_0_clock, // @[LazyModuleImp.scala:107:25]
input auto_all_clock_groups_in_0_member_csbus0_0_reset, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_3_insns_0_valid, // @[LazyModuleImp.scala:107:25]
output [39:0] auto_trace_nodes_out_3_insns_0_iaddr, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_trace_nodes_out_3_insns_0_insn, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_trace_nodes_out_3_insns_0_priv, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_3_insns_0_exception, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_3_insns_0_interrupt, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_trace_nodes_out_3_insns_0_cause, // @[LazyModuleImp.scala:107:25]
output [39:0] auto_trace_nodes_out_3_insns_0_tval, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_trace_nodes_out_3_time, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_2_insns_0_valid, // @[LazyModuleImp.scala:107:25]
output [39:0] auto_trace_nodes_out_2_insns_0_iaddr, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_trace_nodes_out_2_insns_0_insn, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_trace_nodes_out_2_insns_0_priv, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_2_insns_0_exception, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_2_insns_0_interrupt, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_trace_nodes_out_2_insns_0_cause, // @[LazyModuleImp.scala:107:25]
output [39:0] auto_trace_nodes_out_2_insns_0_tval, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_trace_nodes_out_2_time, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_1_insns_0_valid, // @[LazyModuleImp.scala:107:25]
output [39:0] auto_trace_nodes_out_1_insns_0_iaddr, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_trace_nodes_out_1_insns_0_insn, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_trace_nodes_out_1_insns_0_priv, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_1_insns_0_exception, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_1_insns_0_interrupt, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_trace_nodes_out_1_insns_0_cause, // @[LazyModuleImp.scala:107:25]
output [39:0] auto_trace_nodes_out_1_insns_0_tval, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_trace_nodes_out_1_time, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_0_insns_0_valid, // @[LazyModuleImp.scala:107:25]
output [39:0] auto_trace_nodes_out_0_insns_0_iaddr, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_trace_nodes_out_0_insns_0_insn, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_trace_nodes_out_0_insns_0_priv, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_0_insns_0_exception, // @[LazyModuleImp.scala:107:25]
output auto_trace_nodes_out_0_insns_0_interrupt, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_trace_nodes_out_0_insns_0_cause, // @[LazyModuleImp.scala:107:25]
output [39:0] auto_trace_nodes_out_0_insns_0_tval, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_trace_nodes_out_0_time, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tile_hart_id_nodes_in_3, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tile_hart_id_nodes_in_2, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tile_hart_id_nodes_in_1, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tile_hart_id_nodes_in_0, // @[LazyModuleImp.scala:107:25]
input auto_seip_nodes_in_3_0, // @[LazyModuleImp.scala:107:25]
input auto_seip_nodes_in_2_0, // @[LazyModuleImp.scala:107:25]
input auto_seip_nodes_in_1_0, // @[LazyModuleImp.scala:107:25]
input auto_seip_nodes_in_0_0, // @[LazyModuleImp.scala:107:25]
input auto_meip_nodes_in_3_0, // @[LazyModuleImp.scala:107:25]
input auto_meip_nodes_in_2_0, // @[LazyModuleImp.scala:107:25]
input auto_meip_nodes_in_1_0, // @[LazyModuleImp.scala:107:25]
input auto_meip_nodes_in_0_0, // @[LazyModuleImp.scala:107:25]
input auto_msip_nodes_in_3_0, // @[LazyModuleImp.scala:107:25]
input auto_msip_nodes_in_3_1, // @[LazyModuleImp.scala:107:25]
input auto_msip_nodes_in_2_0, // @[LazyModuleImp.scala:107:25]
input auto_msip_nodes_in_2_1, // @[LazyModuleImp.scala:107:25]
input auto_msip_nodes_in_1_0, // @[LazyModuleImp.scala:107:25]
input auto_msip_nodes_in_1_1, // @[LazyModuleImp.scala:107:25]
input auto_msip_nodes_in_0_0, // @[LazyModuleImp.scala:107:25]
input auto_msip_nodes_in_0_1, // @[LazyModuleImp.scala:107:25]
input auto_debug_nodes_in_3_sync_0, // @[LazyModuleImp.scala:107:25]
input auto_debug_nodes_in_2_sync_0, // @[LazyModuleImp.scala:107:25]
input auto_debug_nodes_in_1_sync_0, // @[LazyModuleImp.scala:107:25]
input auto_debug_nodes_in_0_sync_0 // @[LazyModuleImp.scala:107:25]
);
wire buffer_auto_in_e_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_in_e_bits_sink; // @[Buffer.scala:40:9]
wire buffer_auto_in_d_ready; // @[Buffer.scala:40:9]
wire buffer_auto_in_c_valid; // @[Buffer.scala:40:9]
wire buffer_auto_in_c_bits_corrupt; // @[Buffer.scala:40:9]
wire [63:0] buffer_auto_in_c_bits_data; // @[Buffer.scala:40:9]
wire [31:0] buffer_auto_in_c_bits_address; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_in_c_bits_source; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_in_c_bits_size; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_in_c_bits_param; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_in_c_bits_opcode; // @[Buffer.scala:40:9]
wire buffer_auto_in_b_ready; // @[Buffer.scala:40:9]
wire buffer_auto_in_a_valid; // @[Buffer.scala:40:9]
wire buffer_auto_in_a_bits_corrupt; // @[Buffer.scala:40:9]
wire [63:0] buffer_auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire [7:0] buffer_auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [31:0] buffer_auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_in_a_bits_source; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_in_a_bits_param; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire ibus_auto_clock_in_clock; // @[ClockDomain.scala:14:9]
wire [63:0] nexus_6_auto_out_time; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_6_auto_out_insns_0_tval; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_6_auto_out_insns_0_cause; // @[BundleBridgeNexus.scala:20:9]
wire nexus_6_auto_out_insns_0_interrupt; // @[BundleBridgeNexus.scala:20:9]
wire nexus_6_auto_out_insns_0_exception; // @[BundleBridgeNexus.scala:20:9]
wire [2:0] nexus_6_auto_out_insns_0_priv; // @[BundleBridgeNexus.scala:20:9]
wire [31:0] nexus_6_auto_out_insns_0_insn; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_6_auto_out_insns_0_iaddr; // @[BundleBridgeNexus.scala:20:9]
wire nexus_6_auto_out_insns_0_valid; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_6_auto_in_time; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_6_auto_in_insns_0_tval; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_6_auto_in_insns_0_cause; // @[BundleBridgeNexus.scala:20:9]
wire nexus_6_auto_in_insns_0_interrupt; // @[BundleBridgeNexus.scala:20:9]
wire nexus_6_auto_in_insns_0_exception; // @[BundleBridgeNexus.scala:20:9]
wire [2:0] nexus_6_auto_in_insns_0_priv; // @[BundleBridgeNexus.scala:20:9]
wire [31:0] nexus_6_auto_in_insns_0_insn; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_6_auto_in_insns_0_iaddr; // @[BundleBridgeNexus.scala:20:9]
wire nexus_6_auto_in_insns_0_valid; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_4_auto_out_time; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_4_auto_out_insns_0_tval; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_4_auto_out_insns_0_cause; // @[BundleBridgeNexus.scala:20:9]
wire nexus_4_auto_out_insns_0_interrupt; // @[BundleBridgeNexus.scala:20:9]
wire nexus_4_auto_out_insns_0_exception; // @[BundleBridgeNexus.scala:20:9]
wire [2:0] nexus_4_auto_out_insns_0_priv; // @[BundleBridgeNexus.scala:20:9]
wire [31:0] nexus_4_auto_out_insns_0_insn; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_4_auto_out_insns_0_iaddr; // @[BundleBridgeNexus.scala:20:9]
wire nexus_4_auto_out_insns_0_valid; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_4_auto_in_time; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_4_auto_in_insns_0_tval; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_4_auto_in_insns_0_cause; // @[BundleBridgeNexus.scala:20:9]
wire nexus_4_auto_in_insns_0_interrupt; // @[BundleBridgeNexus.scala:20:9]
wire nexus_4_auto_in_insns_0_exception; // @[BundleBridgeNexus.scala:20:9]
wire [2:0] nexus_4_auto_in_insns_0_priv; // @[BundleBridgeNexus.scala:20:9]
wire [31:0] nexus_4_auto_in_insns_0_insn; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_4_auto_in_insns_0_iaddr; // @[BundleBridgeNexus.scala:20:9]
wire nexus_4_auto_in_insns_0_valid; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_2_auto_out_time; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_2_auto_out_insns_0_tval; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_2_auto_out_insns_0_cause; // @[BundleBridgeNexus.scala:20:9]
wire nexus_2_auto_out_insns_0_interrupt; // @[BundleBridgeNexus.scala:20:9]
wire nexus_2_auto_out_insns_0_exception; // @[BundleBridgeNexus.scala:20:9]
wire [2:0] nexus_2_auto_out_insns_0_priv; // @[BundleBridgeNexus.scala:20:9]
wire [31:0] nexus_2_auto_out_insns_0_insn; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_2_auto_out_insns_0_iaddr; // @[BundleBridgeNexus.scala:20:9]
wire nexus_2_auto_out_insns_0_valid; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_2_auto_in_time; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_2_auto_in_insns_0_tval; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_2_auto_in_insns_0_cause; // @[BundleBridgeNexus.scala:20:9]
wire nexus_2_auto_in_insns_0_interrupt; // @[BundleBridgeNexus.scala:20:9]
wire nexus_2_auto_in_insns_0_exception; // @[BundleBridgeNexus.scala:20:9]
wire [2:0] nexus_2_auto_in_insns_0_priv; // @[BundleBridgeNexus.scala:20:9]
wire [31:0] nexus_2_auto_in_insns_0_insn; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_2_auto_in_insns_0_iaddr; // @[BundleBridgeNexus.scala:20:9]
wire nexus_2_auto_in_insns_0_valid; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_auto_out_time; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_auto_out_insns_0_tval; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_auto_out_insns_0_cause; // @[BundleBridgeNexus.scala:20:9]
wire nexus_auto_out_insns_0_interrupt; // @[BundleBridgeNexus.scala:20:9]
wire nexus_auto_out_insns_0_exception; // @[BundleBridgeNexus.scala:20:9]
wire [2:0] nexus_auto_out_insns_0_priv; // @[BundleBridgeNexus.scala:20:9]
wire [31:0] nexus_auto_out_insns_0_insn; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_auto_out_insns_0_iaddr; // @[BundleBridgeNexus.scala:20:9]
wire nexus_auto_out_insns_0_valid; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_auto_in_time; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_auto_in_insns_0_tval; // @[BundleBridgeNexus.scala:20:9]
wire [63:0] nexus_auto_in_insns_0_cause; // @[BundleBridgeNexus.scala:20:9]
wire nexus_auto_in_insns_0_interrupt; // @[BundleBridgeNexus.scala:20:9]
wire nexus_auto_in_insns_0_exception; // @[BundleBridgeNexus.scala:20:9]
wire [2:0] nexus_auto_in_insns_0_priv; // @[BundleBridgeNexus.scala:20:9]
wire [31:0] nexus_auto_in_insns_0_insn; // @[BundleBridgeNexus.scala:20:9]
wire [39:0] nexus_auto_in_insns_0_iaddr; // @[BundleBridgeNexus.scala:20:9]
wire nexus_auto_in_insns_0_valid; // @[BundleBridgeNexus.scala:20:9]
wire _tile_prci_domain_3_auto_intsink_out_1_0; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_3_auto_tl_master_clock_xing_out_a_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_opcode; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_param; // @[HasTiles.scala:163:38]
wire [3:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_size; // @[HasTiles.scala:163:38]
wire [1:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_source; // @[HasTiles.scala:163:38]
wire [31:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_address; // @[HasTiles.scala:163:38]
wire [7:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_mask; // @[HasTiles.scala:163:38]
wire [63:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_data; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_corrupt; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_3_auto_tl_master_clock_xing_out_b_ready; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_3_auto_tl_master_clock_xing_out_c_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_opcode; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_param; // @[HasTiles.scala:163:38]
wire [3:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_size; // @[HasTiles.scala:163:38]
wire [1:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_source; // @[HasTiles.scala:163:38]
wire [31:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_address; // @[HasTiles.scala:163:38]
wire [63:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_data; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_corrupt; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_3_auto_tl_master_clock_xing_out_d_ready; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_3_auto_tl_master_clock_xing_out_e_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_3_auto_tl_master_clock_xing_out_e_bits_sink; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_2_auto_intsink_out_1_0; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_2_auto_tl_master_clock_xing_out_a_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_opcode; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_param; // @[HasTiles.scala:163:38]
wire [3:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_size; // @[HasTiles.scala:163:38]
wire [1:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_source; // @[HasTiles.scala:163:38]
wire [31:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_address; // @[HasTiles.scala:163:38]
wire [7:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_mask; // @[HasTiles.scala:163:38]
wire [63:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_data; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_corrupt; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_2_auto_tl_master_clock_xing_out_b_ready; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_2_auto_tl_master_clock_xing_out_c_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_opcode; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_param; // @[HasTiles.scala:163:38]
wire [3:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_size; // @[HasTiles.scala:163:38]
wire [1:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_source; // @[HasTiles.scala:163:38]
wire [31:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_address; // @[HasTiles.scala:163:38]
wire [63:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_data; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_corrupt; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_2_auto_tl_master_clock_xing_out_d_ready; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_2_auto_tl_master_clock_xing_out_e_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_2_auto_tl_master_clock_xing_out_e_bits_sink; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_1_auto_intsink_out_1_0; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_1_auto_tl_master_clock_xing_out_a_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_opcode; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_param; // @[HasTiles.scala:163:38]
wire [3:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_size; // @[HasTiles.scala:163:38]
wire [1:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_source; // @[HasTiles.scala:163:38]
wire [31:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_address; // @[HasTiles.scala:163:38]
wire [7:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_mask; // @[HasTiles.scala:163:38]
wire [63:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_data; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_corrupt; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_1_auto_tl_master_clock_xing_out_b_ready; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_1_auto_tl_master_clock_xing_out_c_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_opcode; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_param; // @[HasTiles.scala:163:38]
wire [3:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_size; // @[HasTiles.scala:163:38]
wire [1:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_source; // @[HasTiles.scala:163:38]
wire [31:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_address; // @[HasTiles.scala:163:38]
wire [63:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_data; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_corrupt; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_1_auto_tl_master_clock_xing_out_d_ready; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_1_auto_tl_master_clock_xing_out_e_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_1_auto_tl_master_clock_xing_out_e_bits_sink; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_auto_intsink_out_1_0; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_auto_tl_master_clock_xing_out_a_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_opcode; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_param; // @[HasTiles.scala:163:38]
wire [3:0] _tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_size; // @[HasTiles.scala:163:38]
wire [1:0] _tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_source; // @[HasTiles.scala:163:38]
wire [31:0] _tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_address; // @[HasTiles.scala:163:38]
wire [7:0] _tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_mask; // @[HasTiles.scala:163:38]
wire [63:0] _tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_data; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_corrupt; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_auto_tl_master_clock_xing_out_b_ready; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_auto_tl_master_clock_xing_out_c_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_opcode; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_param; // @[HasTiles.scala:163:38]
wire [3:0] _tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_size; // @[HasTiles.scala:163:38]
wire [1:0] _tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_source; // @[HasTiles.scala:163:38]
wire [31:0] _tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_address; // @[HasTiles.scala:163:38]
wire [63:0] _tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_data; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_corrupt; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_auto_tl_master_clock_xing_out_d_ready; // @[HasTiles.scala:163:38]
wire _tile_prci_domain_auto_tl_master_clock_xing_out_e_valid; // @[HasTiles.scala:163:38]
wire [2:0] _tile_prci_domain_auto_tl_master_clock_xing_out_e_bits_sink; // @[HasTiles.scala:163:38]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_valid; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_opcode; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_param; // @[SystemBus.scala:31:26]
wire [3:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_size; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_source; // @[SystemBus.scala:31:26]
wire [31:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_address; // @[SystemBus.scala:31:26]
wire [7:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_mask; // @[SystemBus.scala:31:26]
wire [63:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_data; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_corrupt; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_valid; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_opcode; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_param; // @[SystemBus.scala:31:26]
wire [3:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_size; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_source; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_sink; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_denied; // @[SystemBus.scala:31:26]
wire [63:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_data; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_corrupt; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_e_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_valid; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_opcode; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_param; // @[SystemBus.scala:31:26]
wire [3:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_size; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_source; // @[SystemBus.scala:31:26]
wire [31:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_address; // @[SystemBus.scala:31:26]
wire [7:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_mask; // @[SystemBus.scala:31:26]
wire [63:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_data; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_corrupt; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_valid; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_opcode; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_param; // @[SystemBus.scala:31:26]
wire [3:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_size; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_source; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_sink; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_denied; // @[SystemBus.scala:31:26]
wire [63:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_data; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_corrupt; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_e_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_valid; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_opcode; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_param; // @[SystemBus.scala:31:26]
wire [3:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_size; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_source; // @[SystemBus.scala:31:26]
wire [31:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_address; // @[SystemBus.scala:31:26]
wire [7:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_mask; // @[SystemBus.scala:31:26]
wire [63:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_data; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_corrupt; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_valid; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_opcode; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_param; // @[SystemBus.scala:31:26]
wire [3:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_size; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_source; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_sink; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_denied; // @[SystemBus.scala:31:26]
wire [63:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_data; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_corrupt; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_e_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_valid; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_opcode; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_param; // @[SystemBus.scala:31:26]
wire [3:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_size; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_source; // @[SystemBus.scala:31:26]
wire [31:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_address; // @[SystemBus.scala:31:26]
wire [7:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_mask; // @[SystemBus.scala:31:26]
wire [63:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_data; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_corrupt; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_valid; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_opcode; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_param; // @[SystemBus.scala:31:26]
wire [3:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_size; // @[SystemBus.scala:31:26]
wire [1:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_source; // @[SystemBus.scala:31:26]
wire [2:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_sink; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_denied; // @[SystemBus.scala:31:26]
wire [63:0] _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_data; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_corrupt; // @[SystemBus.scala:31:26]
wire _csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_e_ready; // @[SystemBus.scala:31:26]
wire _csbus0_auto_fixedClockNode_anon_out_3_clock; // @[SystemBus.scala:31:26]
wire _csbus0_auto_fixedClockNode_anon_out_3_reset; // @[SystemBus.scala:31:26]
wire _csbus0_auto_fixedClockNode_anon_out_2_clock; // @[SystemBus.scala:31:26]
wire _csbus0_auto_fixedClockNode_anon_out_2_reset; // @[SystemBus.scala:31:26]
wire _csbus0_auto_fixedClockNode_anon_out_1_clock; // @[SystemBus.scala:31:26]
wire _csbus0_auto_fixedClockNode_anon_out_1_reset; // @[SystemBus.scala:31:26]
wire _csbus0_auto_fixedClockNode_anon_out_0_clock; // @[SystemBus.scala:31:26]
wire _csbus0_auto_fixedClockNode_anon_out_0_reset; // @[SystemBus.scala:31:26]
wire auto_buffer_out_a_ready_0 = auto_buffer_out_a_ready; // @[Cluster.scala:87:7]
wire auto_buffer_out_b_valid_0 = auto_buffer_out_b_valid; // @[Cluster.scala:87:7]
wire [2:0] auto_buffer_out_b_bits_opcode_0 = auto_buffer_out_b_bits_opcode; // @[Cluster.scala:87:7]
wire [1:0] auto_buffer_out_b_bits_param_0 = auto_buffer_out_b_bits_param; // @[Cluster.scala:87:7]
wire [3:0] auto_buffer_out_b_bits_size_0 = auto_buffer_out_b_bits_size; // @[Cluster.scala:87:7]
wire [3:0] auto_buffer_out_b_bits_source_0 = auto_buffer_out_b_bits_source; // @[Cluster.scala:87:7]
wire [31:0] auto_buffer_out_b_bits_address_0 = auto_buffer_out_b_bits_address; // @[Cluster.scala:87:7]
wire [7:0] auto_buffer_out_b_bits_mask_0 = auto_buffer_out_b_bits_mask; // @[Cluster.scala:87:7]
wire [63:0] auto_buffer_out_b_bits_data_0 = auto_buffer_out_b_bits_data; // @[Cluster.scala:87:7]
wire auto_buffer_out_b_bits_corrupt_0 = auto_buffer_out_b_bits_corrupt; // @[Cluster.scala:87:7]
wire auto_buffer_out_c_ready_0 = auto_buffer_out_c_ready; // @[Cluster.scala:87:7]
wire auto_buffer_out_d_valid_0 = auto_buffer_out_d_valid; // @[Cluster.scala:87:7]
wire [2:0] auto_buffer_out_d_bits_opcode_0 = auto_buffer_out_d_bits_opcode; // @[Cluster.scala:87:7]
wire [1:0] auto_buffer_out_d_bits_param_0 = auto_buffer_out_d_bits_param; // @[Cluster.scala:87:7]
wire [3:0] auto_buffer_out_d_bits_size_0 = auto_buffer_out_d_bits_size; // @[Cluster.scala:87:7]
wire [3:0] auto_buffer_out_d_bits_source_0 = auto_buffer_out_d_bits_source; // @[Cluster.scala:87:7]
wire [2:0] auto_buffer_out_d_bits_sink_0 = auto_buffer_out_d_bits_sink; // @[Cluster.scala:87:7]
wire auto_buffer_out_d_bits_denied_0 = auto_buffer_out_d_bits_denied; // @[Cluster.scala:87:7]
wire [63:0] auto_buffer_out_d_bits_data_0 = auto_buffer_out_d_bits_data; // @[Cluster.scala:87:7]
wire auto_buffer_out_d_bits_corrupt_0 = auto_buffer_out_d_bits_corrupt; // @[Cluster.scala:87:7]
wire auto_buffer_out_e_ready_0 = auto_buffer_out_e_ready; // @[Cluster.scala:87:7]
wire auto_all_clock_groups_in_1_member_ccbus0_0_clock_0 = auto_all_clock_groups_in_1_member_ccbus0_0_clock; // @[Cluster.scala:87:7]
wire auto_all_clock_groups_in_1_member_ccbus0_0_reset_0 = auto_all_clock_groups_in_1_member_ccbus0_0_reset; // @[Cluster.scala:87:7]
wire auto_all_clock_groups_in_0_member_csbus0_0_clock_0 = auto_all_clock_groups_in_0_member_csbus0_0_clock; // @[Cluster.scala:87:7]
wire auto_all_clock_groups_in_0_member_csbus0_0_reset_0 = auto_all_clock_groups_in_0_member_csbus0_0_reset; // @[Cluster.scala:87:7]
wire [2:0] auto_tile_hart_id_nodes_in_3_0 = auto_tile_hart_id_nodes_in_3; // @[Cluster.scala:87:7]
wire [2:0] auto_tile_hart_id_nodes_in_2_0 = auto_tile_hart_id_nodes_in_2; // @[Cluster.scala:87:7]
wire [2:0] auto_tile_hart_id_nodes_in_1_0 = auto_tile_hart_id_nodes_in_1; // @[Cluster.scala:87:7]
wire [2:0] auto_tile_hart_id_nodes_in_0_0 = auto_tile_hart_id_nodes_in_0; // @[Cluster.scala:87:7]
wire auto_seip_nodes_in_3_0_0 = auto_seip_nodes_in_3_0; // @[Cluster.scala:87:7]
wire auto_seip_nodes_in_2_0_0 = auto_seip_nodes_in_2_0; // @[Cluster.scala:87:7]
wire auto_seip_nodes_in_1_0_0 = auto_seip_nodes_in_1_0; // @[Cluster.scala:87:7]
wire auto_seip_nodes_in_0_0_0 = auto_seip_nodes_in_0_0; // @[Cluster.scala:87:7]
wire auto_meip_nodes_in_3_0_0 = auto_meip_nodes_in_3_0; // @[Cluster.scala:87:7]
wire auto_meip_nodes_in_2_0_0 = auto_meip_nodes_in_2_0; // @[Cluster.scala:87:7]
wire auto_meip_nodes_in_1_0_0 = auto_meip_nodes_in_1_0; // @[Cluster.scala:87:7]
wire auto_meip_nodes_in_0_0_0 = auto_meip_nodes_in_0_0; // @[Cluster.scala:87:7]
wire auto_msip_nodes_in_3_0_0 = auto_msip_nodes_in_3_0; // @[Cluster.scala:87:7]
wire auto_msip_nodes_in_3_1_0 = auto_msip_nodes_in_3_1; // @[Cluster.scala:87:7]
wire auto_msip_nodes_in_2_0_0 = auto_msip_nodes_in_2_0; // @[Cluster.scala:87:7]
wire auto_msip_nodes_in_2_1_0 = auto_msip_nodes_in_2_1; // @[Cluster.scala:87:7]
wire auto_msip_nodes_in_1_0_0 = auto_msip_nodes_in_1_0; // @[Cluster.scala:87:7]
wire auto_msip_nodes_in_1_1_0 = auto_msip_nodes_in_1_1; // @[Cluster.scala:87:7]
wire auto_msip_nodes_in_0_0_0 = auto_msip_nodes_in_0_0; // @[Cluster.scala:87:7]
wire auto_msip_nodes_in_0_1_0 = auto_msip_nodes_in_0_1; // @[Cluster.scala:87:7]
wire auto_debug_nodes_in_3_sync_0_0 = auto_debug_nodes_in_3_sync_0; // @[Cluster.scala:87:7]
wire auto_debug_nodes_in_2_sync_0_0 = auto_debug_nodes_in_2_sync_0; // @[Cluster.scala:87:7]
wire auto_debug_nodes_in_1_sync_0_0 = auto_debug_nodes_in_1_sync_0; // @[Cluster.scala:87:7]
wire auto_debug_nodes_in_0_sync_0_0 = auto_debug_nodes_in_0_sync_0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_2_0 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_2_1 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_2_2 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_2_3 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_2_4 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_1_4 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_0_0 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_0_1 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_0_2 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_0_3 = 1'h0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_0_4 = 1'h0; // @[Cluster.scala:87:7]
wire auto_trace_core_nodes_out_3_group_0_iretire = 1'h0; // @[Cluster.scala:87:7]
wire auto_trace_core_nodes_out_3_group_0_ilastsize = 1'h0; // @[Cluster.scala:87:7]
wire auto_trace_core_nodes_out_2_group_0_iretire = 1'h0; // @[Cluster.scala:87:7]
wire auto_trace_core_nodes_out_2_group_0_ilastsize = 1'h0; // @[Cluster.scala:87:7]
wire auto_trace_core_nodes_out_1_group_0_iretire = 1'h0; // @[Cluster.scala:87:7]
wire auto_trace_core_nodes_out_1_group_0_ilastsize = 1'h0; // @[Cluster.scala:87:7]
wire auto_trace_core_nodes_out_0_group_0_iretire = 1'h0; // @[Cluster.scala:87:7]
wire auto_trace_core_nodes_out_0_group_0_ilastsize = 1'h0; // @[Cluster.scala:87:7]
wire nexus_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire nexus_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire nexus__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire nexus_1_auto_in_group_0_iretire = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_1_auto_in_group_0_ilastsize = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_1_auto_out_group_0_iretire = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_1_auto_out_group_0_ilastsize = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_1_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire nexus_1_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire nexus_1__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire nexus_1_nodeIn_group_0_iretire = 1'h0; // @[MixedNode.scala:551:17]
wire nexus_1_nodeIn_group_0_ilastsize = 1'h0; // @[MixedNode.scala:551:17]
wire nexus_1_nodeOut_group_0_iretire = 1'h0; // @[MixedNode.scala:542:17]
wire nexus_1_nodeOut_group_0_ilastsize = 1'h0; // @[MixedNode.scala:542:17]
wire nexus_2_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire nexus_2_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire nexus_2__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire nexus_3_auto_in_group_0_iretire = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_3_auto_in_group_0_ilastsize = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_3_auto_out_group_0_iretire = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_3_auto_out_group_0_ilastsize = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_3_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire nexus_3_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire nexus_3__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire nexus_3_nodeIn_group_0_iretire = 1'h0; // @[MixedNode.scala:551:17]
wire nexus_3_nodeIn_group_0_ilastsize = 1'h0; // @[MixedNode.scala:551:17]
wire nexus_3_nodeOut_group_0_iretire = 1'h0; // @[MixedNode.scala:542:17]
wire nexus_3_nodeOut_group_0_ilastsize = 1'h0; // @[MixedNode.scala:542:17]
wire nexus_4_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire nexus_4_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire nexus_4__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire nexus_5_auto_in_group_0_iretire = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_5_auto_in_group_0_ilastsize = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_5_auto_out_group_0_iretire = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_5_auto_out_group_0_ilastsize = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_5_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire nexus_5_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire nexus_5__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire nexus_5_nodeIn_group_0_iretire = 1'h0; // @[MixedNode.scala:551:17]
wire nexus_5_nodeIn_group_0_ilastsize = 1'h0; // @[MixedNode.scala:551:17]
wire nexus_5_nodeOut_group_0_iretire = 1'h0; // @[MixedNode.scala:542:17]
wire nexus_5_nodeOut_group_0_ilastsize = 1'h0; // @[MixedNode.scala:542:17]
wire nexus_6_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire nexus_6_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire nexus_6__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire nexus_7_auto_in_group_0_iretire = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_7_auto_in_group_0_ilastsize = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_7_auto_out_group_0_iretire = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_7_auto_out_group_0_ilastsize = 1'h0; // @[BundleBridgeNexus.scala:20:9]
wire nexus_7_childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire nexus_7_childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire nexus_7__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire nexus_7_nodeIn_group_0_iretire = 1'h0; // @[MixedNode.scala:551:17]
wire nexus_7_nodeIn_group_0_ilastsize = 1'h0; // @[MixedNode.scala:551:17]
wire nexus_7_nodeOut_group_0_iretire = 1'h0; // @[MixedNode.scala:542:17]
wire nexus_7_nodeOut_group_0_ilastsize = 1'h0; // @[MixedNode.scala:542:17]
wire ibus__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire tileHaltSinkNodeIn_0 = 1'h0; // @[MixedNode.scala:551:17]
wire tileHaltSinkNodeIn_1 = 1'h0; // @[MixedNode.scala:551:17]
wire tileHaltSinkNodeIn_2 = 1'h0; // @[MixedNode.scala:551:17]
wire tileHaltSinkNodeIn_3 = 1'h0; // @[MixedNode.scala:551:17]
wire tileHaltSinkNodeIn_4 = 1'h0; // @[MixedNode.scala:551:17]
wire tileWFISinkNodeIn_4 = 1'h0; // @[MixedNode.scala:551:17]
wire tileCeaseSinkNodeIn_0 = 1'h0; // @[MixedNode.scala:551:17]
wire tileCeaseSinkNodeIn_1 = 1'h0; // @[MixedNode.scala:551:17]
wire tileCeaseSinkNodeIn_2 = 1'h0; // @[MixedNode.scala:551:17]
wire tileCeaseSinkNodeIn_3 = 1'h0; // @[MixedNode.scala:551:17]
wire tileCeaseSinkNodeIn_4 = 1'h0; // @[MixedNode.scala:551:17]
wire traceCoreNodesOut_group_0_iretire = 1'h0; // @[MixedNode.scala:542:17]
wire traceCoreNodesOut_group_0_ilastsize = 1'h0; // @[MixedNode.scala:542:17]
wire traceCoreNodesIn_group_0_iretire = 1'h0; // @[MixedNode.scala:551:17]
wire traceCoreNodesIn_group_0_ilastsize = 1'h0; // @[MixedNode.scala:551:17]
wire traceCoreNodesOut_1_group_0_iretire = 1'h0; // @[MixedNode.scala:542:17]
wire traceCoreNodesOut_1_group_0_ilastsize = 1'h0; // @[MixedNode.scala:542:17]
wire traceCoreNodesIn_1_group_0_iretire = 1'h0; // @[MixedNode.scala:551:17]
wire traceCoreNodesIn_1_group_0_ilastsize = 1'h0; // @[MixedNode.scala:551:17]
wire traceCoreNodesOut_2_group_0_iretire = 1'h0; // @[MixedNode.scala:542:17]
wire traceCoreNodesOut_2_group_0_ilastsize = 1'h0; // @[MixedNode.scala:542:17]
wire traceCoreNodesIn_2_group_0_iretire = 1'h0; // @[MixedNode.scala:551:17]
wire traceCoreNodesIn_2_group_0_ilastsize = 1'h0; // @[MixedNode.scala:551:17]
wire traceCoreNodesOut_3_group_0_iretire = 1'h0; // @[MixedNode.scala:542:17]
wire traceCoreNodesOut_3_group_0_ilastsize = 1'h0; // @[MixedNode.scala:542:17]
wire traceCoreNodesIn_3_group_0_iretire = 1'h0; // @[MixedNode.scala:551:17]
wire traceCoreNodesIn_3_group_0_ilastsize = 1'h0; // @[MixedNode.scala:551:17]
wire [31:0] auto_tile_reset_vector_nodes_in_3 = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] auto_tile_reset_vector_nodes_in_2 = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] auto_tile_reset_vector_nodes_in_1 = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] auto_tile_reset_vector_nodes_in_0 = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] tileResetVectorNodesOut = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] tileResetVectorNodesIn = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] tileResetVectorNodesOut_1 = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] tileResetVectorNodesIn_1 = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] tileResetVectorNodesOut_2 = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] tileResetVectorNodesIn_2 = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] tileResetVectorNodesOut_3 = 32'h10000; // @[HasTiles.scala:163:38]
wire [31:0] tileResetVectorNodesIn_3 = 32'h10000; // @[HasTiles.scala:163:38]
wire [3:0] auto_trace_core_nodes_out_3_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] auto_trace_core_nodes_out_3_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] auto_trace_core_nodes_out_2_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] auto_trace_core_nodes_out_2_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] auto_trace_core_nodes_out_1_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] auto_trace_core_nodes_out_1_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] auto_trace_core_nodes_out_0_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] auto_trace_core_nodes_out_0_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_1_auto_in_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_1_auto_in_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_1_auto_out_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_1_auto_out_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_1_nodeIn_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_1_nodeIn_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_1_nodeOut_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_1_nodeOut_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_3_auto_in_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_3_auto_in_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_3_auto_out_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_3_auto_out_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_3_nodeIn_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_3_nodeIn_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_3_nodeOut_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_3_nodeOut_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_5_auto_in_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_5_auto_in_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_5_auto_out_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_5_auto_out_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_5_nodeIn_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_5_nodeIn_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_5_nodeOut_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_5_nodeOut_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_7_auto_in_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_7_auto_in_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_7_auto_out_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_7_auto_out_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_7_nodeIn_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_7_nodeIn_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_7_nodeOut_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] nexus_7_nodeOut_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesOut_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesOut_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesIn_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesIn_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesOut_1_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesOut_1_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesIn_1_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesIn_1_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesOut_2_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesOut_2_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesIn_2_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesIn_2_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesOut_3_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesOut_3_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesIn_3_group_0_itype = 4'h0; // @[HasTiles.scala:163:38]
wire [3:0] traceCoreNodesIn_3_priv = 4'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_3_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_3_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_3_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_2_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_2_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_2_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_1_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_1_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_1_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_0_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_0_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] auto_trace_core_nodes_out_0_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_auto_in_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_auto_in_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_auto_in_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_auto_out_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_auto_out_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_auto_out_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_nodeIn_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_nodeIn_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_nodeIn_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_nodeOut_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_nodeOut_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_1_nodeOut_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_auto_in_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_auto_in_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_auto_in_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_auto_out_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_auto_out_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_auto_out_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_nodeIn_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_nodeIn_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_nodeIn_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_nodeOut_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_nodeOut_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_3_nodeOut_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_auto_in_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_auto_in_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_auto_in_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_auto_out_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_auto_out_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_auto_out_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_nodeIn_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_nodeIn_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_nodeIn_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_nodeOut_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_nodeOut_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_5_nodeOut_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_auto_in_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_auto_in_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_auto_in_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_auto_out_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_auto_out_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_auto_out_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_nodeIn_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_nodeIn_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_nodeIn_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_nodeOut_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_nodeOut_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] nexus_7_nodeOut_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_1_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_1_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_1_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_1_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_1_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_1_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_2_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_2_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_2_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_2_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_2_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_2_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_3_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_3_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesOut_3_cause = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_3_group_0_iaddr = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_3_tval = 32'h0; // @[HasTiles.scala:163:38]
wire [31:0] traceCoreNodesIn_3_cause = 32'h0; // @[HasTiles.scala:163:38]
wire buffer_auto_out_a_ready = auto_buffer_out_a_ready_0; // @[Buffer.scala:40:9]
wire buffer_auto_out_a_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_out_a_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_out_a_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_out_a_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_out_a_bits_source; // @[Buffer.scala:40:9]
wire [31:0] buffer_auto_out_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] buffer_auto_out_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] buffer_auto_out_a_bits_data; // @[Buffer.scala:40:9]
wire buffer_auto_out_a_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_auto_out_b_ready; // @[Buffer.scala:40:9]
wire buffer_auto_out_b_valid = auto_buffer_out_b_valid_0; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_out_b_bits_opcode = auto_buffer_out_b_bits_opcode_0; // @[Buffer.scala:40:9]
wire [1:0] buffer_auto_out_b_bits_param = auto_buffer_out_b_bits_param_0; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_out_b_bits_size = auto_buffer_out_b_bits_size_0; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_out_b_bits_source = auto_buffer_out_b_bits_source_0; // @[Buffer.scala:40:9]
wire [31:0] buffer_auto_out_b_bits_address = auto_buffer_out_b_bits_address_0; // @[Buffer.scala:40:9]
wire [7:0] buffer_auto_out_b_bits_mask = auto_buffer_out_b_bits_mask_0; // @[Buffer.scala:40:9]
wire [63:0] buffer_auto_out_b_bits_data = auto_buffer_out_b_bits_data_0; // @[Buffer.scala:40:9]
wire buffer_auto_out_b_bits_corrupt = auto_buffer_out_b_bits_corrupt_0; // @[Buffer.scala:40:9]
wire buffer_auto_out_c_ready = auto_buffer_out_c_ready_0; // @[Buffer.scala:40:9]
wire buffer_auto_out_c_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_out_c_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_out_c_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_out_c_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_out_c_bits_source; // @[Buffer.scala:40:9]
wire [31:0] buffer_auto_out_c_bits_address; // @[Buffer.scala:40:9]
wire [63:0] buffer_auto_out_c_bits_data; // @[Buffer.scala:40:9]
wire buffer_auto_out_c_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_auto_out_d_ready; // @[Buffer.scala:40:9]
wire buffer_auto_out_d_valid = auto_buffer_out_d_valid_0; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_out_d_bits_opcode = auto_buffer_out_d_bits_opcode_0; // @[Buffer.scala:40:9]
wire [1:0] buffer_auto_out_d_bits_param = auto_buffer_out_d_bits_param_0; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_out_d_bits_size = auto_buffer_out_d_bits_size_0; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_out_d_bits_source = auto_buffer_out_d_bits_source_0; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_out_d_bits_sink = auto_buffer_out_d_bits_sink_0; // @[Buffer.scala:40:9]
wire buffer_auto_out_d_bits_denied = auto_buffer_out_d_bits_denied_0; // @[Buffer.scala:40:9]
wire [63:0] buffer_auto_out_d_bits_data = auto_buffer_out_d_bits_data_0; // @[Buffer.scala:40:9]
wire buffer_auto_out_d_bits_corrupt = auto_buffer_out_d_bits_corrupt_0; // @[Buffer.scala:40:9]
wire buffer_auto_out_e_ready = auto_buffer_out_e_ready_0; // @[Buffer.scala:40:9]
wire buffer_auto_out_e_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_out_e_bits_sink; // @[Buffer.scala:40:9]
wire x1_allClockGroupsNodeIn_member_ccbus0_0_clock = auto_all_clock_groups_in_1_member_ccbus0_0_clock_0; // @[Cluster.scala:87:7]
wire x1_allClockGroupsNodeIn_member_ccbus0_0_reset = auto_all_clock_groups_in_1_member_ccbus0_0_reset_0; // @[Cluster.scala:87:7]
wire allClockGroupsNodeIn_member_csbus0_0_clock = auto_all_clock_groups_in_0_member_csbus0_0_clock_0; // @[Cluster.scala:87:7]
wire allClockGroupsNodeIn_member_csbus0_0_reset = auto_all_clock_groups_in_0_member_csbus0_0_reset_0; // @[Cluster.scala:87:7]
wire traceNodesOut_3_insns_0_valid; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesOut_3_insns_0_iaddr; // @[MixedNode.scala:542:17]
wire [31:0] traceNodesOut_3_insns_0_insn; // @[MixedNode.scala:542:17]
wire [2:0] traceNodesOut_3_insns_0_priv; // @[MixedNode.scala:542:17]
wire traceNodesOut_3_insns_0_exception; // @[MixedNode.scala:542:17]
wire traceNodesOut_3_insns_0_interrupt; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesOut_3_insns_0_cause; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesOut_3_insns_0_tval; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesOut_3_time; // @[MixedNode.scala:542:17]
wire traceNodesOut_2_insns_0_valid; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesOut_2_insns_0_iaddr; // @[MixedNode.scala:542:17]
wire [31:0] traceNodesOut_2_insns_0_insn; // @[MixedNode.scala:542:17]
wire [2:0] traceNodesOut_2_insns_0_priv; // @[MixedNode.scala:542:17]
wire traceNodesOut_2_insns_0_exception; // @[MixedNode.scala:542:17]
wire traceNodesOut_2_insns_0_interrupt; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesOut_2_insns_0_cause; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesOut_2_insns_0_tval; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesOut_2_time; // @[MixedNode.scala:542:17]
wire traceNodesOut_1_insns_0_valid; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesOut_1_insns_0_iaddr; // @[MixedNode.scala:542:17]
wire [31:0] traceNodesOut_1_insns_0_insn; // @[MixedNode.scala:542:17]
wire [2:0] traceNodesOut_1_insns_0_priv; // @[MixedNode.scala:542:17]
wire traceNodesOut_1_insns_0_exception; // @[MixedNode.scala:542:17]
wire traceNodesOut_1_insns_0_interrupt; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesOut_1_insns_0_cause; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesOut_1_insns_0_tval; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesOut_1_time; // @[MixedNode.scala:542:17]
wire traceNodesOut_insns_0_valid; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesOut_insns_0_iaddr; // @[MixedNode.scala:542:17]
wire [31:0] traceNodesOut_insns_0_insn; // @[MixedNode.scala:542:17]
wire [2:0] traceNodesOut_insns_0_priv; // @[MixedNode.scala:542:17]
wire traceNodesOut_insns_0_exception; // @[MixedNode.scala:542:17]
wire traceNodesOut_insns_0_interrupt; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesOut_insns_0_cause; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesOut_insns_0_tval; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesOut_time; // @[MixedNode.scala:542:17]
wire [2:0] tileHartIdNodesIn_3 = auto_tile_hart_id_nodes_in_3_0; // @[Cluster.scala:87:7]
wire [2:0] tileHartIdNodesIn_2 = auto_tile_hart_id_nodes_in_2_0; // @[Cluster.scala:87:7]
wire [2:0] tileHartIdNodesIn_1 = auto_tile_hart_id_nodes_in_1_0; // @[Cluster.scala:87:7]
wire [2:0] tileHartIdNodesIn = auto_tile_hart_id_nodes_in_0_0; // @[Cluster.scala:87:7]
wire seipNodesIn_3_0 = auto_seip_nodes_in_3_0_0; // @[Cluster.scala:87:7]
wire seipNodesIn_2_0 = auto_seip_nodes_in_2_0_0; // @[Cluster.scala:87:7]
wire seipNodesIn_1_0 = auto_seip_nodes_in_1_0_0; // @[Cluster.scala:87:7]
wire seipNodesIn_0 = auto_seip_nodes_in_0_0_0; // @[Cluster.scala:87:7]
wire meipNodesIn_3_0 = auto_meip_nodes_in_3_0_0; // @[Cluster.scala:87:7]
wire meipNodesIn_2_0 = auto_meip_nodes_in_2_0_0; // @[Cluster.scala:87:7]
wire meipNodesIn_1_0 = auto_meip_nodes_in_1_0_0; // @[Cluster.scala:87:7]
wire meipNodesIn_0 = auto_meip_nodes_in_0_0_0; // @[Cluster.scala:87:7]
wire msipNodesIn_3_0 = auto_msip_nodes_in_3_0_0; // @[Cluster.scala:87:7]
wire msipNodesIn_3_1 = auto_msip_nodes_in_3_1_0; // @[Cluster.scala:87:7]
wire msipNodesIn_2_0 = auto_msip_nodes_in_2_0_0; // @[Cluster.scala:87:7]
wire msipNodesIn_2_1 = auto_msip_nodes_in_2_1_0; // @[Cluster.scala:87:7]
wire msipNodesIn_1_0 = auto_msip_nodes_in_1_0_0; // @[Cluster.scala:87:7]
wire msipNodesIn_1_1 = auto_msip_nodes_in_1_1_0; // @[Cluster.scala:87:7]
wire msipNodesIn_0 = auto_msip_nodes_in_0_0_0; // @[Cluster.scala:87:7]
wire msipNodesIn_1 = auto_msip_nodes_in_0_1_0; // @[Cluster.scala:87:7]
wire debugNodesIn_3_sync_0 = auto_debug_nodes_in_3_sync_0_0; // @[Cluster.scala:87:7]
wire debugNodesIn_2_sync_0 = auto_debug_nodes_in_2_sync_0_0; // @[Cluster.scala:87:7]
wire debugNodesIn_1_sync_0 = auto_debug_nodes_in_1_sync_0_0; // @[Cluster.scala:87:7]
wire debugNodesIn_sync_0 = auto_debug_nodes_in_0_sync_0_0; // @[Cluster.scala:87:7]
wire [2:0] auto_buffer_out_a_bits_opcode_0; // @[Cluster.scala:87:7]
wire [2:0] auto_buffer_out_a_bits_param_0; // @[Cluster.scala:87:7]
wire [3:0] auto_buffer_out_a_bits_size_0; // @[Cluster.scala:87:7]
wire [3:0] auto_buffer_out_a_bits_source_0; // @[Cluster.scala:87:7]
wire [31:0] auto_buffer_out_a_bits_address_0; // @[Cluster.scala:87:7]
wire [7:0] auto_buffer_out_a_bits_mask_0; // @[Cluster.scala:87:7]
wire [63:0] auto_buffer_out_a_bits_data_0; // @[Cluster.scala:87:7]
wire auto_buffer_out_a_bits_corrupt_0; // @[Cluster.scala:87:7]
wire auto_buffer_out_a_valid_0; // @[Cluster.scala:87:7]
wire auto_buffer_out_b_ready_0; // @[Cluster.scala:87:7]
wire [2:0] auto_buffer_out_c_bits_opcode_0; // @[Cluster.scala:87:7]
wire [2:0] auto_buffer_out_c_bits_param_0; // @[Cluster.scala:87:7]
wire [3:0] auto_buffer_out_c_bits_size_0; // @[Cluster.scala:87:7]
wire [3:0] auto_buffer_out_c_bits_source_0; // @[Cluster.scala:87:7]
wire [31:0] auto_buffer_out_c_bits_address_0; // @[Cluster.scala:87:7]
wire [63:0] auto_buffer_out_c_bits_data_0; // @[Cluster.scala:87:7]
wire auto_buffer_out_c_bits_corrupt_0; // @[Cluster.scala:87:7]
wire auto_buffer_out_c_valid_0; // @[Cluster.scala:87:7]
wire auto_buffer_out_d_ready_0; // @[Cluster.scala:87:7]
wire [2:0] auto_buffer_out_e_bits_sink_0; // @[Cluster.scala:87:7]
wire auto_buffer_out_e_valid_0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_1_0_0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_1_1_0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_1_2_0; // @[Cluster.scala:87:7]
wire auto_xbar_anon_out_1_3_0; // @[Cluster.scala:87:7]
wire auto_csbus0_fixedClockNode_anon_out_clock_0; // @[Cluster.scala:87:7]
wire auto_csbus0_fixedClockNode_anon_out_reset_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_3_insns_0_valid_0; // @[Cluster.scala:87:7]
wire [39:0] auto_trace_nodes_out_3_insns_0_iaddr_0; // @[Cluster.scala:87:7]
wire [31:0] auto_trace_nodes_out_3_insns_0_insn_0; // @[Cluster.scala:87:7]
wire [2:0] auto_trace_nodes_out_3_insns_0_priv_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_3_insns_0_exception_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_3_insns_0_interrupt_0; // @[Cluster.scala:87:7]
wire [63:0] auto_trace_nodes_out_3_insns_0_cause_0; // @[Cluster.scala:87:7]
wire [39:0] auto_trace_nodes_out_3_insns_0_tval_0; // @[Cluster.scala:87:7]
wire [63:0] auto_trace_nodes_out_3_time_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_2_insns_0_valid_0; // @[Cluster.scala:87:7]
wire [39:0] auto_trace_nodes_out_2_insns_0_iaddr_0; // @[Cluster.scala:87:7]
wire [31:0] auto_trace_nodes_out_2_insns_0_insn_0; // @[Cluster.scala:87:7]
wire [2:0] auto_trace_nodes_out_2_insns_0_priv_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_2_insns_0_exception_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_2_insns_0_interrupt_0; // @[Cluster.scala:87:7]
wire [63:0] auto_trace_nodes_out_2_insns_0_cause_0; // @[Cluster.scala:87:7]
wire [39:0] auto_trace_nodes_out_2_insns_0_tval_0; // @[Cluster.scala:87:7]
wire [63:0] auto_trace_nodes_out_2_time_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_1_insns_0_valid_0; // @[Cluster.scala:87:7]
wire [39:0] auto_trace_nodes_out_1_insns_0_iaddr_0; // @[Cluster.scala:87:7]
wire [31:0] auto_trace_nodes_out_1_insns_0_insn_0; // @[Cluster.scala:87:7]
wire [2:0] auto_trace_nodes_out_1_insns_0_priv_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_1_insns_0_exception_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_1_insns_0_interrupt_0; // @[Cluster.scala:87:7]
wire [63:0] auto_trace_nodes_out_1_insns_0_cause_0; // @[Cluster.scala:87:7]
wire [39:0] auto_trace_nodes_out_1_insns_0_tval_0; // @[Cluster.scala:87:7]
wire [63:0] auto_trace_nodes_out_1_time_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_0_insns_0_valid_0; // @[Cluster.scala:87:7]
wire [39:0] auto_trace_nodes_out_0_insns_0_iaddr_0; // @[Cluster.scala:87:7]
wire [31:0] auto_trace_nodes_out_0_insns_0_insn_0; // @[Cluster.scala:87:7]
wire [2:0] auto_trace_nodes_out_0_insns_0_priv_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_0_insns_0_exception_0; // @[Cluster.scala:87:7]
wire auto_trace_nodes_out_0_insns_0_interrupt_0; // @[Cluster.scala:87:7]
wire [63:0] auto_trace_nodes_out_0_insns_0_cause_0; // @[Cluster.scala:87:7]
wire [39:0] auto_trace_nodes_out_0_insns_0_tval_0; // @[Cluster.scala:87:7]
wire [63:0] auto_trace_nodes_out_0_time_0; // @[Cluster.scala:87:7]
wire nexus_nodeIn_insns_0_valid = nexus_auto_in_insns_0_valid; // @[MixedNode.scala:551:17]
wire [39:0] nexus_nodeIn_insns_0_iaddr = nexus_auto_in_insns_0_iaddr; // @[MixedNode.scala:551:17]
wire [31:0] nexus_nodeIn_insns_0_insn = nexus_auto_in_insns_0_insn; // @[MixedNode.scala:551:17]
wire [2:0] nexus_nodeIn_insns_0_priv = nexus_auto_in_insns_0_priv; // @[MixedNode.scala:551:17]
wire nexus_nodeIn_insns_0_exception = nexus_auto_in_insns_0_exception; // @[MixedNode.scala:551:17]
wire nexus_nodeIn_insns_0_interrupt = nexus_auto_in_insns_0_interrupt; // @[MixedNode.scala:551:17]
wire [63:0] nexus_nodeIn_insns_0_cause = nexus_auto_in_insns_0_cause; // @[MixedNode.scala:551:17]
wire [39:0] nexus_nodeIn_insns_0_tval = nexus_auto_in_insns_0_tval; // @[MixedNode.scala:551:17]
wire [63:0] nexus_nodeIn_time = nexus_auto_in_time; // @[MixedNode.scala:551:17]
wire nexus_nodeOut_insns_0_valid; // @[MixedNode.scala:542:17]
wire [39:0] nexus_nodeOut_insns_0_iaddr; // @[MixedNode.scala:542:17]
wire traceNodesIn_insns_0_valid = nexus_auto_out_insns_0_valid; // @[MixedNode.scala:551:17]
wire [31:0] nexus_nodeOut_insns_0_insn; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesIn_insns_0_iaddr = nexus_auto_out_insns_0_iaddr; // @[MixedNode.scala:551:17]
wire [2:0] nexus_nodeOut_insns_0_priv; // @[MixedNode.scala:542:17]
wire [31:0] traceNodesIn_insns_0_insn = nexus_auto_out_insns_0_insn; // @[MixedNode.scala:551:17]
wire nexus_nodeOut_insns_0_exception; // @[MixedNode.scala:542:17]
wire [2:0] traceNodesIn_insns_0_priv = nexus_auto_out_insns_0_priv; // @[MixedNode.scala:551:17]
wire nexus_nodeOut_insns_0_interrupt; // @[MixedNode.scala:542:17]
wire traceNodesIn_insns_0_exception = nexus_auto_out_insns_0_exception; // @[MixedNode.scala:551:17]
wire [63:0] nexus_nodeOut_insns_0_cause; // @[MixedNode.scala:542:17]
wire traceNodesIn_insns_0_interrupt = nexus_auto_out_insns_0_interrupt; // @[MixedNode.scala:551:17]
wire [39:0] nexus_nodeOut_insns_0_tval; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesIn_insns_0_cause = nexus_auto_out_insns_0_cause; // @[MixedNode.scala:551:17]
wire [63:0] nexus_nodeOut_time; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesIn_insns_0_tval = nexus_auto_out_insns_0_tval; // @[MixedNode.scala:551:17]
wire [63:0] traceNodesIn_time = nexus_auto_out_time; // @[MixedNode.scala:551:17]
assign nexus_nodeOut_insns_0_valid = nexus_nodeIn_insns_0_valid; // @[MixedNode.scala:542:17, :551:17]
assign nexus_nodeOut_insns_0_iaddr = nexus_nodeIn_insns_0_iaddr; // @[MixedNode.scala:542:17, :551:17]
assign nexus_nodeOut_insns_0_insn = nexus_nodeIn_insns_0_insn; // @[MixedNode.scala:542:17, :551:17]
assign nexus_nodeOut_insns_0_priv = nexus_nodeIn_insns_0_priv; // @[MixedNode.scala:542:17, :551:17]
assign nexus_nodeOut_insns_0_exception = nexus_nodeIn_insns_0_exception; // @[MixedNode.scala:542:17, :551:17]
assign nexus_nodeOut_insns_0_interrupt = nexus_nodeIn_insns_0_interrupt; // @[MixedNode.scala:542:17, :551:17]
assign nexus_nodeOut_insns_0_cause = nexus_nodeIn_insns_0_cause; // @[MixedNode.scala:542:17, :551:17]
assign nexus_nodeOut_insns_0_tval = nexus_nodeIn_insns_0_tval; // @[MixedNode.scala:542:17, :551:17]
assign nexus_nodeOut_time = nexus_nodeIn_time; // @[MixedNode.scala:542:17, :551:17]
assign nexus_auto_out_insns_0_valid = nexus_nodeOut_insns_0_valid; // @[MixedNode.scala:542:17]
assign nexus_auto_out_insns_0_iaddr = nexus_nodeOut_insns_0_iaddr; // @[MixedNode.scala:542:17]
assign nexus_auto_out_insns_0_insn = nexus_nodeOut_insns_0_insn; // @[MixedNode.scala:542:17]
assign nexus_auto_out_insns_0_priv = nexus_nodeOut_insns_0_priv; // @[MixedNode.scala:542:17]
assign nexus_auto_out_insns_0_exception = nexus_nodeOut_insns_0_exception; // @[MixedNode.scala:542:17]
assign nexus_auto_out_insns_0_interrupt = nexus_nodeOut_insns_0_interrupt; // @[MixedNode.scala:542:17]
assign nexus_auto_out_insns_0_cause = nexus_nodeOut_insns_0_cause; // @[MixedNode.scala:542:17]
assign nexus_auto_out_insns_0_tval = nexus_nodeOut_insns_0_tval; // @[MixedNode.scala:542:17]
assign nexus_auto_out_time = nexus_nodeOut_time; // @[MixedNode.scala:542:17]
wire nexus_2_nodeIn_insns_0_valid = nexus_2_auto_in_insns_0_valid; // @[MixedNode.scala:551:17]
wire [39:0] nexus_2_nodeIn_insns_0_iaddr = nexus_2_auto_in_insns_0_iaddr; // @[MixedNode.scala:551:17]
wire [31:0] nexus_2_nodeIn_insns_0_insn = nexus_2_auto_in_insns_0_insn; // @[MixedNode.scala:551:17]
wire [2:0] nexus_2_nodeIn_insns_0_priv = nexus_2_auto_in_insns_0_priv; // @[MixedNode.scala:551:17]
wire nexus_2_nodeIn_insns_0_exception = nexus_2_auto_in_insns_0_exception; // @[MixedNode.scala:551:17]
wire nexus_2_nodeIn_insns_0_interrupt = nexus_2_auto_in_insns_0_interrupt; // @[MixedNode.scala:551:17]
wire [63:0] nexus_2_nodeIn_insns_0_cause = nexus_2_auto_in_insns_0_cause; // @[MixedNode.scala:551:17]
wire [39:0] nexus_2_nodeIn_insns_0_tval = nexus_2_auto_in_insns_0_tval; // @[MixedNode.scala:551:17]
wire [63:0] nexus_2_nodeIn_time = nexus_2_auto_in_time; // @[MixedNode.scala:551:17]
wire nexus_2_nodeOut_insns_0_valid; // @[MixedNode.scala:542:17]
wire [39:0] nexus_2_nodeOut_insns_0_iaddr; // @[MixedNode.scala:542:17]
wire traceNodesIn_1_insns_0_valid = nexus_2_auto_out_insns_0_valid; // @[MixedNode.scala:551:17]
wire [31:0] nexus_2_nodeOut_insns_0_insn; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesIn_1_insns_0_iaddr = nexus_2_auto_out_insns_0_iaddr; // @[MixedNode.scala:551:17]
wire [2:0] nexus_2_nodeOut_insns_0_priv; // @[MixedNode.scala:542:17]
wire [31:0] traceNodesIn_1_insns_0_insn = nexus_2_auto_out_insns_0_insn; // @[MixedNode.scala:551:17]
wire nexus_2_nodeOut_insns_0_exception; // @[MixedNode.scala:542:17]
wire [2:0] traceNodesIn_1_insns_0_priv = nexus_2_auto_out_insns_0_priv; // @[MixedNode.scala:551:17]
wire nexus_2_nodeOut_insns_0_interrupt; // @[MixedNode.scala:542:17]
wire traceNodesIn_1_insns_0_exception = nexus_2_auto_out_insns_0_exception; // @[MixedNode.scala:551:17]
wire [63:0] nexus_2_nodeOut_insns_0_cause; // @[MixedNode.scala:542:17]
wire traceNodesIn_1_insns_0_interrupt = nexus_2_auto_out_insns_0_interrupt; // @[MixedNode.scala:551:17]
wire [39:0] nexus_2_nodeOut_insns_0_tval; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesIn_1_insns_0_cause = nexus_2_auto_out_insns_0_cause; // @[MixedNode.scala:551:17]
wire [63:0] nexus_2_nodeOut_time; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesIn_1_insns_0_tval = nexus_2_auto_out_insns_0_tval; // @[MixedNode.scala:551:17]
wire [63:0] traceNodesIn_1_time = nexus_2_auto_out_time; // @[MixedNode.scala:551:17]
assign nexus_2_nodeOut_insns_0_valid = nexus_2_nodeIn_insns_0_valid; // @[MixedNode.scala:542:17, :551:17]
assign nexus_2_nodeOut_insns_0_iaddr = nexus_2_nodeIn_insns_0_iaddr; // @[MixedNode.scala:542:17, :551:17]
assign nexus_2_nodeOut_insns_0_insn = nexus_2_nodeIn_insns_0_insn; // @[MixedNode.scala:542:17, :551:17]
assign nexus_2_nodeOut_insns_0_priv = nexus_2_nodeIn_insns_0_priv; // @[MixedNode.scala:542:17, :551:17]
assign nexus_2_nodeOut_insns_0_exception = nexus_2_nodeIn_insns_0_exception; // @[MixedNode.scala:542:17, :551:17]
assign nexus_2_nodeOut_insns_0_interrupt = nexus_2_nodeIn_insns_0_interrupt; // @[MixedNode.scala:542:17, :551:17]
assign nexus_2_nodeOut_insns_0_cause = nexus_2_nodeIn_insns_0_cause; // @[MixedNode.scala:542:17, :551:17]
assign nexus_2_nodeOut_insns_0_tval = nexus_2_nodeIn_insns_0_tval; // @[MixedNode.scala:542:17, :551:17]
assign nexus_2_nodeOut_time = nexus_2_nodeIn_time; // @[MixedNode.scala:542:17, :551:17]
assign nexus_2_auto_out_insns_0_valid = nexus_2_nodeOut_insns_0_valid; // @[MixedNode.scala:542:17]
assign nexus_2_auto_out_insns_0_iaddr = nexus_2_nodeOut_insns_0_iaddr; // @[MixedNode.scala:542:17]
assign nexus_2_auto_out_insns_0_insn = nexus_2_nodeOut_insns_0_insn; // @[MixedNode.scala:542:17]
assign nexus_2_auto_out_insns_0_priv = nexus_2_nodeOut_insns_0_priv; // @[MixedNode.scala:542:17]
assign nexus_2_auto_out_insns_0_exception = nexus_2_nodeOut_insns_0_exception; // @[MixedNode.scala:542:17]
assign nexus_2_auto_out_insns_0_interrupt = nexus_2_nodeOut_insns_0_interrupt; // @[MixedNode.scala:542:17]
assign nexus_2_auto_out_insns_0_cause = nexus_2_nodeOut_insns_0_cause; // @[MixedNode.scala:542:17]
assign nexus_2_auto_out_insns_0_tval = nexus_2_nodeOut_insns_0_tval; // @[MixedNode.scala:542:17]
assign nexus_2_auto_out_time = nexus_2_nodeOut_time; // @[MixedNode.scala:542:17]
wire nexus_4_nodeIn_insns_0_valid = nexus_4_auto_in_insns_0_valid; // @[MixedNode.scala:551:17]
wire [39:0] nexus_4_nodeIn_insns_0_iaddr = nexus_4_auto_in_insns_0_iaddr; // @[MixedNode.scala:551:17]
wire [31:0] nexus_4_nodeIn_insns_0_insn = nexus_4_auto_in_insns_0_insn; // @[MixedNode.scala:551:17]
wire [2:0] nexus_4_nodeIn_insns_0_priv = nexus_4_auto_in_insns_0_priv; // @[MixedNode.scala:551:17]
wire nexus_4_nodeIn_insns_0_exception = nexus_4_auto_in_insns_0_exception; // @[MixedNode.scala:551:17]
wire nexus_4_nodeIn_insns_0_interrupt = nexus_4_auto_in_insns_0_interrupt; // @[MixedNode.scala:551:17]
wire [63:0] nexus_4_nodeIn_insns_0_cause = nexus_4_auto_in_insns_0_cause; // @[MixedNode.scala:551:17]
wire [39:0] nexus_4_nodeIn_insns_0_tval = nexus_4_auto_in_insns_0_tval; // @[MixedNode.scala:551:17]
wire [63:0] nexus_4_nodeIn_time = nexus_4_auto_in_time; // @[MixedNode.scala:551:17]
wire nexus_4_nodeOut_insns_0_valid; // @[MixedNode.scala:542:17]
wire [39:0] nexus_4_nodeOut_insns_0_iaddr; // @[MixedNode.scala:542:17]
wire traceNodesIn_2_insns_0_valid = nexus_4_auto_out_insns_0_valid; // @[MixedNode.scala:551:17]
wire [31:0] nexus_4_nodeOut_insns_0_insn; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesIn_2_insns_0_iaddr = nexus_4_auto_out_insns_0_iaddr; // @[MixedNode.scala:551:17]
wire [2:0] nexus_4_nodeOut_insns_0_priv; // @[MixedNode.scala:542:17]
wire [31:0] traceNodesIn_2_insns_0_insn = nexus_4_auto_out_insns_0_insn; // @[MixedNode.scala:551:17]
wire nexus_4_nodeOut_insns_0_exception; // @[MixedNode.scala:542:17]
wire [2:0] traceNodesIn_2_insns_0_priv = nexus_4_auto_out_insns_0_priv; // @[MixedNode.scala:551:17]
wire nexus_4_nodeOut_insns_0_interrupt; // @[MixedNode.scala:542:17]
wire traceNodesIn_2_insns_0_exception = nexus_4_auto_out_insns_0_exception; // @[MixedNode.scala:551:17]
wire [63:0] nexus_4_nodeOut_insns_0_cause; // @[MixedNode.scala:542:17]
wire traceNodesIn_2_insns_0_interrupt = nexus_4_auto_out_insns_0_interrupt; // @[MixedNode.scala:551:17]
wire [39:0] nexus_4_nodeOut_insns_0_tval; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesIn_2_insns_0_cause = nexus_4_auto_out_insns_0_cause; // @[MixedNode.scala:551:17]
wire [63:0] nexus_4_nodeOut_time; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesIn_2_insns_0_tval = nexus_4_auto_out_insns_0_tval; // @[MixedNode.scala:551:17]
wire [63:0] traceNodesIn_2_time = nexus_4_auto_out_time; // @[MixedNode.scala:551:17]
assign nexus_4_nodeOut_insns_0_valid = nexus_4_nodeIn_insns_0_valid; // @[MixedNode.scala:542:17, :551:17]
assign nexus_4_nodeOut_insns_0_iaddr = nexus_4_nodeIn_insns_0_iaddr; // @[MixedNode.scala:542:17, :551:17]
assign nexus_4_nodeOut_insns_0_insn = nexus_4_nodeIn_insns_0_insn; // @[MixedNode.scala:542:17, :551:17]
assign nexus_4_nodeOut_insns_0_priv = nexus_4_nodeIn_insns_0_priv; // @[MixedNode.scala:542:17, :551:17]
assign nexus_4_nodeOut_insns_0_exception = nexus_4_nodeIn_insns_0_exception; // @[MixedNode.scala:542:17, :551:17]
assign nexus_4_nodeOut_insns_0_interrupt = nexus_4_nodeIn_insns_0_interrupt; // @[MixedNode.scala:542:17, :551:17]
assign nexus_4_nodeOut_insns_0_cause = nexus_4_nodeIn_insns_0_cause; // @[MixedNode.scala:542:17, :551:17]
assign nexus_4_nodeOut_insns_0_tval = nexus_4_nodeIn_insns_0_tval; // @[MixedNode.scala:542:17, :551:17]
assign nexus_4_nodeOut_time = nexus_4_nodeIn_time; // @[MixedNode.scala:542:17, :551:17]
assign nexus_4_auto_out_insns_0_valid = nexus_4_nodeOut_insns_0_valid; // @[MixedNode.scala:542:17]
assign nexus_4_auto_out_insns_0_iaddr = nexus_4_nodeOut_insns_0_iaddr; // @[MixedNode.scala:542:17]
assign nexus_4_auto_out_insns_0_insn = nexus_4_nodeOut_insns_0_insn; // @[MixedNode.scala:542:17]
assign nexus_4_auto_out_insns_0_priv = nexus_4_nodeOut_insns_0_priv; // @[MixedNode.scala:542:17]
assign nexus_4_auto_out_insns_0_exception = nexus_4_nodeOut_insns_0_exception; // @[MixedNode.scala:542:17]
assign nexus_4_auto_out_insns_0_interrupt = nexus_4_nodeOut_insns_0_interrupt; // @[MixedNode.scala:542:17]
assign nexus_4_auto_out_insns_0_cause = nexus_4_nodeOut_insns_0_cause; // @[MixedNode.scala:542:17]
assign nexus_4_auto_out_insns_0_tval = nexus_4_nodeOut_insns_0_tval; // @[MixedNode.scala:542:17]
assign nexus_4_auto_out_time = nexus_4_nodeOut_time; // @[MixedNode.scala:542:17]
wire nexus_6_nodeIn_insns_0_valid = nexus_6_auto_in_insns_0_valid; // @[MixedNode.scala:551:17]
wire [39:0] nexus_6_nodeIn_insns_0_iaddr = nexus_6_auto_in_insns_0_iaddr; // @[MixedNode.scala:551:17]
wire [31:0] nexus_6_nodeIn_insns_0_insn = nexus_6_auto_in_insns_0_insn; // @[MixedNode.scala:551:17]
wire [2:0] nexus_6_nodeIn_insns_0_priv = nexus_6_auto_in_insns_0_priv; // @[MixedNode.scala:551:17]
wire nexus_6_nodeIn_insns_0_exception = nexus_6_auto_in_insns_0_exception; // @[MixedNode.scala:551:17]
wire nexus_6_nodeIn_insns_0_interrupt = nexus_6_auto_in_insns_0_interrupt; // @[MixedNode.scala:551:17]
wire [63:0] nexus_6_nodeIn_insns_0_cause = nexus_6_auto_in_insns_0_cause; // @[MixedNode.scala:551:17]
wire [39:0] nexus_6_nodeIn_insns_0_tval = nexus_6_auto_in_insns_0_tval; // @[MixedNode.scala:551:17]
wire [63:0] nexus_6_nodeIn_time = nexus_6_auto_in_time; // @[MixedNode.scala:551:17]
wire nexus_6_nodeOut_insns_0_valid; // @[MixedNode.scala:542:17]
wire [39:0] nexus_6_nodeOut_insns_0_iaddr; // @[MixedNode.scala:542:17]
wire traceNodesIn_3_insns_0_valid = nexus_6_auto_out_insns_0_valid; // @[MixedNode.scala:551:17]
wire [31:0] nexus_6_nodeOut_insns_0_insn; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesIn_3_insns_0_iaddr = nexus_6_auto_out_insns_0_iaddr; // @[MixedNode.scala:551:17]
wire [2:0] nexus_6_nodeOut_insns_0_priv; // @[MixedNode.scala:542:17]
wire [31:0] traceNodesIn_3_insns_0_insn = nexus_6_auto_out_insns_0_insn; // @[MixedNode.scala:551:17]
wire nexus_6_nodeOut_insns_0_exception; // @[MixedNode.scala:542:17]
wire [2:0] traceNodesIn_3_insns_0_priv = nexus_6_auto_out_insns_0_priv; // @[MixedNode.scala:551:17]
wire nexus_6_nodeOut_insns_0_interrupt; // @[MixedNode.scala:542:17]
wire traceNodesIn_3_insns_0_exception = nexus_6_auto_out_insns_0_exception; // @[MixedNode.scala:551:17]
wire [63:0] nexus_6_nodeOut_insns_0_cause; // @[MixedNode.scala:542:17]
wire traceNodesIn_3_insns_0_interrupt = nexus_6_auto_out_insns_0_interrupt; // @[MixedNode.scala:551:17]
wire [39:0] nexus_6_nodeOut_insns_0_tval; // @[MixedNode.scala:542:17]
wire [63:0] traceNodesIn_3_insns_0_cause = nexus_6_auto_out_insns_0_cause; // @[MixedNode.scala:551:17]
wire [63:0] nexus_6_nodeOut_time; // @[MixedNode.scala:542:17]
wire [39:0] traceNodesIn_3_insns_0_tval = nexus_6_auto_out_insns_0_tval; // @[MixedNode.scala:551:17]
wire [63:0] traceNodesIn_3_time = nexus_6_auto_out_time; // @[MixedNode.scala:551:17]
assign nexus_6_nodeOut_insns_0_valid = nexus_6_nodeIn_insns_0_valid; // @[MixedNode.scala:542:17, :551:17]
assign nexus_6_nodeOut_insns_0_iaddr = nexus_6_nodeIn_insns_0_iaddr; // @[MixedNode.scala:542:17, :551:17]
assign nexus_6_nodeOut_insns_0_insn = nexus_6_nodeIn_insns_0_insn; // @[MixedNode.scala:542:17, :551:17]
assign nexus_6_nodeOut_insns_0_priv = nexus_6_nodeIn_insns_0_priv; // @[MixedNode.scala:542:17, :551:17]
assign nexus_6_nodeOut_insns_0_exception = nexus_6_nodeIn_insns_0_exception; // @[MixedNode.scala:542:17, :551:17]
assign nexus_6_nodeOut_insns_0_interrupt = nexus_6_nodeIn_insns_0_interrupt; // @[MixedNode.scala:542:17, :551:17]
assign nexus_6_nodeOut_insns_0_cause = nexus_6_nodeIn_insns_0_cause; // @[MixedNode.scala:542:17, :551:17]
assign nexus_6_nodeOut_insns_0_tval = nexus_6_nodeIn_insns_0_tval; // @[MixedNode.scala:542:17, :551:17]
assign nexus_6_nodeOut_time = nexus_6_nodeIn_time; // @[MixedNode.scala:542:17, :551:17]
assign nexus_6_auto_out_insns_0_valid = nexus_6_nodeOut_insns_0_valid; // @[MixedNode.scala:542:17]
assign nexus_6_auto_out_insns_0_iaddr = nexus_6_nodeOut_insns_0_iaddr; // @[MixedNode.scala:542:17]
assign nexus_6_auto_out_insns_0_insn = nexus_6_nodeOut_insns_0_insn; // @[MixedNode.scala:542:17]
assign nexus_6_auto_out_insns_0_priv = nexus_6_nodeOut_insns_0_priv; // @[MixedNode.scala:542:17]
assign nexus_6_auto_out_insns_0_exception = nexus_6_nodeOut_insns_0_exception; // @[MixedNode.scala:542:17]
assign nexus_6_auto_out_insns_0_interrupt = nexus_6_nodeOut_insns_0_interrupt; // @[MixedNode.scala:542:17]
assign nexus_6_auto_out_insns_0_cause = nexus_6_nodeOut_insns_0_cause; // @[MixedNode.scala:542:17]
assign nexus_6_auto_out_insns_0_tval = nexus_6_nodeOut_insns_0_tval; // @[MixedNode.scala:542:17]
assign nexus_6_auto_out_time = nexus_6_nodeOut_time; // @[MixedNode.scala:542:17]
wire ibus_clockNodeIn_clock = ibus_auto_clock_in_clock; // @[ClockDomain.scala:14:9]
wire ibus_auto_clock_in_reset; // @[ClockDomain.scala:14:9]
wire ibus_clockNodeIn_reset = ibus_auto_clock_in_reset; // @[ClockDomain.scala:14:9]
wire ibus_childClock; // @[LazyModuleImp.scala:155:31]
wire ibus_childReset; // @[LazyModuleImp.scala:158:31]
assign ibus_childClock = ibus_clockNodeIn_clock; // @[MixedNode.scala:551:17]
assign ibus_childReset = ibus_clockNodeIn_reset; // @[MixedNode.scala:551:17]
wire buffer_nodeIn_a_ready; // @[MixedNode.scala:551:17]
wire buffer_nodeIn_a_valid = buffer_auto_in_a_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeIn_a_bits_opcode = buffer_auto_in_a_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeIn_a_bits_param = buffer_auto_in_a_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeIn_a_bits_size = buffer_auto_in_a_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeIn_a_bits_source = buffer_auto_in_a_bits_source; // @[Buffer.scala:40:9]
wire [31:0] buffer_nodeIn_a_bits_address = buffer_auto_in_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] buffer_nodeIn_a_bits_mask = buffer_auto_in_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] buffer_nodeIn_a_bits_data = buffer_auto_in_a_bits_data; // @[Buffer.scala:40:9]
wire buffer_nodeIn_a_bits_corrupt = buffer_auto_in_a_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_nodeIn_b_ready = buffer_auto_in_b_ready; // @[Buffer.scala:40:9]
wire buffer_nodeIn_b_valid; // @[MixedNode.scala:551:17]
wire [2:0] buffer_nodeIn_b_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] buffer_nodeIn_b_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] buffer_nodeIn_b_bits_size; // @[MixedNode.scala:551:17]
wire [3:0] buffer_nodeIn_b_bits_source; // @[MixedNode.scala:551:17]
wire [31:0] buffer_nodeIn_b_bits_address; // @[MixedNode.scala:551:17]
wire [7:0] buffer_nodeIn_b_bits_mask; // @[MixedNode.scala:551:17]
wire [63:0] buffer_nodeIn_b_bits_data; // @[MixedNode.scala:551:17]
wire buffer_nodeIn_b_bits_corrupt; // @[MixedNode.scala:551:17]
wire buffer_nodeIn_c_ready; // @[MixedNode.scala:551:17]
wire buffer_nodeIn_c_valid = buffer_auto_in_c_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeIn_c_bits_opcode = buffer_auto_in_c_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeIn_c_bits_param = buffer_auto_in_c_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeIn_c_bits_size = buffer_auto_in_c_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeIn_c_bits_source = buffer_auto_in_c_bits_source; // @[Buffer.scala:40:9]
wire [31:0] buffer_nodeIn_c_bits_address = buffer_auto_in_c_bits_address; // @[Buffer.scala:40:9]
wire [63:0] buffer_nodeIn_c_bits_data = buffer_auto_in_c_bits_data; // @[Buffer.scala:40:9]
wire buffer_nodeIn_c_bits_corrupt = buffer_auto_in_c_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_nodeIn_d_ready = buffer_auto_in_d_ready; // @[Buffer.scala:40:9]
wire buffer_nodeIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] buffer_nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [1:0] buffer_nodeIn_d_bits_param; // @[MixedNode.scala:551:17]
wire [3:0] buffer_nodeIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [3:0] buffer_nodeIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [2:0] buffer_nodeIn_d_bits_sink; // @[MixedNode.scala:551:17]
wire buffer_nodeIn_d_bits_denied; // @[MixedNode.scala:551:17]
wire [63:0] buffer_nodeIn_d_bits_data; // @[MixedNode.scala:551:17]
wire buffer_nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17]
wire buffer_nodeIn_e_ready; // @[MixedNode.scala:551:17]
wire buffer_nodeIn_e_valid = buffer_auto_in_e_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeIn_e_bits_sink = buffer_auto_in_e_bits_sink; // @[Buffer.scala:40:9]
wire buffer_nodeOut_a_ready = buffer_auto_out_a_ready; // @[Buffer.scala:40:9]
wire buffer_nodeOut_a_valid; // @[MixedNode.scala:542:17]
assign auto_buffer_out_a_valid_0 = buffer_auto_out_a_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17]
assign auto_buffer_out_a_bits_opcode_0 = buffer_auto_out_a_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeOut_a_bits_param; // @[MixedNode.scala:542:17]
assign auto_buffer_out_a_bits_param_0 = buffer_auto_out_a_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeOut_a_bits_size; // @[MixedNode.scala:542:17]
assign auto_buffer_out_a_bits_size_0 = buffer_auto_out_a_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeOut_a_bits_source; // @[MixedNode.scala:542:17]
assign auto_buffer_out_a_bits_source_0 = buffer_auto_out_a_bits_source; // @[Buffer.scala:40:9]
wire [31:0] buffer_nodeOut_a_bits_address; // @[MixedNode.scala:542:17]
assign auto_buffer_out_a_bits_address_0 = buffer_auto_out_a_bits_address; // @[Buffer.scala:40:9]
wire [7:0] buffer_nodeOut_a_bits_mask; // @[MixedNode.scala:542:17]
assign auto_buffer_out_a_bits_mask_0 = buffer_auto_out_a_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] buffer_nodeOut_a_bits_data; // @[MixedNode.scala:542:17]
assign auto_buffer_out_a_bits_data_0 = buffer_auto_out_a_bits_data; // @[Buffer.scala:40:9]
wire buffer_nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
assign auto_buffer_out_a_bits_corrupt_0 = buffer_auto_out_a_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_nodeOut_b_ready; // @[MixedNode.scala:542:17]
assign auto_buffer_out_b_ready_0 = buffer_auto_out_b_ready; // @[Buffer.scala:40:9]
wire buffer_nodeOut_b_valid = buffer_auto_out_b_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeOut_b_bits_opcode = buffer_auto_out_b_bits_opcode; // @[Buffer.scala:40:9]
wire [1:0] buffer_nodeOut_b_bits_param = buffer_auto_out_b_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeOut_b_bits_size = buffer_auto_out_b_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeOut_b_bits_source = buffer_auto_out_b_bits_source; // @[Buffer.scala:40:9]
wire [31:0] buffer_nodeOut_b_bits_address = buffer_auto_out_b_bits_address; // @[Buffer.scala:40:9]
wire [7:0] buffer_nodeOut_b_bits_mask = buffer_auto_out_b_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] buffer_nodeOut_b_bits_data = buffer_auto_out_b_bits_data; // @[Buffer.scala:40:9]
wire buffer_nodeOut_b_bits_corrupt = buffer_auto_out_b_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_nodeOut_c_ready = buffer_auto_out_c_ready; // @[Buffer.scala:40:9]
wire buffer_nodeOut_c_valid; // @[MixedNode.scala:542:17]
assign auto_buffer_out_c_valid_0 = buffer_auto_out_c_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeOut_c_bits_opcode; // @[MixedNode.scala:542:17]
assign auto_buffer_out_c_bits_opcode_0 = buffer_auto_out_c_bits_opcode; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeOut_c_bits_param; // @[MixedNode.scala:542:17]
assign auto_buffer_out_c_bits_param_0 = buffer_auto_out_c_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeOut_c_bits_size; // @[MixedNode.scala:542:17]
assign auto_buffer_out_c_bits_size_0 = buffer_auto_out_c_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeOut_c_bits_source; // @[MixedNode.scala:542:17]
assign auto_buffer_out_c_bits_source_0 = buffer_auto_out_c_bits_source; // @[Buffer.scala:40:9]
wire [31:0] buffer_nodeOut_c_bits_address; // @[MixedNode.scala:542:17]
assign auto_buffer_out_c_bits_address_0 = buffer_auto_out_c_bits_address; // @[Buffer.scala:40:9]
wire [63:0] buffer_nodeOut_c_bits_data; // @[MixedNode.scala:542:17]
assign auto_buffer_out_c_bits_data_0 = buffer_auto_out_c_bits_data; // @[Buffer.scala:40:9]
wire buffer_nodeOut_c_bits_corrupt; // @[MixedNode.scala:542:17]
assign auto_buffer_out_c_bits_corrupt_0 = buffer_auto_out_c_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_nodeOut_d_ready; // @[MixedNode.scala:542:17]
assign auto_buffer_out_d_ready_0 = buffer_auto_out_d_ready; // @[Buffer.scala:40:9]
wire buffer_nodeOut_d_valid = buffer_auto_out_d_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeOut_d_bits_opcode = buffer_auto_out_d_bits_opcode; // @[Buffer.scala:40:9]
wire [1:0] buffer_nodeOut_d_bits_param = buffer_auto_out_d_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeOut_d_bits_size = buffer_auto_out_d_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_nodeOut_d_bits_source = buffer_auto_out_d_bits_source; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeOut_d_bits_sink = buffer_auto_out_d_bits_sink; // @[Buffer.scala:40:9]
wire buffer_nodeOut_d_bits_denied = buffer_auto_out_d_bits_denied; // @[Buffer.scala:40:9]
wire [63:0] buffer_nodeOut_d_bits_data = buffer_auto_out_d_bits_data; // @[Buffer.scala:40:9]
wire buffer_nodeOut_d_bits_corrupt = buffer_auto_out_d_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_nodeOut_e_ready = buffer_auto_out_e_ready; // @[Buffer.scala:40:9]
wire buffer_nodeOut_e_valid; // @[MixedNode.scala:542:17]
assign auto_buffer_out_e_valid_0 = buffer_auto_out_e_valid; // @[Buffer.scala:40:9]
wire [2:0] buffer_nodeOut_e_bits_sink; // @[MixedNode.scala:542:17]
assign auto_buffer_out_e_bits_sink_0 = buffer_auto_out_e_bits_sink; // @[Buffer.scala:40:9]
wire buffer_auto_in_a_ready; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_in_b_bits_opcode; // @[Buffer.scala:40:9]
wire [1:0] buffer_auto_in_b_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_in_b_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_in_b_bits_source; // @[Buffer.scala:40:9]
wire [31:0] buffer_auto_in_b_bits_address; // @[Buffer.scala:40:9]
wire [7:0] buffer_auto_in_b_bits_mask; // @[Buffer.scala:40:9]
wire [63:0] buffer_auto_in_b_bits_data; // @[Buffer.scala:40:9]
wire buffer_auto_in_b_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_auto_in_b_valid; // @[Buffer.scala:40:9]
wire buffer_auto_in_c_ready; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_in_d_bits_opcode; // @[Buffer.scala:40:9]
wire [1:0] buffer_auto_in_d_bits_param; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_in_d_bits_size; // @[Buffer.scala:40:9]
wire [3:0] buffer_auto_in_d_bits_source; // @[Buffer.scala:40:9]
wire [2:0] buffer_auto_in_d_bits_sink; // @[Buffer.scala:40:9]
wire buffer_auto_in_d_bits_denied; // @[Buffer.scala:40:9]
wire [63:0] buffer_auto_in_d_bits_data; // @[Buffer.scala:40:9]
wire buffer_auto_in_d_bits_corrupt; // @[Buffer.scala:40:9]
wire buffer_auto_in_d_valid; // @[Buffer.scala:40:9]
wire buffer_auto_in_e_ready; // @[Buffer.scala:40:9]
assign buffer_nodeIn_a_ready = buffer_nodeOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign buffer_auto_out_a_valid = buffer_nodeOut_a_valid; // @[Buffer.scala:40:9]
assign buffer_auto_out_a_bits_opcode = buffer_nodeOut_a_bits_opcode; // @[Buffer.scala:40:9]
assign buffer_auto_out_a_bits_param = buffer_nodeOut_a_bits_param; // @[Buffer.scala:40:9]
assign buffer_auto_out_a_bits_size = buffer_nodeOut_a_bits_size; // @[Buffer.scala:40:9]
assign buffer_auto_out_a_bits_source = buffer_nodeOut_a_bits_source; // @[Buffer.scala:40:9]
assign buffer_auto_out_a_bits_address = buffer_nodeOut_a_bits_address; // @[Buffer.scala:40:9]
assign buffer_auto_out_a_bits_mask = buffer_nodeOut_a_bits_mask; // @[Buffer.scala:40:9]
assign buffer_auto_out_a_bits_data = buffer_nodeOut_a_bits_data; // @[Buffer.scala:40:9]
assign buffer_auto_out_a_bits_corrupt = buffer_nodeOut_a_bits_corrupt; // @[Buffer.scala:40:9]
assign buffer_auto_out_b_ready = buffer_nodeOut_b_ready; // @[Buffer.scala:40:9]
assign buffer_nodeIn_b_valid = buffer_nodeOut_b_valid; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_b_bits_opcode = buffer_nodeOut_b_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_b_bits_param = buffer_nodeOut_b_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_b_bits_size = buffer_nodeOut_b_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_b_bits_source = buffer_nodeOut_b_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_b_bits_address = buffer_nodeOut_b_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_b_bits_mask = buffer_nodeOut_b_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_b_bits_data = buffer_nodeOut_b_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_b_bits_corrupt = buffer_nodeOut_b_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_c_ready = buffer_nodeOut_c_ready; // @[MixedNode.scala:542:17, :551:17]
assign buffer_auto_out_c_valid = buffer_nodeOut_c_valid; // @[Buffer.scala:40:9]
assign buffer_auto_out_c_bits_opcode = buffer_nodeOut_c_bits_opcode; // @[Buffer.scala:40:9]
assign buffer_auto_out_c_bits_param = buffer_nodeOut_c_bits_param; // @[Buffer.scala:40:9]
assign buffer_auto_out_c_bits_size = buffer_nodeOut_c_bits_size; // @[Buffer.scala:40:9]
assign buffer_auto_out_c_bits_source = buffer_nodeOut_c_bits_source; // @[Buffer.scala:40:9]
assign buffer_auto_out_c_bits_address = buffer_nodeOut_c_bits_address; // @[Buffer.scala:40:9]
assign buffer_auto_out_c_bits_data = buffer_nodeOut_c_bits_data; // @[Buffer.scala:40:9]
assign buffer_auto_out_c_bits_corrupt = buffer_nodeOut_c_bits_corrupt; // @[Buffer.scala:40:9]
assign buffer_auto_out_d_ready = buffer_nodeOut_d_ready; // @[Buffer.scala:40:9]
assign buffer_nodeIn_d_valid = buffer_nodeOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_d_bits_opcode = buffer_nodeOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_d_bits_param = buffer_nodeOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_d_bits_size = buffer_nodeOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_d_bits_source = buffer_nodeOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_d_bits_sink = buffer_nodeOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_d_bits_denied = buffer_nodeOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_d_bits_data = buffer_nodeOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_d_bits_corrupt = buffer_nodeOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeIn_e_ready = buffer_nodeOut_e_ready; // @[MixedNode.scala:542:17, :551:17]
assign buffer_auto_out_e_valid = buffer_nodeOut_e_valid; // @[Buffer.scala:40:9]
assign buffer_auto_out_e_bits_sink = buffer_nodeOut_e_bits_sink; // @[Buffer.scala:40:9]
assign buffer_auto_in_a_ready = buffer_nodeIn_a_ready; // @[Buffer.scala:40:9]
assign buffer_nodeOut_a_valid = buffer_nodeIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_a_bits_opcode = buffer_nodeIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_a_bits_param = buffer_nodeIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_a_bits_size = buffer_nodeIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_a_bits_source = buffer_nodeIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_a_bits_address = buffer_nodeIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_a_bits_mask = buffer_nodeIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_a_bits_data = buffer_nodeIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_a_bits_corrupt = buffer_nodeIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_b_ready = buffer_nodeIn_b_ready; // @[MixedNode.scala:542:17, :551:17]
assign buffer_auto_in_b_valid = buffer_nodeIn_b_valid; // @[Buffer.scala:40:9]
assign buffer_auto_in_b_bits_opcode = buffer_nodeIn_b_bits_opcode; // @[Buffer.scala:40:9]
assign buffer_auto_in_b_bits_param = buffer_nodeIn_b_bits_param; // @[Buffer.scala:40:9]
assign buffer_auto_in_b_bits_size = buffer_nodeIn_b_bits_size; // @[Buffer.scala:40:9]
assign buffer_auto_in_b_bits_source = buffer_nodeIn_b_bits_source; // @[Buffer.scala:40:9]
assign buffer_auto_in_b_bits_address = buffer_nodeIn_b_bits_address; // @[Buffer.scala:40:9]
assign buffer_auto_in_b_bits_mask = buffer_nodeIn_b_bits_mask; // @[Buffer.scala:40:9]
assign buffer_auto_in_b_bits_data = buffer_nodeIn_b_bits_data; // @[Buffer.scala:40:9]
assign buffer_auto_in_b_bits_corrupt = buffer_nodeIn_b_bits_corrupt; // @[Buffer.scala:40:9]
assign buffer_auto_in_c_ready = buffer_nodeIn_c_ready; // @[Buffer.scala:40:9]
assign buffer_nodeOut_c_valid = buffer_nodeIn_c_valid; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_c_bits_opcode = buffer_nodeIn_c_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_c_bits_param = buffer_nodeIn_c_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_c_bits_size = buffer_nodeIn_c_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_c_bits_source = buffer_nodeIn_c_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_c_bits_address = buffer_nodeIn_c_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_c_bits_data = buffer_nodeIn_c_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_c_bits_corrupt = buffer_nodeIn_c_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_d_ready = buffer_nodeIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign buffer_auto_in_d_valid = buffer_nodeIn_d_valid; // @[Buffer.scala:40:9]
assign buffer_auto_in_d_bits_opcode = buffer_nodeIn_d_bits_opcode; // @[Buffer.scala:40:9]
assign buffer_auto_in_d_bits_param = buffer_nodeIn_d_bits_param; // @[Buffer.scala:40:9]
assign buffer_auto_in_d_bits_size = buffer_nodeIn_d_bits_size; // @[Buffer.scala:40:9]
assign buffer_auto_in_d_bits_source = buffer_nodeIn_d_bits_source; // @[Buffer.scala:40:9]
assign buffer_auto_in_d_bits_sink = buffer_nodeIn_d_bits_sink; // @[Buffer.scala:40:9]
assign buffer_auto_in_d_bits_denied = buffer_nodeIn_d_bits_denied; // @[Buffer.scala:40:9]
assign buffer_auto_in_d_bits_data = buffer_nodeIn_d_bits_data; // @[Buffer.scala:40:9]
assign buffer_auto_in_d_bits_corrupt = buffer_nodeIn_d_bits_corrupt; // @[Buffer.scala:40:9]
assign buffer_auto_in_e_ready = buffer_nodeIn_e_ready; // @[Buffer.scala:40:9]
assign buffer_nodeOut_e_valid = buffer_nodeIn_e_valid; // @[MixedNode.scala:542:17, :551:17]
assign buffer_nodeOut_e_bits_sink = buffer_nodeIn_e_bits_sink; // @[MixedNode.scala:542:17, :551:17]
wire tileWFISinkNodeIn_0; // @[MixedNode.scala:551:17]
wire tileWFISinkNodeIn_1; // @[MixedNode.scala:551:17]
wire tileWFISinkNodeIn_2; // @[MixedNode.scala:551:17]
wire tileWFISinkNodeIn_3; // @[MixedNode.scala:551:17]
wire debugNodesOut_sync_0; // @[MixedNode.scala:542:17]
assign debugNodesOut_sync_0 = debugNodesIn_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire debugNodesOut_1_sync_0; // @[MixedNode.scala:542:17]
assign debugNodesOut_1_sync_0 = debugNodesIn_1_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire debugNodesOut_2_sync_0; // @[MixedNode.scala:542:17]
assign debugNodesOut_2_sync_0 = debugNodesIn_2_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire debugNodesOut_3_sync_0; // @[MixedNode.scala:542:17]
assign debugNodesOut_3_sync_0 = debugNodesIn_3_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingIn_sync_1; // @[MixedNode.scala:551:17]
wire intInClockXingOut_sync_0; // @[MixedNode.scala:542:17]
wire intInClockXingOut_sync_1; // @[MixedNode.scala:542:17]
assign intInClockXingOut_sync_0 = intInClockXingIn_sync_0; // @[MixedNode.scala:542:17, :551:17]
assign intInClockXingOut_sync_1 = intInClockXingIn_sync_1; // @[MixedNode.scala:542:17, :551:17]
wire msipNodesOut_0; // @[MixedNode.scala:542:17]
wire msipNodesOut_1; // @[MixedNode.scala:542:17]
assign msipNodesOut_0 = msipNodesIn_0; // @[MixedNode.scala:542:17, :551:17]
assign msipNodesOut_1 = msipNodesIn_1; // @[MixedNode.scala:542:17, :551:17]
wire msipNodesOut_1_0; // @[MixedNode.scala:542:17]
wire msipNodesOut_1_1; // @[MixedNode.scala:542:17]
assign msipNodesOut_1_0 = msipNodesIn_1_0; // @[MixedNode.scala:542:17, :551:17]
assign msipNodesOut_1_1 = msipNodesIn_1_1; // @[MixedNode.scala:542:17, :551:17]
wire msipNodesOut_2_0; // @[MixedNode.scala:542:17]
wire msipNodesOut_2_1; // @[MixedNode.scala:542:17]
assign msipNodesOut_2_0 = msipNodesIn_2_0; // @[MixedNode.scala:542:17, :551:17]
assign msipNodesOut_2_1 = msipNodesIn_2_1; // @[MixedNode.scala:542:17, :551:17]
wire msipNodesOut_3_0; // @[MixedNode.scala:542:17]
wire msipNodesOut_3_1; // @[MixedNode.scala:542:17]
assign msipNodesOut_3_0 = msipNodesIn_3_0; // @[MixedNode.scala:542:17, :551:17]
assign msipNodesOut_3_1 = msipNodesIn_3_1; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_1_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingOut_1_sync_0; // @[MixedNode.scala:542:17]
assign intInClockXingOut_1_sync_0 = intInClockXingIn_1_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire meipNodesOut_0; // @[MixedNode.scala:542:17]
assign meipNodesOut_0 = meipNodesIn_0; // @[MixedNode.scala:542:17, :551:17]
wire meipNodesOut_1_0; // @[MixedNode.scala:542:17]
assign meipNodesOut_1_0 = meipNodesIn_1_0; // @[MixedNode.scala:542:17, :551:17]
wire meipNodesOut_2_0; // @[MixedNode.scala:542:17]
assign meipNodesOut_2_0 = meipNodesIn_2_0; // @[MixedNode.scala:542:17, :551:17]
wire meipNodesOut_3_0; // @[MixedNode.scala:542:17]
assign meipNodesOut_3_0 = meipNodesIn_3_0; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_2_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingOut_2_sync_0; // @[MixedNode.scala:542:17]
assign intInClockXingOut_2_sync_0 = intInClockXingIn_2_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire seipNodesOut_0; // @[MixedNode.scala:542:17]
assign seipNodesOut_0 = seipNodesIn_0; // @[MixedNode.scala:542:17, :551:17]
wire seipNodesOut_1_0; // @[MixedNode.scala:542:17]
assign seipNodesOut_1_0 = seipNodesIn_1_0; // @[MixedNode.scala:542:17, :551:17]
wire seipNodesOut_2_0; // @[MixedNode.scala:542:17]
assign seipNodesOut_2_0 = seipNodesIn_2_0; // @[MixedNode.scala:542:17, :551:17]
wire seipNodesOut_3_0; // @[MixedNode.scala:542:17]
assign seipNodesOut_3_0 = seipNodesIn_3_0; // @[MixedNode.scala:542:17, :551:17]
wire [2:0] tileHartIdNodesOut; // @[MixedNode.scala:542:17]
assign tileHartIdNodesOut = tileHartIdNodesIn; // @[MixedNode.scala:542:17, :551:17]
wire [2:0] tileHartIdNodesOut_1; // @[MixedNode.scala:542:17]
assign tileHartIdNodesOut_1 = tileHartIdNodesIn_1; // @[MixedNode.scala:542:17, :551:17]
wire [2:0] tileHartIdNodesOut_2; // @[MixedNode.scala:542:17]
assign tileHartIdNodesOut_2 = tileHartIdNodesIn_2; // @[MixedNode.scala:542:17, :551:17]
wire [2:0] tileHartIdNodesOut_3; // @[MixedNode.scala:542:17]
assign tileHartIdNodesOut_3 = tileHartIdNodesIn_3; // @[MixedNode.scala:542:17, :551:17]
assign auto_trace_nodes_out_0_insns_0_valid_0 = traceNodesOut_insns_0_valid; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_iaddr_0 = traceNodesOut_insns_0_iaddr; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_insn_0 = traceNodesOut_insns_0_insn; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_priv_0 = traceNodesOut_insns_0_priv; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_exception_0 = traceNodesOut_insns_0_exception; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_interrupt_0 = traceNodesOut_insns_0_interrupt; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_cause_0 = traceNodesOut_insns_0_cause; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_tval_0 = traceNodesOut_insns_0_tval; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_time_0 = traceNodesOut_time; // @[Cluster.scala:87:7]
assign traceNodesOut_insns_0_valid = traceNodesIn_insns_0_valid; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_insns_0_iaddr = traceNodesIn_insns_0_iaddr; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_insns_0_insn = traceNodesIn_insns_0_insn; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_insns_0_priv = traceNodesIn_insns_0_priv; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_insns_0_exception = traceNodesIn_insns_0_exception; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_insns_0_interrupt = traceNodesIn_insns_0_interrupt; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_insns_0_cause = traceNodesIn_insns_0_cause; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_insns_0_tval = traceNodesIn_insns_0_tval; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_time = traceNodesIn_time; // @[MixedNode.scala:542:17, :551:17]
assign auto_trace_nodes_out_1_insns_0_valid_0 = traceNodesOut_1_insns_0_valid; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_iaddr_0 = traceNodesOut_1_insns_0_iaddr; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_insn_0 = traceNodesOut_1_insns_0_insn; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_priv_0 = traceNodesOut_1_insns_0_priv; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_exception_0 = traceNodesOut_1_insns_0_exception; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_interrupt_0 = traceNodesOut_1_insns_0_interrupt; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_cause_0 = traceNodesOut_1_insns_0_cause; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_tval_0 = traceNodesOut_1_insns_0_tval; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_time_0 = traceNodesOut_1_time; // @[Cluster.scala:87:7]
assign traceNodesOut_1_insns_0_valid = traceNodesIn_1_insns_0_valid; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_1_insns_0_iaddr = traceNodesIn_1_insns_0_iaddr; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_1_insns_0_insn = traceNodesIn_1_insns_0_insn; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_1_insns_0_priv = traceNodesIn_1_insns_0_priv; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_1_insns_0_exception = traceNodesIn_1_insns_0_exception; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_1_insns_0_interrupt = traceNodesIn_1_insns_0_interrupt; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_1_insns_0_cause = traceNodesIn_1_insns_0_cause; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_1_insns_0_tval = traceNodesIn_1_insns_0_tval; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_1_time = traceNodesIn_1_time; // @[MixedNode.scala:542:17, :551:17]
assign auto_trace_nodes_out_2_insns_0_valid_0 = traceNodesOut_2_insns_0_valid; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_iaddr_0 = traceNodesOut_2_insns_0_iaddr; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_insn_0 = traceNodesOut_2_insns_0_insn; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_priv_0 = traceNodesOut_2_insns_0_priv; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_exception_0 = traceNodesOut_2_insns_0_exception; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_interrupt_0 = traceNodesOut_2_insns_0_interrupt; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_cause_0 = traceNodesOut_2_insns_0_cause; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_tval_0 = traceNodesOut_2_insns_0_tval; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_time_0 = traceNodesOut_2_time; // @[Cluster.scala:87:7]
assign traceNodesOut_2_insns_0_valid = traceNodesIn_2_insns_0_valid; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_2_insns_0_iaddr = traceNodesIn_2_insns_0_iaddr; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_2_insns_0_insn = traceNodesIn_2_insns_0_insn; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_2_insns_0_priv = traceNodesIn_2_insns_0_priv; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_2_insns_0_exception = traceNodesIn_2_insns_0_exception; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_2_insns_0_interrupt = traceNodesIn_2_insns_0_interrupt; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_2_insns_0_cause = traceNodesIn_2_insns_0_cause; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_2_insns_0_tval = traceNodesIn_2_insns_0_tval; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_2_time = traceNodesIn_2_time; // @[MixedNode.scala:542:17, :551:17]
assign auto_trace_nodes_out_3_insns_0_valid_0 = traceNodesOut_3_insns_0_valid; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_iaddr_0 = traceNodesOut_3_insns_0_iaddr; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_insn_0 = traceNodesOut_3_insns_0_insn; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_priv_0 = traceNodesOut_3_insns_0_priv; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_exception_0 = traceNodesOut_3_insns_0_exception; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_interrupt_0 = traceNodesOut_3_insns_0_interrupt; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_cause_0 = traceNodesOut_3_insns_0_cause; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_tval_0 = traceNodesOut_3_insns_0_tval; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_time_0 = traceNodesOut_3_time; // @[Cluster.scala:87:7]
assign traceNodesOut_3_insns_0_valid = traceNodesIn_3_insns_0_valid; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_3_insns_0_iaddr = traceNodesIn_3_insns_0_iaddr; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_3_insns_0_insn = traceNodesIn_3_insns_0_insn; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_3_insns_0_priv = traceNodesIn_3_insns_0_priv; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_3_insns_0_exception = traceNodesIn_3_insns_0_exception; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_3_insns_0_interrupt = traceNodesIn_3_insns_0_interrupt; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_3_insns_0_cause = traceNodesIn_3_insns_0_cause; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_3_insns_0_tval = traceNodesIn_3_insns_0_tval; // @[MixedNode.scala:542:17, :551:17]
assign traceNodesOut_3_time = traceNodesIn_3_time; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_3_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingIn_3_sync_1; // @[MixedNode.scala:551:17]
wire intInClockXingOut_3_sync_0; // @[MixedNode.scala:542:17]
wire intInClockXingOut_3_sync_1; // @[MixedNode.scala:542:17]
assign intInClockXingOut_3_sync_0 = intInClockXingIn_3_sync_0; // @[MixedNode.scala:542:17, :551:17]
assign intInClockXingOut_3_sync_1 = intInClockXingIn_3_sync_1; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_4_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingOut_4_sync_0; // @[MixedNode.scala:542:17]
assign intInClockXingOut_4_sync_0 = intInClockXingIn_4_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_5_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingOut_5_sync_0; // @[MixedNode.scala:542:17]
assign intInClockXingOut_5_sync_0 = intInClockXingIn_5_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_6_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingIn_6_sync_1; // @[MixedNode.scala:551:17]
wire intInClockXingOut_6_sync_0; // @[MixedNode.scala:542:17]
wire intInClockXingOut_6_sync_1; // @[MixedNode.scala:542:17]
assign intInClockXingOut_6_sync_0 = intInClockXingIn_6_sync_0; // @[MixedNode.scala:542:17, :551:17]
assign intInClockXingOut_6_sync_1 = intInClockXingIn_6_sync_1; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_7_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingOut_7_sync_0; // @[MixedNode.scala:542:17]
assign intInClockXingOut_7_sync_0 = intInClockXingIn_7_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_8_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingOut_8_sync_0; // @[MixedNode.scala:542:17]
assign intInClockXingOut_8_sync_0 = intInClockXingIn_8_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_9_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingIn_9_sync_1; // @[MixedNode.scala:551:17]
wire intInClockXingOut_9_sync_0; // @[MixedNode.scala:542:17]
wire intInClockXingOut_9_sync_1; // @[MixedNode.scala:542:17]
assign intInClockXingOut_9_sync_0 = intInClockXingIn_9_sync_0; // @[MixedNode.scala:542:17, :551:17]
assign intInClockXingOut_9_sync_1 = intInClockXingIn_9_sync_1; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_10_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingOut_10_sync_0; // @[MixedNode.scala:542:17]
assign intInClockXingOut_10_sync_0 = intInClockXingIn_10_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire intInClockXingIn_11_sync_0; // @[MixedNode.scala:551:17]
wire intInClockXingOut_11_sync_0; // @[MixedNode.scala:542:17]
assign intInClockXingOut_11_sync_0 = intInClockXingIn_11_sync_0; // @[MixedNode.scala:542:17, :551:17]
wire allClockGroupsNodeOut_member_csbus0_0_clock; // @[MixedNode.scala:542:17]
wire allClockGroupsNodeOut_member_csbus0_0_reset; // @[MixedNode.scala:542:17]
wire x1_allClockGroupsNodeOut_member_ccbus0_0_clock; // @[MixedNode.scala:542:17]
wire x1_allClockGroupsNodeOut_member_ccbus0_0_reset; // @[MixedNode.scala:542:17]
assign allClockGroupsNodeOut_member_csbus0_0_clock = allClockGroupsNodeIn_member_csbus0_0_clock; // @[MixedNode.scala:542:17, :551:17]
assign allClockGroupsNodeOut_member_csbus0_0_reset = allClockGroupsNodeIn_member_csbus0_0_reset; // @[MixedNode.scala:542:17, :551:17]
assign x1_allClockGroupsNodeOut_member_ccbus0_0_clock = x1_allClockGroupsNodeIn_member_ccbus0_0_clock; // @[MixedNode.scala:542:17, :551:17]
assign x1_allClockGroupsNodeOut_member_ccbus0_0_reset = x1_allClockGroupsNodeIn_member_ccbus0_0_reset; // @[MixedNode.scala:542:17, :551:17]
TLXbar_MasterXbar_Cluster_i0_o0_a1d8s1k1z1u tlMasterXbar ( // @[HierarchicalElement.scala:55:42]
.clock (clock),
.reset (reset)
); // @[HierarchicalElement.scala:55:42]
TLXbar_SlaveXbar_Cluster_i0_o0_a1d8s1k1z1u tlSlaveXbar ( // @[HierarchicalElement.scala:56:41]
.clock (clock),
.reset (reset)
); // @[HierarchicalElement.scala:56:41]
IntXbar_i0_o0 intXbar (); // @[HierarchicalElement.scala:57:37]
SystemBus_1 csbus0 ( // @[SystemBus.scala:31:26]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_valid (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_bits_opcode (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_opcode), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_bits_param (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_param), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_bits_size (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_size), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_bits_source (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_source), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_bits_address (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_address), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_bits_mask (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_mask), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_bits_data (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_data), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_bits_corrupt (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_corrupt), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_ready (_tile_prci_domain_3_auto_tl_master_clock_xing_out_b_ready), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_valid),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_opcode),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_param),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_size),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_source),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_address (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_address),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_mask (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_mask),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_data),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_corrupt),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_valid (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_bits_opcode (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_opcode), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_bits_param (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_param), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_bits_size (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_size), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_bits_source (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_source), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_bits_address (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_address), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_bits_data (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_data), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_bits_corrupt (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_corrupt), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_ready (_tile_prci_domain_3_auto_tl_master_clock_xing_out_d_ready), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_valid),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_opcode),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_param),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_size),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_source),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_sink (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_sink),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_denied (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_denied),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_data),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_corrupt),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_e_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_e_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_e_valid (_tile_prci_domain_3_auto_tl_master_clock_xing_out_e_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_3_e_bits_sink (_tile_prci_domain_3_auto_tl_master_clock_xing_out_e_bits_sink), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_valid (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_bits_opcode (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_opcode), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_bits_param (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_param), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_bits_size (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_size), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_bits_source (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_source), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_bits_address (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_address), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_bits_mask (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_mask), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_bits_data (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_data), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_bits_corrupt (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_corrupt), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_ready (_tile_prci_domain_2_auto_tl_master_clock_xing_out_b_ready), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_valid),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_opcode),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_param),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_size),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_source),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_address (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_address),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_mask (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_mask),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_data),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_corrupt),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_valid (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_bits_opcode (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_opcode), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_bits_param (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_param), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_bits_size (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_size), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_bits_source (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_source), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_bits_address (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_address), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_bits_data (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_data), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_bits_corrupt (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_corrupt), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_ready (_tile_prci_domain_2_auto_tl_master_clock_xing_out_d_ready), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_valid),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_opcode),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_param),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_size),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_source),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_sink (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_sink),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_denied (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_denied),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_data),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_corrupt),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_e_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_e_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_e_valid (_tile_prci_domain_2_auto_tl_master_clock_xing_out_e_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_2_e_bits_sink (_tile_prci_domain_2_auto_tl_master_clock_xing_out_e_bits_sink), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_valid (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_bits_opcode (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_opcode), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_bits_param (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_param), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_bits_size (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_size), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_bits_source (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_source), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_bits_address (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_address), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_bits_mask (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_mask), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_bits_data (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_data), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_bits_corrupt (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_corrupt), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_ready (_tile_prci_domain_1_auto_tl_master_clock_xing_out_b_ready), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_valid),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_opcode),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_param),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_size),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_source),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_address (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_address),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_mask (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_mask),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_data),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_corrupt),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_valid (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_bits_opcode (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_opcode), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_bits_param (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_param), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_bits_size (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_size), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_bits_source (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_source), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_bits_address (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_address), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_bits_data (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_data), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_bits_corrupt (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_corrupt), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_ready (_tile_prci_domain_1_auto_tl_master_clock_xing_out_d_ready), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_valid),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_opcode),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_param),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_size),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_source),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_sink (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_sink),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_denied (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_denied),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_data),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_corrupt),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_e_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_e_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_e_valid (_tile_prci_domain_1_auto_tl_master_clock_xing_out_e_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_1_e_bits_sink (_tile_prci_domain_1_auto_tl_master_clock_xing_out_e_bits_sink), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_valid (_tile_prci_domain_auto_tl_master_clock_xing_out_a_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_bits_opcode (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_opcode), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_bits_param (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_param), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_bits_size (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_size), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_bits_source (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_source), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_bits_address (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_address), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_bits_mask (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_mask), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_bits_data (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_data), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_bits_corrupt (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_corrupt), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_ready (_tile_prci_domain_auto_tl_master_clock_xing_out_b_ready), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_valid),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_opcode),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_param),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_size),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_source),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_address (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_address),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_mask (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_mask),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_data),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_corrupt),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_valid (_tile_prci_domain_auto_tl_master_clock_xing_out_c_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_bits_opcode (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_opcode), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_bits_param (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_param), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_bits_size (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_size), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_bits_source (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_source), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_bits_address (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_address), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_bits_data (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_data), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_bits_corrupt (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_corrupt), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_ready (_tile_prci_domain_auto_tl_master_clock_xing_out_d_ready), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_valid),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_opcode),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_param),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_size),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_source),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_sink (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_sink),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_denied (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_denied),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_data),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_corrupt),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_e_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_e_ready),
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_e_valid (_tile_prci_domain_auto_tl_master_clock_xing_out_e_valid), // @[HasTiles.scala:163:38]
.auto_coupler_from_rockettile_tl_master_clock_xing_in_0_e_bits_sink (_tile_prci_domain_auto_tl_master_clock_xing_out_e_bits_sink), // @[HasTiles.scala:163:38]
.auto_system_bus_xbar_anon_out_a_ready (buffer_auto_in_a_ready), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_a_valid (buffer_auto_in_a_valid),
.auto_system_bus_xbar_anon_out_a_bits_opcode (buffer_auto_in_a_bits_opcode),
.auto_system_bus_xbar_anon_out_a_bits_param (buffer_auto_in_a_bits_param),
.auto_system_bus_xbar_anon_out_a_bits_size (buffer_auto_in_a_bits_size),
.auto_system_bus_xbar_anon_out_a_bits_source (buffer_auto_in_a_bits_source),
.auto_system_bus_xbar_anon_out_a_bits_address (buffer_auto_in_a_bits_address),
.auto_system_bus_xbar_anon_out_a_bits_mask (buffer_auto_in_a_bits_mask),
.auto_system_bus_xbar_anon_out_a_bits_data (buffer_auto_in_a_bits_data),
.auto_system_bus_xbar_anon_out_a_bits_corrupt (buffer_auto_in_a_bits_corrupt),
.auto_system_bus_xbar_anon_out_b_ready (buffer_auto_in_b_ready),
.auto_system_bus_xbar_anon_out_b_valid (buffer_auto_in_b_valid), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_b_bits_opcode (buffer_auto_in_b_bits_opcode), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_b_bits_param (buffer_auto_in_b_bits_param), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_b_bits_size (buffer_auto_in_b_bits_size), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_b_bits_source (buffer_auto_in_b_bits_source), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_b_bits_address (buffer_auto_in_b_bits_address), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_b_bits_mask (buffer_auto_in_b_bits_mask), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_b_bits_data (buffer_auto_in_b_bits_data), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_b_bits_corrupt (buffer_auto_in_b_bits_corrupt), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_c_ready (buffer_auto_in_c_ready), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_c_valid (buffer_auto_in_c_valid),
.auto_system_bus_xbar_anon_out_c_bits_opcode (buffer_auto_in_c_bits_opcode),
.auto_system_bus_xbar_anon_out_c_bits_param (buffer_auto_in_c_bits_param),
.auto_system_bus_xbar_anon_out_c_bits_size (buffer_auto_in_c_bits_size),
.auto_system_bus_xbar_anon_out_c_bits_source (buffer_auto_in_c_bits_source),
.auto_system_bus_xbar_anon_out_c_bits_address (buffer_auto_in_c_bits_address),
.auto_system_bus_xbar_anon_out_c_bits_data (buffer_auto_in_c_bits_data),
.auto_system_bus_xbar_anon_out_c_bits_corrupt (buffer_auto_in_c_bits_corrupt),
.auto_system_bus_xbar_anon_out_d_ready (buffer_auto_in_d_ready),
.auto_system_bus_xbar_anon_out_d_valid (buffer_auto_in_d_valid), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_d_bits_opcode (buffer_auto_in_d_bits_opcode), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_d_bits_param (buffer_auto_in_d_bits_param), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_d_bits_size (buffer_auto_in_d_bits_size), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_d_bits_source (buffer_auto_in_d_bits_source), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_d_bits_sink (buffer_auto_in_d_bits_sink), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_d_bits_denied (buffer_auto_in_d_bits_denied), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_d_bits_data (buffer_auto_in_d_bits_data), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_d_bits_corrupt (buffer_auto_in_d_bits_corrupt), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_e_ready (buffer_auto_in_e_ready), // @[Buffer.scala:40:9]
.auto_system_bus_xbar_anon_out_e_valid (buffer_auto_in_e_valid),
.auto_system_bus_xbar_anon_out_e_bits_sink (buffer_auto_in_e_bits_sink),
.auto_fixedClockNode_anon_out_5_clock (auto_csbus0_fixedClockNode_anon_out_clock_0),
.auto_fixedClockNode_anon_out_5_reset (auto_csbus0_fixedClockNode_anon_out_reset_0),
.auto_fixedClockNode_anon_out_4_clock (ibus_auto_clock_in_clock),
.auto_fixedClockNode_anon_out_4_reset (ibus_auto_clock_in_reset),
.auto_fixedClockNode_anon_out_3_clock (_csbus0_auto_fixedClockNode_anon_out_3_clock),
.auto_fixedClockNode_anon_out_3_reset (_csbus0_auto_fixedClockNode_anon_out_3_reset),
.auto_fixedClockNode_anon_out_2_clock (_csbus0_auto_fixedClockNode_anon_out_2_clock),
.auto_fixedClockNode_anon_out_2_reset (_csbus0_auto_fixedClockNode_anon_out_2_reset),
.auto_fixedClockNode_anon_out_1_clock (_csbus0_auto_fixedClockNode_anon_out_1_clock),
.auto_fixedClockNode_anon_out_1_reset (_csbus0_auto_fixedClockNode_anon_out_1_reset),
.auto_fixedClockNode_anon_out_0_clock (_csbus0_auto_fixedClockNode_anon_out_0_clock),
.auto_fixedClockNode_anon_out_0_reset (_csbus0_auto_fixedClockNode_anon_out_0_reset),
.auto_csbus0_clock_groups_in_member_csbus0_0_clock (allClockGroupsNodeOut_member_csbus0_0_clock), // @[MixedNode.scala:542:17]
.auto_csbus0_clock_groups_in_member_csbus0_0_reset (allClockGroupsNodeOut_member_csbus0_0_reset) // @[MixedNode.scala:542:17]
); // @[SystemBus.scala:31:26]
PeripheryBus_ccbus0 ccbus0 ( // @[PeripheryBus.scala:37:26]
.auto_ccbus0_clock_groups_in_member_ccbus0_0_clock (x1_allClockGroupsNodeOut_member_ccbus0_0_clock), // @[MixedNode.scala:542:17]
.auto_ccbus0_clock_groups_in_member_ccbus0_0_reset (x1_allClockGroupsNodeOut_member_ccbus0_0_reset) // @[MixedNode.scala:542:17]
); // @[PeripheryBus.scala:37:26]
TilePRCIDomain tile_prci_domain ( // @[HasTiles.scala:163:38]
.auto_intsink_out_1_0 (_tile_prci_domain_auto_intsink_out_1_0),
.auto_intsink_in_sync_0 (debugNodesOut_sync_0), // @[MixedNode.scala:542:17]
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_valid (nexus_auto_in_insns_0_valid),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_iaddr (nexus_auto_in_insns_0_iaddr),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_insn (nexus_auto_in_insns_0_insn),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_priv (nexus_auto_in_insns_0_priv),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_exception (nexus_auto_in_insns_0_exception),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_interrupt (nexus_auto_in_insns_0_interrupt),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_cause (nexus_auto_in_insns_0_cause),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_tval (nexus_auto_in_insns_0_tval),
.auto_element_reset_domain_rockettile_trace_source_out_time (nexus_auto_in_time),
.auto_element_reset_domain_rockettile_hartid_in (tileHartIdNodesOut), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_2_sync_0 (intInClockXingOut_2_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_1_sync_0 (intInClockXingOut_1_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_0_sync_0 (intInClockXingOut_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_0_sync_1 (intInClockXingOut_sync_1), // @[MixedNode.scala:542:17]
.auto_tl_master_clock_xing_out_a_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_a_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_a_valid (_tile_prci_domain_auto_tl_master_clock_xing_out_a_valid),
.auto_tl_master_clock_xing_out_a_bits_opcode (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_opcode),
.auto_tl_master_clock_xing_out_a_bits_param (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_param),
.auto_tl_master_clock_xing_out_a_bits_size (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_size),
.auto_tl_master_clock_xing_out_a_bits_source (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_source),
.auto_tl_master_clock_xing_out_a_bits_address (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_address),
.auto_tl_master_clock_xing_out_a_bits_mask (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_mask),
.auto_tl_master_clock_xing_out_a_bits_data (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_data),
.auto_tl_master_clock_xing_out_a_bits_corrupt (_tile_prci_domain_auto_tl_master_clock_xing_out_a_bits_corrupt),
.auto_tl_master_clock_xing_out_b_ready (_tile_prci_domain_auto_tl_master_clock_xing_out_b_ready),
.auto_tl_master_clock_xing_out_b_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_valid), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_opcode), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_param), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_size), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_source), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_address (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_address), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_mask (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_mask), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_data), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_b_bits_corrupt), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_c_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_c_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_c_valid (_tile_prci_domain_auto_tl_master_clock_xing_out_c_valid),
.auto_tl_master_clock_xing_out_c_bits_opcode (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_opcode),
.auto_tl_master_clock_xing_out_c_bits_param (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_param),
.auto_tl_master_clock_xing_out_c_bits_size (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_size),
.auto_tl_master_clock_xing_out_c_bits_source (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_source),
.auto_tl_master_clock_xing_out_c_bits_address (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_address),
.auto_tl_master_clock_xing_out_c_bits_data (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_data),
.auto_tl_master_clock_xing_out_c_bits_corrupt (_tile_prci_domain_auto_tl_master_clock_xing_out_c_bits_corrupt),
.auto_tl_master_clock_xing_out_d_ready (_tile_prci_domain_auto_tl_master_clock_xing_out_d_ready),
.auto_tl_master_clock_xing_out_d_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_valid), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_opcode), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_param), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_size), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_source), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_sink (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_sink), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_denied (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_denied), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_data), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_d_bits_corrupt), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_e_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_0_e_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_e_valid (_tile_prci_domain_auto_tl_master_clock_xing_out_e_valid),
.auto_tl_master_clock_xing_out_e_bits_sink (_tile_prci_domain_auto_tl_master_clock_xing_out_e_bits_sink),
.auto_tap_clock_in_clock (_csbus0_auto_fixedClockNode_anon_out_0_clock), // @[SystemBus.scala:31:26]
.auto_tap_clock_in_reset (_csbus0_auto_fixedClockNode_anon_out_0_reset) // @[SystemBus.scala:31:26]
); // @[HasTiles.scala:163:38]
TilePRCIDomain_1 tile_prci_domain_1 ( // @[HasTiles.scala:163:38]
.auto_intsink_out_1_0 (_tile_prci_domain_1_auto_intsink_out_1_0),
.auto_intsink_in_sync_0 (debugNodesOut_1_sync_0), // @[MixedNode.scala:542:17]
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_valid (nexus_2_auto_in_insns_0_valid),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_iaddr (nexus_2_auto_in_insns_0_iaddr),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_insn (nexus_2_auto_in_insns_0_insn),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_priv (nexus_2_auto_in_insns_0_priv),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_exception (nexus_2_auto_in_insns_0_exception),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_interrupt (nexus_2_auto_in_insns_0_interrupt),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_cause (nexus_2_auto_in_insns_0_cause),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_tval (nexus_2_auto_in_insns_0_tval),
.auto_element_reset_domain_rockettile_trace_source_out_time (nexus_2_auto_in_time),
.auto_element_reset_domain_rockettile_hartid_in (tileHartIdNodesOut_1), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_2_sync_0 (intInClockXingOut_5_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_1_sync_0 (intInClockXingOut_4_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_0_sync_0 (intInClockXingOut_3_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_0_sync_1 (intInClockXingOut_3_sync_1), // @[MixedNode.scala:542:17]
.auto_tl_master_clock_xing_out_a_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_a_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_a_valid (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_valid),
.auto_tl_master_clock_xing_out_a_bits_opcode (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_opcode),
.auto_tl_master_clock_xing_out_a_bits_param (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_param),
.auto_tl_master_clock_xing_out_a_bits_size (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_size),
.auto_tl_master_clock_xing_out_a_bits_source (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_source),
.auto_tl_master_clock_xing_out_a_bits_address (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_address),
.auto_tl_master_clock_xing_out_a_bits_mask (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_mask),
.auto_tl_master_clock_xing_out_a_bits_data (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_data),
.auto_tl_master_clock_xing_out_a_bits_corrupt (_tile_prci_domain_1_auto_tl_master_clock_xing_out_a_bits_corrupt),
.auto_tl_master_clock_xing_out_b_ready (_tile_prci_domain_1_auto_tl_master_clock_xing_out_b_ready),
.auto_tl_master_clock_xing_out_b_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_valid), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_opcode), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_param), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_size), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_source), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_address (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_address), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_mask (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_mask), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_data), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_b_bits_corrupt), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_c_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_c_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_c_valid (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_valid),
.auto_tl_master_clock_xing_out_c_bits_opcode (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_opcode),
.auto_tl_master_clock_xing_out_c_bits_param (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_param),
.auto_tl_master_clock_xing_out_c_bits_size (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_size),
.auto_tl_master_clock_xing_out_c_bits_source (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_source),
.auto_tl_master_clock_xing_out_c_bits_address (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_address),
.auto_tl_master_clock_xing_out_c_bits_data (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_data),
.auto_tl_master_clock_xing_out_c_bits_corrupt (_tile_prci_domain_1_auto_tl_master_clock_xing_out_c_bits_corrupt),
.auto_tl_master_clock_xing_out_d_ready (_tile_prci_domain_1_auto_tl_master_clock_xing_out_d_ready),
.auto_tl_master_clock_xing_out_d_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_valid), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_opcode), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_param), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_size), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_source), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_sink (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_sink), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_denied (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_denied), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_data), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_d_bits_corrupt), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_e_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_1_e_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_e_valid (_tile_prci_domain_1_auto_tl_master_clock_xing_out_e_valid),
.auto_tl_master_clock_xing_out_e_bits_sink (_tile_prci_domain_1_auto_tl_master_clock_xing_out_e_bits_sink),
.auto_tap_clock_in_clock (_csbus0_auto_fixedClockNode_anon_out_1_clock), // @[SystemBus.scala:31:26]
.auto_tap_clock_in_reset (_csbus0_auto_fixedClockNode_anon_out_1_reset) // @[SystemBus.scala:31:26]
); // @[HasTiles.scala:163:38]
TilePRCIDomain_2 tile_prci_domain_2 ( // @[HasTiles.scala:163:38]
.auto_intsink_out_1_0 (_tile_prci_domain_2_auto_intsink_out_1_0),
.auto_intsink_in_sync_0 (debugNodesOut_2_sync_0), // @[MixedNode.scala:542:17]
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_valid (nexus_4_auto_in_insns_0_valid),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_iaddr (nexus_4_auto_in_insns_0_iaddr),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_insn (nexus_4_auto_in_insns_0_insn),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_priv (nexus_4_auto_in_insns_0_priv),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_exception (nexus_4_auto_in_insns_0_exception),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_interrupt (nexus_4_auto_in_insns_0_interrupt),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_cause (nexus_4_auto_in_insns_0_cause),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_tval (nexus_4_auto_in_insns_0_tval),
.auto_element_reset_domain_rockettile_trace_source_out_time (nexus_4_auto_in_time),
.auto_element_reset_domain_rockettile_hartid_in (tileHartIdNodesOut_2), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_2_sync_0 (intInClockXingOut_8_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_1_sync_0 (intInClockXingOut_7_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_0_sync_0 (intInClockXingOut_6_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_0_sync_1 (intInClockXingOut_6_sync_1), // @[MixedNode.scala:542:17]
.auto_tl_master_clock_xing_out_a_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_a_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_a_valid (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_valid),
.auto_tl_master_clock_xing_out_a_bits_opcode (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_opcode),
.auto_tl_master_clock_xing_out_a_bits_param (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_param),
.auto_tl_master_clock_xing_out_a_bits_size (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_size),
.auto_tl_master_clock_xing_out_a_bits_source (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_source),
.auto_tl_master_clock_xing_out_a_bits_address (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_address),
.auto_tl_master_clock_xing_out_a_bits_mask (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_mask),
.auto_tl_master_clock_xing_out_a_bits_data (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_data),
.auto_tl_master_clock_xing_out_a_bits_corrupt (_tile_prci_domain_2_auto_tl_master_clock_xing_out_a_bits_corrupt),
.auto_tl_master_clock_xing_out_b_ready (_tile_prci_domain_2_auto_tl_master_clock_xing_out_b_ready),
.auto_tl_master_clock_xing_out_b_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_valid), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_opcode), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_param), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_size), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_source), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_address (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_address), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_mask (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_mask), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_data), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_b_bits_corrupt), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_c_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_c_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_c_valid (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_valid),
.auto_tl_master_clock_xing_out_c_bits_opcode (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_opcode),
.auto_tl_master_clock_xing_out_c_bits_param (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_param),
.auto_tl_master_clock_xing_out_c_bits_size (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_size),
.auto_tl_master_clock_xing_out_c_bits_source (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_source),
.auto_tl_master_clock_xing_out_c_bits_address (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_address),
.auto_tl_master_clock_xing_out_c_bits_data (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_data),
.auto_tl_master_clock_xing_out_c_bits_corrupt (_tile_prci_domain_2_auto_tl_master_clock_xing_out_c_bits_corrupt),
.auto_tl_master_clock_xing_out_d_ready (_tile_prci_domain_2_auto_tl_master_clock_xing_out_d_ready),
.auto_tl_master_clock_xing_out_d_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_valid), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_opcode), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_param), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_size), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_source), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_sink (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_sink), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_denied (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_denied), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_data), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_d_bits_corrupt), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_e_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_2_e_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_e_valid (_tile_prci_domain_2_auto_tl_master_clock_xing_out_e_valid),
.auto_tl_master_clock_xing_out_e_bits_sink (_tile_prci_domain_2_auto_tl_master_clock_xing_out_e_bits_sink),
.auto_tap_clock_in_clock (_csbus0_auto_fixedClockNode_anon_out_2_clock), // @[SystemBus.scala:31:26]
.auto_tap_clock_in_reset (_csbus0_auto_fixedClockNode_anon_out_2_reset) // @[SystemBus.scala:31:26]
); // @[HasTiles.scala:163:38]
TilePRCIDomain_3 tile_prci_domain_3 ( // @[HasTiles.scala:163:38]
.auto_intsink_out_1_0 (_tile_prci_domain_3_auto_intsink_out_1_0),
.auto_intsink_in_sync_0 (debugNodesOut_3_sync_0), // @[MixedNode.scala:542:17]
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_valid (nexus_6_auto_in_insns_0_valid),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_iaddr (nexus_6_auto_in_insns_0_iaddr),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_insn (nexus_6_auto_in_insns_0_insn),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_priv (nexus_6_auto_in_insns_0_priv),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_exception (nexus_6_auto_in_insns_0_exception),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_interrupt (nexus_6_auto_in_insns_0_interrupt),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_cause (nexus_6_auto_in_insns_0_cause),
.auto_element_reset_domain_rockettile_trace_source_out_insns_0_tval (nexus_6_auto_in_insns_0_tval),
.auto_element_reset_domain_rockettile_trace_source_out_time (nexus_6_auto_in_time),
.auto_element_reset_domain_rockettile_hartid_in (tileHartIdNodesOut_3), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_2_sync_0 (intInClockXingOut_11_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_1_sync_0 (intInClockXingOut_10_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_0_sync_0 (intInClockXingOut_9_sync_0), // @[MixedNode.scala:542:17]
.auto_int_in_clock_xing_in_0_sync_1 (intInClockXingOut_9_sync_1), // @[MixedNode.scala:542:17]
.auto_tl_master_clock_xing_out_a_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_a_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_a_valid (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_valid),
.auto_tl_master_clock_xing_out_a_bits_opcode (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_opcode),
.auto_tl_master_clock_xing_out_a_bits_param (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_param),
.auto_tl_master_clock_xing_out_a_bits_size (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_size),
.auto_tl_master_clock_xing_out_a_bits_source (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_source),
.auto_tl_master_clock_xing_out_a_bits_address (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_address),
.auto_tl_master_clock_xing_out_a_bits_mask (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_mask),
.auto_tl_master_clock_xing_out_a_bits_data (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_data),
.auto_tl_master_clock_xing_out_a_bits_corrupt (_tile_prci_domain_3_auto_tl_master_clock_xing_out_a_bits_corrupt),
.auto_tl_master_clock_xing_out_b_ready (_tile_prci_domain_3_auto_tl_master_clock_xing_out_b_ready),
.auto_tl_master_clock_xing_out_b_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_valid), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_opcode), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_param), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_size), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_source), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_address (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_address), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_mask (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_mask), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_data), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_b_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_b_bits_corrupt), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_c_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_c_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_c_valid (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_valid),
.auto_tl_master_clock_xing_out_c_bits_opcode (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_opcode),
.auto_tl_master_clock_xing_out_c_bits_param (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_param),
.auto_tl_master_clock_xing_out_c_bits_size (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_size),
.auto_tl_master_clock_xing_out_c_bits_source (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_source),
.auto_tl_master_clock_xing_out_c_bits_address (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_address),
.auto_tl_master_clock_xing_out_c_bits_data (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_data),
.auto_tl_master_clock_xing_out_c_bits_corrupt (_tile_prci_domain_3_auto_tl_master_clock_xing_out_c_bits_corrupt),
.auto_tl_master_clock_xing_out_d_ready (_tile_prci_domain_3_auto_tl_master_clock_xing_out_d_ready),
.auto_tl_master_clock_xing_out_d_valid (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_valid), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_opcode (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_opcode), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_param (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_param), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_size (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_size), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_source (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_source), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_sink (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_sink), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_denied (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_denied), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_data (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_data), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_d_bits_corrupt (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_d_bits_corrupt), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_e_ready (_csbus0_auto_coupler_from_rockettile_tl_master_clock_xing_in_3_e_ready), // @[SystemBus.scala:31:26]
.auto_tl_master_clock_xing_out_e_valid (_tile_prci_domain_3_auto_tl_master_clock_xing_out_e_valid),
.auto_tl_master_clock_xing_out_e_bits_sink (_tile_prci_domain_3_auto_tl_master_clock_xing_out_e_bits_sink),
.auto_tap_clock_in_clock (_csbus0_auto_fixedClockNode_anon_out_3_clock), // @[SystemBus.scala:31:26]
.auto_tap_clock_in_reset (_csbus0_auto_fixedClockNode_anon_out_3_reset) // @[SystemBus.scala:31:26]
); // @[HasTiles.scala:163:38]
IntXbar_i5_o2 xbar (); // @[Xbar.scala:52:26]
IntXbar_i5_o2_1 xbar_1 ( // @[Xbar.scala:52:26]
.auto_anon_in_3_0 (_tile_prci_domain_3_auto_intsink_out_1_0), // @[HasTiles.scala:163:38]
.auto_anon_in_2_0 (_tile_prci_domain_2_auto_intsink_out_1_0), // @[HasTiles.scala:163:38]
.auto_anon_in_1_0 (_tile_prci_domain_1_auto_intsink_out_1_0), // @[HasTiles.scala:163:38]
.auto_anon_in_0_0 (_tile_prci_domain_auto_intsink_out_1_0), // @[HasTiles.scala:163:38]
.auto_anon_out_1_0 (auto_xbar_anon_out_1_0_0),
.auto_anon_out_1_1 (auto_xbar_anon_out_1_1_0),
.auto_anon_out_1_2 (auto_xbar_anon_out_1_2_0),
.auto_anon_out_1_3 (auto_xbar_anon_out_1_3_0),
.auto_anon_out_0_0 (tileWFISinkNodeIn_0),
.auto_anon_out_0_1 (tileWFISinkNodeIn_1),
.auto_anon_out_0_2 (tileWFISinkNodeIn_2),
.auto_anon_out_0_3 (tileWFISinkNodeIn_3)
); // @[Xbar.scala:52:26]
IntXbar_i5_o2_2 xbar_2 (); // @[Xbar.scala:52:26]
IntSyncCrossingSource_n1x2 intsource ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (msipNodesOut_0), // @[MixedNode.scala:542:17]
.auto_in_1 (msipNodesOut_1), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_sync_0),
.auto_out_sync_1 (intInClockXingIn_sync_1)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x1_12 intsource_1 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (meipNodesOut_0), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_1_sync_0)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x1_13 intsource_2 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (seipNodesOut_0), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_2_sync_0)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x2_1 intsource_3 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (msipNodesOut_1_0), // @[MixedNode.scala:542:17]
.auto_in_1 (msipNodesOut_1_1), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_3_sync_0),
.auto_out_sync_1 (intInClockXingIn_3_sync_1)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x1_14 intsource_4 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (meipNodesOut_1_0), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_4_sync_0)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x1_15 intsource_5 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (seipNodesOut_1_0), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_5_sync_0)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x2_2 intsource_6 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (msipNodesOut_2_0), // @[MixedNode.scala:542:17]
.auto_in_1 (msipNodesOut_2_1), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_6_sync_0),
.auto_out_sync_1 (intInClockXingIn_6_sync_1)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x1_16 intsource_7 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (meipNodesOut_2_0), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_7_sync_0)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x1_17 intsource_8 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (seipNodesOut_2_0), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_8_sync_0)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x2_3 intsource_9 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (msipNodesOut_3_0), // @[MixedNode.scala:542:17]
.auto_in_1 (msipNodesOut_3_1), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_9_sync_0),
.auto_out_sync_1 (intInClockXingIn_9_sync_1)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x1_18 intsource_10 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (meipNodesOut_3_0), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_10_sync_0)
); // @[Crossing.scala:29:31]
IntSyncCrossingSource_n1x1_19 intsource_11 ( // @[Crossing.scala:29:31]
.clock (clock),
.reset (reset),
.auto_in_0 (seipNodesOut_3_0), // @[MixedNode.scala:542:17]
.auto_out_sync_0 (intInClockXingIn_11_sync_0)
); // @[Crossing.scala:29:31]
IntXbar_i0_o0_1 ibus_int_bus (); // @[InterruptBus.scala:19:27]
NullIntSource null_int_source (); // @[NullIntSource.scala:23:37]
NullIntSource_1 null_int_source_1 (); // @[NullIntSource.scala:23:37]
NullIntSource_2 null_int_source_2 (); // @[NullIntSource.scala:23:37]
assign auto_buffer_out_a_valid = auto_buffer_out_a_valid_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_a_bits_opcode = auto_buffer_out_a_bits_opcode_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_a_bits_param = auto_buffer_out_a_bits_param_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_a_bits_size = auto_buffer_out_a_bits_size_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_a_bits_source = auto_buffer_out_a_bits_source_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_a_bits_address = auto_buffer_out_a_bits_address_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_a_bits_mask = auto_buffer_out_a_bits_mask_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_a_bits_data = auto_buffer_out_a_bits_data_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_a_bits_corrupt = auto_buffer_out_a_bits_corrupt_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_b_ready = auto_buffer_out_b_ready_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_c_valid = auto_buffer_out_c_valid_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_c_bits_opcode = auto_buffer_out_c_bits_opcode_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_c_bits_param = auto_buffer_out_c_bits_param_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_c_bits_size = auto_buffer_out_c_bits_size_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_c_bits_source = auto_buffer_out_c_bits_source_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_c_bits_address = auto_buffer_out_c_bits_address_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_c_bits_data = auto_buffer_out_c_bits_data_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_c_bits_corrupt = auto_buffer_out_c_bits_corrupt_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_d_ready = auto_buffer_out_d_ready_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_e_valid = auto_buffer_out_e_valid_0; // @[Cluster.scala:87:7]
assign auto_buffer_out_e_bits_sink = auto_buffer_out_e_bits_sink_0; // @[Cluster.scala:87:7]
assign auto_xbar_anon_out_1_0 = auto_xbar_anon_out_1_0_0; // @[Cluster.scala:87:7]
assign auto_xbar_anon_out_1_1 = auto_xbar_anon_out_1_1_0; // @[Cluster.scala:87:7]
assign auto_xbar_anon_out_1_2 = auto_xbar_anon_out_1_2_0; // @[Cluster.scala:87:7]
assign auto_xbar_anon_out_1_3 = auto_xbar_anon_out_1_3_0; // @[Cluster.scala:87:7]
assign auto_csbus0_fixedClockNode_anon_out_clock = auto_csbus0_fixedClockNode_anon_out_clock_0; // @[Cluster.scala:87:7]
assign auto_csbus0_fixedClockNode_anon_out_reset = auto_csbus0_fixedClockNode_anon_out_reset_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_valid = auto_trace_nodes_out_3_insns_0_valid_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_iaddr = auto_trace_nodes_out_3_insns_0_iaddr_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_insn = auto_trace_nodes_out_3_insns_0_insn_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_priv = auto_trace_nodes_out_3_insns_0_priv_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_exception = auto_trace_nodes_out_3_insns_0_exception_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_interrupt = auto_trace_nodes_out_3_insns_0_interrupt_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_cause = auto_trace_nodes_out_3_insns_0_cause_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_insns_0_tval = auto_trace_nodes_out_3_insns_0_tval_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_3_time = auto_trace_nodes_out_3_time_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_valid = auto_trace_nodes_out_2_insns_0_valid_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_iaddr = auto_trace_nodes_out_2_insns_0_iaddr_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_insn = auto_trace_nodes_out_2_insns_0_insn_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_priv = auto_trace_nodes_out_2_insns_0_priv_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_exception = auto_trace_nodes_out_2_insns_0_exception_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_interrupt = auto_trace_nodes_out_2_insns_0_interrupt_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_cause = auto_trace_nodes_out_2_insns_0_cause_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_insns_0_tval = auto_trace_nodes_out_2_insns_0_tval_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_2_time = auto_trace_nodes_out_2_time_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_valid = auto_trace_nodes_out_1_insns_0_valid_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_iaddr = auto_trace_nodes_out_1_insns_0_iaddr_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_insn = auto_trace_nodes_out_1_insns_0_insn_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_priv = auto_trace_nodes_out_1_insns_0_priv_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_exception = auto_trace_nodes_out_1_insns_0_exception_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_interrupt = auto_trace_nodes_out_1_insns_0_interrupt_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_cause = auto_trace_nodes_out_1_insns_0_cause_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_insns_0_tval = auto_trace_nodes_out_1_insns_0_tval_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_1_time = auto_trace_nodes_out_1_time_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_valid = auto_trace_nodes_out_0_insns_0_valid_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_iaddr = auto_trace_nodes_out_0_insns_0_iaddr_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_insn = auto_trace_nodes_out_0_insns_0_insn_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_priv = auto_trace_nodes_out_0_insns_0_priv_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_exception = auto_trace_nodes_out_0_insns_0_exception_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_interrupt = auto_trace_nodes_out_0_insns_0_interrupt_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_cause = auto_trace_nodes_out_0_insns_0_cause_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_insns_0_tval = auto_trace_nodes_out_0_insns_0_tval_0; // @[Cluster.scala:87:7]
assign auto_trace_nodes_out_0_time = auto_trace_nodes_out_0_time_0; // @[Cluster.scala:87:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Repeater.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{Decoupled, DecoupledIO}
// A Repeater passes its input to its output, unless repeat is asserted.
// When repeat is asserted, the Repeater copies the input and repeats it next cycle.
class Repeater[T <: Data](gen: T) extends Module
{
override def desiredName = s"Repeater_${gen.typeName}"
val io = IO( new Bundle {
val repeat = Input(Bool())
val full = Output(Bool())
val enq = Flipped(Decoupled(gen.cloneType))
val deq = Decoupled(gen.cloneType)
} )
val full = RegInit(false.B)
val saved = Reg(gen.cloneType)
// When !full, a repeater is pass-through
io.deq.valid := io.enq.valid || full
io.enq.ready := io.deq.ready && !full
io.deq.bits := Mux(full, saved, io.enq.bits)
io.full := full
when (io.enq.fire && io.repeat) { full := true.B; saved := io.enq.bits }
when (io.deq.fire && !io.repeat) { full := false.B }
}
object Repeater
{
def apply[T <: Data](enq: DecoupledIO[T], repeat: Bool): DecoupledIO[T] = {
val repeater = Module(new Repeater(chiselTypeOf(enq.bits)))
repeater.io.repeat := repeat
repeater.io.enq <> enq
repeater.io.deq
}
}
| module Repeater_TLBundleD_a32d64s1k1z4u( // @[Repeater.scala:10:7]
input clock, // @[Repeater.scala:10:7]
input reset, // @[Repeater.scala:10:7]
input io_repeat, // @[Repeater.scala:13:14]
output io_enq_ready, // @[Repeater.scala:13:14]
input io_enq_valid, // @[Repeater.scala:13:14]
input [2:0] io_enq_bits_opcode, // @[Repeater.scala:13:14]
input [1:0] io_enq_bits_param, // @[Repeater.scala:13:14]
input [3:0] io_enq_bits_size, // @[Repeater.scala:13:14]
input io_enq_bits_sink, // @[Repeater.scala:13:14]
input io_enq_bits_denied, // @[Repeater.scala:13:14]
input [63:0] io_enq_bits_data, // @[Repeater.scala:13:14]
input io_enq_bits_corrupt, // @[Repeater.scala:13:14]
input io_deq_ready, // @[Repeater.scala:13:14]
output io_deq_valid, // @[Repeater.scala:13:14]
output [2:0] io_deq_bits_opcode, // @[Repeater.scala:13:14]
output [1:0] io_deq_bits_param, // @[Repeater.scala:13:14]
output [3:0] io_deq_bits_size, // @[Repeater.scala:13:14]
output io_deq_bits_sink, // @[Repeater.scala:13:14]
output io_deq_bits_denied, // @[Repeater.scala:13:14]
output [63:0] io_deq_bits_data, // @[Repeater.scala:13:14]
output io_deq_bits_corrupt // @[Repeater.scala:13:14]
);
wire io_repeat_0 = io_repeat; // @[Repeater.scala:10:7]
wire io_enq_valid_0 = io_enq_valid; // @[Repeater.scala:10:7]
wire [2:0] io_enq_bits_opcode_0 = io_enq_bits_opcode; // @[Repeater.scala:10:7]
wire [1:0] io_enq_bits_param_0 = io_enq_bits_param; // @[Repeater.scala:10:7]
wire [3:0] io_enq_bits_size_0 = io_enq_bits_size; // @[Repeater.scala:10:7]
wire io_enq_bits_sink_0 = io_enq_bits_sink; // @[Repeater.scala:10:7]
wire io_enq_bits_denied_0 = io_enq_bits_denied; // @[Repeater.scala:10:7]
wire [63:0] io_enq_bits_data_0 = io_enq_bits_data; // @[Repeater.scala:10:7]
wire io_enq_bits_corrupt_0 = io_enq_bits_corrupt; // @[Repeater.scala:10:7]
wire io_deq_ready_0 = io_deq_ready; // @[Repeater.scala:10:7]
wire io_enq_bits_source = 1'h0; // @[Repeater.scala:10:7]
wire io_deq_bits_source = 1'h0; // @[Repeater.scala:10:7]
wire _io_deq_bits_T_source = 1'h0; // @[Repeater.scala:26:21]
wire _io_enq_ready_T_1; // @[Repeater.scala:25:32]
wire _io_deq_valid_T; // @[Repeater.scala:24:32]
wire [2:0] _io_deq_bits_T_opcode; // @[Repeater.scala:26:21]
wire [1:0] _io_deq_bits_T_param; // @[Repeater.scala:26:21]
wire [3:0] _io_deq_bits_T_size; // @[Repeater.scala:26:21]
wire _io_deq_bits_T_sink; // @[Repeater.scala:26:21]
wire _io_deq_bits_T_denied; // @[Repeater.scala:26:21]
wire [63:0] _io_deq_bits_T_data; // @[Repeater.scala:26:21]
wire _io_deq_bits_T_corrupt; // @[Repeater.scala:26:21]
wire io_enq_ready_0; // @[Repeater.scala:10:7]
wire [2:0] io_deq_bits_opcode_0; // @[Repeater.scala:10:7]
wire [1:0] io_deq_bits_param_0; // @[Repeater.scala:10:7]
wire [3:0] io_deq_bits_size_0; // @[Repeater.scala:10:7]
wire io_deq_bits_sink_0; // @[Repeater.scala:10:7]
wire io_deq_bits_denied_0; // @[Repeater.scala:10:7]
wire [63:0] io_deq_bits_data_0; // @[Repeater.scala:10:7]
wire io_deq_bits_corrupt_0; // @[Repeater.scala:10:7]
wire io_deq_valid_0; // @[Repeater.scala:10:7]
wire io_full; // @[Repeater.scala:10:7]
reg full; // @[Repeater.scala:20:21]
assign io_full = full; // @[Repeater.scala:10:7, :20:21]
reg [2:0] saved_opcode; // @[Repeater.scala:21:18]
reg [1:0] saved_param; // @[Repeater.scala:21:18]
reg [3:0] saved_size; // @[Repeater.scala:21:18]
reg saved_sink; // @[Repeater.scala:21:18]
reg saved_denied; // @[Repeater.scala:21:18]
reg [63:0] saved_data; // @[Repeater.scala:21:18]
reg saved_corrupt; // @[Repeater.scala:21:18]
assign _io_deq_valid_T = io_enq_valid_0 | full; // @[Repeater.scala:10:7, :20:21, :24:32]
assign io_deq_valid_0 = _io_deq_valid_T; // @[Repeater.scala:10:7, :24:32]
wire _io_enq_ready_T = ~full; // @[Repeater.scala:20:21, :25:35]
assign _io_enq_ready_T_1 = io_deq_ready_0 & _io_enq_ready_T; // @[Repeater.scala:10:7, :25:{32,35}]
assign io_enq_ready_0 = _io_enq_ready_T_1; // @[Repeater.scala:10:7, :25:32]
assign _io_deq_bits_T_opcode = full ? saved_opcode : io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_param = full ? saved_param : io_enq_bits_param_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_size = full ? saved_size : io_enq_bits_size_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_sink = full ? saved_sink : io_enq_bits_sink_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_denied = full ? saved_denied : io_enq_bits_denied_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_data = full ? saved_data : io_enq_bits_data_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign _io_deq_bits_T_corrupt = full ? saved_corrupt : io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21]
assign io_deq_bits_opcode_0 = _io_deq_bits_T_opcode; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_param_0 = _io_deq_bits_T_param; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_size_0 = _io_deq_bits_T_size; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_sink_0 = _io_deq_bits_T_sink; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_denied_0 = _io_deq_bits_T_denied; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_data_0 = _io_deq_bits_T_data; // @[Repeater.scala:10:7, :26:21]
assign io_deq_bits_corrupt_0 = _io_deq_bits_T_corrupt; // @[Repeater.scala:10:7, :26:21]
wire _T_1 = io_enq_ready_0 & io_enq_valid_0 & io_repeat_0; // @[Decoupled.scala:51:35]
always @(posedge clock) begin // @[Repeater.scala:10:7]
if (reset) // @[Repeater.scala:10:7]
full <= 1'h0; // @[Repeater.scala:20:21]
else // @[Repeater.scala:10:7]
full <= ~(io_deq_ready_0 & io_deq_valid_0 & ~io_repeat_0) & (_T_1 | full); // @[Decoupled.scala:51:35]
if (_T_1) begin // @[Decoupled.scala:51:35]
saved_opcode <= io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :21:18]
saved_param <= io_enq_bits_param_0; // @[Repeater.scala:10:7, :21:18]
saved_size <= io_enq_bits_size_0; // @[Repeater.scala:10:7, :21:18]
saved_sink <= io_enq_bits_sink_0; // @[Repeater.scala:10:7, :21:18]
saved_denied <= io_enq_bits_denied_0; // @[Repeater.scala:10:7, :21:18]
saved_data <= io_enq_bits_data_0; // @[Repeater.scala:10:7, :21:18]
saved_corrupt <= io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :21:18]
end
always @(posedge)
assign io_enq_ready = io_enq_ready_0; // @[Repeater.scala:10:7]
assign io_deq_valid = io_deq_valid_0; // @[Repeater.scala:10:7]
assign io_deq_bits_opcode = io_deq_bits_opcode_0; // @[Repeater.scala:10:7]
assign io_deq_bits_param = io_deq_bits_param_0; // @[Repeater.scala:10:7]
assign io_deq_bits_size = io_deq_bits_size_0; // @[Repeater.scala:10:7]
assign io_deq_bits_sink = io_deq_bits_sink_0; // @[Repeater.scala:10:7]
assign io_deq_bits_denied = io_deq_bits_denied_0; // @[Repeater.scala:10:7]
assign io_deq_bits_data = io_deq_bits_data_0; // @[Repeater.scala:10:7]
assign io_deq_bits_corrupt = io_deq_bits_corrupt_0; // @[Repeater.scala:10:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File SBA.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.devices.debug.systembusaccess
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.amba.{AMBAProt, AMBAProtField}
import freechips.rocketchip.devices.debug.{DebugModuleKey, RWNotify, SBCSFields, WNotifyVal}
import freechips.rocketchip.diplomacy.TransferSizes
import freechips.rocketchip.regmapper.{RegField, RegFieldDesc, RegFieldGroup, RegFieldWrType}
import freechips.rocketchip.tilelink.{TLClientNode, TLMasterParameters, TLMasterPortParameters}
import freechips.rocketchip.util.property
object SystemBusAccessState extends scala.Enumeration {
type SystemBusAccessState = Value
val Idle, SBReadRequest, SBWriteRequest, SBReadResponse, SBWriteResponse = Value
}
object SBErrorCode extends scala.Enumeration {
type SBErrorCode = Value
val NoError = Value(0)
val Timeout = Value(1)
val BadAddr = Value(2)
val AlgnError = Value(3)
val BadAccess = Value(4)
val OtherError = Value(7)
}
object SystemBusAccessModule
{
def apply(sb2tl: SBToTL, dmactive: Bool, dmAuthenticated: Bool)(implicit p: Parameters):
(Seq[RegField], Seq[Seq[RegField]], Seq[Seq[RegField]]) =
{
import SBErrorCode._
val cfg = p(DebugModuleKey).get
val anyAddressWrEn = WireInit(false.B).suggestName("anyAddressWrEn")
val anyDataRdEn = WireInit(false.B).suggestName("anyDataRdEn")
val anyDataWrEn = WireInit(false.B).suggestName("anyDataWrEn")
// --- SBCS Status Register ---
val SBCSFieldsReg = Reg(new SBCSFields()).suggestName("SBCSFieldsReg")
val SBCSFieldsRegReset = WireInit(0.U.asTypeOf(new SBCSFields()))
SBCSFieldsRegReset.sbversion := 1.U(1.W) // This code implements a version of the spec after January 1, 2018
SBCSFieldsRegReset.sbbusy := (sb2tl.module.io.sbStateOut =/= SystemBusAccessState.Idle.id.U)
SBCSFieldsRegReset.sbaccess := 2.U
SBCSFieldsRegReset.sbasize := sb2tl.module.edge.bundle.addressBits.U
SBCSFieldsRegReset.sbaccess128 := (cfg.maxSupportedSBAccess == 128).B
SBCSFieldsRegReset.sbaccess64 := (cfg.maxSupportedSBAccess >= 64).B
SBCSFieldsRegReset.sbaccess32 := (cfg.maxSupportedSBAccess >= 32).B
SBCSFieldsRegReset.sbaccess16 := (cfg.maxSupportedSBAccess >= 16).B
SBCSFieldsRegReset.sbaccess8 := (cfg.maxSupportedSBAccess >= 8).B
val SBCSRdData = WireInit(0.U.asTypeOf(new SBCSFields())).suggestName("SBCSRdData")
val SBCSWrDataVal = WireInit(0.U(32.W))
val SBCSWrData = WireInit(SBCSWrDataVal.asTypeOf(new SBCSFields()))
val sberrorWrEn = WireInit(false.B)
val sbreadondataWrEn = WireInit(false.B)
val sbautoincrementWrEn= WireInit(false.B)
val sbaccessWrEn = WireInit(false.B)
val sbreadonaddrWrEn = WireInit(false.B)
val sbbusyerrorWrEn = WireInit(false.B)
val sbcsfields = RegFieldGroup("sbcs", Some("system bus access control and status"), Seq(
RegField.r(1, SBCSRdData.sbaccess8, RegFieldDesc("sbaccess8", "8-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 8) 1 else 0))),
RegField.r(1, SBCSRdData.sbaccess16, RegFieldDesc("sbaccess16", "16-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 16) 1 else 0))),
RegField.r(1, SBCSRdData.sbaccess32, RegFieldDesc("sbaccess32", "32-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 32) 1 else 0))),
RegField.r(1, SBCSRdData.sbaccess64, RegFieldDesc("sbaccess64", "64-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 64) 1 else 0))),
RegField.r(1, SBCSRdData.sbaccess128, RegFieldDesc("sbaccess128", "128-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess == 128) 1 else 0))),
RegField.r(7, SBCSRdData.sbasize, RegFieldDesc("sbasize", "bits in address", reset=Some(sb2tl.module.edge.bundle.addressBits))),
WNotifyVal(3, SBCSRdData.sberror, SBCSWrData.sberror, sberrorWrEn,
RegFieldDesc("sberror", "system bus error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))),
WNotifyVal(1, SBCSRdData.sbreadondata, SBCSWrData.sbreadondata, sbreadondataWrEn,
RegFieldDesc("sbreadondata", "system bus read on data", reset=Some(0))),
WNotifyVal(1, SBCSRdData.sbautoincrement, SBCSWrData.sbautoincrement, sbautoincrementWrEn,
RegFieldDesc("sbautoincrement", "system bus auto-increment address", reset=Some(0))),
WNotifyVal(3, SBCSRdData.sbaccess, SBCSWrData.sbaccess, sbaccessWrEn,
RegFieldDesc("sbaccess", "system bus access size", reset=Some(2))),
WNotifyVal(1, SBCSRdData.sbreadonaddr, SBCSWrData.sbreadonaddr, sbreadonaddrWrEn,
RegFieldDesc("sbreadonaddr", "system bus read on data", reset=Some(0))),
RegField.r(1, SBCSRdData.sbbusy, RegFieldDesc("sbbusy", "system bus access is busy", reset=Some(0))),
WNotifyVal(1, SBCSRdData.sbbusyerror, SBCSWrData.sbbusyerror, sbbusyerrorWrEn,
RegFieldDesc("sbbusyerror", "system bus busy error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))),
RegField(6),
RegField.r(3, SBCSRdData.sbversion, RegFieldDesc("sbversion", "system bus access version", reset=Some(1))),
))
// --- System Bus Address Registers ---
// ADDR0 Register is required
// Instantiate ADDR1-3 registers as needed depending on system bus address width
val hasSBAddr1 = (sb2tl.module.edge.bundle.addressBits >= 33)
val hasSBAddr2 = (sb2tl.module.edge.bundle.addressBits >= 65)
val hasSBAddr3 = (sb2tl.module.edge.bundle.addressBits >= 97)
val hasAddr = Seq(true, hasSBAddr1, hasSBAddr2, hasSBAddr3)
val SBADDRESSFieldsReg = Reg(Vec(4, UInt(32.W)))
SBADDRESSFieldsReg.zipWithIndex.foreach { case(a,i) => a.suggestName("SBADDRESS"+i+"FieldsReg")}
val SBADDRESSWrData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} ))
val SBADDRESSRdEn = WireInit(VecInit(Seq.fill(4) {false.B} ))
val SBADDRESSWrEn = WireInit(VecInit(Seq.fill(4) {false.B} ))
val autoIncrementedAddr = WireInit(0.U(128.W))
autoIncrementedAddr := Cat(SBADDRESSFieldsReg.reverse) + (1.U << SBCSFieldsReg.sbaccess)
autoIncrementedAddr.suggestName("autoIncrementedAddr")
val sbaddrfields: Seq[Seq[RegField]] = SBADDRESSFieldsReg.zipWithIndex.map { case(a,i) =>
if(hasAddr(i)) {
when (~dmactive || ~dmAuthenticated) {
a := 0.U(32.W)
}.otherwise {
a := Mux(SBADDRESSWrEn(i) && !SBCSRdData.sberror && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror, SBADDRESSWrData(i),
Mux((sb2tl.module.io.rdDone || sb2tl.module.io.wrDone) && SBCSFieldsReg.sbautoincrement, autoIncrementedAddr(32*i+31,32*i), a))
}
RegFieldGroup("dmi_sbaddr"+i, Some("SBA Address Register"), Seq(RWNotify(32, a, SBADDRESSWrData(i), SBADDRESSRdEn(i), SBADDRESSWrEn(i),
Some(RegFieldDesc("dmi_sbaddr"+i, "SBA address register", reset=Some(0), volatile=true)))))
} else {
a := DontCare
Seq.empty[RegField]
}
}
sb2tl.module.io.addrIn := Mux(SBADDRESSWrEn(0),
Cat(Cat(SBADDRESSFieldsReg.drop(1).reverse), SBADDRESSWrData(0)),
Cat(SBADDRESSFieldsReg.reverse))
anyAddressWrEn := SBADDRESSWrEn.reduce(_ || _)
// --- System Bus Data Registers ---
// DATA0 Register is required
// DATA1-3 Registers may not be needed depending on implementation
val hasSBData1 = (cfg.maxSupportedSBAccess > 32)
val hasSBData2And3 = (cfg.maxSupportedSBAccess == 128)
val hasData = Seq(true, hasSBData1, hasSBData2And3, hasSBData2And3)
val SBDATAFieldsReg = Reg(Vec(4, Vec(4, UInt(8.W))))
SBDATAFieldsReg.zipWithIndex.foreach { case(d,i) => d.zipWithIndex.foreach { case(d,j) => d.suggestName("SBDATA"+i+"BYTE"+j) }}
val SBDATARdData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} ))
SBDATARdData.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATARdData"+i) }
val SBDATAWrData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} ))
SBDATAWrData.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATAWrData"+i) }
val SBDATARdEn = WireInit(VecInit(Seq.fill(4) {false.B} ))
val SBDATAWrEn = WireInit(VecInit(Seq.fill(4) {false.B} ))
SBDATAWrEn.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATAWrEn"+i) }
val sbdatafields: Seq[Seq[RegField]] = SBDATAFieldsReg.zipWithIndex.map { case(d,i) =>
if(hasData(i)) {
// For data registers, load enable per-byte
for (j <- 0 to 3) {
when (~dmactive || ~dmAuthenticated) {
d(j) := 0.U(8.W)
}.otherwise {
d(j) := Mux(SBDATAWrEn(i) && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror, SBDATAWrData(i)(8*j+7,8*j),
Mux(sb2tl.module.io.rdLoad(4*i+j), sb2tl.module.io.dataOut, d(j)))
}
}
SBDATARdData(i) := Cat(d.reverse)
RegFieldGroup("dmi_sbdata"+i, Some("SBA Data Register"), Seq(RWNotify(32, SBDATARdData(i), SBDATAWrData(i), SBDATARdEn(i), SBDATAWrEn(i),
Some(RegFieldDesc("dmi_sbdata"+i, "SBA data register", reset=Some(0), volatile=true)))))
} else {
for (j <- 0 to 3) { d(j) := DontCare }
Seq.empty[RegField]
}
}
sb2tl.module.io.dataIn := Mux(sb2tl.module.io.wrEn,Cat(SBDATAWrData.reverse),Cat(SBDATAFieldsReg.flatten.reverse))
anyDataRdEn := SBDATARdEn.reduce(_ || _)
anyDataWrEn := SBDATAWrEn.reduce(_ || _)
val tryWrEn = SBDATAWrEn(0)
val tryRdEn = (SBADDRESSWrEn(0) && SBCSFieldsReg.sbreadonaddr) || (SBDATARdEn(0) && SBCSFieldsReg.sbreadondata)
val sbAccessError = (SBCSFieldsReg.sbaccess === 0.U) && (SBCSFieldsReg.sbaccess8 =/= 1.U) ||
(SBCSFieldsReg.sbaccess === 1.U) && (SBCSFieldsReg.sbaccess16 =/= 1.U) ||
(SBCSFieldsReg.sbaccess === 2.U) && (SBCSFieldsReg.sbaccess32 =/= 1.U) ||
(SBCSFieldsReg.sbaccess === 3.U) && (SBCSFieldsReg.sbaccess64 =/= 1.U) ||
(SBCSFieldsReg.sbaccess === 4.U) && (SBCSFieldsReg.sbaccess128 =/= 1.U) || (SBCSFieldsReg.sbaccess > 4.U)
val compareAddr = Wire(UInt(32.W)) // Need use written or latched address to detect error case depending on how transaction is initiated
compareAddr := Mux(SBADDRESSWrEn(0),SBADDRESSWrData(0),SBADDRESSFieldsReg(0))
val sbAlignmentError = (SBCSFieldsReg.sbaccess === 1.U) && (compareAddr(0) =/= 0.U) ||
(SBCSFieldsReg.sbaccess === 2.U) && (compareAddr(1,0) =/= 0.U) ||
(SBCSFieldsReg.sbaccess === 3.U) && (compareAddr(2,0) =/= 0.U) ||
(SBCSFieldsReg.sbaccess === 4.U) && (compareAddr(3,0) =/= 0.U)
sbAccessError.suggestName("sbAccessError")
sbAlignmentError.suggestName("sbAlignmentError")
sb2tl.module.io.wrEn := dmAuthenticated && tryWrEn && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror && !sbAccessError && !sbAlignmentError
sb2tl.module.io.rdEn := dmAuthenticated && tryRdEn && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror && !sbAccessError && !sbAlignmentError
sb2tl.module.io.sizeIn := SBCSFieldsReg.sbaccess
val sbBusy = (sb2tl.module.io.sbStateOut =/= SystemBusAccessState.Idle.id.U)
when (~dmactive || ~dmAuthenticated) {
SBCSFieldsReg := SBCSFieldsRegReset
}.otherwise {
SBCSFieldsReg.sbbusyerror := Mux(sbbusyerrorWrEn && SBCSWrData.sbbusyerror, false.B, // W1C
Mux(anyAddressWrEn && sbBusy, true.B, // Set if a write to SBADDRESS occurs while busy
Mux((anyDataRdEn || anyDataWrEn) && sbBusy, true.B, SBCSFieldsReg.sbbusyerror))) // Set if any access to SBDATA occurs while busy
SBCSFieldsReg.sbreadonaddr := Mux(sbreadonaddrWrEn, SBCSWrData.sbreadonaddr , SBCSFieldsReg.sbreadonaddr)
SBCSFieldsReg.sbautoincrement := Mux(sbautoincrementWrEn, SBCSWrData.sbautoincrement, SBCSFieldsReg.sbautoincrement)
SBCSFieldsReg.sbreadondata := Mux(sbreadondataWrEn, SBCSWrData.sbreadondata , SBCSFieldsReg.sbreadondata)
SBCSFieldsReg.sbaccess := Mux(sbaccessWrEn, SBCSWrData.sbaccess, SBCSFieldsReg.sbaccess)
SBCSFieldsReg.sbversion := 1.U(1.W) // This code implements a version of the spec after January 1, 2018
}
// sbErrorReg has a per-bit load enable since each bit can be individually cleared by writing a 1 to it
val sbErrorReg = Reg(Vec(4, UInt(1.W)))
when(~dmactive || ~dmAuthenticated) {
for (i <- 0 until 3)
sbErrorReg(i) := 0.U
}.otherwise {
for (i <- 0 until 3)
sbErrorReg(i) := Mux(sberrorWrEn && SBCSWrData.sberror(i) === 1.U, NoError.id.U.extract(i), // W1C
Mux((sb2tl.module.io.wrEn && !sb2tl.module.io.wrLegal) || (sb2tl.module.io.rdEn && !sb2tl.module.io.rdLegal), BadAddr.id.U.extract(i), // Bad address accessed
Mux((tryWrEn || tryRdEn) && sbAlignmentError, AlgnError.id.U.extract(i), // Address alignment error
Mux((tryWrEn || tryRdEn) && sbAccessError, BadAccess.id.U.extract(i), // Access size error
Mux((sb2tl.module.io.rdDone || sb2tl.module.io.wrDone) && sb2tl.module.io.respError, OtherError.id.U.extract(i), sbErrorReg(i)))))) // Response error from TL
}
SBCSRdData := SBCSFieldsReg
SBCSRdData.sbasize := sb2tl.module.edge.bundle.addressBits.U
SBCSRdData.sbaccess128 := (cfg.maxSupportedSBAccess == 128).B
SBCSRdData.sbaccess64 := (cfg.maxSupportedSBAccess >= 64).B
SBCSRdData.sbaccess32 := (cfg.maxSupportedSBAccess >= 32).B
SBCSRdData.sbaccess16 := (cfg.maxSupportedSBAccess >= 16).B
SBCSRdData.sbaccess8 := (cfg.maxSupportedSBAccess >= 8).B
SBCSRdData.sbbusy := sbBusy
SBCSRdData.sberror := sbErrorReg.asUInt
when (~dmAuthenticated) { // Read value must be 0 if not authenticated
SBCSRdData := 0.U.asTypeOf(new SBCSFields())
}
property.cover(SBCSFieldsReg.sbbusyerror, "SBCS Cover", "sberror set")
property.cover(SBCSFieldsReg.sbbusy === 3.U, "SBCS Cover", "sbbusyerror alignment error")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 0.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "8-bit access")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 1.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "16-bit access")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 2.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "32-bit access")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 3.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "64-bit access")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 4.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "128-bit access")
property.cover(SBCSFieldsReg.sbautoincrement && SBCSFieldsReg.sbbusy, "SBCS Cover", "Access with autoincrement set")
property.cover(!SBCSFieldsReg.sbautoincrement && SBCSFieldsReg.sbbusy, "SBCS Cover", "Access without autoincrement set")
property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess > 4.U, "SBCS Cover", "Invalid sbaccess value")
(sbcsfields, sbaddrfields, sbdatafields)
}
}
class SBToTL(implicit p: Parameters) extends LazyModule {
val cfg = p(DebugModuleKey).get
val node = TLClientNode(Seq(TLMasterPortParameters.v1(
clients = Seq(TLMasterParameters.v1("debug")),
requestFields = Seq(AMBAProtField()))))
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
val io = IO(new Bundle {
val rdEn = Input(Bool())
val wrEn = Input(Bool())
val addrIn = Input(UInt(128.W)) // TODO: Parameterize these widths
val dataIn = Input(UInt(128.W))
val sizeIn = Input(UInt(3.W))
val rdLegal = Output(Bool())
val wrLegal = Output(Bool())
val rdDone = Output(Bool())
val wrDone = Output(Bool())
val respError = Output(Bool())
val dataOut = Output(UInt(8.W))
val rdLoad = Output(Vec(cfg.maxSupportedSBAccess/8, Bool()))
val sbStateOut = Output(UInt(log2Ceil(SystemBusAccessState.maxId).W))
})
val rf_reset = IO(Input(Reset()))
import SystemBusAccessState._
val (tl, edge) = node.out(0)
val sbState = RegInit(0.U)
// --- Drive payloads on bus to TileLink ---
val d = Queue(tl.d, 2) // Add a small buffer since response could arrive on same cycle as request
d.ready := (sbState === SBReadResponse.id.U) || (sbState === SBWriteResponse.id.U)
val muxedData = WireInit(0.U(8.W))
val requestValid = tl.a.valid
val requestReady = tl.a.ready
val responseValid = d.valid
val responseReady = d.ready
val counter = RegInit(0.U((log2Ceil(cfg.maxSupportedSBAccess/8)+1).W))
val vecData = Wire(Vec(cfg.maxSupportedSBAccess/8, UInt(8.W)))
vecData.zipWithIndex.map { case (vd, i) => vd := io.dataIn(8*i+7,8*i) }
muxedData := vecData(counter(log2Ceil(vecData.size)-1,0))
// Need an additional check to determine if address is safe for Get/Put
val rdLegal_addr = edge.manager.supportsGetSafe(io.addrIn, io.sizeIn, Some(TransferSizes(1,cfg.maxSupportedSBAccess/8)))
val wrLegal_addr = edge.manager.supportsPutFullSafe(io.addrIn, io.sizeIn, Some(TransferSizes(1,cfg.maxSupportedSBAccess/8)))
val (_, gbits) = edge.Get(0.U, io.addrIn, io.sizeIn)
val (_, pfbits) = edge.Put(0.U, io.addrIn, io.sizeIn, muxedData)
io.rdLegal := rdLegal_addr
io.wrLegal := wrLegal_addr
io.sbStateOut := sbState
when(sbState === SBReadRequest.id.U) { tl.a.bits := gbits }
.otherwise { tl.a.bits := pfbits }
tl.a.bits.user.lift(AMBAProt).foreach { x =>
x.bufferable := false.B
x.modifiable := false.B
x.readalloc := false.B
x.writealloc := false.B
x.privileged := true.B
x.secure := true.B
x.fetch := false.B
}
val respError = d.bits.denied || d.bits.corrupt
io.respError := respError
val wrTxValid = sbState === SBWriteRequest.id.U && requestValid && requestReady
val rdTxValid = sbState === SBReadResponse.id.U && responseValid && responseReady
val txLast = counter === ((1.U << io.sizeIn) - 1.U)
counter := Mux((wrTxValid || rdTxValid) && txLast, 0.U,
Mux((wrTxValid || rdTxValid) , counter+1.U, counter))
for (i <- 0 until (cfg.maxSupportedSBAccess/8)) {
io.rdLoad(i) := rdTxValid && (counter === i.U)
}
// --- State Machine to interface with TileLink ---
when (sbState === Idle.id.U){
sbState := Mux(io.rdEn && io.rdLegal, SBReadRequest.id.U,
Mux(io.wrEn && io.wrLegal, SBWriteRequest.id.U, sbState))
}.elsewhen (sbState === SBReadRequest.id.U){
sbState := Mux(requestValid && requestReady, SBReadResponse.id.U, sbState)
}.elsewhen (sbState === SBWriteRequest.id.U){
sbState := Mux(wrTxValid && txLast, SBWriteResponse.id.U, sbState)
}.elsewhen (sbState === SBReadResponse.id.U){
sbState := Mux(rdTxValid && txLast, Idle.id.U, sbState)
}.elsewhen (sbState === SBWriteResponse.id.U){
sbState := Mux(responseValid && responseReady, Idle.id.U, sbState)
}
io.rdDone := rdTxValid && txLast
io.wrDone := (sbState === SBWriteResponse.id.U) && responseValid && responseReady
io.dataOut := d.bits.data
tl.a.valid := (sbState === SBReadRequest.id.U) || (sbState === SBWriteRequest.id.U)
// Tie off unused channels
tl.b.ready := false.B
tl.c.valid := false.B
tl.e.valid := false.B
assert (sbState === Idle.id.U ||
sbState === SBReadRequest.id.U ||
sbState === SBWriteRequest.id.U ||
sbState === SBReadResponse.id.U ||
sbState === SBWriteResponse.id.U, "SBA state machine in undefined state")
property.cover (sbState === Idle.id.U, "SBA State Cover", "SBA Access Idle")
property.cover (sbState === SBReadRequest.id.U, "SBA State Cover", "SBA Access Read Req")
property.cover (sbState === SBWriteRequest.id.U, "SBA State Cover", "SBA Access Write Req")
property.cover (sbState === SBReadResponse.id.U, "SBA State Cover", "SBA Access Read Resp")
property.cover (sbState === SBWriteResponse.id.U, "SBA State Cover", "SBA Access Write Resp")
property.cover (io.rdEn && !io.rdLegal, "SB Legality Cover", "SBA Rd Address Illegal")
property.cover (io.wrEn && !io.wrLegal, "SB Legality Cover", "SBA Wr Address Illegal")
}
}
| module SBToTL( // @[SBA.scala:273:9]
input clock, // @[SBA.scala:273:9]
input reset, // @[SBA.scala:273:9]
input auto_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input io_rdEn, // @[SBA.scala:274:16]
input io_wrEn, // @[SBA.scala:274:16]
input [127:0] io_addrIn, // @[SBA.scala:274:16]
input [127:0] io_dataIn, // @[SBA.scala:274:16]
input [2:0] io_sizeIn, // @[SBA.scala:274:16]
output io_rdLegal, // @[SBA.scala:274:16]
output io_wrLegal, // @[SBA.scala:274:16]
output io_rdDone, // @[SBA.scala:274:16]
output io_wrDone, // @[SBA.scala:274:16]
output io_respError, // @[SBA.scala:274:16]
output [7:0] io_dataOut, // @[SBA.scala:274:16]
output io_rdLoad_0, // @[SBA.scala:274:16]
output io_rdLoad_1, // @[SBA.scala:274:16]
output io_rdLoad_2, // @[SBA.scala:274:16]
output io_rdLoad_3, // @[SBA.scala:274:16]
output io_rdLoad_4, // @[SBA.scala:274:16]
output io_rdLoad_5, // @[SBA.scala:274:16]
output io_rdLoad_6, // @[SBA.scala:274:16]
output io_rdLoad_7, // @[SBA.scala:274:16]
output [2:0] io_sbStateOut // @[SBA.scala:274:16]
);
wire _d_q_io_deq_valid; // @[Decoupled.scala:362:21]
wire _d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21]
wire _d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21]
reg [2:0] sbState; // @[SBA.scala:295:26]
wire _rdTxValid_T = sbState == 3'h3; // @[SBA.scala:295:26, :299:25]
wire _io_wrDone_T = sbState == 3'h4; // @[SBA.scala:295:26, :299:62]
wire d_q_io_deq_ready = _rdTxValid_T | _io_wrDone_T; // @[SBA.scala:299:{25,50,62}]
reg [3:0] counter; // @[SBA.scala:307:26]
wire [7:0][7:0] _GEN = {{io_dataIn[63:56]}, {io_dataIn[55:48]}, {io_dataIn[47:40]}, {io_dataIn[39:32]}, {io_dataIn[31:24]}, {io_dataIn[23:16]}, {io_dataIn[15:8]}, {io_dataIn[7:0]}}; // @[SBA.scala:309:63, :310:15]
wire [117:0] _GEN_0 = {io_addrIn[127:14], io_addrIn[13:10] ^ 4'h8}; // @[Parameters.scala:137:{31,41,46}]
wire [119:0] _GEN_1 = {io_addrIn[127:14], io_addrIn[13:8] ^ 6'h24}; // @[Parameters.scala:137:{31,41,46}]
wire [115:0] _GEN_2 = {io_addrIn[127:14], ~(io_addrIn[13:12])}; // @[Parameters.scala:137:{31,41,46}]
wire [114:0] _GEN_3 = {io_addrIn[127:21], io_addrIn[20:17] ^ 4'h8, io_addrIn[15:12]}; // @[Parameters.scala:137:{31,41,46}]
wire [111:0] _GEN_4 = {io_addrIn[127:26], io_addrIn[25:16] ^ 10'h200}; // @[Parameters.scala:137:{31,41,46}]
wire [115:0] _GEN_5 = {io_addrIn[127:26], io_addrIn[25:12] ^ 14'h2010}; // @[Parameters.scala:137:{31,41,46}]
wire [111:0] _GEN_6 = {io_addrIn[127:28], io_addrIn[27:16] ^ 12'h800}; // @[Parameters.scala:137:{31,41,46}]
wire [101:0] _GEN_7 = {io_addrIn[127:28], ~(io_addrIn[27:26])}; // @[Parameters.scala:137:{31,41,46}]
wire [115:0] _GEN_8 = {io_addrIn[127:29], io_addrIn[28:12] ^ 17'h10020}; // @[Parameters.scala:137:{31,41,46}]
wire [99:0] _GEN_9 = {io_addrIn[127:32], io_addrIn[31:28] ^ 4'h8}; // @[Parameters.scala:137:{31,41,46}]
wire io_rdLegal_0 = ~(|(io_addrIn[127:13])) | ~(|_GEN_0) | ~(|_GEN_1) | ~(|_GEN_2) | {io_addrIn[127:17], ~(io_addrIn[16])} == 112'h0 | ~(|_GEN_3) | ~(|_GEN_4) | ~(|_GEN_5) | ~(|_GEN_6) | ~(|_GEN_7) | ~(|_GEN_8) | ~(|_GEN_9); // @[Parameters.scala:685:42]
wire io_wrLegal_0 = ~(|(io_addrIn[127:13])) | ~(|_GEN_0) | ~(|_GEN_1) | ~(|_GEN_2) | ~(|_GEN_3) | ~(|_GEN_4) | ~(|_GEN_5) | ~(|_GEN_6) | ~(|_GEN_7) | ~(|_GEN_8) | ~(|_GEN_9); // @[Parameters.scala:685:42]
wire _nodeOut_a_valid_T = sbState == 3'h1; // @[SBA.scala:295:26, :322:18]
wire _nodeOut_a_valid_T_1 = sbState == 3'h2; // @[SBA.scala:295:26, :338:29]
wire rdTxValid = _rdTxValid_T & _d_q_io_deq_valid & d_q_io_deq_ready; // @[Decoupled.scala:362:21]
wire txLast = {4'h0, counter} == (8'h1 << io_sizeIn) - 8'h1; // @[SBA.scala:307:26, :340:{29,39,53}]
wire _GEN_10 = sbState == 3'h0; // @[SBA.scala:295:26, :349:19]
wire nodeOut_a_valid = _nodeOut_a_valid_T | _nodeOut_a_valid_T_1; // @[SBA.scala:322:18, :338:29, :366:52] |
Generate the Verilog code corresponding to the following Chisel files.
File Transposer.scala:
package gemmini
import chisel3._
import chisel3.util._
import Util._
trait Transposer[T <: Data] extends Module {
def dim: Int
def dataType: T
val io = IO(new Bundle {
val inRow = Flipped(Decoupled(Vec(dim, dataType)))
val outCol = Decoupled(Vec(dim, dataType))
})
}
class PipelinedTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] {
require(isPow2(dim))
val regArray = Seq.fill(dim, dim)(Reg(dataType))
val regArrayT = regArray.transpose
val sMoveUp :: sMoveLeft :: Nil = Enum(2)
val state = RegInit(sMoveUp)
val leftCounter = RegInit(0.U(log2Ceil(dim+1).W)) //(io.inRow.fire && state === sMoveLeft, dim+1)
val upCounter = RegInit(0.U(log2Ceil(dim+1).W)) //Counter(io.inRow.fire && state === sMoveUp, dim+1)
io.outCol.valid := 0.U
io.inRow.ready := 0.U
switch(state) {
is(sMoveUp) {
io.inRow.ready := upCounter <= dim.U
io.outCol.valid := leftCounter > 0.U
when(io.inRow.fire) {
upCounter := upCounter + 1.U
}
when(upCounter === (dim-1).U) {
state := sMoveLeft
leftCounter := 0.U
}
when(io.outCol.fire) {
leftCounter := leftCounter - 1.U
}
}
is(sMoveLeft) {
io.inRow.ready := leftCounter <= dim.U // TODO: this is naive
io.outCol.valid := upCounter > 0.U
when(leftCounter === (dim-1).U) {
state := sMoveUp
}
when(io.inRow.fire) {
leftCounter := leftCounter + 1.U
upCounter := 0.U
}
when(io.outCol.fire) {
upCounter := upCounter - 1.U
}
}
}
// Propagate input from bottom row to top row systolically in the move up phase
// TODO: need to iterate over columns to connect Chisel values of type T
// Should be able to operate directly on the Vec, but Seq and Vec don't mix (try Array?)
for (colIdx <- 0 until dim) {
regArray.foldRight(io.inRow.bits(colIdx)) {
case (regRow, prevReg) =>
when (state === sMoveUp) {
regRow(colIdx) := prevReg
}
regRow(colIdx)
}
}
// Propagate input from right side to left side systolically in the move left phase
for (rowIdx <- 0 until dim) {
regArrayT.foldRight(io.inRow.bits(rowIdx)) {
case (regCol, prevReg) =>
when (state === sMoveLeft) {
regCol(rowIdx) := prevReg
}
regCol(rowIdx)
}
}
// Pull from the left side or the top side based on the state
for (idx <- 0 until dim) {
when (state === sMoveUp) {
io.outCol.bits(idx) := regArray(0)(idx)
}.elsewhen(state === sMoveLeft) {
io.outCol.bits(idx) := regArrayT(0)(idx)
}.otherwise {
io.outCol.bits(idx) := DontCare
}
}
}
class AlwaysOutTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] {
require(isPow2(dim))
val LEFT_DIR = 0.U(1.W)
val UP_DIR = 1.U(1.W)
class PE extends Module {
val io = IO(new Bundle {
val inR = Input(dataType)
val inD = Input(dataType)
val outL = Output(dataType)
val outU = Output(dataType)
val dir = Input(UInt(1.W))
val en = Input(Bool())
})
val reg = RegEnable(Mux(io.dir === LEFT_DIR, io.inR, io.inD), io.en)
io.outU := reg
io.outL := reg
}
val pes = Seq.fill(dim,dim)(Module(new PE))
val counter = RegInit(0.U((log2Ceil(dim) max 1).W)) // TODO replace this with a standard Chisel counter
val dir = RegInit(LEFT_DIR)
// Wire up horizontal signals
for (row <- 0 until dim; col <- 0 until dim) {
val right_in = if (col == dim-1) io.inRow.bits(row) else pes(row)(col+1).io.outL
pes(row)(col).io.inR := right_in
}
// Wire up vertical signals
for (row <- 0 until dim; col <- 0 until dim) {
val down_in = if (row == dim-1) io.inRow.bits(col) else pes(row+1)(col).io.outU
pes(row)(col).io.inD := down_in
}
// Wire up global signals
pes.flatten.foreach(_.io.dir := dir)
pes.flatten.foreach(_.io.en := io.inRow.fire)
io.outCol.valid := true.B
io.inRow.ready := true.B
val left_out = VecInit(pes.transpose.head.map(_.io.outL))
val up_out = VecInit(pes.head.map(_.io.outU))
io.outCol.bits := Mux(dir === LEFT_DIR, left_out, up_out)
when (io.inRow.fire) {
counter := wrappingAdd(counter, 1.U, dim)
}
when (counter === (dim-1).U && io.inRow.fire) {
dir := ~dir
}
}
class NaiveTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] {
val regArray = Seq.fill(dim, dim)(Reg(dataType))
val regArrayT = regArray.transpose
// state = 0 => filling regArray row-wise, state = 1 => draining regArray column-wise
val state = RegInit(0.U(1.W))
val countInc = io.inRow.fire || io.outCol.fire
val (countValue, countWrap) = Counter(countInc, dim)
io.inRow.ready := state === 0.U
io.outCol.valid := state === 1.U
for (i <- 0 until dim) {
for (j <- 0 until dim) {
when(countValue === i.U && io.inRow.fire) {
regArray(i)(j) := io.inRow.bits(j)
}
}
}
for (i <- 0 until dim) {
io.outCol.bits(i) := 0.U
for (j <- 0 until dim) {
when(countValue === j.U) {
io.outCol.bits(i) := regArrayT(j)(i)
}
}
}
when (io.inRow.fire && countWrap) {
state := 1.U
}
when (io.outCol.fire && countWrap) {
state := 0.U
}
assert(!(state === 0.U) || !io.outCol.fire)
assert(!(state === 1.U) || !io.inRow.fire)
}
| module PE_121( // @[Transposer.scala:100:9]
input clock, // @[Transposer.scala:100:9]
input reset, // @[Transposer.scala:100:9]
input [7:0] io_inR, // @[Transposer.scala:101:16]
input [7:0] io_inD, // @[Transposer.scala:101:16]
output [7:0] io_outL, // @[Transposer.scala:101:16]
output [7:0] io_outU, // @[Transposer.scala:101:16]
input io_dir, // @[Transposer.scala:101:16]
input io_en // @[Transposer.scala:101:16]
);
wire [7:0] io_inR_0 = io_inR; // @[Transposer.scala:100:9]
wire [7:0] io_inD_0 = io_inD; // @[Transposer.scala:100:9]
wire io_dir_0 = io_dir; // @[Transposer.scala:100:9]
wire io_en_0 = io_en; // @[Transposer.scala:100:9]
wire [7:0] io_outL_0; // @[Transposer.scala:100:9]
wire [7:0] io_outU_0; // @[Transposer.scala:100:9]
wire _reg_T = ~io_dir_0; // @[Transposer.scala:100:9, :110:36]
wire [7:0] _reg_T_1 = _reg_T ? io_inR_0 : io_inD_0; // @[Transposer.scala:100:9, :110:{28,36}]
reg [7:0] reg_0; // @[Transposer.scala:110:24]
assign io_outL_0 = reg_0; // @[Transposer.scala:100:9, :110:24]
assign io_outU_0 = reg_0; // @[Transposer.scala:100:9, :110:24]
always @(posedge clock) begin // @[Transposer.scala:100:9]
if (io_en_0) // @[Transposer.scala:100:9]
reg_0 <= _reg_T_1; // @[Transposer.scala:110:{24,28}]
always @(posedge)
assign io_outL = io_outL_0; // @[Transposer.scala:100:9]
assign io_outU = io_outU_0; // @[Transposer.scala:100:9]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File BankedStore.scala:
/*
* Copyright 2019 SiFive, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You should have received a copy of LICENSE.Apache2 along with
* this software. If not, you may obtain a copy at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sifive.blocks.inclusivecache
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.util.DescribedSRAM
import scala.math.{max, min}
abstract class BankedStoreAddress(val inner: Boolean, params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val noop = Bool() // do not actually use the SRAMs, just block their use
val way = UInt(params.wayBits.W)
val set = UInt(params.setBits.W)
val beat = UInt((if (inner) params.innerBeatBits else params.outerBeatBits).W)
val mask = UInt((if (inner) params.innerMaskBits else params.outerMaskBits).W)
}
trait BankedStoreRW
{
val write = Bool()
}
class BankedStoreOuterAddress(params: InclusiveCacheParameters) extends BankedStoreAddress(false, params)
class BankedStoreInnerAddress(params: InclusiveCacheParameters) extends BankedStoreAddress(true, params)
class BankedStoreInnerAddressRW(params: InclusiveCacheParameters) extends BankedStoreInnerAddress(params) with BankedStoreRW
abstract class BankedStoreData(val inner: Boolean, params: InclusiveCacheParameters) extends InclusiveCacheBundle(params)
{
val data = UInt(((if (inner) params.inner.manager.beatBytes else params.outer.manager.beatBytes)*8).W)
}
class BankedStoreOuterData(params: InclusiveCacheParameters) extends BankedStoreData(false, params)
class BankedStoreInnerData(params: InclusiveCacheParameters) extends BankedStoreData(true, params)
class BankedStoreInnerPoison(params: InclusiveCacheParameters) extends BankedStoreInnerData(params)
class BankedStoreOuterPoison(params: InclusiveCacheParameters) extends BankedStoreOuterData(params)
class BankedStoreInnerDecoded(params: InclusiveCacheParameters) extends BankedStoreInnerData(params)
class BankedStoreOuterDecoded(params: InclusiveCacheParameters) extends BankedStoreOuterData(params)
class BankedStore(params: InclusiveCacheParameters) extends Module
{
val io = IO(new Bundle {
val sinkC_adr = Flipped(Decoupled(new BankedStoreInnerAddress(params)))
val sinkC_dat = Flipped(new BankedStoreInnerPoison(params))
val sinkD_adr = Flipped(Decoupled(new BankedStoreOuterAddress(params)))
val sinkD_dat = Flipped(new BankedStoreOuterPoison(params))
val sourceC_adr = Flipped(Decoupled(new BankedStoreOuterAddress(params)))
val sourceC_dat = new BankedStoreOuterDecoded(params)
val sourceD_radr = Flipped(Decoupled(new BankedStoreInnerAddress(params)))
val sourceD_rdat = new BankedStoreInnerDecoded(params)
val sourceD_wadr = Flipped(Decoupled(new BankedStoreInnerAddress(params)))
val sourceD_wdat = Flipped(new BankedStoreInnerPoison(params))
})
val innerBytes = params.inner.manager.beatBytes
val outerBytes = params.outer.manager.beatBytes
val rowBytes = params.micro.portFactor * max(innerBytes, outerBytes)
require (rowBytes < params.cache.sizeBytes)
val rowEntries = params.cache.sizeBytes / rowBytes
val rowBits = log2Ceil(rowEntries)
val numBanks = rowBytes / params.micro.writeBytes
val codeBits = 8*params.micro.writeBytes
val cc_banks = Seq.tabulate(numBanks) {
i =>
DescribedSRAM(
name = s"cc_banks_$i",
desc = "Banked Store",
size = rowEntries,
data = UInt(codeBits.W)
)
}
// These constraints apply on the port priorities:
// sourceC > sinkD outgoing Release > incoming Grant (we start eviction+refill concurrently)
// sinkC > sourceC incoming ProbeAck > outgoing ProbeAck (we delay probeack writeback by 1 cycle for QoR)
// sinkC > sourceDr incoming ProbeAck > SourceD read (we delay probeack writeback by 1 cycle for QoR)
// sourceDw > sourceDr modified data visible on next cycle (needed to ensure SourceD forward progress)
// sinkC > sourceC inner ProbeAck > outer ProbeAck (make wormhole routing possible [not yet implemented])
// sinkC&D > sourceD* beat arrival > beat read|update (make wormhole routing possible [not yet implemented])
// Combining these restrictions yields a priority scheme of:
// sinkC > sourceC > sinkD > sourceDw > sourceDr
// ^^^^^^^^^^^^^^^ outer interface
// Requests have different port widths, but we don't want to allow cutting in line.
// Suppose we have requests A > B > C requesting ports --A-, --BB, ---C.
// The correct arbitration is to allow --A- only, not --AC.
// Obviously --A-, BB--, ---C should still be resolved to BBAC.
class Request extends Bundle {
val wen = Bool()
val index = UInt(rowBits.W)
val bankSel = UInt(numBanks.W)
val bankSum = UInt(numBanks.W) // OR of all higher priority bankSels
val bankEn = UInt(numBanks.W) // ports actually activated by request
val data = Vec(numBanks, UInt(codeBits.W))
}
def req[T <: BankedStoreAddress](b: DecoupledIO[T], write: Bool, d: UInt): Request = {
val beatBytes = if (b.bits.inner) innerBytes else outerBytes
val ports = beatBytes / params.micro.writeBytes
val bankBits = log2Ceil(numBanks / ports)
val words = Seq.tabulate(ports) { i =>
val data = d((i + 1) * 8 * params.micro.writeBytes - 1, i * 8 * params.micro.writeBytes)
data
}
val a = if (params.cache.blockBytes == beatBytes) Cat(b.bits.way, b.bits.set) else Cat(b.bits.way, b.bits.set, b.bits.beat)
val m = b.bits.mask
val out = Wire(new Request)
val select = UIntToOH(a(bankBits-1, 0), numBanks/ports)
val ready = Cat(Seq.tabulate(numBanks/ports) { i => !(out.bankSum((i+1)*ports-1, i*ports) & m).orR } .reverse)
b.ready := ready(a(bankBits-1, 0))
out.wen := write
out.index := a >> bankBits
out.bankSel := Mux(b.valid, FillInterleaved(ports, select) & Fill(numBanks/ports, m), 0.U)
out.bankEn := Mux(b.bits.noop, 0.U, out.bankSel & FillInterleaved(ports, ready))
out.data := Seq.fill(numBanks/ports) { words }.flatten
out
}
val innerData = 0.U((8*innerBytes).W)
val outerData = 0.U((8*outerBytes).W)
val W = true.B
val R = false.B
val sinkC_req = req(io.sinkC_adr, W, io.sinkC_dat.data)
val sinkD_req = req(io.sinkD_adr, W, io.sinkD_dat.data)
val sourceC_req = req(io.sourceC_adr, R, outerData)
val sourceD_rreq = req(io.sourceD_radr, R, innerData)
val sourceD_wreq = req(io.sourceD_wadr, W, io.sourceD_wdat.data)
// See the comments above for why this prioritization is used
val reqs = Seq(sinkC_req, sourceC_req, sinkD_req, sourceD_wreq, sourceD_rreq)
// Connect priorities; note that even if a request does not go through due to failing
// to obtain a needed subbank, it still blocks overlapping lower priority requests.
reqs.foldLeft(0.U) { case (sum, req) =>
req.bankSum := sum
req.bankSel | sum
}
// Access the banks
val regout = VecInit(cc_banks.zipWithIndex.map { case (b, i) =>
val en = reqs.map(_.bankEn(i)).reduce(_||_)
val sel = reqs.map(_.bankSel(i))
val wen = PriorityMux(sel, reqs.map(_.wen))
val idx = PriorityMux(sel, reqs.map(_.index))
val data= PriorityMux(sel, reqs.map(_.data(i)))
when (wen && en) { b.write(idx, data) }
RegEnable(b.read(idx, !wen && en), RegNext(!wen && en))
})
val regsel_sourceC = RegNext(RegNext(sourceC_req.bankEn))
val regsel_sourceD = RegNext(RegNext(sourceD_rreq.bankEn))
val decodeC = regout.zipWithIndex.map {
case (r, i) => Mux(regsel_sourceC(i), r, 0.U)
}.grouped(outerBytes/params.micro.writeBytes).toList.transpose.map(s => s.reduce(_|_))
io.sourceC_dat.data := Cat(decodeC.reverse)
val decodeD = regout.zipWithIndex.map {
// Intentionally not Mux1H and/or an indexed-mux b/c we want it 0 when !sel to save decode power
case (r, i) => Mux(regsel_sourceD(i), r, 0.U)
}.grouped(innerBytes/params.micro.writeBytes).toList.transpose.map(s => s.reduce(_|_))
io.sourceD_rdat.data := Cat(decodeD.reverse)
private def banks = cc_banks.map("\"" + _.pathName + "\"").mkString(",")
def json: String = s"""{"widthBytes":${params.micro.writeBytes},"mem":[${banks}]}"""
}
File DescribedSRAM.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3.{Data, SyncReadMem, Vec}
import chisel3.util.log2Ceil
object DescribedSRAM {
def apply[T <: Data](
name: String,
desc: String,
size: BigInt, // depth
data: T
): SyncReadMem[T] = {
val mem = SyncReadMem(size, data)
mem.suggestName(name)
val granWidth = data match {
case v: Vec[_] => v.head.getWidth
case d => d.getWidth
}
val uid = 0
Annotated.srams(
component = mem,
name = name,
address_width = log2Ceil(size),
data_width = data.getWidth,
depth = size,
description = desc,
write_mask_granularity = granWidth
)
mem
}
}
| module BankedStore_4( // @[BankedStore.scala:59:7]
input clock, // @[BankedStore.scala:59:7]
input reset, // @[BankedStore.scala:59:7]
output io_sinkC_adr_ready, // @[BankedStore.scala:61:14]
input io_sinkC_adr_valid, // @[BankedStore.scala:61:14]
input io_sinkC_adr_bits_noop, // @[BankedStore.scala:61:14]
input [3:0] io_sinkC_adr_bits_way, // @[BankedStore.scala:61:14]
input [10:0] io_sinkC_adr_bits_set, // @[BankedStore.scala:61:14]
input [1:0] io_sinkC_adr_bits_beat, // @[BankedStore.scala:61:14]
input [1:0] io_sinkC_adr_bits_mask, // @[BankedStore.scala:61:14]
input [127:0] io_sinkC_dat_data, // @[BankedStore.scala:61:14]
output io_sinkD_adr_ready, // @[BankedStore.scala:61:14]
input io_sinkD_adr_valid, // @[BankedStore.scala:61:14]
input io_sinkD_adr_bits_noop, // @[BankedStore.scala:61:14]
input [3:0] io_sinkD_adr_bits_way, // @[BankedStore.scala:61:14]
input [10:0] io_sinkD_adr_bits_set, // @[BankedStore.scala:61:14]
input [2:0] io_sinkD_adr_bits_beat, // @[BankedStore.scala:61:14]
input [63:0] io_sinkD_dat_data, // @[BankedStore.scala:61:14]
output io_sourceC_adr_ready, // @[BankedStore.scala:61:14]
input io_sourceC_adr_valid, // @[BankedStore.scala:61:14]
input [3:0] io_sourceC_adr_bits_way, // @[BankedStore.scala:61:14]
input [10:0] io_sourceC_adr_bits_set, // @[BankedStore.scala:61:14]
input [2:0] io_sourceC_adr_bits_beat, // @[BankedStore.scala:61:14]
output [63:0] io_sourceC_dat_data, // @[BankedStore.scala:61:14]
output io_sourceD_radr_ready, // @[BankedStore.scala:61:14]
input io_sourceD_radr_valid, // @[BankedStore.scala:61:14]
input [3:0] io_sourceD_radr_bits_way, // @[BankedStore.scala:61:14]
input [10:0] io_sourceD_radr_bits_set, // @[BankedStore.scala:61:14]
input [1:0] io_sourceD_radr_bits_beat, // @[BankedStore.scala:61:14]
input [1:0] io_sourceD_radr_bits_mask, // @[BankedStore.scala:61:14]
output [127:0] io_sourceD_rdat_data, // @[BankedStore.scala:61:14]
output io_sourceD_wadr_ready, // @[BankedStore.scala:61:14]
input io_sourceD_wadr_valid, // @[BankedStore.scala:61:14]
input [3:0] io_sourceD_wadr_bits_way, // @[BankedStore.scala:61:14]
input [10:0] io_sourceD_wadr_bits_set, // @[BankedStore.scala:61:14]
input [1:0] io_sourceD_wadr_bits_beat, // @[BankedStore.scala:61:14]
input [1:0] io_sourceD_wadr_bits_mask, // @[BankedStore.scala:61:14]
input [127:0] io_sourceD_wdat_data // @[BankedStore.scala:61:14]
);
wire [7:0] sinkC_req_bankSel; // @[BankedStore.scala:128:19]
wire [63:0] _cc_banks_7_RW0_rdata; // @[DescribedSRAM.scala:17:26]
wire [63:0] _cc_banks_6_RW0_rdata; // @[DescribedSRAM.scala:17:26]
wire [63:0] _cc_banks_5_RW0_rdata; // @[DescribedSRAM.scala:17:26]
wire [63:0] _cc_banks_4_RW0_rdata; // @[DescribedSRAM.scala:17:26]
wire [63:0] _cc_banks_3_RW0_rdata; // @[DescribedSRAM.scala:17:26]
wire [63:0] _cc_banks_2_RW0_rdata; // @[DescribedSRAM.scala:17:26]
wire [63:0] _cc_banks_1_RW0_rdata; // @[DescribedSRAM.scala:17:26]
wire [63:0] _cc_banks_0_RW0_rdata; // @[DescribedSRAM.scala:17:26]
wire io_sinkC_adr_valid_0 = io_sinkC_adr_valid; // @[BankedStore.scala:59:7]
wire io_sinkC_adr_bits_noop_0 = io_sinkC_adr_bits_noop; // @[BankedStore.scala:59:7]
wire [3:0] io_sinkC_adr_bits_way_0 = io_sinkC_adr_bits_way; // @[BankedStore.scala:59:7]
wire [10:0] io_sinkC_adr_bits_set_0 = io_sinkC_adr_bits_set; // @[BankedStore.scala:59:7]
wire [1:0] io_sinkC_adr_bits_beat_0 = io_sinkC_adr_bits_beat; // @[BankedStore.scala:59:7]
wire [1:0] io_sinkC_adr_bits_mask_0 = io_sinkC_adr_bits_mask; // @[BankedStore.scala:59:7]
wire [127:0] io_sinkC_dat_data_0 = io_sinkC_dat_data; // @[BankedStore.scala:59:7]
wire io_sinkD_adr_valid_0 = io_sinkD_adr_valid; // @[BankedStore.scala:59:7]
wire io_sinkD_adr_bits_noop_0 = io_sinkD_adr_bits_noop; // @[BankedStore.scala:59:7]
wire [3:0] io_sinkD_adr_bits_way_0 = io_sinkD_adr_bits_way; // @[BankedStore.scala:59:7]
wire [10:0] io_sinkD_adr_bits_set_0 = io_sinkD_adr_bits_set; // @[BankedStore.scala:59:7]
wire [2:0] io_sinkD_adr_bits_beat_0 = io_sinkD_adr_bits_beat; // @[BankedStore.scala:59:7]
wire [63:0] io_sinkD_dat_data_0 = io_sinkD_dat_data; // @[BankedStore.scala:59:7]
wire io_sourceC_adr_valid_0 = io_sourceC_adr_valid; // @[BankedStore.scala:59:7]
wire [3:0] io_sourceC_adr_bits_way_0 = io_sourceC_adr_bits_way; // @[BankedStore.scala:59:7]
wire [10:0] io_sourceC_adr_bits_set_0 = io_sourceC_adr_bits_set; // @[BankedStore.scala:59:7]
wire [2:0] io_sourceC_adr_bits_beat_0 = io_sourceC_adr_bits_beat; // @[BankedStore.scala:59:7]
wire io_sourceD_radr_valid_0 = io_sourceD_radr_valid; // @[BankedStore.scala:59:7]
wire [3:0] io_sourceD_radr_bits_way_0 = io_sourceD_radr_bits_way; // @[BankedStore.scala:59:7]
wire [10:0] io_sourceD_radr_bits_set_0 = io_sourceD_radr_bits_set; // @[BankedStore.scala:59:7]
wire [1:0] io_sourceD_radr_bits_beat_0 = io_sourceD_radr_bits_beat; // @[BankedStore.scala:59:7]
wire [1:0] io_sourceD_radr_bits_mask_0 = io_sourceD_radr_bits_mask; // @[BankedStore.scala:59:7]
wire io_sourceD_wadr_valid_0 = io_sourceD_wadr_valid; // @[BankedStore.scala:59:7]
wire [3:0] io_sourceD_wadr_bits_way_0 = io_sourceD_wadr_bits_way; // @[BankedStore.scala:59:7]
wire [10:0] io_sourceD_wadr_bits_set_0 = io_sourceD_wadr_bits_set; // @[BankedStore.scala:59:7]
wire [1:0] io_sourceD_wadr_bits_beat_0 = io_sourceD_wadr_bits_beat; // @[BankedStore.scala:59:7]
wire [1:0] io_sourceD_wadr_bits_mask_0 = io_sourceD_wadr_bits_mask; // @[BankedStore.scala:59:7]
wire [127:0] io_sourceD_wdat_data_0 = io_sourceD_wdat_data; // @[BankedStore.scala:59:7]
wire [7:0] sinkC_req_bankSum = 8'h0; // @[BankedStore.scala:128:19]
wire [1:0] _sinkC_req_ready_T = 2'h0; // @[BankedStore.scala:131:71]
wire [1:0] _sinkC_req_ready_T_1 = 2'h0; // @[BankedStore.scala:131:96]
wire [1:0] _sinkC_req_ready_T_4 = 2'h0; // @[BankedStore.scala:131:71]
wire [1:0] _sinkC_req_ready_T_5 = 2'h0; // @[BankedStore.scala:131:96]
wire [1:0] _sinkC_req_ready_T_8 = 2'h0; // @[BankedStore.scala:131:71]
wire [1:0] _sinkC_req_ready_T_9 = 2'h0; // @[BankedStore.scala:131:96]
wire [1:0] _sinkC_req_ready_T_12 = 2'h0; // @[BankedStore.scala:131:71]
wire [1:0] _sinkC_req_ready_T_13 = 2'h0; // @[BankedStore.scala:131:96]
wire [1:0] sinkC_req_ready_lo = 2'h3; // @[BankedStore.scala:131:21]
wire [1:0] sinkC_req_ready_hi = 2'h3; // @[BankedStore.scala:131:21]
wire [1:0] _sinkC_req_out_bankEn_T_4 = 2'h3; // @[BankedStore.scala:137:72]
wire [1:0] _sinkC_req_out_bankEn_T_5 = 2'h3; // @[BankedStore.scala:137:72]
wire [1:0] _sinkC_req_out_bankEn_T_6 = 2'h3; // @[BankedStore.scala:137:72]
wire [1:0] _sinkC_req_out_bankEn_T_7 = 2'h3; // @[BankedStore.scala:137:72]
wire [3:0] sinkC_req_ready = 4'hF; // @[BankedStore.scala:131:21, :137:72]
wire [3:0] sinkC_req_out_bankEn_lo = 4'hF; // @[BankedStore.scala:131:21, :137:72]
wire [3:0] sinkC_req_out_bankEn_hi = 4'hF; // @[BankedStore.scala:131:21, :137:72]
wire [7:0] _sinkC_req_out_bankEn_T_8 = 8'hFF; // @[BankedStore.scala:136:71, :137:72]
wire [7:0] _sinkD_req_out_bankSel_T_10 = 8'hFF; // @[BankedStore.scala:136:71, :137:72]
wire [7:0] _sourceC_req_out_bankSel_T_10 = 8'hFF; // @[BankedStore.scala:136:71, :137:72]
wire [63:0] sourceC_req_data_0 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceC_req_data_1 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceC_req_data_2 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceC_req_data_3 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceC_req_data_4 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceC_req_data_5 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceC_req_data_6 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceC_req_data_7 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceD_rreq_data_0 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceD_rreq_data_1 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceD_rreq_data_2 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceD_rreq_data_3 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceD_rreq_data_4 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceD_rreq_data_5 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceD_rreq_data_6 = 64'h0; // @[BankedStore.scala:128:19]
wire [63:0] sourceD_rreq_data_7 = 64'h0; // @[BankedStore.scala:128:19]
wire io_sourceC_adr_bits_noop = 1'h0; // @[BankedStore.scala:59:7]
wire io_sourceD_radr_bits_noop = 1'h0; // @[BankedStore.scala:59:7]
wire io_sourceD_wadr_bits_noop = 1'h0; // @[BankedStore.scala:59:7]
wire _sinkC_req_ready_T_2 = 1'h0; // @[BankedStore.scala:131:101]
wire _sinkC_req_ready_T_6 = 1'h0; // @[BankedStore.scala:131:101]
wire _sinkC_req_ready_T_10 = 1'h0; // @[BankedStore.scala:131:101]
wire _sinkC_req_ready_T_14 = 1'h0; // @[BankedStore.scala:131:101]
wire sourceC_req_wen = 1'h0; // @[BankedStore.scala:128:19]
wire sourceD_rreq_wen = 1'h0; // @[BankedStore.scala:128:19]
wire io_sinkD_adr_bits_mask = 1'h1; // @[BankedStore.scala:59:7]
wire io_sourceC_adr_bits_mask = 1'h1; // @[BankedStore.scala:59:7]
wire sinkC_req_wen = 1'h1; // @[BankedStore.scala:128:19]
wire _sinkC_req_ready_T_3 = 1'h1; // @[BankedStore.scala:131:58]
wire _sinkC_req_ready_T_7 = 1'h1; // @[BankedStore.scala:131:58]
wire _sinkC_req_ready_T_11 = 1'h1; // @[BankedStore.scala:131:58]
wire _sinkC_req_ready_T_15 = 1'h1; // @[BankedStore.scala:131:58]
wire _sinkC_req_io_sinkC_adr_ready_T_2; // @[BankedStore.scala:132:21]
wire _sinkC_req_out_bankEn_T = 1'h1; // @[BankedStore.scala:137:72]
wire _sinkC_req_out_bankEn_T_1 = 1'h1; // @[BankedStore.scala:137:72]
wire _sinkC_req_out_bankEn_T_2 = 1'h1; // @[BankedStore.scala:137:72]
wire _sinkC_req_out_bankEn_T_3 = 1'h1; // @[BankedStore.scala:137:72]
wire sinkD_req_wen = 1'h1; // @[BankedStore.scala:128:19]
wire _sinkD_req_out_bankSel_T_9 = 1'h1; // @[BankedStore.scala:136:71]
wire _sourceC_req_out_bankSel_T_9 = 1'h1; // @[BankedStore.scala:136:71]
wire sourceD_wreq_wen = 1'h1; // @[BankedStore.scala:128:19]
wire _sinkD_req_io_sinkD_adr_ready_T_2; // @[BankedStore.scala:132:21]
wire [63:0] sinkD_req_words_0 = io_sinkD_dat_data_0; // @[BankedStore.scala:59:7, :123:19]
wire _sourceC_req_io_sourceC_adr_ready_T_2; // @[BankedStore.scala:132:21]
wire [63:0] decodeC_0; // @[BankedStore.scala:180:85]
wire _sourceD_rreq_io_sourceD_radr_ready_T_2; // @[BankedStore.scala:132:21]
wire [127:0] _io_sourceD_rdat_data_T; // @[BankedStore.scala:189:30]
wire _sourceD_wreq_io_sourceD_wadr_ready_T_2; // @[BankedStore.scala:132:21]
wire io_sinkC_adr_ready_0; // @[BankedStore.scala:59:7]
wire io_sinkD_adr_ready_0; // @[BankedStore.scala:59:7]
wire io_sourceC_adr_ready_0; // @[BankedStore.scala:59:7]
wire [63:0] io_sourceC_dat_data_0; // @[BankedStore.scala:59:7]
wire io_sourceD_radr_ready_0; // @[BankedStore.scala:59:7]
wire [127:0] io_sourceD_rdat_data_0; // @[BankedStore.scala:59:7]
wire io_sourceD_wadr_ready_0; // @[BankedStore.scala:59:7]
wire [14:0] regout_idx; // @[Mux.scala:50:70]
wire _regout_T; // @[BankedStore.scala:171:15]
wire [14:0] _regout_WIRE; // @[BankedStore.scala:172:21]
wire _regout_T_2; // @[BankedStore.scala:172:32]
wire [14:0] regout_idx_1; // @[Mux.scala:50:70]
wire _regout_T_5; // @[BankedStore.scala:171:15]
wire [14:0] _regout_WIRE_1; // @[BankedStore.scala:172:21]
wire _regout_T_7; // @[BankedStore.scala:172:32]
wire [14:0] regout_idx_2; // @[Mux.scala:50:70]
wire _regout_T_10; // @[BankedStore.scala:171:15]
wire [14:0] _regout_WIRE_2; // @[BankedStore.scala:172:21]
wire _regout_T_12; // @[BankedStore.scala:172:32]
wire [14:0] regout_idx_3; // @[Mux.scala:50:70]
wire _regout_T_15; // @[BankedStore.scala:171:15]
wire [14:0] _regout_WIRE_3; // @[BankedStore.scala:172:21]
wire _regout_T_17; // @[BankedStore.scala:172:32]
wire [14:0] regout_idx_4; // @[Mux.scala:50:70]
wire _regout_T_20; // @[BankedStore.scala:171:15]
wire [14:0] _regout_WIRE_4; // @[BankedStore.scala:172:21]
wire _regout_T_22; // @[BankedStore.scala:172:32]
wire [14:0] regout_idx_5; // @[Mux.scala:50:70]
wire _regout_T_25; // @[BankedStore.scala:171:15]
wire [14:0] _regout_WIRE_5; // @[BankedStore.scala:172:21]
wire _regout_T_27; // @[BankedStore.scala:172:32]
wire [14:0] regout_idx_6; // @[Mux.scala:50:70]
wire _regout_T_30; // @[BankedStore.scala:171:15]
wire [14:0] _regout_WIRE_6; // @[BankedStore.scala:172:21]
wire _regout_T_32; // @[BankedStore.scala:172:32]
wire [14:0] regout_idx_7; // @[Mux.scala:50:70]
wire _regout_T_35; // @[BankedStore.scala:171:15]
wire [14:0] _regout_WIRE_7; // @[BankedStore.scala:172:21]
wire _regout_T_37; // @[BankedStore.scala:172:32]
wire [63:0] sinkC_req_words_0 = io_sinkC_dat_data_0[63:0]; // @[BankedStore.scala:59:7, :123:19]
wire [63:0] sinkC_req_data_0 = sinkC_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkC_req_data_2 = sinkC_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkC_req_data_4 = sinkC_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkC_req_data_6 = sinkC_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkC_req_words_1 = io_sinkC_dat_data_0[127:64]; // @[BankedStore.scala:59:7, :123:19]
wire [63:0] sinkC_req_data_1 = sinkC_req_words_1; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkC_req_data_3 = sinkC_req_words_1; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkC_req_data_5 = sinkC_req_words_1; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkC_req_data_7 = sinkC_req_words_1; // @[BankedStore.scala:123:19, :128:19]
wire [14:0] sinkC_req_a_hi = {io_sinkC_adr_bits_way_0, io_sinkC_adr_bits_set_0}; // @[BankedStore.scala:59:7, :126:91]
wire [16:0] sinkC_req_a = {sinkC_req_a_hi, io_sinkC_adr_bits_beat_0}; // @[BankedStore.scala:59:7, :126:91]
wire [14:0] _sinkC_req_out_index_T; // @[BankedStore.scala:135:23]
wire [7:0] _sinkC_req_out_bankSel_T_12; // @[BankedStore.scala:136:24]
wire [7:0] _sinkC_req_out_bankEn_T_9 = sinkC_req_bankSel; // @[BankedStore.scala:128:19, :137:55]
wire [7:0] sourceC_req_bankSum = sinkC_req_bankSel; // @[BankedStore.scala:128:19]
wire [7:0] _sinkC_req_out_bankEn_T_10; // @[BankedStore.scala:137:24]
wire [14:0] sinkC_req_index; // @[BankedStore.scala:128:19]
wire [7:0] sinkC_req_bankEn; // @[BankedStore.scala:128:19]
wire [1:0] _sinkC_req_select_T = sinkC_req_a[1:0]; // @[BankedStore.scala:126:91, :130:28]
wire [1:0] _sinkC_req_io_sinkC_adr_ready_T = sinkC_req_a[1:0]; // @[BankedStore.scala:126:91, :130:28, :132:23]
wire [1:0] sinkC_req_select_shiftAmount = _sinkC_req_select_T; // @[OneHot.scala:64:49]
wire [3:0] _sinkC_req_select_T_1 = 4'h1 << sinkC_req_select_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [3:0] sinkC_req_select = _sinkC_req_select_T_1; // @[OneHot.scala:65:{12,27}]
wire [3:0] _sinkC_req_io_sinkC_adr_ready_T_1 = 4'hF >> _sinkC_req_io_sinkC_adr_ready_T; // @[BankedStore.scala:131:21, :132:{21,23}, :137:72]
assign _sinkC_req_io_sinkC_adr_ready_T_2 = _sinkC_req_io_sinkC_adr_ready_T_1[0]; // @[BankedStore.scala:132:21]
assign io_sinkC_adr_ready_0 = _sinkC_req_io_sinkC_adr_ready_T_2; // @[BankedStore.scala:59:7, :132:21]
assign _sinkC_req_out_index_T = sinkC_req_a[16:2]; // @[BankedStore.scala:126:91, :135:23]
assign sinkC_req_index = _sinkC_req_out_index_T; // @[BankedStore.scala:128:19, :135:23]
wire _sinkC_req_out_bankSel_T = sinkC_req_select[0]; // @[OneHot.scala:65:27]
wire _sinkC_req_out_bankSel_T_1 = sinkC_req_select[1]; // @[OneHot.scala:65:27]
wire _sinkC_req_out_bankSel_T_2 = sinkC_req_select[2]; // @[OneHot.scala:65:27]
wire _sinkC_req_out_bankSel_T_3 = sinkC_req_select[3]; // @[OneHot.scala:65:27]
wire [1:0] _sinkC_req_out_bankSel_T_4 = {2{_sinkC_req_out_bankSel_T}}; // @[BankedStore.scala:136:49]
wire [1:0] _sinkC_req_out_bankSel_T_5 = {2{_sinkC_req_out_bankSel_T_1}}; // @[BankedStore.scala:136:49]
wire [1:0] _sinkC_req_out_bankSel_T_6 = {2{_sinkC_req_out_bankSel_T_2}}; // @[BankedStore.scala:136:49]
wire [1:0] _sinkC_req_out_bankSel_T_7 = {2{_sinkC_req_out_bankSel_T_3}}; // @[BankedStore.scala:136:49]
wire [3:0] sinkC_req_out_bankSel_lo = {_sinkC_req_out_bankSel_T_5, _sinkC_req_out_bankSel_T_4}; // @[BankedStore.scala:136:49]
wire [3:0] sinkC_req_out_bankSel_hi = {_sinkC_req_out_bankSel_T_7, _sinkC_req_out_bankSel_T_6}; // @[BankedStore.scala:136:49]
wire [7:0] _sinkC_req_out_bankSel_T_8 = {sinkC_req_out_bankSel_hi, sinkC_req_out_bankSel_lo}; // @[BankedStore.scala:136:49]
wire [3:0] _sinkC_req_out_bankSel_T_9 = {2{io_sinkC_adr_bits_mask_0}}; // @[BankedStore.scala:59:7, :136:71]
wire [7:0] _sinkC_req_out_bankSel_T_10 = {2{_sinkC_req_out_bankSel_T_9}}; // @[BankedStore.scala:136:71]
wire [7:0] _sinkC_req_out_bankSel_T_11 = _sinkC_req_out_bankSel_T_8 & _sinkC_req_out_bankSel_T_10; // @[BankedStore.scala:136:{49,65,71}]
assign _sinkC_req_out_bankSel_T_12 = io_sinkC_adr_valid_0 ? _sinkC_req_out_bankSel_T_11 : 8'h0; // @[BankedStore.scala:59:7, :136:{24,65}]
assign sinkC_req_bankSel = _sinkC_req_out_bankSel_T_12; // @[BankedStore.scala:128:19, :136:24]
assign _sinkC_req_out_bankEn_T_10 = io_sinkC_adr_bits_noop_0 ? 8'h0 : _sinkC_req_out_bankEn_T_9; // @[BankedStore.scala:59:7, :137:{24,55}]
assign sinkC_req_bankEn = _sinkC_req_out_bankEn_T_10; // @[BankedStore.scala:128:19, :137:24]
wire [63:0] sinkD_req_data_0 = sinkD_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkD_req_data_1 = sinkD_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkD_req_data_2 = sinkD_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkD_req_data_3 = sinkD_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkD_req_data_4 = sinkD_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkD_req_data_5 = sinkD_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkD_req_data_6 = sinkD_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sinkD_req_data_7 = sinkD_req_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [14:0] sinkD_req_a_hi = {io_sinkD_adr_bits_way_0, io_sinkD_adr_bits_set_0}; // @[BankedStore.scala:59:7, :126:91]
wire [17:0] sinkD_req_a = {sinkD_req_a_hi, io_sinkD_adr_bits_beat_0}; // @[BankedStore.scala:59:7, :126:91]
wire [14:0] _sinkD_req_out_index_T; // @[BankedStore.scala:135:23]
wire [7:0] _sinkD_req_out_bankSel_T_12; // @[BankedStore.scala:136:24]
wire [7:0] _sinkD_req_out_bankEn_T_10; // @[BankedStore.scala:137:24]
wire [14:0] sinkD_req_index; // @[BankedStore.scala:128:19]
wire [7:0] sinkD_req_bankSel; // @[BankedStore.scala:128:19]
wire [7:0] sinkD_req_bankSum; // @[BankedStore.scala:128:19]
wire [7:0] sinkD_req_bankEn; // @[BankedStore.scala:128:19]
wire [2:0] _sinkD_req_select_T = sinkD_req_a[2:0]; // @[BankedStore.scala:126:91, :130:28]
wire [2:0] _sinkD_req_io_sinkD_adr_ready_T = sinkD_req_a[2:0]; // @[BankedStore.scala:126:91, :130:28, :132:23]
wire [2:0] sinkD_req_select_shiftAmount = _sinkD_req_select_T; // @[OneHot.scala:64:49]
wire [7:0] _sinkD_req_select_T_1 = 8'h1 << sinkD_req_select_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [7:0] sinkD_req_select = _sinkD_req_select_T_1; // @[OneHot.scala:65:{12,27}]
wire _sinkD_req_ready_T = sinkD_req_bankSum[0]; // @[BankedStore.scala:128:19, :131:71]
wire _sinkD_req_ready_T_1 = _sinkD_req_ready_T; // @[BankedStore.scala:131:{71,96}]
wire _sinkD_req_ready_T_2 = _sinkD_req_ready_T_1; // @[BankedStore.scala:131:{96,101}]
wire _sinkD_req_ready_T_3 = ~_sinkD_req_ready_T_2; // @[BankedStore.scala:131:{58,101}]
wire _sinkD_req_ready_T_4 = sinkD_req_bankSum[1]; // @[BankedStore.scala:128:19, :131:71]
wire _sinkD_req_ready_T_5 = _sinkD_req_ready_T_4; // @[BankedStore.scala:131:{71,96}]
wire _sinkD_req_ready_T_6 = _sinkD_req_ready_T_5; // @[BankedStore.scala:131:{96,101}]
wire _sinkD_req_ready_T_7 = ~_sinkD_req_ready_T_6; // @[BankedStore.scala:131:{58,101}]
wire _sinkD_req_ready_T_8 = sinkD_req_bankSum[2]; // @[BankedStore.scala:128:19, :131:71]
wire _sinkD_req_ready_T_9 = _sinkD_req_ready_T_8; // @[BankedStore.scala:131:{71,96}]
wire _sinkD_req_ready_T_10 = _sinkD_req_ready_T_9; // @[BankedStore.scala:131:{96,101}]
wire _sinkD_req_ready_T_11 = ~_sinkD_req_ready_T_10; // @[BankedStore.scala:131:{58,101}]
wire _sinkD_req_ready_T_12 = sinkD_req_bankSum[3]; // @[BankedStore.scala:128:19, :131:71]
wire _sinkD_req_ready_T_13 = _sinkD_req_ready_T_12; // @[BankedStore.scala:131:{71,96}]
wire _sinkD_req_ready_T_14 = _sinkD_req_ready_T_13; // @[BankedStore.scala:131:{96,101}]
wire _sinkD_req_ready_T_15 = ~_sinkD_req_ready_T_14; // @[BankedStore.scala:131:{58,101}]
wire _sinkD_req_ready_T_16 = sinkD_req_bankSum[4]; // @[BankedStore.scala:128:19, :131:71]
wire _sinkD_req_ready_T_17 = _sinkD_req_ready_T_16; // @[BankedStore.scala:131:{71,96}]
wire _sinkD_req_ready_T_18 = _sinkD_req_ready_T_17; // @[BankedStore.scala:131:{96,101}]
wire _sinkD_req_ready_T_19 = ~_sinkD_req_ready_T_18; // @[BankedStore.scala:131:{58,101}]
wire _sinkD_req_ready_T_20 = sinkD_req_bankSum[5]; // @[BankedStore.scala:128:19, :131:71]
wire _sinkD_req_ready_T_21 = _sinkD_req_ready_T_20; // @[BankedStore.scala:131:{71,96}]
wire _sinkD_req_ready_T_22 = _sinkD_req_ready_T_21; // @[BankedStore.scala:131:{96,101}]
wire _sinkD_req_ready_T_23 = ~_sinkD_req_ready_T_22; // @[BankedStore.scala:131:{58,101}]
wire _sinkD_req_ready_T_24 = sinkD_req_bankSum[6]; // @[BankedStore.scala:128:19, :131:71]
wire _sinkD_req_ready_T_25 = _sinkD_req_ready_T_24; // @[BankedStore.scala:131:{71,96}]
wire _sinkD_req_ready_T_26 = _sinkD_req_ready_T_25; // @[BankedStore.scala:131:{96,101}]
wire _sinkD_req_ready_T_27 = ~_sinkD_req_ready_T_26; // @[BankedStore.scala:131:{58,101}]
wire _sinkD_req_ready_T_28 = sinkD_req_bankSum[7]; // @[BankedStore.scala:128:19, :131:71]
wire _sinkD_req_ready_T_29 = _sinkD_req_ready_T_28; // @[BankedStore.scala:131:{71,96}]
wire _sinkD_req_ready_T_30 = _sinkD_req_ready_T_29; // @[BankedStore.scala:131:{96,101}]
wire _sinkD_req_ready_T_31 = ~_sinkD_req_ready_T_30; // @[BankedStore.scala:131:{58,101}]
wire [1:0] sinkD_req_ready_lo_lo = {_sinkD_req_ready_T_7, _sinkD_req_ready_T_3}; // @[BankedStore.scala:131:{21,58}]
wire [1:0] sinkD_req_ready_lo_hi = {_sinkD_req_ready_T_15, _sinkD_req_ready_T_11}; // @[BankedStore.scala:131:{21,58}]
wire [3:0] sinkD_req_ready_lo = {sinkD_req_ready_lo_hi, sinkD_req_ready_lo_lo}; // @[BankedStore.scala:131:21]
wire [1:0] sinkD_req_ready_hi_lo = {_sinkD_req_ready_T_23, _sinkD_req_ready_T_19}; // @[BankedStore.scala:131:{21,58}]
wire [1:0] sinkD_req_ready_hi_hi = {_sinkD_req_ready_T_31, _sinkD_req_ready_T_27}; // @[BankedStore.scala:131:{21,58}]
wire [3:0] sinkD_req_ready_hi = {sinkD_req_ready_hi_hi, sinkD_req_ready_hi_lo}; // @[BankedStore.scala:131:21]
wire [7:0] sinkD_req_ready = {sinkD_req_ready_hi, sinkD_req_ready_lo}; // @[BankedStore.scala:131:21]
wire [7:0] _sinkD_req_io_sinkD_adr_ready_T_1 = sinkD_req_ready >> _sinkD_req_io_sinkD_adr_ready_T; // @[BankedStore.scala:131:21, :132:{21,23}]
assign _sinkD_req_io_sinkD_adr_ready_T_2 = _sinkD_req_io_sinkD_adr_ready_T_1[0]; // @[BankedStore.scala:132:21]
assign io_sinkD_adr_ready_0 = _sinkD_req_io_sinkD_adr_ready_T_2; // @[BankedStore.scala:59:7, :132:21]
assign _sinkD_req_out_index_T = sinkD_req_a[17:3]; // @[BankedStore.scala:126:91, :135:23]
assign sinkD_req_index = _sinkD_req_out_index_T; // @[BankedStore.scala:128:19, :135:23]
wire _sinkD_req_out_bankSel_T = sinkD_req_select[0]; // @[OneHot.scala:65:27]
wire _sinkD_req_out_bankSel_T_1 = sinkD_req_select[1]; // @[OneHot.scala:65:27]
wire _sinkD_req_out_bankSel_T_2 = sinkD_req_select[2]; // @[OneHot.scala:65:27]
wire _sinkD_req_out_bankSel_T_3 = sinkD_req_select[3]; // @[OneHot.scala:65:27]
wire _sinkD_req_out_bankSel_T_4 = sinkD_req_select[4]; // @[OneHot.scala:65:27]
wire _sinkD_req_out_bankSel_T_5 = sinkD_req_select[5]; // @[OneHot.scala:65:27]
wire _sinkD_req_out_bankSel_T_6 = sinkD_req_select[6]; // @[OneHot.scala:65:27]
wire _sinkD_req_out_bankSel_T_7 = sinkD_req_select[7]; // @[OneHot.scala:65:27]
wire [1:0] sinkD_req_out_bankSel_lo_lo = {_sinkD_req_out_bankSel_T_1, _sinkD_req_out_bankSel_T}; // @[BankedStore.scala:136:49]
wire [1:0] sinkD_req_out_bankSel_lo_hi = {_sinkD_req_out_bankSel_T_3, _sinkD_req_out_bankSel_T_2}; // @[BankedStore.scala:136:49]
wire [3:0] sinkD_req_out_bankSel_lo = {sinkD_req_out_bankSel_lo_hi, sinkD_req_out_bankSel_lo_lo}; // @[BankedStore.scala:136:49]
wire [1:0] sinkD_req_out_bankSel_hi_lo = {_sinkD_req_out_bankSel_T_5, _sinkD_req_out_bankSel_T_4}; // @[BankedStore.scala:136:49]
wire [1:0] sinkD_req_out_bankSel_hi_hi = {_sinkD_req_out_bankSel_T_7, _sinkD_req_out_bankSel_T_6}; // @[BankedStore.scala:136:49]
wire [3:0] sinkD_req_out_bankSel_hi = {sinkD_req_out_bankSel_hi_hi, sinkD_req_out_bankSel_hi_lo}; // @[BankedStore.scala:136:49]
wire [7:0] _sinkD_req_out_bankSel_T_8 = {sinkD_req_out_bankSel_hi, sinkD_req_out_bankSel_lo}; // @[BankedStore.scala:136:49]
wire [7:0] _sinkD_req_out_bankSel_T_11 = _sinkD_req_out_bankSel_T_8; // @[BankedStore.scala:136:{49,65}]
assign _sinkD_req_out_bankSel_T_12 = io_sinkD_adr_valid_0 ? _sinkD_req_out_bankSel_T_11 : 8'h0; // @[BankedStore.scala:59:7, :136:{24,65}]
assign sinkD_req_bankSel = _sinkD_req_out_bankSel_T_12; // @[BankedStore.scala:128:19, :136:24]
wire _sinkD_req_out_bankEn_T = sinkD_req_ready[0]; // @[BankedStore.scala:131:21, :137:72]
wire _sinkD_req_out_bankEn_T_1 = sinkD_req_ready[1]; // @[BankedStore.scala:131:21, :137:72]
wire _sinkD_req_out_bankEn_T_2 = sinkD_req_ready[2]; // @[BankedStore.scala:131:21, :137:72]
wire _sinkD_req_out_bankEn_T_3 = sinkD_req_ready[3]; // @[BankedStore.scala:131:21, :137:72]
wire _sinkD_req_out_bankEn_T_4 = sinkD_req_ready[4]; // @[BankedStore.scala:131:21, :137:72]
wire _sinkD_req_out_bankEn_T_5 = sinkD_req_ready[5]; // @[BankedStore.scala:131:21, :137:72]
wire _sinkD_req_out_bankEn_T_6 = sinkD_req_ready[6]; // @[BankedStore.scala:131:21, :137:72]
wire _sinkD_req_out_bankEn_T_7 = sinkD_req_ready[7]; // @[BankedStore.scala:131:21, :137:72]
wire [1:0] sinkD_req_out_bankEn_lo_lo = {_sinkD_req_out_bankEn_T_1, _sinkD_req_out_bankEn_T}; // @[BankedStore.scala:137:72]
wire [1:0] sinkD_req_out_bankEn_lo_hi = {_sinkD_req_out_bankEn_T_3, _sinkD_req_out_bankEn_T_2}; // @[BankedStore.scala:137:72]
wire [3:0] sinkD_req_out_bankEn_lo = {sinkD_req_out_bankEn_lo_hi, sinkD_req_out_bankEn_lo_lo}; // @[BankedStore.scala:137:72]
wire [1:0] sinkD_req_out_bankEn_hi_lo = {_sinkD_req_out_bankEn_T_5, _sinkD_req_out_bankEn_T_4}; // @[BankedStore.scala:137:72]
wire [1:0] sinkD_req_out_bankEn_hi_hi = {_sinkD_req_out_bankEn_T_7, _sinkD_req_out_bankEn_T_6}; // @[BankedStore.scala:137:72]
wire [3:0] sinkD_req_out_bankEn_hi = {sinkD_req_out_bankEn_hi_hi, sinkD_req_out_bankEn_hi_lo}; // @[BankedStore.scala:137:72]
wire [7:0] _sinkD_req_out_bankEn_T_8 = {sinkD_req_out_bankEn_hi, sinkD_req_out_bankEn_lo}; // @[BankedStore.scala:137:72]
wire [7:0] _sinkD_req_out_bankEn_T_9 = sinkD_req_bankSel & _sinkD_req_out_bankEn_T_8; // @[BankedStore.scala:128:19, :137:{55,72}]
assign _sinkD_req_out_bankEn_T_10 = io_sinkD_adr_bits_noop_0 ? 8'h0 : _sinkD_req_out_bankEn_T_9; // @[BankedStore.scala:59:7, :137:{24,55}]
assign sinkD_req_bankEn = _sinkD_req_out_bankEn_T_10; // @[BankedStore.scala:128:19, :137:24]
wire [14:0] sourceC_req_a_hi = {io_sourceC_adr_bits_way_0, io_sourceC_adr_bits_set_0}; // @[BankedStore.scala:59:7, :126:91]
wire [17:0] sourceC_req_a = {sourceC_req_a_hi, io_sourceC_adr_bits_beat_0}; // @[BankedStore.scala:59:7, :126:91]
wire [14:0] _sourceC_req_out_index_T; // @[BankedStore.scala:135:23]
wire [7:0] _sourceC_req_out_bankSel_T_12; // @[BankedStore.scala:136:24]
wire [7:0] _sourceC_req_out_bankEn_T_10; // @[BankedStore.scala:137:24]
wire [14:0] sourceC_req_index; // @[BankedStore.scala:128:19]
wire [7:0] sourceC_req_bankSel; // @[BankedStore.scala:128:19]
wire [7:0] sourceC_req_bankEn; // @[BankedStore.scala:128:19]
wire [2:0] _sourceC_req_select_T = sourceC_req_a[2:0]; // @[BankedStore.scala:126:91, :130:28]
wire [2:0] _sourceC_req_io_sourceC_adr_ready_T = sourceC_req_a[2:0]; // @[BankedStore.scala:126:91, :130:28, :132:23]
wire [2:0] sourceC_req_select_shiftAmount = _sourceC_req_select_T; // @[OneHot.scala:64:49]
wire [7:0] _sourceC_req_select_T_1 = 8'h1 << sourceC_req_select_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [7:0] sourceC_req_select = _sourceC_req_select_T_1; // @[OneHot.scala:65:{12,27}]
wire _sourceC_req_ready_T = sourceC_req_bankSum[0]; // @[BankedStore.scala:128:19, :131:71]
wire _sourceC_req_ready_T_1 = _sourceC_req_ready_T; // @[BankedStore.scala:131:{71,96}]
wire _sourceC_req_ready_T_2 = _sourceC_req_ready_T_1; // @[BankedStore.scala:131:{96,101}]
wire _sourceC_req_ready_T_3 = ~_sourceC_req_ready_T_2; // @[BankedStore.scala:131:{58,101}]
wire _sourceC_req_ready_T_4 = sourceC_req_bankSum[1]; // @[BankedStore.scala:128:19, :131:71]
wire _sourceC_req_ready_T_5 = _sourceC_req_ready_T_4; // @[BankedStore.scala:131:{71,96}]
wire _sourceC_req_ready_T_6 = _sourceC_req_ready_T_5; // @[BankedStore.scala:131:{96,101}]
wire _sourceC_req_ready_T_7 = ~_sourceC_req_ready_T_6; // @[BankedStore.scala:131:{58,101}]
wire _sourceC_req_ready_T_8 = sourceC_req_bankSum[2]; // @[BankedStore.scala:128:19, :131:71]
wire _sourceC_req_ready_T_9 = _sourceC_req_ready_T_8; // @[BankedStore.scala:131:{71,96}]
wire _sourceC_req_ready_T_10 = _sourceC_req_ready_T_9; // @[BankedStore.scala:131:{96,101}]
wire _sourceC_req_ready_T_11 = ~_sourceC_req_ready_T_10; // @[BankedStore.scala:131:{58,101}]
wire _sourceC_req_ready_T_12 = sourceC_req_bankSum[3]; // @[BankedStore.scala:128:19, :131:71]
wire _sourceC_req_ready_T_13 = _sourceC_req_ready_T_12; // @[BankedStore.scala:131:{71,96}]
wire _sourceC_req_ready_T_14 = _sourceC_req_ready_T_13; // @[BankedStore.scala:131:{96,101}]
wire _sourceC_req_ready_T_15 = ~_sourceC_req_ready_T_14; // @[BankedStore.scala:131:{58,101}]
wire _sourceC_req_ready_T_16 = sourceC_req_bankSum[4]; // @[BankedStore.scala:128:19, :131:71]
wire _sourceC_req_ready_T_17 = _sourceC_req_ready_T_16; // @[BankedStore.scala:131:{71,96}]
wire _sourceC_req_ready_T_18 = _sourceC_req_ready_T_17; // @[BankedStore.scala:131:{96,101}]
wire _sourceC_req_ready_T_19 = ~_sourceC_req_ready_T_18; // @[BankedStore.scala:131:{58,101}]
wire _sourceC_req_ready_T_20 = sourceC_req_bankSum[5]; // @[BankedStore.scala:128:19, :131:71]
wire _sourceC_req_ready_T_21 = _sourceC_req_ready_T_20; // @[BankedStore.scala:131:{71,96}]
wire _sourceC_req_ready_T_22 = _sourceC_req_ready_T_21; // @[BankedStore.scala:131:{96,101}]
wire _sourceC_req_ready_T_23 = ~_sourceC_req_ready_T_22; // @[BankedStore.scala:131:{58,101}]
wire _sourceC_req_ready_T_24 = sourceC_req_bankSum[6]; // @[BankedStore.scala:128:19, :131:71]
wire _sourceC_req_ready_T_25 = _sourceC_req_ready_T_24; // @[BankedStore.scala:131:{71,96}]
wire _sourceC_req_ready_T_26 = _sourceC_req_ready_T_25; // @[BankedStore.scala:131:{96,101}]
wire _sourceC_req_ready_T_27 = ~_sourceC_req_ready_T_26; // @[BankedStore.scala:131:{58,101}]
wire _sourceC_req_ready_T_28 = sourceC_req_bankSum[7]; // @[BankedStore.scala:128:19, :131:71]
wire _sourceC_req_ready_T_29 = _sourceC_req_ready_T_28; // @[BankedStore.scala:131:{71,96}]
wire _sourceC_req_ready_T_30 = _sourceC_req_ready_T_29; // @[BankedStore.scala:131:{96,101}]
wire _sourceC_req_ready_T_31 = ~_sourceC_req_ready_T_30; // @[BankedStore.scala:131:{58,101}]
wire [1:0] sourceC_req_ready_lo_lo = {_sourceC_req_ready_T_7, _sourceC_req_ready_T_3}; // @[BankedStore.scala:131:{21,58}]
wire [1:0] sourceC_req_ready_lo_hi = {_sourceC_req_ready_T_15, _sourceC_req_ready_T_11}; // @[BankedStore.scala:131:{21,58}]
wire [3:0] sourceC_req_ready_lo = {sourceC_req_ready_lo_hi, sourceC_req_ready_lo_lo}; // @[BankedStore.scala:131:21]
wire [1:0] sourceC_req_ready_hi_lo = {_sourceC_req_ready_T_23, _sourceC_req_ready_T_19}; // @[BankedStore.scala:131:{21,58}]
wire [1:0] sourceC_req_ready_hi_hi = {_sourceC_req_ready_T_31, _sourceC_req_ready_T_27}; // @[BankedStore.scala:131:{21,58}]
wire [3:0] sourceC_req_ready_hi = {sourceC_req_ready_hi_hi, sourceC_req_ready_hi_lo}; // @[BankedStore.scala:131:21]
wire [7:0] sourceC_req_ready = {sourceC_req_ready_hi, sourceC_req_ready_lo}; // @[BankedStore.scala:131:21]
wire [7:0] _sourceC_req_io_sourceC_adr_ready_T_1 = sourceC_req_ready >> _sourceC_req_io_sourceC_adr_ready_T; // @[BankedStore.scala:131:21, :132:{21,23}]
assign _sourceC_req_io_sourceC_adr_ready_T_2 = _sourceC_req_io_sourceC_adr_ready_T_1[0]; // @[BankedStore.scala:132:21]
assign io_sourceC_adr_ready_0 = _sourceC_req_io_sourceC_adr_ready_T_2; // @[BankedStore.scala:59:7, :132:21]
assign _sourceC_req_out_index_T = sourceC_req_a[17:3]; // @[BankedStore.scala:126:91, :135:23]
assign sourceC_req_index = _sourceC_req_out_index_T; // @[BankedStore.scala:128:19, :135:23]
wire _sourceC_req_out_bankSel_T = sourceC_req_select[0]; // @[OneHot.scala:65:27]
wire _sourceC_req_out_bankSel_T_1 = sourceC_req_select[1]; // @[OneHot.scala:65:27]
wire _sourceC_req_out_bankSel_T_2 = sourceC_req_select[2]; // @[OneHot.scala:65:27]
wire _sourceC_req_out_bankSel_T_3 = sourceC_req_select[3]; // @[OneHot.scala:65:27]
wire _sourceC_req_out_bankSel_T_4 = sourceC_req_select[4]; // @[OneHot.scala:65:27]
wire _sourceC_req_out_bankSel_T_5 = sourceC_req_select[5]; // @[OneHot.scala:65:27]
wire _sourceC_req_out_bankSel_T_6 = sourceC_req_select[6]; // @[OneHot.scala:65:27]
wire _sourceC_req_out_bankSel_T_7 = sourceC_req_select[7]; // @[OneHot.scala:65:27]
wire [1:0] sourceC_req_out_bankSel_lo_lo = {_sourceC_req_out_bankSel_T_1, _sourceC_req_out_bankSel_T}; // @[BankedStore.scala:136:49]
wire [1:0] sourceC_req_out_bankSel_lo_hi = {_sourceC_req_out_bankSel_T_3, _sourceC_req_out_bankSel_T_2}; // @[BankedStore.scala:136:49]
wire [3:0] sourceC_req_out_bankSel_lo = {sourceC_req_out_bankSel_lo_hi, sourceC_req_out_bankSel_lo_lo}; // @[BankedStore.scala:136:49]
wire [1:0] sourceC_req_out_bankSel_hi_lo = {_sourceC_req_out_bankSel_T_5, _sourceC_req_out_bankSel_T_4}; // @[BankedStore.scala:136:49]
wire [1:0] sourceC_req_out_bankSel_hi_hi = {_sourceC_req_out_bankSel_T_7, _sourceC_req_out_bankSel_T_6}; // @[BankedStore.scala:136:49]
wire [3:0] sourceC_req_out_bankSel_hi = {sourceC_req_out_bankSel_hi_hi, sourceC_req_out_bankSel_hi_lo}; // @[BankedStore.scala:136:49]
wire [7:0] _sourceC_req_out_bankSel_T_8 = {sourceC_req_out_bankSel_hi, sourceC_req_out_bankSel_lo}; // @[BankedStore.scala:136:49]
wire [7:0] _sourceC_req_out_bankSel_T_11 = _sourceC_req_out_bankSel_T_8; // @[BankedStore.scala:136:{49,65}]
assign _sourceC_req_out_bankSel_T_12 = io_sourceC_adr_valid_0 ? _sourceC_req_out_bankSel_T_11 : 8'h0; // @[BankedStore.scala:59:7, :136:{24,65}]
assign sourceC_req_bankSel = _sourceC_req_out_bankSel_T_12; // @[BankedStore.scala:128:19, :136:24]
wire _sourceC_req_out_bankEn_T = sourceC_req_ready[0]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceC_req_out_bankEn_T_1 = sourceC_req_ready[1]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceC_req_out_bankEn_T_2 = sourceC_req_ready[2]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceC_req_out_bankEn_T_3 = sourceC_req_ready[3]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceC_req_out_bankEn_T_4 = sourceC_req_ready[4]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceC_req_out_bankEn_T_5 = sourceC_req_ready[5]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceC_req_out_bankEn_T_6 = sourceC_req_ready[6]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceC_req_out_bankEn_T_7 = sourceC_req_ready[7]; // @[BankedStore.scala:131:21, :137:72]
wire [1:0] sourceC_req_out_bankEn_lo_lo = {_sourceC_req_out_bankEn_T_1, _sourceC_req_out_bankEn_T}; // @[BankedStore.scala:137:72]
wire [1:0] sourceC_req_out_bankEn_lo_hi = {_sourceC_req_out_bankEn_T_3, _sourceC_req_out_bankEn_T_2}; // @[BankedStore.scala:137:72]
wire [3:0] sourceC_req_out_bankEn_lo = {sourceC_req_out_bankEn_lo_hi, sourceC_req_out_bankEn_lo_lo}; // @[BankedStore.scala:137:72]
wire [1:0] sourceC_req_out_bankEn_hi_lo = {_sourceC_req_out_bankEn_T_5, _sourceC_req_out_bankEn_T_4}; // @[BankedStore.scala:137:72]
wire [1:0] sourceC_req_out_bankEn_hi_hi = {_sourceC_req_out_bankEn_T_7, _sourceC_req_out_bankEn_T_6}; // @[BankedStore.scala:137:72]
wire [3:0] sourceC_req_out_bankEn_hi = {sourceC_req_out_bankEn_hi_hi, sourceC_req_out_bankEn_hi_lo}; // @[BankedStore.scala:137:72]
wire [7:0] _sourceC_req_out_bankEn_T_8 = {sourceC_req_out_bankEn_hi, sourceC_req_out_bankEn_lo}; // @[BankedStore.scala:137:72]
wire [7:0] _sourceC_req_out_bankEn_T_9 = sourceC_req_bankSel & _sourceC_req_out_bankEn_T_8; // @[BankedStore.scala:128:19, :137:{55,72}]
assign _sourceC_req_out_bankEn_T_10 = _sourceC_req_out_bankEn_T_9; // @[BankedStore.scala:137:{24,55}]
assign sourceC_req_bankEn = _sourceC_req_out_bankEn_T_10; // @[BankedStore.scala:128:19, :137:24]
wire [14:0] sourceD_rreq_a_hi = {io_sourceD_radr_bits_way_0, io_sourceD_radr_bits_set_0}; // @[BankedStore.scala:59:7, :126:91]
wire [16:0] sourceD_rreq_a = {sourceD_rreq_a_hi, io_sourceD_radr_bits_beat_0}; // @[BankedStore.scala:59:7, :126:91]
wire [14:0] _sourceD_rreq_out_index_T; // @[BankedStore.scala:135:23]
wire [7:0] _sourceD_rreq_out_bankSel_T_12; // @[BankedStore.scala:136:24]
wire [7:0] _sourceD_rreq_out_bankEn_T_10; // @[BankedStore.scala:137:24]
wire [14:0] sourceD_rreq_index; // @[BankedStore.scala:128:19]
wire [7:0] sourceD_rreq_bankSel; // @[BankedStore.scala:128:19]
wire [7:0] sourceD_rreq_bankSum; // @[BankedStore.scala:128:19]
wire [7:0] sourceD_rreq_bankEn; // @[BankedStore.scala:128:19]
wire [1:0] _sourceD_rreq_select_T = sourceD_rreq_a[1:0]; // @[BankedStore.scala:126:91, :130:28]
wire [1:0] _sourceD_rreq_io_sourceD_radr_ready_T = sourceD_rreq_a[1:0]; // @[BankedStore.scala:126:91, :130:28, :132:23]
wire [1:0] sourceD_rreq_select_shiftAmount = _sourceD_rreq_select_T; // @[OneHot.scala:64:49]
wire [3:0] _sourceD_rreq_select_T_1 = 4'h1 << sourceD_rreq_select_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [3:0] sourceD_rreq_select = _sourceD_rreq_select_T_1; // @[OneHot.scala:65:{12,27}]
wire [1:0] _sourceD_rreq_ready_T = sourceD_rreq_bankSum[1:0]; // @[BankedStore.scala:128:19, :131:71]
wire [1:0] _sourceD_rreq_ready_T_1 = _sourceD_rreq_ready_T & io_sourceD_radr_bits_mask_0; // @[BankedStore.scala:59:7, :131:{71,96}]
wire _sourceD_rreq_ready_T_2 = |_sourceD_rreq_ready_T_1; // @[BankedStore.scala:131:{96,101}]
wire _sourceD_rreq_ready_T_3 = ~_sourceD_rreq_ready_T_2; // @[BankedStore.scala:131:{58,101}]
wire [1:0] _sourceD_rreq_ready_T_4 = sourceD_rreq_bankSum[3:2]; // @[BankedStore.scala:128:19, :131:71]
wire [1:0] _sourceD_rreq_ready_T_5 = _sourceD_rreq_ready_T_4 & io_sourceD_radr_bits_mask_0; // @[BankedStore.scala:59:7, :131:{71,96}]
wire _sourceD_rreq_ready_T_6 = |_sourceD_rreq_ready_T_5; // @[BankedStore.scala:131:{96,101}]
wire _sourceD_rreq_ready_T_7 = ~_sourceD_rreq_ready_T_6; // @[BankedStore.scala:131:{58,101}]
wire [1:0] _sourceD_rreq_ready_T_8 = sourceD_rreq_bankSum[5:4]; // @[BankedStore.scala:128:19, :131:71]
wire [1:0] _sourceD_rreq_ready_T_9 = _sourceD_rreq_ready_T_8 & io_sourceD_radr_bits_mask_0; // @[BankedStore.scala:59:7, :131:{71,96}]
wire _sourceD_rreq_ready_T_10 = |_sourceD_rreq_ready_T_9; // @[BankedStore.scala:131:{96,101}]
wire _sourceD_rreq_ready_T_11 = ~_sourceD_rreq_ready_T_10; // @[BankedStore.scala:131:{58,101}]
wire [1:0] _sourceD_rreq_ready_T_12 = sourceD_rreq_bankSum[7:6]; // @[BankedStore.scala:128:19, :131:71]
wire [1:0] _sourceD_rreq_ready_T_13 = _sourceD_rreq_ready_T_12 & io_sourceD_radr_bits_mask_0; // @[BankedStore.scala:59:7, :131:{71,96}]
wire _sourceD_rreq_ready_T_14 = |_sourceD_rreq_ready_T_13; // @[BankedStore.scala:131:{96,101}]
wire _sourceD_rreq_ready_T_15 = ~_sourceD_rreq_ready_T_14; // @[BankedStore.scala:131:{58,101}]
wire [1:0] sourceD_rreq_ready_lo = {_sourceD_rreq_ready_T_7, _sourceD_rreq_ready_T_3}; // @[BankedStore.scala:131:{21,58}]
wire [1:0] sourceD_rreq_ready_hi = {_sourceD_rreq_ready_T_15, _sourceD_rreq_ready_T_11}; // @[BankedStore.scala:131:{21,58}]
wire [3:0] sourceD_rreq_ready = {sourceD_rreq_ready_hi, sourceD_rreq_ready_lo}; // @[BankedStore.scala:131:21]
wire [3:0] _sourceD_rreq_io_sourceD_radr_ready_T_1 = sourceD_rreq_ready >> _sourceD_rreq_io_sourceD_radr_ready_T; // @[BankedStore.scala:131:21, :132:{21,23}]
assign _sourceD_rreq_io_sourceD_radr_ready_T_2 = _sourceD_rreq_io_sourceD_radr_ready_T_1[0]; // @[BankedStore.scala:132:21]
assign io_sourceD_radr_ready_0 = _sourceD_rreq_io_sourceD_radr_ready_T_2; // @[BankedStore.scala:59:7, :132:21]
assign _sourceD_rreq_out_index_T = sourceD_rreq_a[16:2]; // @[BankedStore.scala:126:91, :135:23]
assign sourceD_rreq_index = _sourceD_rreq_out_index_T; // @[BankedStore.scala:128:19, :135:23]
wire _sourceD_rreq_out_bankSel_T = sourceD_rreq_select[0]; // @[OneHot.scala:65:27]
wire _sourceD_rreq_out_bankSel_T_1 = sourceD_rreq_select[1]; // @[OneHot.scala:65:27]
wire _sourceD_rreq_out_bankSel_T_2 = sourceD_rreq_select[2]; // @[OneHot.scala:65:27]
wire _sourceD_rreq_out_bankSel_T_3 = sourceD_rreq_select[3]; // @[OneHot.scala:65:27]
wire [1:0] _sourceD_rreq_out_bankSel_T_4 = {2{_sourceD_rreq_out_bankSel_T}}; // @[BankedStore.scala:136:49]
wire [1:0] _sourceD_rreq_out_bankSel_T_5 = {2{_sourceD_rreq_out_bankSel_T_1}}; // @[BankedStore.scala:136:49]
wire [1:0] _sourceD_rreq_out_bankSel_T_6 = {2{_sourceD_rreq_out_bankSel_T_2}}; // @[BankedStore.scala:136:49]
wire [1:0] _sourceD_rreq_out_bankSel_T_7 = {2{_sourceD_rreq_out_bankSel_T_3}}; // @[BankedStore.scala:136:49]
wire [3:0] sourceD_rreq_out_bankSel_lo = {_sourceD_rreq_out_bankSel_T_5, _sourceD_rreq_out_bankSel_T_4}; // @[BankedStore.scala:136:49]
wire [3:0] sourceD_rreq_out_bankSel_hi = {_sourceD_rreq_out_bankSel_T_7, _sourceD_rreq_out_bankSel_T_6}; // @[BankedStore.scala:136:49]
wire [7:0] _sourceD_rreq_out_bankSel_T_8 = {sourceD_rreq_out_bankSel_hi, sourceD_rreq_out_bankSel_lo}; // @[BankedStore.scala:136:49]
wire [3:0] _sourceD_rreq_out_bankSel_T_9 = {2{io_sourceD_radr_bits_mask_0}}; // @[BankedStore.scala:59:7, :136:71]
wire [7:0] _sourceD_rreq_out_bankSel_T_10 = {2{_sourceD_rreq_out_bankSel_T_9}}; // @[BankedStore.scala:136:71]
wire [7:0] _sourceD_rreq_out_bankSel_T_11 = _sourceD_rreq_out_bankSel_T_8 & _sourceD_rreq_out_bankSel_T_10; // @[BankedStore.scala:136:{49,65,71}]
assign _sourceD_rreq_out_bankSel_T_12 = io_sourceD_radr_valid_0 ? _sourceD_rreq_out_bankSel_T_11 : 8'h0; // @[BankedStore.scala:59:7, :136:{24,65}]
assign sourceD_rreq_bankSel = _sourceD_rreq_out_bankSel_T_12; // @[BankedStore.scala:128:19, :136:24]
wire _sourceD_rreq_out_bankEn_T = sourceD_rreq_ready[0]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceD_rreq_out_bankEn_T_1 = sourceD_rreq_ready[1]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceD_rreq_out_bankEn_T_2 = sourceD_rreq_ready[2]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceD_rreq_out_bankEn_T_3 = sourceD_rreq_ready[3]; // @[BankedStore.scala:131:21, :137:72]
wire [1:0] _sourceD_rreq_out_bankEn_T_4 = {2{_sourceD_rreq_out_bankEn_T}}; // @[BankedStore.scala:137:72]
wire [1:0] _sourceD_rreq_out_bankEn_T_5 = {2{_sourceD_rreq_out_bankEn_T_1}}; // @[BankedStore.scala:137:72]
wire [1:0] _sourceD_rreq_out_bankEn_T_6 = {2{_sourceD_rreq_out_bankEn_T_2}}; // @[BankedStore.scala:137:72]
wire [1:0] _sourceD_rreq_out_bankEn_T_7 = {2{_sourceD_rreq_out_bankEn_T_3}}; // @[BankedStore.scala:137:72]
wire [3:0] sourceD_rreq_out_bankEn_lo = {_sourceD_rreq_out_bankEn_T_5, _sourceD_rreq_out_bankEn_T_4}; // @[BankedStore.scala:137:72]
wire [3:0] sourceD_rreq_out_bankEn_hi = {_sourceD_rreq_out_bankEn_T_7, _sourceD_rreq_out_bankEn_T_6}; // @[BankedStore.scala:137:72]
wire [7:0] _sourceD_rreq_out_bankEn_T_8 = {sourceD_rreq_out_bankEn_hi, sourceD_rreq_out_bankEn_lo}; // @[BankedStore.scala:137:72]
wire [7:0] _sourceD_rreq_out_bankEn_T_9 = sourceD_rreq_bankSel & _sourceD_rreq_out_bankEn_T_8; // @[BankedStore.scala:128:19, :137:{55,72}]
assign _sourceD_rreq_out_bankEn_T_10 = _sourceD_rreq_out_bankEn_T_9; // @[BankedStore.scala:137:{24,55}]
assign sourceD_rreq_bankEn = _sourceD_rreq_out_bankEn_T_10; // @[BankedStore.scala:128:19, :137:24]
wire [63:0] sourceD_wreq_words_0 = io_sourceD_wdat_data_0[63:0]; // @[BankedStore.scala:59:7, :123:19]
wire [63:0] sourceD_wreq_data_0 = sourceD_wreq_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sourceD_wreq_data_2 = sourceD_wreq_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sourceD_wreq_data_4 = sourceD_wreq_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sourceD_wreq_data_6 = sourceD_wreq_words_0; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sourceD_wreq_words_1 = io_sourceD_wdat_data_0[127:64]; // @[BankedStore.scala:59:7, :123:19]
wire [63:0] sourceD_wreq_data_1 = sourceD_wreq_words_1; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sourceD_wreq_data_3 = sourceD_wreq_words_1; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sourceD_wreq_data_5 = sourceD_wreq_words_1; // @[BankedStore.scala:123:19, :128:19]
wire [63:0] sourceD_wreq_data_7 = sourceD_wreq_words_1; // @[BankedStore.scala:123:19, :128:19]
wire [14:0] sourceD_wreq_a_hi = {io_sourceD_wadr_bits_way_0, io_sourceD_wadr_bits_set_0}; // @[BankedStore.scala:59:7, :126:91]
wire [16:0] sourceD_wreq_a = {sourceD_wreq_a_hi, io_sourceD_wadr_bits_beat_0}; // @[BankedStore.scala:59:7, :126:91]
wire [14:0] _sourceD_wreq_out_index_T; // @[BankedStore.scala:135:23]
wire [7:0] _sourceD_wreq_out_bankSel_T_12; // @[BankedStore.scala:136:24]
wire [7:0] _sourceD_wreq_out_bankEn_T_10; // @[BankedStore.scala:137:24]
wire [14:0] sourceD_wreq_index; // @[BankedStore.scala:128:19]
wire [7:0] sourceD_wreq_bankSel; // @[BankedStore.scala:128:19]
wire [7:0] sourceD_wreq_bankSum; // @[BankedStore.scala:128:19]
wire [7:0] sourceD_wreq_bankEn; // @[BankedStore.scala:128:19]
wire [1:0] _sourceD_wreq_select_T = sourceD_wreq_a[1:0]; // @[BankedStore.scala:126:91, :130:28]
wire [1:0] _sourceD_wreq_io_sourceD_wadr_ready_T = sourceD_wreq_a[1:0]; // @[BankedStore.scala:126:91, :130:28, :132:23]
wire [1:0] sourceD_wreq_select_shiftAmount = _sourceD_wreq_select_T; // @[OneHot.scala:64:49]
wire [3:0] _sourceD_wreq_select_T_1 = 4'h1 << sourceD_wreq_select_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [3:0] sourceD_wreq_select = _sourceD_wreq_select_T_1; // @[OneHot.scala:65:{12,27}]
wire [1:0] _sourceD_wreq_ready_T = sourceD_wreq_bankSum[1:0]; // @[BankedStore.scala:128:19, :131:71]
wire [1:0] _sourceD_wreq_ready_T_1 = _sourceD_wreq_ready_T & io_sourceD_wadr_bits_mask_0; // @[BankedStore.scala:59:7, :131:{71,96}]
wire _sourceD_wreq_ready_T_2 = |_sourceD_wreq_ready_T_1; // @[BankedStore.scala:131:{96,101}]
wire _sourceD_wreq_ready_T_3 = ~_sourceD_wreq_ready_T_2; // @[BankedStore.scala:131:{58,101}]
wire [1:0] _sourceD_wreq_ready_T_4 = sourceD_wreq_bankSum[3:2]; // @[BankedStore.scala:128:19, :131:71]
wire [1:0] _sourceD_wreq_ready_T_5 = _sourceD_wreq_ready_T_4 & io_sourceD_wadr_bits_mask_0; // @[BankedStore.scala:59:7, :131:{71,96}]
wire _sourceD_wreq_ready_T_6 = |_sourceD_wreq_ready_T_5; // @[BankedStore.scala:131:{96,101}]
wire _sourceD_wreq_ready_T_7 = ~_sourceD_wreq_ready_T_6; // @[BankedStore.scala:131:{58,101}]
wire [1:0] _sourceD_wreq_ready_T_8 = sourceD_wreq_bankSum[5:4]; // @[BankedStore.scala:128:19, :131:71]
wire [1:0] _sourceD_wreq_ready_T_9 = _sourceD_wreq_ready_T_8 & io_sourceD_wadr_bits_mask_0; // @[BankedStore.scala:59:7, :131:{71,96}]
wire _sourceD_wreq_ready_T_10 = |_sourceD_wreq_ready_T_9; // @[BankedStore.scala:131:{96,101}]
wire _sourceD_wreq_ready_T_11 = ~_sourceD_wreq_ready_T_10; // @[BankedStore.scala:131:{58,101}]
wire [1:0] _sourceD_wreq_ready_T_12 = sourceD_wreq_bankSum[7:6]; // @[BankedStore.scala:128:19, :131:71]
wire [1:0] _sourceD_wreq_ready_T_13 = _sourceD_wreq_ready_T_12 & io_sourceD_wadr_bits_mask_0; // @[BankedStore.scala:59:7, :131:{71,96}]
wire _sourceD_wreq_ready_T_14 = |_sourceD_wreq_ready_T_13; // @[BankedStore.scala:131:{96,101}]
wire _sourceD_wreq_ready_T_15 = ~_sourceD_wreq_ready_T_14; // @[BankedStore.scala:131:{58,101}]
wire [1:0] sourceD_wreq_ready_lo = {_sourceD_wreq_ready_T_7, _sourceD_wreq_ready_T_3}; // @[BankedStore.scala:131:{21,58}]
wire [1:0] sourceD_wreq_ready_hi = {_sourceD_wreq_ready_T_15, _sourceD_wreq_ready_T_11}; // @[BankedStore.scala:131:{21,58}]
wire [3:0] sourceD_wreq_ready = {sourceD_wreq_ready_hi, sourceD_wreq_ready_lo}; // @[BankedStore.scala:131:21]
wire [3:0] _sourceD_wreq_io_sourceD_wadr_ready_T_1 = sourceD_wreq_ready >> _sourceD_wreq_io_sourceD_wadr_ready_T; // @[BankedStore.scala:131:21, :132:{21,23}]
assign _sourceD_wreq_io_sourceD_wadr_ready_T_2 = _sourceD_wreq_io_sourceD_wadr_ready_T_1[0]; // @[BankedStore.scala:132:21]
assign io_sourceD_wadr_ready_0 = _sourceD_wreq_io_sourceD_wadr_ready_T_2; // @[BankedStore.scala:59:7, :132:21]
assign _sourceD_wreq_out_index_T = sourceD_wreq_a[16:2]; // @[BankedStore.scala:126:91, :135:23]
assign sourceD_wreq_index = _sourceD_wreq_out_index_T; // @[BankedStore.scala:128:19, :135:23]
wire _sourceD_wreq_out_bankSel_T = sourceD_wreq_select[0]; // @[OneHot.scala:65:27]
wire _sourceD_wreq_out_bankSel_T_1 = sourceD_wreq_select[1]; // @[OneHot.scala:65:27]
wire _sourceD_wreq_out_bankSel_T_2 = sourceD_wreq_select[2]; // @[OneHot.scala:65:27]
wire _sourceD_wreq_out_bankSel_T_3 = sourceD_wreq_select[3]; // @[OneHot.scala:65:27]
wire [1:0] _sourceD_wreq_out_bankSel_T_4 = {2{_sourceD_wreq_out_bankSel_T}}; // @[BankedStore.scala:136:49]
wire [1:0] _sourceD_wreq_out_bankSel_T_5 = {2{_sourceD_wreq_out_bankSel_T_1}}; // @[BankedStore.scala:136:49]
wire [1:0] _sourceD_wreq_out_bankSel_T_6 = {2{_sourceD_wreq_out_bankSel_T_2}}; // @[BankedStore.scala:136:49]
wire [1:0] _sourceD_wreq_out_bankSel_T_7 = {2{_sourceD_wreq_out_bankSel_T_3}}; // @[BankedStore.scala:136:49]
wire [3:0] sourceD_wreq_out_bankSel_lo = {_sourceD_wreq_out_bankSel_T_5, _sourceD_wreq_out_bankSel_T_4}; // @[BankedStore.scala:136:49]
wire [3:0] sourceD_wreq_out_bankSel_hi = {_sourceD_wreq_out_bankSel_T_7, _sourceD_wreq_out_bankSel_T_6}; // @[BankedStore.scala:136:49]
wire [7:0] _sourceD_wreq_out_bankSel_T_8 = {sourceD_wreq_out_bankSel_hi, sourceD_wreq_out_bankSel_lo}; // @[BankedStore.scala:136:49]
wire [3:0] _sourceD_wreq_out_bankSel_T_9 = {2{io_sourceD_wadr_bits_mask_0}}; // @[BankedStore.scala:59:7, :136:71]
wire [7:0] _sourceD_wreq_out_bankSel_T_10 = {2{_sourceD_wreq_out_bankSel_T_9}}; // @[BankedStore.scala:136:71]
wire [7:0] _sourceD_wreq_out_bankSel_T_11 = _sourceD_wreq_out_bankSel_T_8 & _sourceD_wreq_out_bankSel_T_10; // @[BankedStore.scala:136:{49,65,71}]
assign _sourceD_wreq_out_bankSel_T_12 = io_sourceD_wadr_valid_0 ? _sourceD_wreq_out_bankSel_T_11 : 8'h0; // @[BankedStore.scala:59:7, :136:{24,65}]
assign sourceD_wreq_bankSel = _sourceD_wreq_out_bankSel_T_12; // @[BankedStore.scala:128:19, :136:24]
wire _sourceD_wreq_out_bankEn_T = sourceD_wreq_ready[0]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceD_wreq_out_bankEn_T_1 = sourceD_wreq_ready[1]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceD_wreq_out_bankEn_T_2 = sourceD_wreq_ready[2]; // @[BankedStore.scala:131:21, :137:72]
wire _sourceD_wreq_out_bankEn_T_3 = sourceD_wreq_ready[3]; // @[BankedStore.scala:131:21, :137:72]
wire [1:0] _sourceD_wreq_out_bankEn_T_4 = {2{_sourceD_wreq_out_bankEn_T}}; // @[BankedStore.scala:137:72]
wire [1:0] _sourceD_wreq_out_bankEn_T_5 = {2{_sourceD_wreq_out_bankEn_T_1}}; // @[BankedStore.scala:137:72]
wire [1:0] _sourceD_wreq_out_bankEn_T_6 = {2{_sourceD_wreq_out_bankEn_T_2}}; // @[BankedStore.scala:137:72]
wire [1:0] _sourceD_wreq_out_bankEn_T_7 = {2{_sourceD_wreq_out_bankEn_T_3}}; // @[BankedStore.scala:137:72]
wire [3:0] sourceD_wreq_out_bankEn_lo = {_sourceD_wreq_out_bankEn_T_5, _sourceD_wreq_out_bankEn_T_4}; // @[BankedStore.scala:137:72]
wire [3:0] sourceD_wreq_out_bankEn_hi = {_sourceD_wreq_out_bankEn_T_7, _sourceD_wreq_out_bankEn_T_6}; // @[BankedStore.scala:137:72]
wire [7:0] _sourceD_wreq_out_bankEn_T_8 = {sourceD_wreq_out_bankEn_hi, sourceD_wreq_out_bankEn_lo}; // @[BankedStore.scala:137:72]
wire [7:0] _sourceD_wreq_out_bankEn_T_9 = sourceD_wreq_bankSel & _sourceD_wreq_out_bankEn_T_8; // @[BankedStore.scala:128:19, :137:{55,72}]
assign _sourceD_wreq_out_bankEn_T_10 = _sourceD_wreq_out_bankEn_T_9; // @[BankedStore.scala:137:{24,55}]
assign sourceD_wreq_bankEn = _sourceD_wreq_out_bankEn_T_10; // @[BankedStore.scala:128:19, :137:24]
assign sinkD_req_bankSum = sourceC_req_bankSel | sinkC_req_bankSel; // @[BankedStore.scala:128:19, :161:17]
assign sourceD_wreq_bankSum = sinkD_req_bankSel | sinkD_req_bankSum; // @[BankedStore.scala:128:19, :161:17]
assign sourceD_rreq_bankSum = sourceD_wreq_bankSel | sourceD_wreq_bankSum; // @[BankedStore.scala:128:19, :161:17]
wire _regout_en_T = sinkC_req_bankEn[0]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_1 = sourceC_req_bankEn[0]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_2 = sinkD_req_bankEn[0]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_3 = sourceD_wreq_bankEn[0]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_4 = sourceD_rreq_bankEn[0]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_5 = _regout_en_T | _regout_en_T_1; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_6 = _regout_en_T_5 | _regout_en_T_2; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_7 = _regout_en_T_6 | _regout_en_T_3; // @[BankedStore.scala:165:{32,45}]
wire regout_en = _regout_en_T_7 | _regout_en_T_4; // @[BankedStore.scala:165:{32,45}]
wire regout_sel_0 = sinkC_req_bankSel[0]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_1 = sourceC_req_bankSel[0]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_2 = sinkD_req_bankSel[0]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_3 = sourceD_wreq_bankSel[0]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T = regout_sel_3; // @[Mux.scala:50:70]
wire regout_sel_4 = sourceD_rreq_bankSel[0]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_1 = regout_sel_2 | _regout_wen_T; // @[Mux.scala:50:70]
wire _regout_wen_T_2 = ~regout_sel_1 & _regout_wen_T_1; // @[Mux.scala:50:70]
wire regout_wen = regout_sel_0 | _regout_wen_T_2; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T = regout_sel_3 ? sourceD_wreq_index : sourceD_rreq_index; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_1 = regout_sel_2 ? sinkD_req_index : _regout_idx_T; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_2 = regout_sel_1 ? sourceC_req_index : _regout_idx_T_1; // @[Mux.scala:50:70]
assign regout_idx = regout_sel_0 ? sinkC_req_index : _regout_idx_T_2; // @[Mux.scala:50:70]
assign _regout_WIRE = regout_idx; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T = regout_sel_3 ? sourceD_wreq_data_0 : 64'h0; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_1 = regout_sel_2 ? sinkD_req_data_0 : _regout_data_T; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_2 = regout_sel_1 ? 64'h0 : _regout_data_T_1; // @[Mux.scala:50:70]
wire [63:0] regout_data = regout_sel_0 ? sinkC_req_data_0 : _regout_data_T_2; // @[Mux.scala:50:70]
assign _regout_T = regout_wen & regout_en; // @[Mux.scala:50:70]
wire _regout_T_1 = ~regout_wen; // @[Mux.scala:50:70]
assign _regout_T_2 = _regout_T_1 & regout_en; // @[BankedStore.scala:165:45, :172:{27,32}]
wire _regout_T_3 = ~regout_wen; // @[Mux.scala:50:70]
wire _regout_T_4 = _regout_T_3 & regout_en; // @[BankedStore.scala:165:45, :172:{48,53}]
reg regout_REG; // @[BankedStore.scala:172:47]
reg [63:0] regout_r; // @[BankedStore.scala:172:14]
wire [63:0] regout_0 = regout_r; // @[BankedStore.scala:164:23, :172:14]
wire _regout_en_T_8 = sinkC_req_bankEn[1]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_9 = sourceC_req_bankEn[1]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_10 = sinkD_req_bankEn[1]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_11 = sourceD_wreq_bankEn[1]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_12 = sourceD_rreq_bankEn[1]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_13 = _regout_en_T_8 | _regout_en_T_9; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_14 = _regout_en_T_13 | _regout_en_T_10; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_15 = _regout_en_T_14 | _regout_en_T_11; // @[BankedStore.scala:165:{32,45}]
wire regout_en_1 = _regout_en_T_15 | _regout_en_T_12; // @[BankedStore.scala:165:{32,45}]
wire regout_sel_0_1 = sinkC_req_bankSel[1]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_1_1 = sourceC_req_bankSel[1]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_2_1 = sinkD_req_bankSel[1]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_3_1 = sourceD_wreq_bankSel[1]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_3 = regout_sel_3_1; // @[Mux.scala:50:70]
wire regout_sel_4_1 = sourceD_rreq_bankSel[1]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_4 = regout_sel_2_1 | _regout_wen_T_3; // @[Mux.scala:50:70]
wire _regout_wen_T_5 = ~regout_sel_1_1 & _regout_wen_T_4; // @[Mux.scala:50:70]
wire regout_wen_1 = regout_sel_0_1 | _regout_wen_T_5; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_3 = regout_sel_3_1 ? sourceD_wreq_index : sourceD_rreq_index; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_4 = regout_sel_2_1 ? sinkD_req_index : _regout_idx_T_3; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_5 = regout_sel_1_1 ? sourceC_req_index : _regout_idx_T_4; // @[Mux.scala:50:70]
assign regout_idx_1 = regout_sel_0_1 ? sinkC_req_index : _regout_idx_T_5; // @[Mux.scala:50:70]
assign _regout_WIRE_1 = regout_idx_1; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_3 = regout_sel_3_1 ? sourceD_wreq_data_1 : 64'h0; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_4 = regout_sel_2_1 ? sinkD_req_data_1 : _regout_data_T_3; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_5 = regout_sel_1_1 ? 64'h0 : _regout_data_T_4; // @[Mux.scala:50:70]
wire [63:0] regout_data_1 = regout_sel_0_1 ? sinkC_req_data_1 : _regout_data_T_5; // @[Mux.scala:50:70]
assign _regout_T_5 = regout_wen_1 & regout_en_1; // @[Mux.scala:50:70]
wire _regout_T_6 = ~regout_wen_1; // @[Mux.scala:50:70]
assign _regout_T_7 = _regout_T_6 & regout_en_1; // @[BankedStore.scala:165:45, :172:{27,32}]
wire _regout_T_8 = ~regout_wen_1; // @[Mux.scala:50:70]
wire _regout_T_9 = _regout_T_8 & regout_en_1; // @[BankedStore.scala:165:45, :172:{48,53}]
reg regout_REG_1; // @[BankedStore.scala:172:47]
reg [63:0] regout_r_1; // @[BankedStore.scala:172:14]
wire [63:0] regout_1 = regout_r_1; // @[BankedStore.scala:164:23, :172:14]
wire _regout_en_T_16 = sinkC_req_bankEn[2]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_17 = sourceC_req_bankEn[2]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_18 = sinkD_req_bankEn[2]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_19 = sourceD_wreq_bankEn[2]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_20 = sourceD_rreq_bankEn[2]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_21 = _regout_en_T_16 | _regout_en_T_17; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_22 = _regout_en_T_21 | _regout_en_T_18; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_23 = _regout_en_T_22 | _regout_en_T_19; // @[BankedStore.scala:165:{32,45}]
wire regout_en_2 = _regout_en_T_23 | _regout_en_T_20; // @[BankedStore.scala:165:{32,45}]
wire regout_sel_0_2 = sinkC_req_bankSel[2]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_1_2 = sourceC_req_bankSel[2]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_2_2 = sinkD_req_bankSel[2]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_3_2 = sourceD_wreq_bankSel[2]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_6 = regout_sel_3_2; // @[Mux.scala:50:70]
wire regout_sel_4_2 = sourceD_rreq_bankSel[2]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_7 = regout_sel_2_2 | _regout_wen_T_6; // @[Mux.scala:50:70]
wire _regout_wen_T_8 = ~regout_sel_1_2 & _regout_wen_T_7; // @[Mux.scala:50:70]
wire regout_wen_2 = regout_sel_0_2 | _regout_wen_T_8; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_6 = regout_sel_3_2 ? sourceD_wreq_index : sourceD_rreq_index; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_7 = regout_sel_2_2 ? sinkD_req_index : _regout_idx_T_6; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_8 = regout_sel_1_2 ? sourceC_req_index : _regout_idx_T_7; // @[Mux.scala:50:70]
assign regout_idx_2 = regout_sel_0_2 ? sinkC_req_index : _regout_idx_T_8; // @[Mux.scala:50:70]
assign _regout_WIRE_2 = regout_idx_2; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_6 = regout_sel_3_2 ? sourceD_wreq_data_2 : 64'h0; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_7 = regout_sel_2_2 ? sinkD_req_data_2 : _regout_data_T_6; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_8 = regout_sel_1_2 ? 64'h0 : _regout_data_T_7; // @[Mux.scala:50:70]
wire [63:0] regout_data_2 = regout_sel_0_2 ? sinkC_req_data_2 : _regout_data_T_8; // @[Mux.scala:50:70]
assign _regout_T_10 = regout_wen_2 & regout_en_2; // @[Mux.scala:50:70]
wire _regout_T_11 = ~regout_wen_2; // @[Mux.scala:50:70]
assign _regout_T_12 = _regout_T_11 & regout_en_2; // @[BankedStore.scala:165:45, :172:{27,32}]
wire _regout_T_13 = ~regout_wen_2; // @[Mux.scala:50:70]
wire _regout_T_14 = _regout_T_13 & regout_en_2; // @[BankedStore.scala:165:45, :172:{48,53}]
reg regout_REG_2; // @[BankedStore.scala:172:47]
reg [63:0] regout_r_2; // @[BankedStore.scala:172:14]
wire [63:0] regout_2 = regout_r_2; // @[BankedStore.scala:164:23, :172:14]
wire _regout_en_T_24 = sinkC_req_bankEn[3]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_25 = sourceC_req_bankEn[3]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_26 = sinkD_req_bankEn[3]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_27 = sourceD_wreq_bankEn[3]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_28 = sourceD_rreq_bankEn[3]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_29 = _regout_en_T_24 | _regout_en_T_25; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_30 = _regout_en_T_29 | _regout_en_T_26; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_31 = _regout_en_T_30 | _regout_en_T_27; // @[BankedStore.scala:165:{32,45}]
wire regout_en_3 = _regout_en_T_31 | _regout_en_T_28; // @[BankedStore.scala:165:{32,45}]
wire regout_sel_0_3 = sinkC_req_bankSel[3]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_1_3 = sourceC_req_bankSel[3]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_2_3 = sinkD_req_bankSel[3]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_3_3 = sourceD_wreq_bankSel[3]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_9 = regout_sel_3_3; // @[Mux.scala:50:70]
wire regout_sel_4_3 = sourceD_rreq_bankSel[3]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_10 = regout_sel_2_3 | _regout_wen_T_9; // @[Mux.scala:50:70]
wire _regout_wen_T_11 = ~regout_sel_1_3 & _regout_wen_T_10; // @[Mux.scala:50:70]
wire regout_wen_3 = regout_sel_0_3 | _regout_wen_T_11; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_9 = regout_sel_3_3 ? sourceD_wreq_index : sourceD_rreq_index; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_10 = regout_sel_2_3 ? sinkD_req_index : _regout_idx_T_9; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_11 = regout_sel_1_3 ? sourceC_req_index : _regout_idx_T_10; // @[Mux.scala:50:70]
assign regout_idx_3 = regout_sel_0_3 ? sinkC_req_index : _regout_idx_T_11; // @[Mux.scala:50:70]
assign _regout_WIRE_3 = regout_idx_3; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_9 = regout_sel_3_3 ? sourceD_wreq_data_3 : 64'h0; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_10 = regout_sel_2_3 ? sinkD_req_data_3 : _regout_data_T_9; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_11 = regout_sel_1_3 ? 64'h0 : _regout_data_T_10; // @[Mux.scala:50:70]
wire [63:0] regout_data_3 = regout_sel_0_3 ? sinkC_req_data_3 : _regout_data_T_11; // @[Mux.scala:50:70]
assign _regout_T_15 = regout_wen_3 & regout_en_3; // @[Mux.scala:50:70]
wire _regout_T_16 = ~regout_wen_3; // @[Mux.scala:50:70]
assign _regout_T_17 = _regout_T_16 & regout_en_3; // @[BankedStore.scala:165:45, :172:{27,32}]
wire _regout_T_18 = ~regout_wen_3; // @[Mux.scala:50:70]
wire _regout_T_19 = _regout_T_18 & regout_en_3; // @[BankedStore.scala:165:45, :172:{48,53}]
reg regout_REG_3; // @[BankedStore.scala:172:47]
reg [63:0] regout_r_3; // @[BankedStore.scala:172:14]
wire [63:0] regout_3 = regout_r_3; // @[BankedStore.scala:164:23, :172:14]
wire _regout_en_T_32 = sinkC_req_bankEn[4]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_33 = sourceC_req_bankEn[4]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_34 = sinkD_req_bankEn[4]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_35 = sourceD_wreq_bankEn[4]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_36 = sourceD_rreq_bankEn[4]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_37 = _regout_en_T_32 | _regout_en_T_33; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_38 = _regout_en_T_37 | _regout_en_T_34; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_39 = _regout_en_T_38 | _regout_en_T_35; // @[BankedStore.scala:165:{32,45}]
wire regout_en_4 = _regout_en_T_39 | _regout_en_T_36; // @[BankedStore.scala:165:{32,45}]
wire regout_sel_0_4 = sinkC_req_bankSel[4]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_1_4 = sourceC_req_bankSel[4]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_2_4 = sinkD_req_bankSel[4]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_3_4 = sourceD_wreq_bankSel[4]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_12 = regout_sel_3_4; // @[Mux.scala:50:70]
wire regout_sel_4_4 = sourceD_rreq_bankSel[4]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_13 = regout_sel_2_4 | _regout_wen_T_12; // @[Mux.scala:50:70]
wire _regout_wen_T_14 = ~regout_sel_1_4 & _regout_wen_T_13; // @[Mux.scala:50:70]
wire regout_wen_4 = regout_sel_0_4 | _regout_wen_T_14; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_12 = regout_sel_3_4 ? sourceD_wreq_index : sourceD_rreq_index; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_13 = regout_sel_2_4 ? sinkD_req_index : _regout_idx_T_12; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_14 = regout_sel_1_4 ? sourceC_req_index : _regout_idx_T_13; // @[Mux.scala:50:70]
assign regout_idx_4 = regout_sel_0_4 ? sinkC_req_index : _regout_idx_T_14; // @[Mux.scala:50:70]
assign _regout_WIRE_4 = regout_idx_4; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_12 = regout_sel_3_4 ? sourceD_wreq_data_4 : 64'h0; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_13 = regout_sel_2_4 ? sinkD_req_data_4 : _regout_data_T_12; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_14 = regout_sel_1_4 ? 64'h0 : _regout_data_T_13; // @[Mux.scala:50:70]
wire [63:0] regout_data_4 = regout_sel_0_4 ? sinkC_req_data_4 : _regout_data_T_14; // @[Mux.scala:50:70]
assign _regout_T_20 = regout_wen_4 & regout_en_4; // @[Mux.scala:50:70]
wire _regout_T_21 = ~regout_wen_4; // @[Mux.scala:50:70]
assign _regout_T_22 = _regout_T_21 & regout_en_4; // @[BankedStore.scala:165:45, :172:{27,32}]
wire _regout_T_23 = ~regout_wen_4; // @[Mux.scala:50:70]
wire _regout_T_24 = _regout_T_23 & regout_en_4; // @[BankedStore.scala:165:45, :172:{48,53}]
reg regout_REG_4; // @[BankedStore.scala:172:47]
reg [63:0] regout_r_4; // @[BankedStore.scala:172:14]
wire [63:0] regout_4 = regout_r_4; // @[BankedStore.scala:164:23, :172:14]
wire _regout_en_T_40 = sinkC_req_bankEn[5]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_41 = sourceC_req_bankEn[5]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_42 = sinkD_req_bankEn[5]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_43 = sourceD_wreq_bankEn[5]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_44 = sourceD_rreq_bankEn[5]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_45 = _regout_en_T_40 | _regout_en_T_41; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_46 = _regout_en_T_45 | _regout_en_T_42; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_47 = _regout_en_T_46 | _regout_en_T_43; // @[BankedStore.scala:165:{32,45}]
wire regout_en_5 = _regout_en_T_47 | _regout_en_T_44; // @[BankedStore.scala:165:{32,45}]
wire regout_sel_0_5 = sinkC_req_bankSel[5]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_1_5 = sourceC_req_bankSel[5]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_2_5 = sinkD_req_bankSel[5]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_3_5 = sourceD_wreq_bankSel[5]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_15 = regout_sel_3_5; // @[Mux.scala:50:70]
wire regout_sel_4_5 = sourceD_rreq_bankSel[5]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_16 = regout_sel_2_5 | _regout_wen_T_15; // @[Mux.scala:50:70]
wire _regout_wen_T_17 = ~regout_sel_1_5 & _regout_wen_T_16; // @[Mux.scala:50:70]
wire regout_wen_5 = regout_sel_0_5 | _regout_wen_T_17; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_15 = regout_sel_3_5 ? sourceD_wreq_index : sourceD_rreq_index; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_16 = regout_sel_2_5 ? sinkD_req_index : _regout_idx_T_15; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_17 = regout_sel_1_5 ? sourceC_req_index : _regout_idx_T_16; // @[Mux.scala:50:70]
assign regout_idx_5 = regout_sel_0_5 ? sinkC_req_index : _regout_idx_T_17; // @[Mux.scala:50:70]
assign _regout_WIRE_5 = regout_idx_5; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_15 = regout_sel_3_5 ? sourceD_wreq_data_5 : 64'h0; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_16 = regout_sel_2_5 ? sinkD_req_data_5 : _regout_data_T_15; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_17 = regout_sel_1_5 ? 64'h0 : _regout_data_T_16; // @[Mux.scala:50:70]
wire [63:0] regout_data_5 = regout_sel_0_5 ? sinkC_req_data_5 : _regout_data_T_17; // @[Mux.scala:50:70]
assign _regout_T_25 = regout_wen_5 & regout_en_5; // @[Mux.scala:50:70]
wire _regout_T_26 = ~regout_wen_5; // @[Mux.scala:50:70]
assign _regout_T_27 = _regout_T_26 & regout_en_5; // @[BankedStore.scala:165:45, :172:{27,32}]
wire _regout_T_28 = ~regout_wen_5; // @[Mux.scala:50:70]
wire _regout_T_29 = _regout_T_28 & regout_en_5; // @[BankedStore.scala:165:45, :172:{48,53}]
reg regout_REG_5; // @[BankedStore.scala:172:47]
reg [63:0] regout_r_5; // @[BankedStore.scala:172:14]
wire [63:0] regout_5 = regout_r_5; // @[BankedStore.scala:164:23, :172:14]
wire _regout_en_T_48 = sinkC_req_bankEn[6]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_49 = sourceC_req_bankEn[6]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_50 = sinkD_req_bankEn[6]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_51 = sourceD_wreq_bankEn[6]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_52 = sourceD_rreq_bankEn[6]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_53 = _regout_en_T_48 | _regout_en_T_49; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_54 = _regout_en_T_53 | _regout_en_T_50; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_55 = _regout_en_T_54 | _regout_en_T_51; // @[BankedStore.scala:165:{32,45}]
wire regout_en_6 = _regout_en_T_55 | _regout_en_T_52; // @[BankedStore.scala:165:{32,45}]
wire regout_sel_0_6 = sinkC_req_bankSel[6]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_1_6 = sourceC_req_bankSel[6]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_2_6 = sinkD_req_bankSel[6]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_3_6 = sourceD_wreq_bankSel[6]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_18 = regout_sel_3_6; // @[Mux.scala:50:70]
wire regout_sel_4_6 = sourceD_rreq_bankSel[6]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_19 = regout_sel_2_6 | _regout_wen_T_18; // @[Mux.scala:50:70]
wire _regout_wen_T_20 = ~regout_sel_1_6 & _regout_wen_T_19; // @[Mux.scala:50:70]
wire regout_wen_6 = regout_sel_0_6 | _regout_wen_T_20; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_18 = regout_sel_3_6 ? sourceD_wreq_index : sourceD_rreq_index; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_19 = regout_sel_2_6 ? sinkD_req_index : _regout_idx_T_18; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_20 = regout_sel_1_6 ? sourceC_req_index : _regout_idx_T_19; // @[Mux.scala:50:70]
assign regout_idx_6 = regout_sel_0_6 ? sinkC_req_index : _regout_idx_T_20; // @[Mux.scala:50:70]
assign _regout_WIRE_6 = regout_idx_6; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_18 = regout_sel_3_6 ? sourceD_wreq_data_6 : 64'h0; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_19 = regout_sel_2_6 ? sinkD_req_data_6 : _regout_data_T_18; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_20 = regout_sel_1_6 ? 64'h0 : _regout_data_T_19; // @[Mux.scala:50:70]
wire [63:0] regout_data_6 = regout_sel_0_6 ? sinkC_req_data_6 : _regout_data_T_20; // @[Mux.scala:50:70]
assign _regout_T_30 = regout_wen_6 & regout_en_6; // @[Mux.scala:50:70]
wire _regout_T_31 = ~regout_wen_6; // @[Mux.scala:50:70]
assign _regout_T_32 = _regout_T_31 & regout_en_6; // @[BankedStore.scala:165:45, :172:{27,32}]
wire _regout_T_33 = ~regout_wen_6; // @[Mux.scala:50:70]
wire _regout_T_34 = _regout_T_33 & regout_en_6; // @[BankedStore.scala:165:45, :172:{48,53}]
reg regout_REG_6; // @[BankedStore.scala:172:47]
reg [63:0] regout_r_6; // @[BankedStore.scala:172:14]
wire [63:0] regout_6 = regout_r_6; // @[BankedStore.scala:164:23, :172:14]
wire _regout_en_T_56 = sinkC_req_bankEn[7]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_57 = sourceC_req_bankEn[7]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_58 = sinkD_req_bankEn[7]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_59 = sourceD_wreq_bankEn[7]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_60 = sourceD_rreq_bankEn[7]; // @[BankedStore.scala:128:19, :165:32]
wire _regout_en_T_61 = _regout_en_T_56 | _regout_en_T_57; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_62 = _regout_en_T_61 | _regout_en_T_58; // @[BankedStore.scala:165:{32,45}]
wire _regout_en_T_63 = _regout_en_T_62 | _regout_en_T_59; // @[BankedStore.scala:165:{32,45}]
wire regout_en_7 = _regout_en_T_63 | _regout_en_T_60; // @[BankedStore.scala:165:{32,45}]
wire regout_sel_0_7 = sinkC_req_bankSel[7]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_1_7 = sourceC_req_bankSel[7]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_2_7 = sinkD_req_bankSel[7]; // @[BankedStore.scala:128:19, :166:33]
wire regout_sel_3_7 = sourceD_wreq_bankSel[7]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_21 = regout_sel_3_7; // @[Mux.scala:50:70]
wire regout_sel_4_7 = sourceD_rreq_bankSel[7]; // @[BankedStore.scala:128:19, :166:33]
wire _regout_wen_T_22 = regout_sel_2_7 | _regout_wen_T_21; // @[Mux.scala:50:70]
wire _regout_wen_T_23 = ~regout_sel_1_7 & _regout_wen_T_22; // @[Mux.scala:50:70]
wire regout_wen_7 = regout_sel_0_7 | _regout_wen_T_23; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_21 = regout_sel_3_7 ? sourceD_wreq_index : sourceD_rreq_index; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_22 = regout_sel_2_7 ? sinkD_req_index : _regout_idx_T_21; // @[Mux.scala:50:70]
wire [14:0] _regout_idx_T_23 = regout_sel_1_7 ? sourceC_req_index : _regout_idx_T_22; // @[Mux.scala:50:70]
assign regout_idx_7 = regout_sel_0_7 ? sinkC_req_index : _regout_idx_T_23; // @[Mux.scala:50:70]
assign _regout_WIRE_7 = regout_idx_7; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_21 = regout_sel_3_7 ? sourceD_wreq_data_7 : 64'h0; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_22 = regout_sel_2_7 ? sinkD_req_data_7 : _regout_data_T_21; // @[Mux.scala:50:70]
wire [63:0] _regout_data_T_23 = regout_sel_1_7 ? 64'h0 : _regout_data_T_22; // @[Mux.scala:50:70]
wire [63:0] regout_data_7 = regout_sel_0_7 ? sinkC_req_data_7 : _regout_data_T_23; // @[Mux.scala:50:70]
assign _regout_T_35 = regout_wen_7 & regout_en_7; // @[Mux.scala:50:70]
wire _regout_T_36 = ~regout_wen_7; // @[Mux.scala:50:70]
assign _regout_T_37 = _regout_T_36 & regout_en_7; // @[BankedStore.scala:165:45, :172:{27,32}]
wire _regout_T_38 = ~regout_wen_7; // @[Mux.scala:50:70]
wire _regout_T_39 = _regout_T_38 & regout_en_7; // @[BankedStore.scala:165:45, :172:{48,53}]
reg regout_REG_7; // @[BankedStore.scala:172:47]
reg [63:0] regout_r_7; // @[BankedStore.scala:172:14]
wire [63:0] regout_7 = regout_r_7; // @[BankedStore.scala:164:23, :172:14]
reg [7:0] regsel_sourceC_REG; // @[BankedStore.scala:175:39]
reg [7:0] regsel_sourceC; // @[BankedStore.scala:175:31]
reg [7:0] regsel_sourceD_REG; // @[BankedStore.scala:176:39]
reg [7:0] regsel_sourceD; // @[BankedStore.scala:176:31]
wire _decodeC_T = regsel_sourceC[0]; // @[BankedStore.scala:175:31, :179:38]
wire [63:0] _decodeC_T_1 = _decodeC_T ? regout_0 : 64'h0; // @[BankedStore.scala:164:23, :179:{23,38}]
wire _decodeC_T_2 = regsel_sourceC[1]; // @[BankedStore.scala:175:31, :179:38]
wire [63:0] _decodeC_T_3 = _decodeC_T_2 ? regout_1 : 64'h0; // @[BankedStore.scala:164:23, :179:{23,38}]
wire _decodeC_T_4 = regsel_sourceC[2]; // @[BankedStore.scala:175:31, :179:38]
wire [63:0] _decodeC_T_5 = _decodeC_T_4 ? regout_2 : 64'h0; // @[BankedStore.scala:164:23, :179:{23,38}]
wire _decodeC_T_6 = regsel_sourceC[3]; // @[BankedStore.scala:175:31, :179:38]
wire [63:0] _decodeC_T_7 = _decodeC_T_6 ? regout_3 : 64'h0; // @[BankedStore.scala:164:23, :179:{23,38}]
wire _decodeC_T_8 = regsel_sourceC[4]; // @[BankedStore.scala:175:31, :179:38]
wire [63:0] _decodeC_T_9 = _decodeC_T_8 ? regout_4 : 64'h0; // @[BankedStore.scala:164:23, :179:{23,38}]
wire _decodeC_T_10 = regsel_sourceC[5]; // @[BankedStore.scala:175:31, :179:38]
wire [63:0] _decodeC_T_11 = _decodeC_T_10 ? regout_5 : 64'h0; // @[BankedStore.scala:164:23, :179:{23,38}]
wire _decodeC_T_12 = regsel_sourceC[6]; // @[BankedStore.scala:175:31, :179:38]
wire [63:0] _decodeC_T_13 = _decodeC_T_12 ? regout_6 : 64'h0; // @[BankedStore.scala:164:23, :179:{23,38}]
wire _decodeC_T_14 = regsel_sourceC[7]; // @[BankedStore.scala:175:31, :179:38]
wire [63:0] _decodeC_T_15 = _decodeC_T_14 ? regout_7 : 64'h0; // @[BankedStore.scala:164:23, :179:{23,38}]
wire [63:0] _decodeC_T_16 = _decodeC_T_1 | _decodeC_T_3; // @[BankedStore.scala:179:23, :180:85]
wire [63:0] _decodeC_T_17 = _decodeC_T_16 | _decodeC_T_5; // @[BankedStore.scala:179:23, :180:85]
wire [63:0] _decodeC_T_18 = _decodeC_T_17 | _decodeC_T_7; // @[BankedStore.scala:179:23, :180:85]
wire [63:0] _decodeC_T_19 = _decodeC_T_18 | _decodeC_T_9; // @[BankedStore.scala:179:23, :180:85]
wire [63:0] _decodeC_T_20 = _decodeC_T_19 | _decodeC_T_11; // @[BankedStore.scala:179:23, :180:85]
wire [63:0] _decodeC_T_21 = _decodeC_T_20 | _decodeC_T_13; // @[BankedStore.scala:179:23, :180:85]
assign decodeC_0 = _decodeC_T_21 | _decodeC_T_15; // @[BankedStore.scala:179:23, :180:85]
assign io_sourceC_dat_data_0 = decodeC_0; // @[BankedStore.scala:59:7, :180:85]
wire _decodeD_T = regsel_sourceD[0]; // @[BankedStore.scala:176:31, :186:38]
wire [63:0] _decodeD_T_1 = _decodeD_T ? regout_0 : 64'h0; // @[BankedStore.scala:164:23, :186:{23,38}]
wire _decodeD_T_2 = regsel_sourceD[1]; // @[BankedStore.scala:176:31, :186:38]
wire [63:0] _decodeD_T_3 = _decodeD_T_2 ? regout_1 : 64'h0; // @[BankedStore.scala:164:23, :186:{23,38}]
wire _decodeD_T_4 = regsel_sourceD[2]; // @[BankedStore.scala:176:31, :186:38]
wire [63:0] _decodeD_T_5 = _decodeD_T_4 ? regout_2 : 64'h0; // @[BankedStore.scala:164:23, :186:{23,38}]
wire _decodeD_T_6 = regsel_sourceD[3]; // @[BankedStore.scala:176:31, :186:38]
wire [63:0] _decodeD_T_7 = _decodeD_T_6 ? regout_3 : 64'h0; // @[BankedStore.scala:164:23, :186:{23,38}]
wire _decodeD_T_8 = regsel_sourceD[4]; // @[BankedStore.scala:176:31, :186:38]
wire [63:0] _decodeD_T_9 = _decodeD_T_8 ? regout_4 : 64'h0; // @[BankedStore.scala:164:23, :186:{23,38}]
wire _decodeD_T_10 = regsel_sourceD[5]; // @[BankedStore.scala:176:31, :186:38]
wire [63:0] _decodeD_T_11 = _decodeD_T_10 ? regout_5 : 64'h0; // @[BankedStore.scala:164:23, :186:{23,38}]
wire _decodeD_T_12 = regsel_sourceD[6]; // @[BankedStore.scala:176:31, :186:38]
wire [63:0] _decodeD_T_13 = _decodeD_T_12 ? regout_6 : 64'h0; // @[BankedStore.scala:164:23, :186:{23,38}]
wire _decodeD_T_14 = regsel_sourceD[7]; // @[BankedStore.scala:176:31, :186:38]
wire [63:0] _decodeD_T_15 = _decodeD_T_14 ? regout_7 : 64'h0; // @[BankedStore.scala:164:23, :186:{23,38}]
wire [63:0] _decodeD_T_16 = _decodeD_T_1 | _decodeD_T_5; // @[BankedStore.scala:186:23, :187:85]
wire [63:0] _decodeD_T_17 = _decodeD_T_16 | _decodeD_T_9; // @[BankedStore.scala:186:23, :187:85]
wire [63:0] decodeD_0 = _decodeD_T_17 | _decodeD_T_13; // @[BankedStore.scala:186:23, :187:85]
wire [63:0] _decodeD_T_18 = _decodeD_T_3 | _decodeD_T_7; // @[BankedStore.scala:186:23, :187:85]
wire [63:0] _decodeD_T_19 = _decodeD_T_18 | _decodeD_T_11; // @[BankedStore.scala:186:23, :187:85]
wire [63:0] decodeD_1 = _decodeD_T_19 | _decodeD_T_15; // @[BankedStore.scala:186:23, :187:85]
assign _io_sourceD_rdat_data_T = {decodeD_1, decodeD_0}; // @[BankedStore.scala:187:85, :189:30]
assign io_sourceD_rdat_data_0 = _io_sourceD_rdat_data_T; // @[BankedStore.scala:59:7, :189:30]
always @(posedge clock) begin // @[BankedStore.scala:59:7]
regout_REG <= _regout_T_4; // @[BankedStore.scala:172:{47,53}]
if (regout_REG) // @[BankedStore.scala:172:47]
regout_r <= _cc_banks_0_RW0_rdata; // @[DescribedSRAM.scala:17:26]
regout_REG_1 <= _regout_T_9; // @[BankedStore.scala:172:{47,53}]
if (regout_REG_1) // @[BankedStore.scala:172:47]
regout_r_1 <= _cc_banks_1_RW0_rdata; // @[DescribedSRAM.scala:17:26]
regout_REG_2 <= _regout_T_14; // @[BankedStore.scala:172:{47,53}]
if (regout_REG_2) // @[BankedStore.scala:172:47]
regout_r_2 <= _cc_banks_2_RW0_rdata; // @[DescribedSRAM.scala:17:26]
regout_REG_3 <= _regout_T_19; // @[BankedStore.scala:172:{47,53}]
if (regout_REG_3) // @[BankedStore.scala:172:47]
regout_r_3 <= _cc_banks_3_RW0_rdata; // @[DescribedSRAM.scala:17:26]
regout_REG_4 <= _regout_T_24; // @[BankedStore.scala:172:{47,53}]
if (regout_REG_4) // @[BankedStore.scala:172:47]
regout_r_4 <= _cc_banks_4_RW0_rdata; // @[DescribedSRAM.scala:17:26]
regout_REG_5 <= _regout_T_29; // @[BankedStore.scala:172:{47,53}]
if (regout_REG_5) // @[BankedStore.scala:172:47]
regout_r_5 <= _cc_banks_5_RW0_rdata; // @[DescribedSRAM.scala:17:26]
regout_REG_6 <= _regout_T_34; // @[BankedStore.scala:172:{47,53}]
if (regout_REG_6) // @[BankedStore.scala:172:47]
regout_r_6 <= _cc_banks_6_RW0_rdata; // @[DescribedSRAM.scala:17:26]
regout_REG_7 <= _regout_T_39; // @[BankedStore.scala:172:{47,53}]
if (regout_REG_7) // @[BankedStore.scala:172:47]
regout_r_7 <= _cc_banks_7_RW0_rdata; // @[DescribedSRAM.scala:17:26]
regsel_sourceC_REG <= sourceC_req_bankEn; // @[BankedStore.scala:128:19, :175:39]
regsel_sourceC <= regsel_sourceC_REG; // @[BankedStore.scala:175:{31,39}]
regsel_sourceD_REG <= sourceD_rreq_bankEn; // @[BankedStore.scala:128:19, :176:39]
regsel_sourceD <= regsel_sourceD_REG; // @[BankedStore.scala:176:{31,39}]
always @(posedge)
cc_banks_0_3 cc_banks_0 ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (_regout_T ? regout_idx : _regout_WIRE), // @[Mux.scala:50:70]
.RW0_en (_regout_T_2 | _regout_T), // @[DescribedSRAM.scala:17:26]
.RW0_clk (clock),
.RW0_wmode (regout_wen), // @[Mux.scala:50:70]
.RW0_wdata (regout_data), // @[Mux.scala:50:70]
.RW0_rdata (_cc_banks_0_RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
cc_banks_1_3 cc_banks_1 ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (_regout_T_5 ? regout_idx_1 : _regout_WIRE_1), // @[Mux.scala:50:70]
.RW0_en (_regout_T_7 | _regout_T_5), // @[DescribedSRAM.scala:17:26]
.RW0_clk (clock),
.RW0_wmode (regout_wen_1), // @[Mux.scala:50:70]
.RW0_wdata (regout_data_1), // @[Mux.scala:50:70]
.RW0_rdata (_cc_banks_1_RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
cc_banks_2_3 cc_banks_2 ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (_regout_T_10 ? regout_idx_2 : _regout_WIRE_2), // @[Mux.scala:50:70]
.RW0_en (_regout_T_12 | _regout_T_10), // @[DescribedSRAM.scala:17:26]
.RW0_clk (clock),
.RW0_wmode (regout_wen_2), // @[Mux.scala:50:70]
.RW0_wdata (regout_data_2), // @[Mux.scala:50:70]
.RW0_rdata (_cc_banks_2_RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
cc_banks_3_3 cc_banks_3 ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (_regout_T_15 ? regout_idx_3 : _regout_WIRE_3), // @[Mux.scala:50:70]
.RW0_en (_regout_T_17 | _regout_T_15), // @[DescribedSRAM.scala:17:26]
.RW0_clk (clock),
.RW0_wmode (regout_wen_3), // @[Mux.scala:50:70]
.RW0_wdata (regout_data_3), // @[Mux.scala:50:70]
.RW0_rdata (_cc_banks_3_RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
cc_banks_4_3 cc_banks_4 ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (_regout_T_20 ? regout_idx_4 : _regout_WIRE_4), // @[Mux.scala:50:70]
.RW0_en (_regout_T_22 | _regout_T_20), // @[DescribedSRAM.scala:17:26]
.RW0_clk (clock),
.RW0_wmode (regout_wen_4), // @[Mux.scala:50:70]
.RW0_wdata (regout_data_4), // @[Mux.scala:50:70]
.RW0_rdata (_cc_banks_4_RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
cc_banks_5_3 cc_banks_5 ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (_regout_T_25 ? regout_idx_5 : _regout_WIRE_5), // @[Mux.scala:50:70]
.RW0_en (_regout_T_27 | _regout_T_25), // @[DescribedSRAM.scala:17:26]
.RW0_clk (clock),
.RW0_wmode (regout_wen_5), // @[Mux.scala:50:70]
.RW0_wdata (regout_data_5), // @[Mux.scala:50:70]
.RW0_rdata (_cc_banks_5_RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
cc_banks_6_3 cc_banks_6 ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (_regout_T_30 ? regout_idx_6 : _regout_WIRE_6), // @[Mux.scala:50:70]
.RW0_en (_regout_T_32 | _regout_T_30), // @[DescribedSRAM.scala:17:26]
.RW0_clk (clock),
.RW0_wmode (regout_wen_6), // @[Mux.scala:50:70]
.RW0_wdata (regout_data_6), // @[Mux.scala:50:70]
.RW0_rdata (_cc_banks_6_RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
cc_banks_7_3 cc_banks_7 ( // @[DescribedSRAM.scala:17:26]
.RW0_addr (_regout_T_35 ? regout_idx_7 : _regout_WIRE_7), // @[Mux.scala:50:70]
.RW0_en (_regout_T_37 | _regout_T_35), // @[DescribedSRAM.scala:17:26]
.RW0_clk (clock),
.RW0_wmode (regout_wen_7), // @[Mux.scala:50:70]
.RW0_wdata (regout_data_7), // @[Mux.scala:50:70]
.RW0_rdata (_cc_banks_7_RW0_rdata)
); // @[DescribedSRAM.scala:17:26]
assign io_sinkC_adr_ready = io_sinkC_adr_ready_0; // @[BankedStore.scala:59:7]
assign io_sinkD_adr_ready = io_sinkD_adr_ready_0; // @[BankedStore.scala:59:7]
assign io_sourceC_adr_ready = io_sourceC_adr_ready_0; // @[BankedStore.scala:59:7]
assign io_sourceC_dat_data = io_sourceC_dat_data_0; // @[BankedStore.scala:59:7]
assign io_sourceD_radr_ready = io_sourceD_radr_ready_0; // @[BankedStore.scala:59:7]
assign io_sourceD_rdat_data = io_sourceD_rdat_data_0; // @[BankedStore.scala:59:7]
assign io_sourceD_wadr_ready = io_sourceD_wadr_ready_0; // @[BankedStore.scala:59:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Bundles.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import freechips.rocketchip.util._
import scala.collection.immutable.ListMap
import chisel3.util.Decoupled
import chisel3.util.DecoupledIO
import chisel3.reflect.DataMirror
abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle
// common combos in lazy policy:
// Put + Acquire
// Release + AccessAck
object TLMessages
{
// A B C D E
def PutFullData = 0.U // . . => AccessAck
def PutPartialData = 1.U // . . => AccessAck
def ArithmeticData = 2.U // . . => AccessAckData
def LogicalData = 3.U // . . => AccessAckData
def Get = 4.U // . . => AccessAckData
def Hint = 5.U // . . => HintAck
def AcquireBlock = 6.U // . => Grant[Data]
def AcquirePerm = 7.U // . => Grant[Data]
def Probe = 6.U // . => ProbeAck[Data]
def AccessAck = 0.U // . .
def AccessAckData = 1.U // . .
def HintAck = 2.U // . .
def ProbeAck = 4.U // .
def ProbeAckData = 5.U // .
def Release = 6.U // . => ReleaseAck
def ReleaseData = 7.U // . => ReleaseAck
def Grant = 4.U // . => GrantAck
def GrantData = 5.U // . => GrantAck
def ReleaseAck = 6.U // .
def GrantAck = 0.U // .
def isA(x: UInt) = x <= AcquirePerm
def isB(x: UInt) = x <= Probe
def isC(x: UInt) = x <= ReleaseData
def isD(x: UInt) = x <= ReleaseAck
def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant)
def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck)
def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("AcquireBlock",TLPermissions.PermMsgGrow),
("AcquirePerm",TLPermissions.PermMsgGrow))
def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved),
("PutPartialData",TLPermissions.PermMsgReserved),
("ArithmeticData",TLAtomics.ArithMsg),
("LogicalData",TLAtomics.LogicMsg),
("Get",TLPermissions.PermMsgReserved),
("Hint",TLHints.HintsMsg),
("Probe",TLPermissions.PermMsgCap))
def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("ProbeAck",TLPermissions.PermMsgReport),
("ProbeAckData",TLPermissions.PermMsgReport),
("Release",TLPermissions.PermMsgReport),
("ReleaseData",TLPermissions.PermMsgReport))
def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved),
("AccessAckData",TLPermissions.PermMsgReserved),
("HintAck",TLPermissions.PermMsgReserved),
("Invalid Opcode",TLPermissions.PermMsgReserved),
("Grant",TLPermissions.PermMsgCap),
("GrantData",TLPermissions.PermMsgCap),
("ReleaseAck",TLPermissions.PermMsgReserved))
}
/**
* The three primary TileLink permissions are:
* (T)runk: the agent is (or is on inwards path to) the global point of serialization.
* (B)ranch: the agent is on an outwards path to
* (N)one:
* These permissions are permuted by transfer operations in various ways.
* Operations can cap permissions, request for them to be grown or shrunk,
* or for a report on their current status.
*/
object TLPermissions
{
val aWidth = 2
val bdWidth = 2
val cWidth = 3
// Cap types (Grant = new permissions, Probe = permisions <= target)
def toT = 0.U(bdWidth.W)
def toB = 1.U(bdWidth.W)
def toN = 2.U(bdWidth.W)
def isCap(x: UInt) = x <= toN
// Grow types (Acquire = permissions >= target)
def NtoB = 0.U(aWidth.W)
def NtoT = 1.U(aWidth.W)
def BtoT = 2.U(aWidth.W)
def isGrow(x: UInt) = x <= BtoT
// Shrink types (ProbeAck, Release)
def TtoB = 0.U(cWidth.W)
def TtoN = 1.U(cWidth.W)
def BtoN = 2.U(cWidth.W)
def isShrink(x: UInt) = x <= BtoN
// Report types (ProbeAck, Release)
def TtoT = 3.U(cWidth.W)
def BtoB = 4.U(cWidth.W)
def NtoN = 5.U(cWidth.W)
def isReport(x: UInt) = x <= NtoN
def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT")
def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN")
def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN")
def PermMsgReserved:Seq[String] = Seq("Reserved")
}
object TLAtomics
{
val width = 3
// Arithmetic types
def MIN = 0.U(width.W)
def MAX = 1.U(width.W)
def MINU = 2.U(width.W)
def MAXU = 3.U(width.W)
def ADD = 4.U(width.W)
def isArithmetic(x: UInt) = x <= ADD
// Logical types
def XOR = 0.U(width.W)
def OR = 1.U(width.W)
def AND = 2.U(width.W)
def SWAP = 3.U(width.W)
def isLogical(x: UInt) = x <= SWAP
def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD")
def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP")
}
object TLHints
{
val width = 1
def PREFETCH_READ = 0.U(width.W)
def PREFETCH_WRITE = 1.U(width.W)
def isHints(x: UInt) = x <= PREFETCH_WRITE
def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite")
}
sealed trait TLChannel extends TLBundleBase {
val channelName: String
}
sealed trait TLDataChannel extends TLChannel
sealed trait TLAddrChannel extends TLDataChannel
final class TLBundleA(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleA_${params.shortName}"
val channelName = "'A' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleB(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleB_${params.shortName}"
val channelName = "'B' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val address = UInt(params.addressBits.W) // from
// variable fields during multibeat:
val mask = UInt((params.dataBits/8).W)
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleC(params: TLBundleParameters)
extends TLBundleBase(params) with TLAddrChannel
{
override def typeName = s"TLBundleC_${params.shortName}"
val channelName = "'C' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.cWidth.W) // shrink or report perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // from
val address = UInt(params.addressBits.W) // to
val user = BundleMap(params.requestFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleD(params: TLBundleParameters)
extends TLBundleBase(params) with TLDataChannel
{
override def typeName = s"TLBundleD_${params.shortName}"
val channelName = "'D' channel"
// fixed fields during multibeat:
val opcode = UInt(3.W)
val param = UInt(TLPermissions.bdWidth.W) // cap perms
val size = UInt(params.sizeBits.W)
val source = UInt(params.sourceBits.W) // to
val sink = UInt(params.sinkBits.W) // from
val denied = Bool() // implies corrupt iff *Data
val user = BundleMap(params.responseFields)
val echo = BundleMap(params.echoFields)
// variable fields during multibeat:
val data = UInt(params.dataBits.W)
val corrupt = Bool() // only applies to *Data messages
}
final class TLBundleE(params: TLBundleParameters)
extends TLBundleBase(params) with TLChannel
{
override def typeName = s"TLBundleE_${params.shortName}"
val channelName = "'E' channel"
val sink = UInt(params.sinkBits.W) // to
}
class TLBundle(val params: TLBundleParameters) extends Record
{
// Emulate a Bundle with elements abcde or ad depending on params.hasBCE
private val optA = Some (Decoupled(new TLBundleA(params)))
private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params))))
private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params)))
private val optD = Some (Flipped(Decoupled(new TLBundleD(params))))
private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params)))
def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params)))))
def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params)))))
def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params)))))
def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params)))))
def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params)))))
val elements =
if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a)
else ListMap("d" -> d, "a" -> a)
def tieoff(): Unit = {
DataMirror.specifiedDirectionOf(a.ready) match {
case SpecifiedDirection.Input =>
a.ready := false.B
c.ready := false.B
e.ready := false.B
b.valid := false.B
d.valid := false.B
case SpecifiedDirection.Output =>
a.valid := false.B
c.valid := false.B
e.valid := false.B
b.ready := false.B
d.ready := false.B
case _ =>
}
}
}
object TLBundle
{
def apply(params: TLBundleParameters) = new TLBundle(params)
}
class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle
class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params)
{
val a = new AsyncBundle(new TLBundleA(params.base), params.async)
val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async))
val c = new AsyncBundle(new TLBundleC(params.base), params.async)
val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async))
val e = new AsyncBundle(new TLBundleE(params.base), params.async)
}
class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = RationalIO(new TLBundleA(params))
val b = Flipped(RationalIO(new TLBundleB(params)))
val c = RationalIO(new TLBundleC(params))
val d = Flipped(RationalIO(new TLBundleD(params)))
val e = RationalIO(new TLBundleE(params))
}
class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params)
{
val a = CreditedIO(new TLBundleA(params))
val b = Flipped(CreditedIO(new TLBundleB(params)))
val c = CreditedIO(new TLBundleC(params))
val d = Flipped(CreditedIO(new TLBundleD(params)))
val e = CreditedIO(new TLBundleE(params))
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor_52( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7]
wire _source_ok_T = 1'h0; // @[Parameters.scala:54:10]
wire _source_ok_T_6 = 1'h0; // @[Parameters.scala:54:10]
wire sink_ok = 1'h0; // @[Monitor.scala:309:31]
wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35]
wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36]
wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25]
wire c_first_done = 1'h0; // @[Edges.scala:233:22]
wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47]
wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95]
wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71]
wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44]
wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36]
wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51]
wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40]
wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55]
wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74]
wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61]
wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61]
wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59]
wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14]
wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27]
wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25]
wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21]
wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74]
wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61]
wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61]
wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire _source_ok_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire _source_ok_T_7 = 1'h1; // @[Parameters.scala:54:32]
wire _source_ok_T_8 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:54:67]
wire c_first = 1'h1; // @[Edges.scala:231:25]
wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire c_first_last = 1'h1; // @[Edges.scala:232:33]
wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28]
wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28]
wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74]
wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_first_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_first_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_first_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_first_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_set_wo_ready_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_set_wo_ready_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_opcodes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_opcodes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_sizes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_sizes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_opcodes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_opcodes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_sizes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_sizes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_probe_ack_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_probe_ack_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _c_probe_ack_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _c_probe_ack_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [31:0] _same_cycle_resp_WIRE_4_bits_address = 32'h0; // @[Bundles.scala:265:74]
wire [31:0] _same_cycle_resp_WIRE_5_bits_address = 32'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_first_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_first_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_first_WIRE_2_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_first_WIRE_3_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40]
wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40]
wire [3:0] _c_set_wo_ready_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_set_wo_ready_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_set_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_set_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_interm_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53]
wire [3:0] _c_sizes_set_interm_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_sizes_set_interm_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51]
wire [3:0] _c_opcodes_set_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_opcodes_set_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_sizes_set_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_sizes_set_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_probe_ack_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_probe_ack_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _c_probe_ack_WIRE_2_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _c_probe_ack_WIRE_3_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_2_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_3_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [3:0] _same_cycle_resp_WIRE_4_bits_source = 4'h0; // @[Bundles.scala:265:74]
wire [3:0] _same_cycle_resp_WIRE_5_bits_source = 4'h0; // @[Bundles.scala:265:61]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [130:0] _c_opcodes_set_T_1 = 131'h0; // @[Monitor.scala:767:54]
wire [130:0] _c_sizes_set_T_1 = 131'h0; // @[Monitor.scala:768:52]
wire [6:0] _c_opcodes_set_T = 7'h0; // @[Monitor.scala:767:79]
wire [6:0] _c_sizes_set_T = 7'h0; // @[Monitor.scala:768:77]
wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61]
wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59]
wire [15:0] _c_set_wo_ready_T = 16'h1; // @[OneHot.scala:58:35]
wire [15:0] _c_set_T = 16'h1; // @[OneHot.scala:58:35]
wire [39:0] c_opcodes_set = 40'h0; // @[Monitor.scala:740:34]
wire [39:0] c_sizes_set = 40'h0; // @[Monitor.scala:741:34]
wire [9:0] c_set = 10'h0; // @[Monitor.scala:738:34]
wire [9:0] c_set_wo_ready = 10'h0; // @[Monitor.scala:739:34]
wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46]
wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76]
wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48]
wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [3:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_uncommonBits_T_1 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] source_ok_uncommonBits = _source_ok_uncommonBits_T; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_4 = source_ok_uncommonBits < 4'hA; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_5 = _source_ok_T_4; // @[Parameters.scala:56:48, :57:20]
wire _source_ok_WIRE_0 = _source_ok_T_5; // @[Parameters.scala:1138:31]
wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T = {26'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [3:0] uncommonBits = _uncommonBits_T; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_1 = _uncommonBits_T_1; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_2 = _uncommonBits_T_2; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_3 = _uncommonBits_T_3; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_4 = _uncommonBits_T_4; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_5 = _uncommonBits_T_5; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_6 = _uncommonBits_T_6; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_7 = _uncommonBits_T_7; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_8 = _uncommonBits_T_8; // @[Parameters.scala:52:{29,56}]
wire [3:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_10 = source_ok_uncommonBits_1 < 4'hA; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_11 = _source_ok_T_10; // @[Parameters.scala:56:48, :57:20]
wire _source_ok_WIRE_1_0 = _source_ok_T_11; // @[Parameters.scala:1138:31]
wire _T_732 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_732; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_732; // @[Decoupled.scala:51:35]
wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [2:0] size; // @[Monitor.scala:389:22]
reg [3:0] source; // @[Monitor.scala:390:22]
reg [31:0] address; // @[Monitor.scala:391:22]
wire _T_805 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_805; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_805; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_805; // @[Decoupled.scala:51:35]
wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71]
wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71]
wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [2:0] size_1; // @[Monitor.scala:540:22]
reg [3:0] source_1; // @[Monitor.scala:541:22]
reg sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
reg [9:0] inflight; // @[Monitor.scala:614:27]
reg [39:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [39:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [2:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [9:0] a_set; // @[Monitor.scala:626:34]
wire [9:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [39:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [39:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [6:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [6:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69]
wire [6:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65]
wire [6:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101]
wire [6:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99]
wire [6:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69]
wire [6:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67]
wire [6:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101]
wire [6:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99]
wire [39:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [39:0] _a_opcode_lookup_T_6 = {36'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [39:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[39:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [3:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [39:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [39:0] _a_size_lookup_T_6 = {36'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}]
wire [39:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[39:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [15:0] _GEN_2 = 16'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35]
wire [15:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_658 = _T_732 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_658 ? _a_set_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_658 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_658 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [6:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [6:0] _a_opcodes_set_T; // @[Monitor.scala:659:79]
assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79]
wire [6:0] _a_sizes_set_T; // @[Monitor.scala:660:77]
assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77]
wire [130:0] _a_opcodes_set_T_1 = {127'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_658 ? _a_opcodes_set_T_1[39:0] : 40'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [130:0] _a_sizes_set_T_1 = {127'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_658 ? _a_sizes_set_T_1[39:0] : 40'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [9:0] d_clr; // @[Monitor.scala:664:34]
wire [9:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [39:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [39:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46]
wire _T_704 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [15:0] _GEN_5 = 16'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_704 & ~d_release_ack ? _d_clr_wo_ready_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_673 = _T_805 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_673 ? _d_clr_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [142:0] _d_opcodes_clr_T_5 = 143'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_673 ? _d_opcodes_clr_T_5[39:0] : 40'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [142:0] _d_sizes_clr_T_5 = 143'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_673 ? _d_sizes_clr_T_5[39:0] : 40'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [9:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [9:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [9:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [39:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [39:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [39:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [39:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [39:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [39:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [9:0] inflight_1; // @[Monitor.scala:726:35]
wire [9:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35]
reg [39:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
wire [39:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43]
reg [39:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [39:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41]
wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}]
wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46]
wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [2:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28]
wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [3:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [39:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [39:0] _c_opcode_lookup_T_6 = {36'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [39:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[39:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [39:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [39:0] _c_size_lookup_T_6 = {36'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}]
wire [39:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[39:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [9:0] d_clr_1; // @[Monitor.scala:774:34]
wire [9:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [39:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [39:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_776 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_776 & d_release_ack_1 ? _d_clr_wo_ready_T_1[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_758 = _T_805 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_758 ? _d_clr_T_1[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [142:0] _d_opcodes_clr_T_11 = 143'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_758 ? _d_opcodes_clr_T_11[39:0] : 40'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [142:0] _d_sizes_clr_T_11 = 143'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_758 ? _d_sizes_clr_T_11[39:0] : 40'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 4'h0; // @[Monitor.scala:36:7, :795:113]
wire [9:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [9:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [39:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [39:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [39:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [39:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27] |
Generate the Verilog code corresponding to the following Chisel files.
File InputUnit.scala:
package constellation.router
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.util._
import constellation.channel._
import constellation.routing.{FlowRoutingBundle}
import constellation.noc.{HasNoCParams}
class AbstractInputUnitIO(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams],
)(implicit val p: Parameters) extends Bundle with HasRouterOutputParams {
val nodeId = cParam.destId
val router_req = Decoupled(new RouteComputerReq)
val router_resp = Input(new RouteComputerResp(outParams, egressParams))
val vcalloc_req = Decoupled(new VCAllocReq(cParam, outParams, egressParams))
val vcalloc_resp = Input(new VCAllocResp(outParams, egressParams))
val out_credit_available = Input(MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }))
val salloc_req = Vec(cParam.destSpeedup, Decoupled(new SwitchAllocReq(outParams, egressParams)))
val out = Vec(cParam.destSpeedup, Valid(new SwitchBundle(outParams, egressParams)))
val debug = Output(new Bundle {
val va_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
val sa_stall = UInt(log2Ceil(cParam.nVirtualChannels).W)
})
val block = Input(Bool())
}
abstract class AbstractInputUnit(
val cParam: BaseChannelParams,
val outParams: Seq[ChannelParams],
val egressParams: Seq[EgressChannelParams]
)(implicit val p: Parameters) extends Module with HasRouterOutputParams with HasNoCParams {
val nodeId = cParam.destId
def io: AbstractInputUnitIO
}
class InputBuffer(cParam: ChannelParams)(implicit p: Parameters) extends Module {
val nVirtualChannels = cParam.nVirtualChannels
val io = IO(new Bundle {
val enq = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits))))
val deq = Vec(cParam.nVirtualChannels, Decoupled(new BaseFlit(cParam.payloadBits)))
})
val useOutputQueues = cParam.useOutputQueues
val delims = if (useOutputQueues) {
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize else 0).scanLeft(0)(_+_)
} else {
// If no queuing, have to add an additional slot since head == tail implies empty
// TODO this should be fixed, should use all slots available
cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize + 1 else 0).scanLeft(0)(_+_)
}
val starts = delims.dropRight(1).zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val ends = delims.tail.zipWithIndex.map { case (s,i) =>
if (cParam.virtualChannelParams(i).traversable) s else 0
}
val fullSize = delims.last
// Ugly case. Use multiple queues
if ((cParam.srcSpeedup > 1 || cParam.destSpeedup > 1 || fullSize <= 1) || !cParam.unifiedBuffer) {
require(useOutputQueues)
val qs = cParam.virtualChannelParams.map(v => Module(new Queue(new BaseFlit(cParam.payloadBits), v.bufferSize)))
qs.zipWithIndex.foreach { case (q,i) =>
val sel = io.enq.map(f => f.valid && f.bits.virt_channel_id === i.U)
q.io.enq.valid := sel.orR
q.io.enq.bits.head := Mux1H(sel, io.enq.map(_.bits.head))
q.io.enq.bits.tail := Mux1H(sel, io.enq.map(_.bits.tail))
q.io.enq.bits.payload := Mux1H(sel, io.enq.map(_.bits.payload))
io.deq(i) <> q.io.deq
}
} else {
val mem = Mem(fullSize, new BaseFlit(cParam.payloadBits))
val heads = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val tails = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W))))
val empty = (heads zip tails).map(t => t._1 === t._2)
val qs = Seq.fill(nVirtualChannels) { Module(new Queue(new BaseFlit(cParam.payloadBits), 1, pipe=true)) }
qs.foreach(_.io.enq.valid := false.B)
qs.foreach(_.io.enq.bits := DontCare)
val vc_sel = UIntToOH(io.enq(0).bits.virt_channel_id)
val flit = Wire(new BaseFlit(cParam.payloadBits))
val direct_to_q = (Mux1H(vc_sel, qs.map(_.io.enq.ready)) && Mux1H(vc_sel, empty)) && useOutputQueues.B
flit.head := io.enq(0).bits.head
flit.tail := io.enq(0).bits.tail
flit.payload := io.enq(0).bits.payload
when (io.enq(0).valid && !direct_to_q) {
val tail = tails(io.enq(0).bits.virt_channel_id)
mem.write(tail, flit)
tails(io.enq(0).bits.virt_channel_id) := Mux(
tail === Mux1H(vc_sel, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(vc_sel, starts.map(_.U)),
tail + 1.U)
} .elsewhen (io.enq(0).valid && direct_to_q) {
for (i <- 0 until nVirtualChannels) {
when (io.enq(0).bits.virt_channel_id === i.U) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := flit
}
}
}
if (useOutputQueues) {
val can_to_q = (0 until nVirtualChannels).map { i => !empty(i) && qs(i).io.enq.ready }
val to_q_oh = PriorityEncoderOH(can_to_q)
val to_q = OHToUInt(to_q_oh)
when (can_to_q.orR) {
val head = Mux1H(to_q_oh, heads)
heads(to_q) := Mux(
head === Mux1H(to_q_oh, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(to_q_oh, starts.map(_.U)),
head + 1.U)
for (i <- 0 until nVirtualChannels) {
when (to_q_oh(i)) {
qs(i).io.enq.valid := true.B
qs(i).io.enq.bits := mem.read(head)
}
}
}
for (i <- 0 until nVirtualChannels) {
io.deq(i) <> qs(i).io.deq
}
} else {
qs.map(_.io.deq.ready := false.B)
val ready_sel = io.deq.map(_.ready)
val fire = io.deq.map(_.fire)
assert(PopCount(fire) <= 1.U)
val head = Mux1H(fire, heads)
when (fire.orR) {
val fire_idx = OHToUInt(fire)
heads(fire_idx) := Mux(
head === Mux1H(fire, ends.map(_ - 1).map(_ max 0).map(_.U)),
Mux1H(fire, starts.map(_.U)),
head + 1.U)
}
val read_flit = mem.read(head)
for (i <- 0 until nVirtualChannels) {
io.deq(i).valid := !empty(i)
io.deq(i).bits := read_flit
}
}
}
}
class InputUnit(cParam: ChannelParams, outParams: Seq[ChannelParams],
egressParams: Seq[EgressChannelParams],
combineRCVA: Boolean, combineSAST: Boolean
)
(implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) {
val nVirtualChannels = cParam.nVirtualChannels
val virtualChannelParams = cParam.virtualChannelParams
class InputUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) {
val in = Flipped(new Channel(cParam.asInstanceOf[ChannelParams]))
}
val io = IO(new InputUnitIO)
val g_i :: g_r :: g_v :: g_a :: g_c :: Nil = Enum(5)
class InputState extends Bundle {
val g = UInt(3.W)
val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })
val flow = new FlowRoutingBundle
val fifo_deps = UInt(nVirtualChannels.W)
}
val input_buffer = Module(new InputBuffer(cParam))
for (i <- 0 until cParam.srcSpeedup) {
input_buffer.io.enq(i) := io.in.flit(i)
}
input_buffer.io.deq.foreach(_.ready := false.B)
val route_arbiter = Module(new Arbiter(
new RouteComputerReq, nVirtualChannels
))
io.router_req <> route_arbiter.io.out
val states = Reg(Vec(nVirtualChannels, new InputState))
val anyFifo = cParam.possibleFlows.map(_.fifo).reduce(_||_)
val allFifo = cParam.possibleFlows.map(_.fifo).reduce(_&&_)
if (anyFifo) {
val idle_mask = VecInit(states.map(_.g === g_i)).asUInt
for (s <- states)
for (i <- 0 until nVirtualChannels)
s.fifo_deps := s.fifo_deps & ~idle_mask
}
for (i <- 0 until cParam.srcSpeedup) {
when (io.in.flit(i).fire && io.in.flit(i).bits.head) {
val id = io.in.flit(i).bits.virt_channel_id
assert(id < nVirtualChannels.U)
assert(states(id).g === g_i)
val at_dest = io.in.flit(i).bits.flow.egress_node === nodeId.U
states(id).g := Mux(at_dest, g_v, g_r)
states(id).vc_sel.foreach(_.foreach(_ := false.B))
for (o <- 0 until nEgress) {
when (o.U === io.in.flit(i).bits.flow.egress_node_id) {
states(id).vc_sel(o+nOutputs)(0) := true.B
}
}
states(id).flow := io.in.flit(i).bits.flow
if (anyFifo) {
val fifo = cParam.possibleFlows.filter(_.fifo).map(_.isFlow(io.in.flit(i).bits.flow)).toSeq.orR
states(id).fifo_deps := VecInit(states.zipWithIndex.map { case (s, j) =>
s.g =/= g_i && s.flow.asUInt === io.in.flit(i).bits.flow.asUInt && j.U =/= id
}).asUInt
}
}
}
(route_arbiter.io.in zip states).zipWithIndex.map { case ((i,s),idx) =>
if (virtualChannelParams(idx).traversable) {
i.valid := s.g === g_r
i.bits.flow := s.flow
i.bits.src_virt_id := idx.U
when (i.fire) { s.g := g_v }
} else {
i.valid := false.B
i.bits := DontCare
}
}
when (io.router_req.fire) {
val id = io.router_req.bits.src_virt_id
assert(states(id).g === g_r)
states(id).g := g_v
for (i <- 0 until nVirtualChannels) {
when (i.U === id) {
states(i).vc_sel := io.router_resp.vc_sel
}
}
}
val mask = RegInit(0.U(nVirtualChannels.W))
val vcalloc_reqs = Wire(Vec(nVirtualChannels, new VCAllocReq(cParam, outParams, egressParams)))
val vcalloc_vals = Wire(Vec(nVirtualChannels, Bool()))
val vcalloc_filter = PriorityEncoderOH(Cat(vcalloc_vals.asUInt, vcalloc_vals.asUInt & ~mask))
val vcalloc_sel = vcalloc_filter(nVirtualChannels-1,0) | (vcalloc_filter >> nVirtualChannels)
// Prioritize incoming packetes
when (io.router_req.fire) {
mask := (1.U << io.router_req.bits.src_virt_id) - 1.U
} .elsewhen (vcalloc_vals.orR) {
mask := Mux1H(vcalloc_sel, (0 until nVirtualChannels).map { w => ~(0.U((w+1).W)) })
}
io.vcalloc_req.valid := vcalloc_vals.orR
io.vcalloc_req.bits := Mux1H(vcalloc_sel, vcalloc_reqs)
states.zipWithIndex.map { case (s,idx) =>
if (virtualChannelParams(idx).traversable) {
vcalloc_vals(idx) := s.g === g_v && s.fifo_deps === 0.U
vcalloc_reqs(idx).in_vc := idx.U
vcalloc_reqs(idx).vc_sel := s.vc_sel
vcalloc_reqs(idx).flow := s.flow
when (vcalloc_vals(idx) && vcalloc_sel(idx) && io.vcalloc_req.ready) { s.g := g_a }
if (combineRCVA) {
when (route_arbiter.io.in(idx).fire) {
vcalloc_vals(idx) := true.B
vcalloc_reqs(idx).vc_sel := io.router_resp.vc_sel
}
}
} else {
vcalloc_vals(idx) := false.B
vcalloc_reqs(idx) := DontCare
}
}
io.debug.va_stall := PopCount(vcalloc_vals) - io.vcalloc_req.ready
when (io.vcalloc_req.fire) {
for (i <- 0 until nVirtualChannels) {
when (vcalloc_sel(i)) {
states(i).vc_sel := io.vcalloc_resp.vc_sel
states(i).g := g_a
if (!combineRCVA) {
assert(states(i).g === g_v)
}
}
}
}
val salloc_arb = Module(new SwitchArbiter(
nVirtualChannels,
cParam.destSpeedup,
outParams, egressParams
))
(states zip salloc_arb.io.in).zipWithIndex.map { case ((s,r),i) =>
if (virtualChannelParams(i).traversable) {
val credit_available = (s.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U
r.valid := s.g === g_a && credit_available && input_buffer.io.deq(i).valid
r.bits.vc_sel := s.vc_sel
val deq_tail = input_buffer.io.deq(i).bits.tail
r.bits.tail := deq_tail
when (r.fire && deq_tail) {
s.g := g_i
}
input_buffer.io.deq(i).ready := r.ready
} else {
r.valid := false.B
r.bits := DontCare
}
}
io.debug.sa_stall := PopCount(salloc_arb.io.in.map(r => r.valid && !r.ready))
io.salloc_req <> salloc_arb.io.out
when (io.block) {
salloc_arb.io.out.foreach(_.ready := false.B)
io.salloc_req.foreach(_.valid := false.B)
}
class OutBundle extends Bundle {
val valid = Bool()
val vid = UInt(virtualChannelBits.W)
val out_vid = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W)
val flit = new Flit(cParam.payloadBits)
}
val salloc_outs = if (combineSAST) {
Wire(Vec(cParam.destSpeedup, new OutBundle))
} else {
Reg(Vec(cParam.destSpeedup, new OutBundle))
}
io.in.credit_return := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire, salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
io.in.vc_free := salloc_arb.io.out.zipWithIndex.map { case (o, i) =>
Mux(o.fire && Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)),
salloc_arb.io.chosen_oh(i), 0.U)
}.reduce(_|_)
for (i <- 0 until cParam.destSpeedup) {
val salloc_out = salloc_outs(i)
salloc_out.valid := salloc_arb.io.out(i).fire
salloc_out.vid := OHToUInt(salloc_arb.io.chosen_oh(i))
val vc_sel = Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.vc_sel))
val channel_oh = vc_sel.map(_.reduce(_||_)).toSeq
val virt_channel = Mux1H(channel_oh, vc_sel.map(v => OHToUInt(v)).toSeq)
when (salloc_arb.io.out(i).fire) {
salloc_out.out_vid := virt_channel
salloc_out.flit.payload := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.payload))
salloc_out.flit.head := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.head))
salloc_out.flit.tail := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail))
salloc_out.flit.flow := Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.flow))
} .otherwise {
salloc_out.out_vid := DontCare
salloc_out.flit := DontCare
}
salloc_out.flit.virt_channel_id := DontCare // this gets set in the switch
io.out(i).valid := salloc_out.valid
io.out(i).bits.flit := salloc_out.flit
io.out(i).bits.out_virt_channel := salloc_out.out_vid
}
def filterVCSel(sel: MixedVec[Vec[Bool]], srcV: Int) = {
if (virtualChannelParams(srcV).traversable) {
outParams.zipWithIndex.map { case (oP, oI) =>
(0 until oP.nVirtualChannels).map { oV =>
var allow = false
virtualChannelParams(srcV).possibleFlows.foreach { pI =>
allow = allow || routingRelation(
cParam.channelRoutingInfos(srcV),
oP.channelRoutingInfos(oV),
pI
)
}
if (!allow)
sel(oI)(oV) := false.B
}
}
}
}
(0 until nVirtualChannels).map { i =>
if (!virtualChannelParams(i).traversable) states(i) := DontCare
filterVCSel(states(i).vc_sel, i)
}
when (reset.asBool) {
states.foreach(_.g := g_i)
}
}
| module InputBuffer_107( // @[InputUnit.scala:49:7]
input clock, // @[InputUnit.scala:49:7]
input reset, // @[InputUnit.scala:49:7]
input io_enq_0_valid, // @[InputUnit.scala:51:14]
input io_enq_0_bits_head, // @[InputUnit.scala:51:14]
input io_enq_0_bits_tail, // @[InputUnit.scala:51:14]
input [72:0] io_enq_0_bits_payload, // @[InputUnit.scala:51:14]
input [3:0] io_enq_0_bits_virt_channel_id, // @[InputUnit.scala:51:14]
output io_deq_0_bits_head, // @[InputUnit.scala:51:14]
output io_deq_0_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_0_bits_payload, // @[InputUnit.scala:51:14]
output io_deq_1_bits_head, // @[InputUnit.scala:51:14]
output io_deq_1_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_1_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_2_ready, // @[InputUnit.scala:51:14]
output io_deq_2_valid, // @[InputUnit.scala:51:14]
output io_deq_2_bits_head, // @[InputUnit.scala:51:14]
output io_deq_2_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_2_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_3_ready, // @[InputUnit.scala:51:14]
output io_deq_3_valid, // @[InputUnit.scala:51:14]
output io_deq_3_bits_head, // @[InputUnit.scala:51:14]
output io_deq_3_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_3_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_4_ready, // @[InputUnit.scala:51:14]
output io_deq_4_valid, // @[InputUnit.scala:51:14]
output io_deq_4_bits_head, // @[InputUnit.scala:51:14]
output io_deq_4_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_4_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_5_ready, // @[InputUnit.scala:51:14]
output io_deq_5_valid, // @[InputUnit.scala:51:14]
output io_deq_5_bits_head, // @[InputUnit.scala:51:14]
output io_deq_5_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_5_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_6_ready, // @[InputUnit.scala:51:14]
output io_deq_6_valid, // @[InputUnit.scala:51:14]
output io_deq_6_bits_head, // @[InputUnit.scala:51:14]
output io_deq_6_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_6_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_7_ready, // @[InputUnit.scala:51:14]
output io_deq_7_valid, // @[InputUnit.scala:51:14]
output io_deq_7_bits_head, // @[InputUnit.scala:51:14]
output io_deq_7_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_7_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_8_ready, // @[InputUnit.scala:51:14]
output io_deq_8_valid, // @[InputUnit.scala:51:14]
output io_deq_8_bits_head, // @[InputUnit.scala:51:14]
output io_deq_8_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_8_bits_payload, // @[InputUnit.scala:51:14]
input io_deq_9_ready, // @[InputUnit.scala:51:14]
output io_deq_9_valid, // @[InputUnit.scala:51:14]
output io_deq_9_bits_head, // @[InputUnit.scala:51:14]
output io_deq_9_bits_tail, // @[InputUnit.scala:51:14]
output [72:0] io_deq_9_bits_payload // @[InputUnit.scala:51:14]
);
wire _qs_9_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_8_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_7_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_6_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_5_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_4_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_3_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_2_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_1_io_enq_ready; // @[InputUnit.scala:90:49]
wire _qs_0_io_enq_ready; // @[InputUnit.scala:90:49]
wire [74:0] _mem_ext_R0_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R1_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R2_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R3_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R4_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R5_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R6_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R7_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R8_data; // @[InputUnit.scala:85:18]
wire [74:0] _mem_ext_R9_data; // @[InputUnit.scala:85:18]
reg [4:0] heads_0; // @[InputUnit.scala:86:24]
reg [4:0] heads_1; // @[InputUnit.scala:86:24]
reg [4:0] heads_2; // @[InputUnit.scala:86:24]
reg [4:0] heads_3; // @[InputUnit.scala:86:24]
reg [4:0] heads_4; // @[InputUnit.scala:86:24]
reg [4:0] heads_5; // @[InputUnit.scala:86:24]
reg [4:0] heads_6; // @[InputUnit.scala:86:24]
reg [4:0] heads_7; // @[InputUnit.scala:86:24]
reg [4:0] heads_8; // @[InputUnit.scala:86:24]
reg [4:0] heads_9; // @[InputUnit.scala:86:24]
reg [4:0] tails_0; // @[InputUnit.scala:87:24]
reg [4:0] tails_1; // @[InputUnit.scala:87:24]
reg [4:0] tails_2; // @[InputUnit.scala:87:24]
reg [4:0] tails_3; // @[InputUnit.scala:87:24]
reg [4:0] tails_4; // @[InputUnit.scala:87:24]
reg [4:0] tails_5; // @[InputUnit.scala:87:24]
reg [4:0] tails_6; // @[InputUnit.scala:87:24]
reg [4:0] tails_7; // @[InputUnit.scala:87:24]
reg [4:0] tails_8; // @[InputUnit.scala:87:24]
reg [4:0] tails_9; // @[InputUnit.scala:87:24]
wire _tails_T_30 = io_enq_0_bits_virt_channel_id == 4'h0; // @[Mux.scala:32:36]
wire _tails_T_31 = io_enq_0_bits_virt_channel_id == 4'h1; // @[Mux.scala:32:36]
wire _tails_T_32 = io_enq_0_bits_virt_channel_id == 4'h2; // @[Mux.scala:32:36]
wire _tails_T_33 = io_enq_0_bits_virt_channel_id == 4'h3; // @[Mux.scala:32:36]
wire _tails_T_34 = io_enq_0_bits_virt_channel_id == 4'h4; // @[Mux.scala:32:36]
wire _tails_T_35 = io_enq_0_bits_virt_channel_id == 4'h5; // @[Mux.scala:32:36]
wire _tails_T_36 = io_enq_0_bits_virt_channel_id == 4'h6; // @[Mux.scala:32:36]
wire _tails_T_37 = io_enq_0_bits_virt_channel_id == 4'h7; // @[Mux.scala:32:36]
wire _tails_T_38 = io_enq_0_bits_virt_channel_id == 4'h8; // @[Mux.scala:32:36]
wire _tails_T_39 = io_enq_0_bits_virt_channel_id == 4'h9; // @[Mux.scala:32:36]
wire direct_to_q = (_tails_T_30 & _qs_0_io_enq_ready | _tails_T_31 & _qs_1_io_enq_ready | _tails_T_32 & _qs_2_io_enq_ready | _tails_T_33 & _qs_3_io_enq_ready | _tails_T_34 & _qs_4_io_enq_ready | _tails_T_35 & _qs_5_io_enq_ready | _tails_T_36 & _qs_6_io_enq_ready | _tails_T_37 & _qs_7_io_enq_ready | _tails_T_38 & _qs_8_io_enq_ready | _tails_T_39 & _qs_9_io_enq_ready) & (_tails_T_30 & heads_0 == tails_0 | _tails_T_31 & heads_1 == tails_1 | _tails_T_32 & heads_2 == tails_2 | _tails_T_33 & heads_3 == tails_3 | _tails_T_34 & heads_4 == tails_4 | _tails_T_35 & heads_5 == tails_5 | _tails_T_36 & heads_6 == tails_6 | _tails_T_37 & heads_7 == tails_7 | _tails_T_38 & heads_8 == tails_8 | _tails_T_39 & heads_9 == tails_9); // @[Mux.scala:30:73, :32:36]
wire mem_MPORT_en = io_enq_0_valid & ~direct_to_q; // @[InputUnit.scala:96:62, :100:{27,30}]
wire [15:0][4:0] _GEN = {{tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_9}, {tails_8}, {tails_7}, {tails_6}, {tails_5}, {tails_4}, {tails_3}, {tails_2}, {tails_1}, {tails_0}}; // @[InputUnit.scala:87:24, :102:16]
wire _GEN_0 = io_enq_0_bits_virt_channel_id == 4'h0; // @[InputUnit.scala:103:45]
wire _GEN_1 = io_enq_0_bits_virt_channel_id == 4'h1; // @[InputUnit.scala:103:45]
wire _GEN_2 = io_enq_0_bits_virt_channel_id == 4'h2; // @[InputUnit.scala:103:45]
wire _GEN_3 = io_enq_0_bits_virt_channel_id == 4'h3; // @[InputUnit.scala:103:45]
wire _GEN_4 = io_enq_0_bits_virt_channel_id == 4'h4; // @[InputUnit.scala:103:45]
wire _GEN_5 = io_enq_0_bits_virt_channel_id == 4'h5; // @[InputUnit.scala:103:45]
wire _GEN_6 = io_enq_0_bits_virt_channel_id == 4'h6; // @[InputUnit.scala:103:45]
wire _GEN_7 = io_enq_0_bits_virt_channel_id == 4'h7; // @[InputUnit.scala:103:45]
wire _GEN_8 = io_enq_0_bits_virt_channel_id == 4'h8; // @[InputUnit.scala:103:45]
wire _GEN_9 = io_enq_0_bits_virt_channel_id == 4'h9; // @[InputUnit.scala:103:45]
wire _GEN_10 = io_enq_0_valid & direct_to_q; // @[InputUnit.scala:96:62, :107:34]
wire can_to_q_0 = heads_0 != tails_0 & _qs_0_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_1 = heads_1 != tails_1 & _qs_1_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_2 = heads_2 != tails_2 & _qs_2_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_3 = heads_3 != tails_3 & _qs_3_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_4 = heads_4 != tails_4 & _qs_4_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_5 = heads_5 != tails_5 & _qs_5_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_6 = heads_6 != tails_6 & _qs_6_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_7 = heads_7 != tails_7 & _qs_7_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_8 = heads_8 != tails_8 & _qs_8_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire can_to_q_9 = heads_9 != tails_9 & _qs_9_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}]
wire [9:0] to_q_oh_enc = can_to_q_0 ? 10'h1 : can_to_q_1 ? 10'h2 : can_to_q_2 ? 10'h4 : can_to_q_3 ? 10'h8 : can_to_q_4 ? 10'h10 : can_to_q_5 ? 10'h20 : can_to_q_6 ? 10'h40 : can_to_q_7 ? 10'h80 : can_to_q_8 ? 10'h100 : {can_to_q_9, 9'h0}; // @[Mux.scala:50:70]
wire _GEN_11 = can_to_q_0 | can_to_q_1 | can_to_q_2 | can_to_q_3 | can_to_q_4 | can_to_q_5 | can_to_q_6 | can_to_q_7 | can_to_q_8 | can_to_q_9; // @[package.scala:81:59]
wire [4:0] head = (to_q_oh_enc[0] ? heads_0 : 5'h0) | (to_q_oh_enc[1] ? heads_1 : 5'h0) | (to_q_oh_enc[2] ? heads_2 : 5'h0) | (to_q_oh_enc[3] ? heads_3 : 5'h0) | (to_q_oh_enc[4] ? heads_4 : 5'h0) | (to_q_oh_enc[5] ? heads_5 : 5'h0) | (to_q_oh_enc[6] ? heads_6 : 5'h0) | (to_q_oh_enc[7] ? heads_7 : 5'h0) | (to_q_oh_enc[8] ? heads_8 : 5'h0) | (to_q_oh_enc[9] ? heads_9 : 5'h0); // @[OneHot.scala:83:30]
wire _GEN_12 = _GEN_11 & to_q_oh_enc[0]; // @[OneHot.scala:83:30]
wire _GEN_13 = _GEN_11 & to_q_oh_enc[1]; // @[OneHot.scala:83:30]
wire _GEN_14 = _GEN_11 & to_q_oh_enc[2]; // @[OneHot.scala:83:30]
wire _GEN_15 = _GEN_11 & to_q_oh_enc[3]; // @[OneHot.scala:83:30]
wire _GEN_16 = _GEN_11 & to_q_oh_enc[4]; // @[OneHot.scala:83:30]
wire _GEN_17 = _GEN_11 & to_q_oh_enc[5]; // @[OneHot.scala:83:30]
wire _GEN_18 = _GEN_11 & to_q_oh_enc[6]; // @[OneHot.scala:83:30]
wire _GEN_19 = _GEN_11 & to_q_oh_enc[7]; // @[OneHot.scala:83:30]
wire _GEN_20 = _GEN_11 & to_q_oh_enc[8]; // @[OneHot.scala:83:30]
wire _GEN_21 = _GEN_11 & to_q_oh_enc[9]; // @[OneHot.scala:83:30]
wire [4:0] _tails_T_61 = _GEN[io_enq_0_bits_virt_channel_id] == ({1'h0, {1'h0, {1'h0, {2{_tails_T_32}}} | {3{_tails_T_33}}} | (_tails_T_34 ? 4'hB : 4'h0) | {4{_tails_T_35}}} | (_tails_T_36 ? 5'h13 : 5'h0) | (_tails_T_37 ? 5'h17 : 5'h0) | (_tails_T_38 ? 5'h1B : 5'h0) | {5{_tails_T_39}}) ? {_tails_T_36, {_tails_T_34, _tails_T_33, 2'h0} | (_tails_T_35 ? 4'hC : 4'h0)} | (_tails_T_37 ? 5'h14 : 5'h0) | (_tails_T_38 ? 5'h18 : 5'h0) | (_tails_T_39 ? 5'h1C : 5'h0) : _GEN[io_enq_0_bits_virt_channel_id] + 5'h1; // @[Mux.scala:30:73, :32:36]
wire [6:0] _to_q_T_2 = {6'h0, to_q_oh_enc[9]} | to_q_oh_enc[7:1]; // @[OneHot.scala:31:18, :32:28]
wire [2:0] _to_q_T_4 = _to_q_T_2[6:4] | _to_q_T_2[2:0]; // @[OneHot.scala:30:18, :31:18, :32:28]
wire _to_q_T_6 = _to_q_T_4[2] | _to_q_T_4[0]; // @[OneHot.scala:30:18, :31:18, :32:28]
wire [3:0] to_q = {|(to_q_oh_enc[9:8]), |(_to_q_T_2[6:3]), |(_to_q_T_4[2:1]), _to_q_T_6}; // @[OneHot.scala:30:18, :32:{10,14,28}]
wire [4:0] _heads_T_41 = head == ({1'h0, {1'h0, {1'h0, {2{to_q_oh_enc[2]}}} | {3{to_q_oh_enc[3]}}} | (to_q_oh_enc[4] ? 4'hB : 4'h0) | {4{to_q_oh_enc[5]}}} | (to_q_oh_enc[6] ? 5'h13 : 5'h0) | (to_q_oh_enc[7] ? 5'h17 : 5'h0) | (to_q_oh_enc[8] ? 5'h1B : 5'h0) | {5{to_q_oh_enc[9]}}) ? {to_q_oh_enc[6], {to_q_oh_enc[4:3], 2'h0} | (to_q_oh_enc[5] ? 4'hC : 4'h0)} | (to_q_oh_enc[7] ? 5'h14 : 5'h0) | (to_q_oh_enc[8] ? 5'h18 : 5'h0) | (to_q_oh_enc[9] ? 5'h1C : 5'h0) : head + 5'h1; // @[OneHot.scala:83:30]
always @(posedge clock) begin // @[InputUnit.scala:49:7]
if (reset) begin // @[InputUnit.scala:49:7]
heads_0 <= 5'h0; // @[InputUnit.scala:86:24]
heads_1 <= 5'h0; // @[InputUnit.scala:86:24]
heads_2 <= 5'h0; // @[InputUnit.scala:86:24]
heads_3 <= 5'h4; // @[InputUnit.scala:86:24]
heads_4 <= 5'h8; // @[InputUnit.scala:86:24]
heads_5 <= 5'hC; // @[InputUnit.scala:86:24]
heads_6 <= 5'h10; // @[InputUnit.scala:86:24]
heads_7 <= 5'h14; // @[InputUnit.scala:86:24]
heads_8 <= 5'h18; // @[InputUnit.scala:86:24]
heads_9 <= 5'h1C; // @[InputUnit.scala:86:24]
tails_0 <= 5'h0; // @[InputUnit.scala:87:24]
tails_1 <= 5'h0; // @[InputUnit.scala:87:24]
tails_2 <= 5'h0; // @[InputUnit.scala:87:24]
tails_3 <= 5'h4; // @[InputUnit.scala:87:24]
tails_4 <= 5'h8; // @[InputUnit.scala:87:24]
tails_5 <= 5'hC; // @[InputUnit.scala:87:24]
tails_6 <= 5'h10; // @[InputUnit.scala:87:24]
tails_7 <= 5'h14; // @[InputUnit.scala:87:24]
tails_8 <= 5'h18; // @[InputUnit.scala:87:24]
tails_9 <= 5'h1C; // @[InputUnit.scala:87:24]
end
else begin // @[InputUnit.scala:49:7]
if (_GEN_11 & {to_q_oh_enc[9:8], |(_to_q_T_2[6:3]), |(_to_q_T_4[2:1]), _to_q_T_6} == 5'h0) // @[OneHot.scala:30:18, :32:{10,14,28}]
heads_0 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h1) // @[OneHot.scala:32:10]
heads_1 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h2) // @[OneHot.scala:32:10]
heads_2 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h3) // @[OneHot.scala:32:10]
heads_3 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h4) // @[OneHot.scala:32:10]
heads_4 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h5) // @[OneHot.scala:32:10]
heads_5 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h6) // @[OneHot.scala:32:10]
heads_6 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h7) // @[OneHot.scala:32:10]
heads_7 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h8) // @[OneHot.scala:32:10]
heads_8 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (_GEN_11 & to_q == 4'h9) // @[OneHot.scala:32:10]
heads_9 <= _heads_T_41; // @[InputUnit.scala:86:24, :122:27]
if (mem_MPORT_en & _GEN_0) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_0 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_1) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_1 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_2) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_2 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_3) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_3 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_4) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_4 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_5) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_5 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_6) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_6 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_7) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_7 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_8) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_8 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
if (mem_MPORT_en & _GEN_9) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45]
tails_9 <= _tails_T_61; // @[InputUnit.scala:87:24, :103:51]
end
always @(posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_225( // @[SynchronizerReg.scala:68:19]
input clock, // @[SynchronizerReg.scala:68:19]
input reset, // @[SynchronizerReg.scala:68:19]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19]
wire _sync_2_T = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19]
wire io_q_0; // @[SynchronizerReg.scala:68:19]
reg sync_0; // @[SynchronizerReg.scala:51:87]
assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19]
reg sync_1; // @[SynchronizerReg.scala:51:87]
reg sync_2; // @[SynchronizerReg.scala:51:87]
always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19]
if (reset) begin // @[SynchronizerReg.scala:68:19]
sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87]
end
else begin // @[SynchronizerReg.scala:68:19]
sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87]
sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87]
sync_2 <= 1'h1; // @[SynchronizerReg.scala:51:87, :54:22, :68:19]
end
always @(posedge, posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File AsyncQueue.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
case class AsyncQueueParams(
depth: Int = 8,
sync: Int = 3,
safe: Boolean = true,
// If safe is true, then effort is made to resynchronize the crossing indices when either side is reset.
// This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty.
narrow: Boolean = false)
// If narrow is true then the read mux is moved to the source side of the crossing.
// This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing,
// at the expense of a combinational path from the sink to the source and back to the sink.
{
require (depth > 0 && isPow2(depth))
require (sync >= 2)
val bits = log2Ceil(depth)
val wires = if (narrow) 1 else depth
}
object AsyncQueueParams {
// When there is only one entry, we don't need narrow.
def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false)
}
class AsyncBundleSafety extends Bundle {
val ridx_valid = Input (Bool())
val widx_valid = Output(Bool())
val source_reset_n = Output(Bool())
val sink_reset_n = Input (Bool())
}
class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle {
// Data-path synchronization
val mem = Output(Vec(params.wires, gen))
val ridx = Input (UInt((params.bits+1).W))
val widx = Output(UInt((params.bits+1).W))
val index = params.narrow.option(Input(UInt(params.bits.W)))
// Signals used to self-stabilize a safe AsyncQueue
val safe = params.safe.option(new AsyncBundleSafety)
}
object GrayCounter {
def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = {
val incremented = Wire(UInt(bits.W))
val binary = RegNext(next=incremented, init=0.U).suggestName(name)
incremented := Mux(clear, 0.U, binary + increment.asUInt)
incremented ^ (incremented >> 1)
}
}
class AsyncValidSync(sync: Int, desc: String) extends RawModule {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())
})
val clock = IO(Input(Clock()))
val reset = IO(Input(AsyncReset()))
withClockAndReset(clock, reset){
io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc))
}
}
class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSource_${gen.typeName}"
val io = IO(new Bundle {
// These come from the source domain
val enq = Flipped(Decoupled(gen))
// These cross to the sink clock domain
val async = new AsyncBundle(gen, params)
})
val bits = params.bits
val sink_ready = WireInit(true.B)
val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all.
val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin"))
val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray"))
val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U)
val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1))
when (io.enq.fire) { mem(index) := io.enq.bits }
val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg"))
io.enq.ready := ready_reg && sink_ready
val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray"))
io.async.widx := widx_reg
io.async.index match {
case Some(index) => io.async.mem(0) := mem(index)
case None => io.async.mem := mem
}
io.async.safe.foreach { sio =>
val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0"))
val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1"))
val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend"))
val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid"))
source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset
sink_valid .reset := reset.asAsyncReset
source_valid_0.clock := clock
source_valid_1.clock := clock
sink_extend .clock := clock
sink_valid .clock := clock
source_valid_0.io.in := true.B
source_valid_1.io.in := source_valid_0.io.out
sio.widx_valid := source_valid_1.io.out
sink_extend.io.in := sio.ridx_valid
sink_valid.io.in := sink_extend.io.out
sink_ready := sink_valid.io.out
sio.source_reset_n := !reset.asBool
// Assert that if there is stuff in the queue, then reset cannot happen
// Impossible to write because dequeue can occur on the receiving side,
// then reset allowed to happen, but write side cannot know that dequeue
// occurred.
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
// assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected")
// assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty")
}
}
class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module {
override def desiredName = s"AsyncQueueSink_${gen.typeName}"
val io = IO(new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val async = Flipped(new AsyncBundle(gen, params))
})
val bits = params.bits
val source_ready = WireInit(true.B)
val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin"))
val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray"))
val valid = source_ready && ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
io.async.index.foreach { _ := index }
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
// It is possible that bits latches when the source domain is reset / has power cut
// This is safe, because isolation gates brought mem low before the zeroed widx reached us
val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index)
io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg"))
val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg"))
io.deq.valid := valid_reg && source_ready
val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray"))
io.async.ridx := ridx_reg
io.async.safe.foreach { sio =>
val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0"))
val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1"))
val source_extend = Module(new AsyncValidSync(params.sync, "source_extend"))
val source_valid = Module(new AsyncValidSync(params.sync, "source_valid"))
sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset
source_valid .reset := reset.asAsyncReset
sink_valid_0 .clock := clock
sink_valid_1 .clock := clock
source_extend.clock := clock
source_valid .clock := clock
sink_valid_0.io.in := true.B
sink_valid_1.io.in := sink_valid_0.io.out
sio.ridx_valid := sink_valid_1.io.out
source_extend.io.in := sio.widx_valid
source_valid.io.in := source_extend.io.out
source_ready := source_valid.io.out
sio.sink_reset_n := !reset.asBool
// TODO: write some sort of sanity check assertion for users
// that denote don't reset when there is activity
//
// val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool
// val reset_and_extend_prev = RegNext(reset_and_extend, true.B)
// val reset_rise = !reset_and_extend_prev && reset_and_extend
// val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0)
// assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty")
}
}
object FromAsyncBundle
{
// Sometimes it makes sense for the sink to have different sync than the source
def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync)
def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = {
val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync)))
sink.io.async <> x
sink.io.deq
}
}
object ToAsyncBundle
{
def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = {
val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params))
source.io.enq <> x
source.io.async
}
}
class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] {
val io = IO(new CrossingIO(gen))
val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) }
val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) }
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.async <> source.io.async
}
| module AsyncValidSync_161( // @[AsyncQueue.scala:58:7]
input io_in, // @[AsyncQueue.scala:59:14]
output io_out, // @[AsyncQueue.scala:59:14]
input clock, // @[AsyncQueue.scala:63:17]
input reset // @[AsyncQueue.scala:64:17]
);
wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7]
wire _io_out_WIRE; // @[ShiftReg.scala:48:24]
wire io_out_0; // @[AsyncQueue.scala:58:7]
assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24]
AsyncResetSynchronizerShiftReg_w1_d3_i0_182 io_out_source_valid_1 ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (reset),
.io_d (io_in_0), // @[AsyncQueue.scala:58:7]
.io_q (_io_out_WIRE)
); // @[ShiftReg.scala:45:23]
assign io_out = io_out_0; // @[AsyncQueue.scala:58:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File util.scala:
//******************************************************************************
// Copyright (c) 2015 - 2019, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Utility Functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
package boom.v4.util
import chisel3._
import chisel3.util._
import freechips.rocketchip.rocket.Instructions._
import freechips.rocketchip.rocket._
import freechips.rocketchip.util.{Str}
import org.chipsalliance.cde.config.{Parameters}
import freechips.rocketchip.tile.{TileKey}
import boom.v4.common.{MicroOp}
import boom.v4.exu.{BrUpdateInfo}
/**
* Object to XOR fold a input register of fullLength into a compressedLength.
*/
object Fold
{
def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = {
val clen = compressedLength
val hlen = fullLength
if (hlen <= clen) {
input
} else {
var res = 0.U(clen.W)
var remaining = input.asUInt
for (i <- 0 to hlen-1 by clen) {
val len = if (i + clen > hlen ) (hlen - i) else clen
require(len > 0)
res = res(clen-1,0) ^ remaining(len-1,0)
remaining = remaining >> len.U
}
res
}
}
}
/**
* Object to check if MicroOp was killed due to a branch mispredict.
* Uses "Fast" branch masks
*/
object IsKilledByBranch
{
def apply(brupdate: BrUpdateInfo, flush: Bool, uop: MicroOp): Bool = {
return apply(brupdate, flush, uop.br_mask)
}
def apply(brupdate: BrUpdateInfo, flush: Bool, uop_mask: UInt): Bool = {
return maskMatch(brupdate.b1.mispredict_mask, uop_mask) || flush
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: T): Bool = {
return apply(brupdate, flush, bundle.uop)
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Bool = {
return apply(brupdate, flush, bundle.bits)
}
}
/**
* Object to return new MicroOp with a new BR mask given a MicroOp mask
* and old BR mask.
*/
object GetNewUopAndBrMask
{
def apply(uop: MicroOp, brupdate: BrUpdateInfo)
(implicit p: Parameters): MicroOp = {
val newuop = WireInit(uop)
newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask
newuop
}
}
/**
* Object to return a BR mask given a MicroOp mask and old BR mask.
*/
object GetNewBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = {
return uop.br_mask & ~brupdate.b1.resolve_mask
}
def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = {
return br_mask & ~brupdate.b1.resolve_mask
}
}
object UpdateBrMask
{
def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = {
val out = WireInit(uop)
out.br_mask := GetNewBrMask(brupdate, uop)
out
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = {
val out = WireInit(bundle)
out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask)
out
}
def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Valid[T] = {
val out = WireInit(bundle)
out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask)
out.valid := bundle.valid && !IsKilledByBranch(brupdate, flush, bundle.bits.uop.br_mask)
out
}
}
/**
* Object to check if at least 1 bit matches in two masks
*/
object maskMatch
{
def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U
}
/**
* Object to clear one bit in a mask given an index
*/
object clearMaskBit
{
def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0)
}
/**
* Object to shift a register over by one bit and concat a new one
*/
object PerformShiftRegister
{
def apply(reg_val: UInt, new_bit: Bool): UInt = {
reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt
reg_val
}
}
/**
* Object to shift a register over by one bit, wrapping the top bit around to the bottom
* (XOR'ed with a new-bit), and evicting a bit at index HLEN.
* This is used to simulate a longer HLEN-width shift register that is folded
* down to a compressed CLEN.
*/
object PerformCircularShiftRegister
{
def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = {
val carry = csr(clen-1)
val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U)
newval
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapAdd
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, amt: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + amt)(log2Ceil(n)-1,0)
} else {
val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt)
Mux(sum >= n.U,
sum - n.U,
sum)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapSub
{
// "n" is the number of increments, so we wrap to n-1.
def apply(value: UInt, amt: Int, n: Int): UInt = {
if (isPow2(n)) {
(value - amt.U)(log2Ceil(n)-1,0)
} else {
val v = Cat(0.U(1.W), value)
val b = Cat(0.U(1.W), amt.U)
Mux(value >= amt.U,
value - amt.U,
n.U - amt.U + value)
}
}
}
/**
* Object to increment an input value, wrapping it if
* necessary.
*/
object WrapInc
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value + 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === (n-1).U)
Mux(wrap, 0.U, value + 1.U)
}
}
}
/**
* Object to decrement an input value, wrapping it if
* necessary.
*/
object WrapDec
{
// "n" is the number of increments, so we wrap at n-1.
def apply(value: UInt, n: Int): UInt = {
if (isPow2(n)) {
(value - 1.U)(log2Ceil(n)-1,0)
} else {
val wrap = (value === 0.U)
Mux(wrap, (n-1).U, value - 1.U)
}
}
}
/**
* Object to mask off lower bits of a PC to align to a "b"
* Byte boundary.
*/
object AlignPCToBoundary
{
def apply(pc: UInt, b: Int): UInt = {
// Invert for scenario where pc longer than b
// (which would clear all bits above size(b)).
~(~pc | (b-1).U)
}
}
/**
* Object to rotate a signal left by one
*/
object RotateL1
{
def apply(signal: UInt): UInt = {
val w = signal.getWidth
val out = Cat(signal(w-2,0), signal(w-1))
return out
}
}
/**
* Object to sext a value to a particular length.
*/
object Sext
{
def apply(x: UInt, length: Int): UInt = {
if (x.getWidth == length) return x
else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x)
}
}
/**
* Object to translate from BOOM's special "packed immediate" to a 32b signed immediate
* Asking for U-type gives it shifted up 12 bits.
*/
object ImmGen
{
import boom.v4.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U, IS_N}
def apply(i: UInt, isel: UInt): UInt = {
val ip = Mux(isel === IS_N, 0.U(LONGEST_IMM_SZ.W), i)
val sign = ip(LONGEST_IMM_SZ-1).asSInt
val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign)
val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign)
val i11 = Mux(isel === IS_U, 0.S,
Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign))
val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt)
val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt)
val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S)
return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0)
}
}
/**
* Object to see if an instruction is a JALR.
*/
object DebugIsJALR
{
def apply(inst: UInt): Bool = {
// TODO Chisel not sure why this won't compile
// val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)),
// Array(
// JALR -> Bool(true)))
inst(6,0) === "b1100111".U
}
}
/**
* Object to take an instruction and output its branch or jal target. Only used
* for a debug assert (no where else would we jump straight from instruction
* bits to a target).
*/
object DebugGetBJImm
{
def apply(inst: UInt): UInt = {
// TODO Chisel not sure why this won't compile
//val csignals =
//rocket.DecodeLogic(inst,
// List(Bool(false), Bool(false)),
// Array(
// BEQ -> List(Bool(true ), Bool(false)),
// BNE -> List(Bool(true ), Bool(false)),
// BGE -> List(Bool(true ), Bool(false)),
// BGEU -> List(Bool(true ), Bool(false)),
// BLT -> List(Bool(true ), Bool(false)),
// BLTU -> List(Bool(true ), Bool(false))
// ))
//val is_br :: nothing :: Nil = csignals
val is_br = (inst(6,0) === "b1100011".U)
val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W))
val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W))
Mux(is_br, br_targ, jal_targ)
}
}
/**
* Object to return the lowest bit position after the head.
*/
object AgePriorityEncoder
{
def apply(in: Seq[Bool], head: UInt): UInt = {
val n = in.size
val width = log2Ceil(in.size)
val n_padded = 1 << width
val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in
val idx = PriorityEncoder(temp_vec)
idx(width-1, 0) //discard msb
}
}
/**
* Object to determine whether queue
* index i0 is older than index i1.
*/
object IsOlder
{
def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head))
}
object IsYoungerMask
{
def apply(i: UInt, head: UInt, n: Integer): UInt = {
val hi_mask = ~MaskLower(UIntToOH(i)(n-1,0))
val lo_mask = ~MaskUpper(UIntToOH(head)(n-1,0))
Mux(i < head, hi_mask & lo_mask, hi_mask | lo_mask)(n-1,0)
}
}
/**
* Set all bits at or below the highest order '1'.
*/
object MaskLower
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => in >> i.U).reduce(_|_)
}
}
/**
* Set all bits at or above the lowest order '1'.
*/
object MaskUpper
{
def apply(in: UInt) = {
val n = in.getWidth
(0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_)
}
}
/**
* Transpose a matrix of Chisel Vecs.
*/
object Transpose
{
def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = {
val n = in(0).size
VecInit((0 until n).map(i => VecInit(in.map(row => row(i)))))
}
}
/**
* N-wide one-hot priority encoder.
*/
object SelectFirstN
{
def apply(in: UInt, n: Int) = {
val sels = Wire(Vec(n, UInt(in.getWidth.W)))
var mask = in
for (i <- 0 until n) {
sels(i) := PriorityEncoderOH(mask)
mask = mask & ~sels(i)
}
sels
}
}
/**
* Connect the first k of n valid input interfaces to k output interfaces.
*/
class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module
{
require(n >= k)
val io = IO(new Bundle {
val in = Vec(n, Flipped(DecoupledIO(gen)))
val out = Vec(k, DecoupledIO(gen))
})
if (n == k) {
io.out <> io.in
} else {
val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c))
val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col =>
(col zip io.in.map(_.valid)) map {case (c,v) => c && v})
val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_))
val out_valids = sels map (col => col.reduce(_||_))
val out_data = sels map (s => Mux1H(s, io.in.map(_.bits)))
in_readys zip io.in foreach {case (r,i) => i.ready := r}
out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d}
}
}
/**
* Create a queue that can be killed with a branch kill signal.
* Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq).
*/
class BranchKillableQueue[T <: boom.v4.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v4.common.MicroOp => Bool = u => true.B, fastDeq: Boolean = false)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v4.common.BoomModule()(p)
with boom.v4.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val enq = Flipped(Decoupled(gen))
val deq = Decoupled(gen)
val brupdate = Input(new BrUpdateInfo())
val flush = Input(Bool())
val empty = Output(Bool())
val count = Output(UInt(log2Ceil(entries).W))
})
if (fastDeq && entries > 1) {
// Pipeline dequeue selection so the mux gets an entire cycle
val main = Module(new BranchKillableQueue(gen, entries-1, flush_fn, false))
val out_reg = Reg(gen)
val out_valid = RegInit(false.B)
val out_uop = Reg(new MicroOp)
main.io.enq <> io.enq
main.io.brupdate := io.brupdate
main.io.flush := io.flush
io.empty := main.io.empty && !out_valid
io.count := main.io.count + out_valid
io.deq.valid := out_valid
io.deq.bits := out_reg
io.deq.bits.uop := out_uop
out_uop := UpdateBrMask(io.brupdate, out_uop)
out_valid := out_valid && !IsKilledByBranch(io.brupdate, false.B, out_uop) && !(io.flush && flush_fn(out_uop))
main.io.deq.ready := false.B
when (io.deq.fire || !out_valid) {
out_valid := main.io.deq.valid && !IsKilledByBranch(io.brupdate, false.B, main.io.deq.bits.uop) && !(io.flush && flush_fn(main.io.deq.bits.uop))
out_reg := main.io.deq.bits
out_uop := UpdateBrMask(io.brupdate, main.io.deq.bits.uop)
main.io.deq.ready := true.B
}
} else {
val ram = Mem(entries, gen)
val valids = RegInit(VecInit(Seq.fill(entries) {false.B}))
val uops = Reg(Vec(entries, new MicroOp))
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = RegInit(false.B)
val ptr_match = enq_ptr.value === deq_ptr.value
io.empty := ptr_match && !maybe_full
val full = ptr_match && maybe_full
val do_enq = WireInit(io.enq.fire && !IsKilledByBranch(io.brupdate, false.B, io.enq.bits.uop) && !(io.flush && flush_fn(io.enq.bits.uop)))
val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty)
for (i <- 0 until entries) {
val mask = uops(i).br_mask
val uop = uops(i)
valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, false.B, mask) && !(io.flush && flush_fn(uop))
when (valids(i)) {
uops(i).br_mask := GetNewBrMask(io.brupdate, mask)
}
}
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
valids(enq_ptr.value) := true.B
uops(enq_ptr.value) := io.enq.bits.uop
uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop)
enq_ptr.inc()
}
when (do_deq) {
valids(deq_ptr.value) := false.B
deq_ptr.inc()
}
when (do_enq =/= do_deq) {
maybe_full := do_enq
}
io.enq.ready := !full
val out = Wire(gen)
out := ram(deq_ptr.value)
out.uop := uops(deq_ptr.value)
io.deq.valid := !io.empty && valids(deq_ptr.value)
io.deq.bits := out
val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
}
else {
io.count := Mux(ptr_match,
Mux(maybe_full,
entries.asUInt, 0.U),
Mux(deq_ptr.value > enq_ptr.value,
entries.asUInt + ptr_diff, ptr_diff))
}
}
}
// ------------------------------------------
// Printf helper functions
// ------------------------------------------
object BoolToChar
{
/**
* Take in a Chisel Bool and convert it into a Str
* based on the Chars given
*
* @param c_bool Chisel Bool
* @param trueChar Scala Char if bool is true
* @param falseChar Scala Char if bool is false
* @return UInt ASCII Char for "trueChar" or "falseChar"
*/
def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = {
Mux(c_bool, Str(trueChar), Str(falseChar))
}
}
object CfiTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param cfi_type specific cfi type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(cfi_type: UInt) = {
val strings = Seq("----", "BR ", "JAL ", "JALR")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(cfi_type)
}
}
object BpdTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param bpd_type specific bpd type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(bpd_type: UInt) = {
val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(bpd_type)
}
}
object RobTypeToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param rob_type specific rob type
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(rob_type: UInt) = {
val strings = Seq("RST", "NML", "RBK", " WT")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(rob_type)
}
}
object XRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param xreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(xreg: UInt) = {
val strings = Seq(" x0", " ra", " sp", " gp",
" tp", " t0", " t1", " t2",
" s0", " s1", " a0", " a1",
" a2", " a3", " a4", " a5",
" a6", " a7", " s2", " s3",
" s4", " s5", " s6", " s7",
" s8", " s9", "s10", "s11",
" t3", " t4", " t5", " t6")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(xreg)
}
}
object FPRegToChars
{
/**
* Get a Vec of Strs that can be used for printing
*
* @param fpreg specific register number
* @return Vec of Strs (must be indexed to get specific char)
*/
def apply(fpreg: UInt) = {
val strings = Seq(" ft0", " ft1", " ft2", " ft3",
" ft4", " ft5", " ft6", " ft7",
" fs0", " fs1", " fa0", " fa1",
" fa2", " fa3", " fa4", " fa5",
" fa6", " fa7", " fs2", " fs3",
" fs4", " fs5", " fs6", " fs7",
" fs8", " fs9", "fs10", "fs11",
" ft8", " ft9", "ft10", "ft11")
val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) })
multiVec(fpreg)
}
}
object BoomCoreStringPrefix
{
/**
* Add prefix to BOOM strings (currently only adds the hartId)
*
* @param strs list of strings
* @return String combining the list with the prefix per line
*/
def apply(strs: String*)(implicit p: Parameters) = {
val prefix = "[C" + s"${p(TileKey).tileId}" + "] "
strs.map(str => prefix + str + "\n").mkString("")
}
}
class BranchKillablePipeline[T <: boom.v4.common.HasBoomUOP](gen: T, stages: Int)
(implicit p: org.chipsalliance.cde.config.Parameters)
extends boom.v4.common.BoomModule()(p)
with boom.v4.common.HasBoomCoreParameters
{
val io = IO(new Bundle {
val req = Input(Valid(gen))
val flush = Input(Bool())
val brupdate = Input(new BrUpdateInfo)
val resp = Output(Vec(stages, Valid(gen)))
})
require(stages > 0)
val uops = Reg(Vec(stages, Valid(gen)))
uops(0).valid := io.req.valid && !IsKilledByBranch(io.brupdate, io.flush, io.req.bits)
uops(0).bits := UpdateBrMask(io.brupdate, io.req.bits)
for (i <- 1 until stages) {
uops(i).valid := uops(i-1).valid && !IsKilledByBranch(io.brupdate, io.flush, uops(i-1).bits)
uops(i).bits := UpdateBrMask(io.brupdate, uops(i-1).bits)
}
for (i <- 0 until stages) { when (reset.asBool) { uops(i).valid := false.B } }
io.resp := uops
}
File issue-slot.scala:
//******************************************************************************
// Copyright (c) 2015 - 2018, The Regents of the University of California (Regents).
// All Rights Reserved. See LICENSE and LICENSE.SiFive for license details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// RISCV Processor Issue Slot Logic
//--------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Note: stores (and AMOs) are "broken down" into 2 uops, but stored within a single issue-slot.
// TODO XXX make a separate issueSlot for MemoryIssueSlots, and only they break apart stores.
// TODO Disable ldspec for FP queue.
package boom.v4.exu
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.Parameters
import boom.v4.common._
import boom.v4.util._
class IssueSlotIO(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomBundle
{
val valid = Output(Bool())
val will_be_valid = Output(Bool()) // TODO code review, do we need this signal so explicitely?
val request = Output(Bool())
val grant = Input(Bool())
val iss_uop = Output(new MicroOp())
val in_uop = Input(Valid(new MicroOp())) // if valid, this WILL overwrite an entry!
val out_uop = Output(new MicroOp())
val brupdate = Input(new BrUpdateInfo())
val kill = Input(Bool()) // pipeline flush
val clear = Input(Bool()) // entry being moved elsewhere (not mutually exclusive with grant)
val squash_grant = Input(Bool())
val wakeup_ports = Flipped(Vec(numWakeupPorts, Valid(new Wakeup)))
val pred_wakeup_port = Flipped(Valid(UInt(log2Ceil(ftqSz).W)))
val child_rebusys = Input(UInt(aluWidth.W))
}
class IssueSlot(val numWakeupPorts: Int, val isMem: Boolean, val isFp: Boolean)(implicit p: Parameters)
extends BoomModule
{
val io = IO(new IssueSlotIO(numWakeupPorts))
val slot_valid = RegInit(false.B)
val slot_uop = Reg(new MicroOp())
val next_valid = WireInit(slot_valid)
val next_uop = WireInit(UpdateBrMask(io.brupdate, slot_uop))
val killed = IsKilledByBranch(io.brupdate, io.kill, slot_uop)
io.valid := slot_valid
io.out_uop := next_uop
io.will_be_valid := next_valid && !killed
when (io.kill) {
slot_valid := false.B
} .elsewhen (io.in_uop.valid) {
slot_valid := true.B
} .elsewhen (io.clear) {
slot_valid := false.B
} .otherwise {
slot_valid := next_valid && !killed
}
when (io.in_uop.valid) {
slot_uop := io.in_uop.bits
assert (!slot_valid || io.clear || io.kill)
} .otherwise {
slot_uop := next_uop
}
// Wakeups
next_uop.iw_p1_bypass_hint := false.B
next_uop.iw_p2_bypass_hint := false.B
next_uop.iw_p3_bypass_hint := false.B
next_uop.iw_p1_speculative_child := 0.U
next_uop.iw_p2_speculative_child := 0.U
val rebusied_prs1 = WireInit(false.B)
val rebusied_prs2 = WireInit(false.B)
val rebusied = rebusied_prs1 || rebusied_prs2
val prs1_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs1 }
val prs2_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs2 }
val prs3_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs3 }
val prs1_wakeups = (io.wakeup_ports zip prs1_matches).map { case (w,m) => w.valid && m }
val prs2_wakeups = (io.wakeup_ports zip prs2_matches).map { case (w,m) => w.valid && m }
val prs3_wakeups = (io.wakeup_ports zip prs3_matches).map { case (w,m) => w.valid && m }
val prs1_rebusys = (io.wakeup_ports zip prs1_matches).map { case (w,m) => w.bits.rebusy && m }
val prs2_rebusys = (io.wakeup_ports zip prs2_matches).map { case (w,m) => w.bits.rebusy && m }
val bypassables = io.wakeup_ports.map { w => w.bits.bypassable }
val speculative_masks = io.wakeup_ports.map { w => w.bits.speculative_mask }
when (prs1_wakeups.reduce(_||_)) {
next_uop.prs1_busy := false.B
next_uop.iw_p1_speculative_child := Mux1H(prs1_wakeups, speculative_masks)
next_uop.iw_p1_bypass_hint := Mux1H(prs1_wakeups, bypassables)
}
when ((prs1_rebusys.reduce(_||_) || ((io.child_rebusys & slot_uop.iw_p1_speculative_child) =/= 0.U)) &&
slot_uop.lrs1_rtype === RT_FIX) {
next_uop.prs1_busy := true.B
rebusied_prs1 := true.B
}
when (prs2_wakeups.reduce(_||_)) {
next_uop.prs2_busy := false.B
next_uop.iw_p2_speculative_child := Mux1H(prs2_wakeups, speculative_masks)
next_uop.iw_p2_bypass_hint := Mux1H(prs2_wakeups, bypassables)
}
when ((prs2_rebusys.reduce(_||_) || ((io.child_rebusys & slot_uop.iw_p2_speculative_child) =/= 0.U)) &&
slot_uop.lrs2_rtype === RT_FIX) {
next_uop.prs2_busy := true.B
rebusied_prs2 := true.B
}
when (prs3_wakeups.reduce(_||_)) {
next_uop.prs3_busy := false.B
next_uop.iw_p3_bypass_hint := Mux1H(prs3_wakeups, bypassables)
}
when (io.pred_wakeup_port.valid && io.pred_wakeup_port.bits === slot_uop.ppred) {
next_uop.ppred_busy := false.B
}
val iss_ready = !slot_uop.prs1_busy && !slot_uop.prs2_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && !(slot_uop.prs3_busy && isFp.B)
val agen_ready = (slot_uop.fu_code(FC_AGEN) && !slot_uop.prs1_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && isMem.B)
val dgen_ready = (slot_uop.fu_code(FC_DGEN) && !slot_uop.prs2_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && isMem.B)
io.request := slot_valid && !slot_uop.iw_issued && (
iss_ready || agen_ready || dgen_ready
)
io.iss_uop := slot_uop
// Update state for current micro-op based on grant
next_uop.iw_issued := false.B
next_uop.iw_issued_partial_agen := false.B
next_uop.iw_issued_partial_dgen := false.B
when (io.grant && !io.squash_grant) {
next_uop.iw_issued := true.B
}
if (isMem) {
when (slot_uop.fu_code(FC_AGEN) && slot_uop.fu_code(FC_DGEN)) {
when (agen_ready) {
// Issue the AGEN, next slot entry is a DGEN
when (io.grant && !io.squash_grant) {
next_uop.iw_issued_partial_agen := true.B
}
io.iss_uop.fu_code(FC_AGEN) := true.B
io.iss_uop.fu_code(FC_DGEN) := false.B
} .otherwise {
// Issue the DGEN, next slot entry is the AGEN
when (io.grant && !io.squash_grant) {
next_uop.iw_issued_partial_dgen := true.B
}
io.iss_uop.fu_code(FC_AGEN) := false.B
io.iss_uop.fu_code(FC_DGEN) := true.B
io.iss_uop.imm_sel := IS_N
io.iss_uop.prs1 := slot_uop.prs2
io.iss_uop.lrs1_rtype := slot_uop.lrs2_rtype
io.iss_uop.iw_p1_bypass_hint := slot_uop.iw_p2_bypass_hint
}
} .elsewhen (slot_uop.fu_code(FC_DGEN)) {
io.iss_uop.imm_sel := IS_N
io.iss_uop.prs1 := slot_uop.prs2
io.iss_uop.lrs1_rtype := slot_uop.lrs2_rtype
io.iss_uop.iw_p1_bypass_hint := slot_uop.iw_p2_bypass_hint
}
io.iss_uop.lrs2_rtype := RT_X
io.iss_uop.prs2 := io.iss_uop.prs1 // helps with DCE
}
when (slot_valid && slot_uop.iw_issued) {
next_valid := rebusied
if (isMem) {
when (slot_uop.iw_issued_partial_agen) {
next_valid := true.B
when (!rebusied_prs1) {
next_uop.fu_code(FC_AGEN) := false.B
next_uop.fu_code(FC_DGEN) := true.B
}
} .elsewhen (slot_uop.iw_issued_partial_dgen) {
next_valid := true.B
when (!rebusied_prs2) {
next_uop.fu_code(FC_AGEN) := true.B
next_uop.fu_code(FC_DGEN) := false.B
}
}
}
}
}
| module IssueSlot_5( // @[issue-slot.scala:49:7]
input clock, // @[issue-slot.scala:49:7]
input reset, // @[issue-slot.scala:49:7]
output io_valid, // @[issue-slot.scala:52:14]
output io_will_be_valid, // @[issue-slot.scala:52:14]
output io_request, // @[issue-slot.scala:52:14]
input io_grant, // @[issue-slot.scala:52:14]
output [31:0] io_iss_uop_inst, // @[issue-slot.scala:52:14]
output [31:0] io_iss_uop_debug_inst, // @[issue-slot.scala:52:14]
output io_iss_uop_is_rvc, // @[issue-slot.scala:52:14]
output [39:0] io_iss_uop_debug_pc, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_0, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_1, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_2, // @[issue-slot.scala:52:14]
output io_iss_uop_iq_type_3, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_0, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_1, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_2, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_3, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_4, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_5, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_6, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_7, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_8, // @[issue-slot.scala:52:14]
output io_iss_uop_fu_code_9, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_issued, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
output io_iss_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_dis_col_sel, // @[issue-slot.scala:52:14]
output [11:0] io_iss_uop_br_mask, // @[issue-slot.scala:52:14]
output [3:0] io_iss_uop_br_tag, // @[issue-slot.scala:52:14]
output [3:0] io_iss_uop_br_type, // @[issue-slot.scala:52:14]
output io_iss_uop_is_sfb, // @[issue-slot.scala:52:14]
output io_iss_uop_is_fence, // @[issue-slot.scala:52:14]
output io_iss_uop_is_fencei, // @[issue-slot.scala:52:14]
output io_iss_uop_is_sfence, // @[issue-slot.scala:52:14]
output io_iss_uop_is_amo, // @[issue-slot.scala:52:14]
output io_iss_uop_is_eret, // @[issue-slot.scala:52:14]
output io_iss_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
output io_iss_uop_is_rocc, // @[issue-slot.scala:52:14]
output io_iss_uop_is_mov, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_ftq_idx, // @[issue-slot.scala:52:14]
output io_iss_uop_edge_inst, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_pc_lob, // @[issue-slot.scala:52:14]
output io_iss_uop_taken, // @[issue-slot.scala:52:14]
output io_iss_uop_imm_rename, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_imm_sel, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_pimm, // @[issue-slot.scala:52:14]
output [19:0] io_iss_uop_imm_packed, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_op1_sel, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_op2_sel, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_rob_idx, // @[issue-slot.scala:52:14]
output [3:0] io_iss_uop_ldq_idx, // @[issue-slot.scala:52:14]
output [3:0] io_iss_uop_stq_idx, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_rxq_idx, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_pdst, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_prs1, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_prs2, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_prs3, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_ppred, // @[issue-slot.scala:52:14]
output io_iss_uop_prs1_busy, // @[issue-slot.scala:52:14]
output io_iss_uop_prs2_busy, // @[issue-slot.scala:52:14]
output io_iss_uop_prs3_busy, // @[issue-slot.scala:52:14]
output io_iss_uop_ppred_busy, // @[issue-slot.scala:52:14]
output [6:0] io_iss_uop_stale_pdst, // @[issue-slot.scala:52:14]
output io_iss_uop_exception, // @[issue-slot.scala:52:14]
output [63:0] io_iss_uop_exc_cause, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_mem_cmd, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_mem_size, // @[issue-slot.scala:52:14]
output io_iss_uop_mem_signed, // @[issue-slot.scala:52:14]
output io_iss_uop_uses_ldq, // @[issue-slot.scala:52:14]
output io_iss_uop_uses_stq, // @[issue-slot.scala:52:14]
output io_iss_uop_is_unique, // @[issue-slot.scala:52:14]
output io_iss_uop_flush_on_commit, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_csr_cmd, // @[issue-slot.scala:52:14]
output io_iss_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_ldst, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_lrs1, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_lrs2, // @[issue-slot.scala:52:14]
output [5:0] io_iss_uop_lrs3, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_dst_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
output io_iss_uop_frs3_en, // @[issue-slot.scala:52:14]
output io_iss_uop_fcn_dw, // @[issue-slot.scala:52:14]
output [4:0] io_iss_uop_fcn_op, // @[issue-slot.scala:52:14]
output io_iss_uop_fp_val, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_fp_rm, // @[issue-slot.scala:52:14]
output [1:0] io_iss_uop_fp_typ, // @[issue-slot.scala:52:14]
output io_iss_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
output io_iss_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
output io_iss_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
output io_iss_uop_bp_debug_if, // @[issue-slot.scala:52:14]
output io_iss_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_debug_fsrc, // @[issue-slot.scala:52:14]
output [2:0] io_iss_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input io_in_uop_valid, // @[issue-slot.scala:52:14]
input [31:0] io_in_uop_bits_inst, // @[issue-slot.scala:52:14]
input [31:0] io_in_uop_bits_debug_inst, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_in_uop_bits_debug_pc, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_0, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_1, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_2, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iq_type_3, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_0, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_1, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_2, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_3, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_4, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_5, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_6, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_7, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_8, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fu_code_9, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_issued, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_dis_col_sel, // @[issue-slot.scala:52:14]
input [11:0] io_in_uop_bits_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_in_uop_bits_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_in_uop_bits_br_type, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_sfb, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_fence, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_fencei, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_sfence, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_amo, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_eret, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_rocc, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_ftq_idx, // @[issue-slot.scala:52:14]
input io_in_uop_bits_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_pc_lob, // @[issue-slot.scala:52:14]
input io_in_uop_bits_taken, // @[issue-slot.scala:52:14]
input io_in_uop_bits_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_in_uop_bits_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_op2_sel, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_rob_idx, // @[issue-slot.scala:52:14]
input [3:0] io_in_uop_bits_ldq_idx, // @[issue-slot.scala:52:14]
input [3:0] io_in_uop_bits_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_ppred, // @[issue-slot.scala:52:14]
input io_in_uop_bits_prs1_busy, // @[issue-slot.scala:52:14]
input io_in_uop_bits_prs2_busy, // @[issue-slot.scala:52:14]
input io_in_uop_bits_prs3_busy, // @[issue-slot.scala:52:14]
input io_in_uop_bits_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_in_uop_bits_stale_pdst, // @[issue-slot.scala:52:14]
input io_in_uop_bits_exception, // @[issue-slot.scala:52:14]
input [63:0] io_in_uop_bits_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_mem_size, // @[issue-slot.scala:52:14]
input io_in_uop_bits_mem_signed, // @[issue-slot.scala:52:14]
input io_in_uop_bits_uses_ldq, // @[issue-slot.scala:52:14]
input io_in_uop_bits_uses_stq, // @[issue-slot.scala:52:14]
input io_in_uop_bits_is_unique, // @[issue-slot.scala:52:14]
input io_in_uop_bits_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_csr_cmd, // @[issue-slot.scala:52:14]
input io_in_uop_bits_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_in_uop_bits_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_in_uop_bits_frs3_en, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_in_uop_bits_fcn_op, // @[issue-slot.scala:52:14]
input io_in_uop_bits_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_in_uop_bits_fp_typ, // @[issue-slot.scala:52:14]
input io_in_uop_bits_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_bp_debug_if, // @[issue-slot.scala:52:14]
input io_in_uop_bits_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_in_uop_bits_debug_tsrc, // @[issue-slot.scala:52:14]
output [31:0] io_out_uop_inst, // @[issue-slot.scala:52:14]
output [31:0] io_out_uop_debug_inst, // @[issue-slot.scala:52:14]
output io_out_uop_is_rvc, // @[issue-slot.scala:52:14]
output [39:0] io_out_uop_debug_pc, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_0, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_1, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_2, // @[issue-slot.scala:52:14]
output io_out_uop_iq_type_3, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_0, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_1, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_2, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_3, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_4, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_5, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_6, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_7, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_8, // @[issue-slot.scala:52:14]
output io_out_uop_fu_code_9, // @[issue-slot.scala:52:14]
output io_out_uop_iw_issued, // @[issue-slot.scala:52:14]
output io_out_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
output io_out_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
output io_out_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_dis_col_sel, // @[issue-slot.scala:52:14]
output [11:0] io_out_uop_br_mask, // @[issue-slot.scala:52:14]
output [3:0] io_out_uop_br_tag, // @[issue-slot.scala:52:14]
output [3:0] io_out_uop_br_type, // @[issue-slot.scala:52:14]
output io_out_uop_is_sfb, // @[issue-slot.scala:52:14]
output io_out_uop_is_fence, // @[issue-slot.scala:52:14]
output io_out_uop_is_fencei, // @[issue-slot.scala:52:14]
output io_out_uop_is_sfence, // @[issue-slot.scala:52:14]
output io_out_uop_is_amo, // @[issue-slot.scala:52:14]
output io_out_uop_is_eret, // @[issue-slot.scala:52:14]
output io_out_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
output io_out_uop_is_rocc, // @[issue-slot.scala:52:14]
output io_out_uop_is_mov, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_ftq_idx, // @[issue-slot.scala:52:14]
output io_out_uop_edge_inst, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_pc_lob, // @[issue-slot.scala:52:14]
output io_out_uop_taken, // @[issue-slot.scala:52:14]
output io_out_uop_imm_rename, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_imm_sel, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_pimm, // @[issue-slot.scala:52:14]
output [19:0] io_out_uop_imm_packed, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_op1_sel, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_op2_sel, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
output io_out_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_rob_idx, // @[issue-slot.scala:52:14]
output [3:0] io_out_uop_ldq_idx, // @[issue-slot.scala:52:14]
output [3:0] io_out_uop_stq_idx, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_rxq_idx, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_pdst, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_prs1, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_prs2, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_prs3, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_ppred, // @[issue-slot.scala:52:14]
output io_out_uop_prs1_busy, // @[issue-slot.scala:52:14]
output io_out_uop_prs2_busy, // @[issue-slot.scala:52:14]
output io_out_uop_prs3_busy, // @[issue-slot.scala:52:14]
output io_out_uop_ppred_busy, // @[issue-slot.scala:52:14]
output [6:0] io_out_uop_stale_pdst, // @[issue-slot.scala:52:14]
output io_out_uop_exception, // @[issue-slot.scala:52:14]
output [63:0] io_out_uop_exc_cause, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_mem_cmd, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_mem_size, // @[issue-slot.scala:52:14]
output io_out_uop_mem_signed, // @[issue-slot.scala:52:14]
output io_out_uop_uses_ldq, // @[issue-slot.scala:52:14]
output io_out_uop_uses_stq, // @[issue-slot.scala:52:14]
output io_out_uop_is_unique, // @[issue-slot.scala:52:14]
output io_out_uop_flush_on_commit, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_csr_cmd, // @[issue-slot.scala:52:14]
output io_out_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_ldst, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_lrs1, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_lrs2, // @[issue-slot.scala:52:14]
output [5:0] io_out_uop_lrs3, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_dst_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
output io_out_uop_frs3_en, // @[issue-slot.scala:52:14]
output io_out_uop_fcn_dw, // @[issue-slot.scala:52:14]
output [4:0] io_out_uop_fcn_op, // @[issue-slot.scala:52:14]
output io_out_uop_fp_val, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_fp_rm, // @[issue-slot.scala:52:14]
output [1:0] io_out_uop_fp_typ, // @[issue-slot.scala:52:14]
output io_out_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
output io_out_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
output io_out_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
output io_out_uop_bp_debug_if, // @[issue-slot.scala:52:14]
output io_out_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_debug_fsrc, // @[issue-slot.scala:52:14]
output [2:0] io_out_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input [11:0] io_brupdate_b1_resolve_mask, // @[issue-slot.scala:52:14]
input [11:0] io_brupdate_b1_mispredict_mask, // @[issue-slot.scala:52:14]
input [31:0] io_brupdate_b2_uop_inst, // @[issue-slot.scala:52:14]
input [31:0] io_brupdate_b2_uop_debug_inst, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_brupdate_b2_uop_debug_pc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_0, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_1, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_2, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iq_type_3, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_0, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_1, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_2, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_3, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_4, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_5, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_6, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_7, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_8, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fu_code_9, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_issued, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_dis_col_sel, // @[issue-slot.scala:52:14]
input [11:0] io_brupdate_b2_uop_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_brupdate_b2_uop_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_brupdate_b2_uop_br_type, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_sfb, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_fence, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_fencei, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_sfence, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_amo, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_eret, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_rocc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_ftq_idx, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_pc_lob, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_taken, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_brupdate_b2_uop_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_op2_sel, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_rob_idx, // @[issue-slot.scala:52:14]
input [3:0] io_brupdate_b2_uop_ldq_idx, // @[issue-slot.scala:52:14]
input [3:0] io_brupdate_b2_uop_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_ppred, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_prs1_busy, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_prs2_busy, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_prs3_busy, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_brupdate_b2_uop_stale_pdst, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_exception, // @[issue-slot.scala:52:14]
input [63:0] io_brupdate_b2_uop_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_mem_size, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_mem_signed, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_uses_ldq, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_uses_stq, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_is_unique, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_csr_cmd, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_brupdate_b2_uop_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_frs3_en, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_brupdate_b2_uop_fcn_op, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_uop_fp_typ, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_bp_debug_if, // @[issue-slot.scala:52:14]
input io_brupdate_b2_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input io_brupdate_b2_mispredict, // @[issue-slot.scala:52:14]
input io_brupdate_b2_taken, // @[issue-slot.scala:52:14]
input [2:0] io_brupdate_b2_cfi_type, // @[issue-slot.scala:52:14]
input [1:0] io_brupdate_b2_pc_sel, // @[issue-slot.scala:52:14]
input [39:0] io_brupdate_b2_jalr_target, // @[issue-slot.scala:52:14]
input [20:0] io_brupdate_b2_target_offset, // @[issue-slot.scala:52:14]
input io_kill, // @[issue-slot.scala:52:14]
input io_clear, // @[issue-slot.scala:52:14]
input io_squash_grant, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_valid, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_0_bits_uop_inst, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_0_bits_uop_debug_inst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_wakeup_ports_0_bits_uop_debug_pc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iq_type_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_4, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_5, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_6, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_7, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_8, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fu_code_9, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_issued, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14]
input [11:0] io_wakeup_ports_0_bits_uop_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_0_bits_uop_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_0_bits_uop_br_type, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_sfb, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_fence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_fencei, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_sfence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_amo, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_eret, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_rocc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_ftq_idx, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_pc_lob, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_taken, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_wakeup_ports_0_bits_uop_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_op2_sel, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_rob_idx, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_0_bits_uop_ldq_idx, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_0_bits_uop_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_ppred, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_prs1_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_prs2_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_prs3_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_0_bits_uop_stale_pdst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_exception, // @[issue-slot.scala:52:14]
input [63:0] io_wakeup_ports_0_bits_uop_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_mem_size, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_mem_signed, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_uses_ldq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_uses_stq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_is_unique, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_csr_cmd, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_0_bits_uop_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_frs3_en, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_0_bits_uop_fcn_op, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_0_bits_uop_fp_typ, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_0_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_0_bits_uop_debug_tsrc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_valid, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_1_bits_uop_inst, // @[issue-slot.scala:52:14]
input [31:0] io_wakeup_ports_1_bits_uop_debug_inst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_rvc, // @[issue-slot.scala:52:14]
input [39:0] io_wakeup_ports_1_bits_uop_debug_pc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iq_type_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_0, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_4, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_5, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_6, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_7, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_8, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fu_code_9, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_issued, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14]
input [11:0] io_wakeup_ports_1_bits_uop_br_mask, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_1_bits_uop_br_tag, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_1_bits_uop_br_type, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_sfb, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_fence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_fencei, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_sfence, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_amo, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_eret, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_rocc, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_mov, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_ftq_idx, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_edge_inst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_pc_lob, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_taken, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_imm_rename, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_imm_sel, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_pimm, // @[issue-slot.scala:52:14]
input [19:0] io_wakeup_ports_1_bits_uop_imm_packed, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_op1_sel, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_op2_sel, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_rob_idx, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_1_bits_uop_ldq_idx, // @[issue-slot.scala:52:14]
input [3:0] io_wakeup_ports_1_bits_uop_stq_idx, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_rxq_idx, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_pdst, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_prs1, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_prs2, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_prs3, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_ppred, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_prs1_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_prs2_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_prs3_busy, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_ppred_busy, // @[issue-slot.scala:52:14]
input [6:0] io_wakeup_ports_1_bits_uop_stale_pdst, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_exception, // @[issue-slot.scala:52:14]
input [63:0] io_wakeup_ports_1_bits_uop_exc_cause, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_mem_cmd, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_mem_size, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_mem_signed, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_uses_ldq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_uses_stq, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_is_unique, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_csr_cmd, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_ldst, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_lrs1, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_lrs2, // @[issue-slot.scala:52:14]
input [5:0] io_wakeup_ports_1_bits_uop_lrs3, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_dst_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_frs3_en, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fcn_dw, // @[issue-slot.scala:52:14]
input [4:0] io_wakeup_ports_1_bits_uop_fcn_op, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_fp_val, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_fp_rm, // @[issue-slot.scala:52:14]
input [1:0] io_wakeup_ports_1_bits_uop_fp_typ, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14]
input io_wakeup_ports_1_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14]
input [2:0] io_wakeup_ports_1_bits_uop_debug_tsrc // @[issue-slot.scala:52:14]
);
wire [11:0] next_uop_out_br_mask; // @[util.scala:104:23]
wire io_grant_0 = io_grant; // @[issue-slot.scala:49:7]
wire io_in_uop_valid_0 = io_in_uop_valid; // @[issue-slot.scala:49:7]
wire [31:0] io_in_uop_bits_inst_0 = io_in_uop_bits_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_in_uop_bits_debug_inst_0 = io_in_uop_bits_debug_inst; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_rvc_0 = io_in_uop_bits_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_in_uop_bits_debug_pc_0 = io_in_uop_bits_debug_pc; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_0_0 = io_in_uop_bits_iq_type_0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_1_0 = io_in_uop_bits_iq_type_1; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_2_0 = io_in_uop_bits_iq_type_2; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iq_type_3_0 = io_in_uop_bits_iq_type_3; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_0_0 = io_in_uop_bits_fu_code_0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_1_0 = io_in_uop_bits_fu_code_1; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_2_0 = io_in_uop_bits_fu_code_2; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_3_0 = io_in_uop_bits_fu_code_3; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_4_0 = io_in_uop_bits_fu_code_4; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_5_0 = io_in_uop_bits_fu_code_5; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_6_0 = io_in_uop_bits_fu_code_6; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_7_0 = io_in_uop_bits_fu_code_7; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_8_0 = io_in_uop_bits_fu_code_8; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fu_code_9_0 = io_in_uop_bits_fu_code_9; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_issued_0 = io_in_uop_bits_iw_issued; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_p1_bypass_hint_0 = io_in_uop_bits_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_p2_bypass_hint_0 = io_in_uop_bits_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_p3_bypass_hint_0 = io_in_uop_bits_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_dis_col_sel_0 = io_in_uop_bits_dis_col_sel; // @[issue-slot.scala:49:7]
wire [11:0] io_in_uop_bits_br_mask_0 = io_in_uop_bits_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_in_uop_bits_br_tag_0 = io_in_uop_bits_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_in_uop_bits_br_type_0 = io_in_uop_bits_br_type; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_sfb_0 = io_in_uop_bits_is_sfb; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_fence_0 = io_in_uop_bits_is_fence; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_fencei_0 = io_in_uop_bits_is_fencei; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_sfence_0 = io_in_uop_bits_is_sfence; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_amo_0 = io_in_uop_bits_is_amo; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_eret_0 = io_in_uop_bits_is_eret; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_sys_pc2epc_0 = io_in_uop_bits_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_rocc_0 = io_in_uop_bits_is_rocc; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_mov_0 = io_in_uop_bits_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_ftq_idx_0 = io_in_uop_bits_ftq_idx; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_edge_inst_0 = io_in_uop_bits_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_pc_lob_0 = io_in_uop_bits_pc_lob; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_taken_0 = io_in_uop_bits_taken; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_imm_rename_0 = io_in_uop_bits_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_imm_sel_0 = io_in_uop_bits_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_pimm_0 = io_in_uop_bits_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_in_uop_bits_imm_packed_0 = io_in_uop_bits_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_op1_sel_0 = io_in_uop_bits_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_op2_sel_0 = io_in_uop_bits_op2_sel; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ldst_0 = io_in_uop_bits_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_wen_0 = io_in_uop_bits_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ren1_0 = io_in_uop_bits_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ren2_0 = io_in_uop_bits_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_ren3_0 = io_in_uop_bits_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_swap12_0 = io_in_uop_bits_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_swap23_0 = io_in_uop_bits_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_fp_ctrl_typeTagIn_0 = io_in_uop_bits_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_fp_ctrl_typeTagOut_0 = io_in_uop_bits_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_fromint_0 = io_in_uop_bits_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_toint_0 = io_in_uop_bits_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_fastpipe_0 = io_in_uop_bits_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_fma_0 = io_in_uop_bits_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_div_0 = io_in_uop_bits_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_sqrt_0 = io_in_uop_bits_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_wflags_0 = io_in_uop_bits_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_ctrl_vec_0 = io_in_uop_bits_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_rob_idx_0 = io_in_uop_bits_rob_idx; // @[issue-slot.scala:49:7]
wire [3:0] io_in_uop_bits_ldq_idx_0 = io_in_uop_bits_ldq_idx; // @[issue-slot.scala:49:7]
wire [3:0] io_in_uop_bits_stq_idx_0 = io_in_uop_bits_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_rxq_idx_0 = io_in_uop_bits_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_pdst_0 = io_in_uop_bits_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_prs1_0 = io_in_uop_bits_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_prs2_0 = io_in_uop_bits_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_prs3_0 = io_in_uop_bits_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_ppred_0 = io_in_uop_bits_ppred; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_prs1_busy_0 = io_in_uop_bits_prs1_busy; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_prs2_busy_0 = io_in_uop_bits_prs2_busy; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_prs3_busy_0 = io_in_uop_bits_prs3_busy; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_ppred_busy_0 = io_in_uop_bits_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_in_uop_bits_stale_pdst_0 = io_in_uop_bits_stale_pdst; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_exception_0 = io_in_uop_bits_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_in_uop_bits_exc_cause_0 = io_in_uop_bits_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_mem_cmd_0 = io_in_uop_bits_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_mem_size_0 = io_in_uop_bits_mem_size; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_mem_signed_0 = io_in_uop_bits_mem_signed; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_uses_ldq_0 = io_in_uop_bits_uses_ldq; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_uses_stq_0 = io_in_uop_bits_uses_stq; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_is_unique_0 = io_in_uop_bits_is_unique; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_flush_on_commit_0 = io_in_uop_bits_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_csr_cmd_0 = io_in_uop_bits_csr_cmd; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_ldst_is_rs1_0 = io_in_uop_bits_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_ldst_0 = io_in_uop_bits_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_lrs1_0 = io_in_uop_bits_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_lrs2_0 = io_in_uop_bits_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_in_uop_bits_lrs3_0 = io_in_uop_bits_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_dst_rtype_0 = io_in_uop_bits_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_lrs1_rtype_0 = io_in_uop_bits_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_lrs2_rtype_0 = io_in_uop_bits_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_frs3_en_0 = io_in_uop_bits_frs3_en; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fcn_dw_0 = io_in_uop_bits_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_in_uop_bits_fcn_op_0 = io_in_uop_bits_fcn_op; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_fp_val_0 = io_in_uop_bits_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_fp_rm_0 = io_in_uop_bits_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_fp_typ_0 = io_in_uop_bits_fp_typ; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_xcpt_pf_if_0 = io_in_uop_bits_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_xcpt_ae_if_0 = io_in_uop_bits_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_xcpt_ma_if_0 = io_in_uop_bits_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_bp_debug_if_0 = io_in_uop_bits_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_bp_xcpt_if_0 = io_in_uop_bits_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_debug_fsrc_0 = io_in_uop_bits_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_in_uop_bits_debug_tsrc_0 = io_in_uop_bits_debug_tsrc; // @[issue-slot.scala:49:7]
wire [11:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[issue-slot.scala:49:7]
wire [11:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[issue-slot.scala:49:7]
wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_0_0 = io_brupdate_b2_uop_iq_type_0; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_1_0 = io_brupdate_b2_uop_iq_type_1; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_2_0 = io_brupdate_b2_uop_iq_type_2; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iq_type_3_0 = io_brupdate_b2_uop_iq_type_3; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_0_0 = io_brupdate_b2_uop_fu_code_0; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_1_0 = io_brupdate_b2_uop_fu_code_1; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_2_0 = io_brupdate_b2_uop_fu_code_2; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_3_0 = io_brupdate_b2_uop_fu_code_3; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_4_0 = io_brupdate_b2_uop_fu_code_4; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_5_0 = io_brupdate_b2_uop_fu_code_5; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_6_0 = io_brupdate_b2_uop_fu_code_6; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_7_0 = io_brupdate_b2_uop_fu_code_7; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_8_0 = io_brupdate_b2_uop_fu_code_8; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fu_code_9_0 = io_brupdate_b2_uop_fu_code_9; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_issued_0 = io_brupdate_b2_uop_iw_issued; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_issued_partial_agen_0 = io_brupdate_b2_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_issued_partial_dgen_0 = io_brupdate_b2_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_iw_p1_speculative_child_0 = io_brupdate_b2_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_iw_p2_speculative_child_0 = io_brupdate_b2_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_p1_bypass_hint_0 = io_brupdate_b2_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_p2_bypass_hint_0 = io_brupdate_b2_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_iw_p3_bypass_hint_0 = io_brupdate_b2_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_dis_col_sel_0 = io_brupdate_b2_uop_dis_col_sel; // @[issue-slot.scala:49:7]
wire [11:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_brupdate_b2_uop_br_type_0 = io_brupdate_b2_uop_br_type; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_sfence_0 = io_brupdate_b2_uop_is_sfence; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_eret_0 = io_brupdate_b2_uop_is_eret; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_rocc_0 = io_brupdate_b2_uop_is_rocc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_mov_0 = io_brupdate_b2_uop_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_imm_rename_0 = io_brupdate_b2_uop_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_imm_sel_0 = io_brupdate_b2_uop_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_pimm_0 = io_brupdate_b2_uop_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_op1_sel_0 = io_brupdate_b2_uop_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_op2_sel_0 = io_brupdate_b2_uop_op2_sel; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ldst_0 = io_brupdate_b2_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_wen_0 = io_brupdate_b2_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ren1_0 = io_brupdate_b2_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ren2_0 = io_brupdate_b2_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_ren3_0 = io_brupdate_b2_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_swap12_0 = io_brupdate_b2_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_swap23_0 = io_brupdate_b2_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn_0 = io_brupdate_b2_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut_0 = io_brupdate_b2_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_fromint_0 = io_brupdate_b2_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_toint_0 = io_brupdate_b2_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_fastpipe_0 = io_brupdate_b2_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_fma_0 = io_brupdate_b2_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_div_0 = io_brupdate_b2_uop_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_sqrt_0 = io_brupdate_b2_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_wflags_0 = io_brupdate_b2_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_ctrl_vec_0 = io_brupdate_b2_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[issue-slot.scala:49:7]
wire [3:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[issue-slot.scala:49:7]
wire [3:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_csr_cmd_0 = io_brupdate_b2_uop_csr_cmd; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fcn_dw_0 = io_brupdate_b2_uop_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_brupdate_b2_uop_fcn_op_0 = io_brupdate_b2_uop_fcn_op; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_fp_rm_0 = io_brupdate_b2_uop_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_uop_fp_typ_0 = io_brupdate_b2_uop_fp_typ; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[issue-slot.scala:49:7]
wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[issue-slot.scala:49:7]
wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[issue-slot.scala:49:7]
wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[issue-slot.scala:49:7]
wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[issue-slot.scala:49:7]
wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[issue-slot.scala:49:7]
wire io_kill_0 = io_kill; // @[issue-slot.scala:49:7]
wire io_clear_0 = io_clear; // @[issue-slot.scala:49:7]
wire io_squash_grant_0 = io_squash_grant; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_valid_0 = io_wakeup_ports_0_valid; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_0_bits_uop_inst_0 = io_wakeup_ports_0_bits_uop_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_0_bits_uop_debug_inst_0 = io_wakeup_ports_0_bits_uop_debug_inst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_rvc_0 = io_wakeup_ports_0_bits_uop_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_wakeup_ports_0_bits_uop_debug_pc_0 = io_wakeup_ports_0_bits_uop_debug_pc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_0_0 = io_wakeup_ports_0_bits_uop_iq_type_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_1_0 = io_wakeup_ports_0_bits_uop_iq_type_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_2_0 = io_wakeup_ports_0_bits_uop_iq_type_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iq_type_3_0 = io_wakeup_ports_0_bits_uop_iq_type_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_0_0 = io_wakeup_ports_0_bits_uop_fu_code_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_1_0 = io_wakeup_ports_0_bits_uop_fu_code_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_2_0 = io_wakeup_ports_0_bits_uop_fu_code_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_3_0 = io_wakeup_ports_0_bits_uop_fu_code_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_4_0 = io_wakeup_ports_0_bits_uop_fu_code_4; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_5_0 = io_wakeup_ports_0_bits_uop_fu_code_5; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_6_0 = io_wakeup_ports_0_bits_uop_fu_code_6; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_7_0 = io_wakeup_ports_0_bits_uop_fu_code_7; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_8_0 = io_wakeup_ports_0_bits_uop_fu_code_8; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fu_code_9_0 = io_wakeup_ports_0_bits_uop_fu_code_9; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_issued_0 = io_wakeup_ports_0_bits_uop_iw_issued; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_issued_partial_agen_0 = io_wakeup_ports_0_bits_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen_0 = io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_0_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_0_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_dis_col_sel_0 = io_wakeup_ports_0_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7]
wire [11:0] io_wakeup_ports_0_bits_uop_br_mask_0 = io_wakeup_ports_0_bits_uop_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_0_bits_uop_br_tag_0 = io_wakeup_ports_0_bits_uop_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_0_bits_uop_br_type_0 = io_wakeup_ports_0_bits_uop_br_type; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_sfb_0 = io_wakeup_ports_0_bits_uop_is_sfb; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_fence_0 = io_wakeup_ports_0_bits_uop_is_fence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_fencei_0 = io_wakeup_ports_0_bits_uop_is_fencei; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_sfence_0 = io_wakeup_ports_0_bits_uop_is_sfence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_amo_0 = io_wakeup_ports_0_bits_uop_is_amo; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_eret_0 = io_wakeup_ports_0_bits_uop_is_eret; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_0_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_rocc_0 = io_wakeup_ports_0_bits_uop_is_rocc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_mov_0 = io_wakeup_ports_0_bits_uop_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_ftq_idx_0 = io_wakeup_ports_0_bits_uop_ftq_idx; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_edge_inst_0 = io_wakeup_ports_0_bits_uop_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_pc_lob_0 = io_wakeup_ports_0_bits_uop_pc_lob; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_taken_0 = io_wakeup_ports_0_bits_uop_taken; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_imm_rename_0 = io_wakeup_ports_0_bits_uop_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_imm_sel_0 = io_wakeup_ports_0_bits_uop_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_pimm_0 = io_wakeup_ports_0_bits_uop_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_wakeup_ports_0_bits_uop_imm_packed_0 = io_wakeup_ports_0_bits_uop_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_op1_sel_0 = io_wakeup_ports_0_bits_uop_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_op2_sel_0 = io_wakeup_ports_0_bits_uop_op2_sel; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_rob_idx_0 = io_wakeup_ports_0_bits_uop_rob_idx; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_0_bits_uop_ldq_idx_0 = io_wakeup_ports_0_bits_uop_ldq_idx; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_0_bits_uop_stq_idx_0 = io_wakeup_ports_0_bits_uop_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_rxq_idx_0 = io_wakeup_ports_0_bits_uop_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_pdst_0 = io_wakeup_ports_0_bits_uop_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_prs1_0 = io_wakeup_ports_0_bits_uop_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_prs2_0 = io_wakeup_ports_0_bits_uop_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_prs3_0 = io_wakeup_ports_0_bits_uop_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_ppred_0 = io_wakeup_ports_0_bits_uop_ppred; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_prs1_busy_0 = io_wakeup_ports_0_bits_uop_prs1_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_prs2_busy_0 = io_wakeup_ports_0_bits_uop_prs2_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_prs3_busy_0 = io_wakeup_ports_0_bits_uop_prs3_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_ppred_busy_0 = io_wakeup_ports_0_bits_uop_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_0_bits_uop_stale_pdst_0 = io_wakeup_ports_0_bits_uop_stale_pdst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_exception_0 = io_wakeup_ports_0_bits_uop_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_wakeup_ports_0_bits_uop_exc_cause_0 = io_wakeup_ports_0_bits_uop_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_mem_cmd_0 = io_wakeup_ports_0_bits_uop_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_mem_size_0 = io_wakeup_ports_0_bits_uop_mem_size; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_mem_signed_0 = io_wakeup_ports_0_bits_uop_mem_signed; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_uses_ldq_0 = io_wakeup_ports_0_bits_uop_uses_ldq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_uses_stq_0 = io_wakeup_ports_0_bits_uop_uses_stq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_is_unique_0 = io_wakeup_ports_0_bits_uop_is_unique; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_flush_on_commit_0 = io_wakeup_ports_0_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_csr_cmd_0 = io_wakeup_ports_0_bits_uop_csr_cmd; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_0_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_ldst_0 = io_wakeup_ports_0_bits_uop_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_lrs1_0 = io_wakeup_ports_0_bits_uop_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_lrs2_0 = io_wakeup_ports_0_bits_uop_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_0_bits_uop_lrs3_0 = io_wakeup_ports_0_bits_uop_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_dst_rtype_0 = io_wakeup_ports_0_bits_uop_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_lrs1_rtype_0 = io_wakeup_ports_0_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_lrs2_rtype_0 = io_wakeup_ports_0_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_frs3_en_0 = io_wakeup_ports_0_bits_uop_frs3_en; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fcn_dw_0 = io_wakeup_ports_0_bits_uop_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_0_bits_uop_fcn_op_0 = io_wakeup_ports_0_bits_uop_fcn_op; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_fp_val_0 = io_wakeup_ports_0_bits_uop_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_fp_rm_0 = io_wakeup_ports_0_bits_uop_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_uop_fp_typ_0 = io_wakeup_ports_0_bits_uop_fp_typ; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_0_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_0_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_0_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_bp_debug_if_0 = io_wakeup_ports_0_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_0_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_debug_fsrc_0 = io_wakeup_ports_0_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_0_bits_uop_debug_tsrc_0 = io_wakeup_ports_0_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_valid_0 = io_wakeup_ports_1_valid; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_1_bits_uop_inst_0 = io_wakeup_ports_1_bits_uop_inst; // @[issue-slot.scala:49:7]
wire [31:0] io_wakeup_ports_1_bits_uop_debug_inst_0 = io_wakeup_ports_1_bits_uop_debug_inst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_rvc_0 = io_wakeup_ports_1_bits_uop_is_rvc; // @[issue-slot.scala:49:7]
wire [39:0] io_wakeup_ports_1_bits_uop_debug_pc_0 = io_wakeup_ports_1_bits_uop_debug_pc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_0_0 = io_wakeup_ports_1_bits_uop_iq_type_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_1_0 = io_wakeup_ports_1_bits_uop_iq_type_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_2_0 = io_wakeup_ports_1_bits_uop_iq_type_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iq_type_3_0 = io_wakeup_ports_1_bits_uop_iq_type_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_0_0 = io_wakeup_ports_1_bits_uop_fu_code_0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_1_0 = io_wakeup_ports_1_bits_uop_fu_code_1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_2_0 = io_wakeup_ports_1_bits_uop_fu_code_2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_3_0 = io_wakeup_ports_1_bits_uop_fu_code_3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_4_0 = io_wakeup_ports_1_bits_uop_fu_code_4; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_5_0 = io_wakeup_ports_1_bits_uop_fu_code_5; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_6_0 = io_wakeup_ports_1_bits_uop_fu_code_6; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_7_0 = io_wakeup_ports_1_bits_uop_fu_code_7; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_8_0 = io_wakeup_ports_1_bits_uop_fu_code_8; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fu_code_9_0 = io_wakeup_ports_1_bits_uop_fu_code_9; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_issued_0 = io_wakeup_ports_1_bits_uop_iw_issued; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_issued_partial_agen_0 = io_wakeup_ports_1_bits_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen_0 = io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_1_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_1_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_dis_col_sel_0 = io_wakeup_ports_1_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7]
wire [11:0] io_wakeup_ports_1_bits_uop_br_mask_0 = io_wakeup_ports_1_bits_uop_br_mask; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_1_bits_uop_br_tag_0 = io_wakeup_ports_1_bits_uop_br_tag; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_1_bits_uop_br_type_0 = io_wakeup_ports_1_bits_uop_br_type; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_sfb_0 = io_wakeup_ports_1_bits_uop_is_sfb; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_fence_0 = io_wakeup_ports_1_bits_uop_is_fence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_fencei_0 = io_wakeup_ports_1_bits_uop_is_fencei; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_sfence_0 = io_wakeup_ports_1_bits_uop_is_sfence; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_amo_0 = io_wakeup_ports_1_bits_uop_is_amo; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_eret_0 = io_wakeup_ports_1_bits_uop_is_eret; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_1_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_rocc_0 = io_wakeup_ports_1_bits_uop_is_rocc; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_mov_0 = io_wakeup_ports_1_bits_uop_is_mov; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_ftq_idx_0 = io_wakeup_ports_1_bits_uop_ftq_idx; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_edge_inst_0 = io_wakeup_ports_1_bits_uop_edge_inst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_pc_lob_0 = io_wakeup_ports_1_bits_uop_pc_lob; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_taken_0 = io_wakeup_ports_1_bits_uop_taken; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_imm_rename_0 = io_wakeup_ports_1_bits_uop_imm_rename; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_imm_sel_0 = io_wakeup_ports_1_bits_uop_imm_sel; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_pimm_0 = io_wakeup_ports_1_bits_uop_pimm; // @[issue-slot.scala:49:7]
wire [19:0] io_wakeup_ports_1_bits_uop_imm_packed_0 = io_wakeup_ports_1_bits_uop_imm_packed; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_op1_sel_0 = io_wakeup_ports_1_bits_uop_op1_sel; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_op2_sel_0 = io_wakeup_ports_1_bits_uop_op2_sel; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_rob_idx_0 = io_wakeup_ports_1_bits_uop_rob_idx; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_1_bits_uop_ldq_idx_0 = io_wakeup_ports_1_bits_uop_ldq_idx; // @[issue-slot.scala:49:7]
wire [3:0] io_wakeup_ports_1_bits_uop_stq_idx_0 = io_wakeup_ports_1_bits_uop_stq_idx; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_rxq_idx_0 = io_wakeup_ports_1_bits_uop_rxq_idx; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_pdst_0 = io_wakeup_ports_1_bits_uop_pdst; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_prs1_0 = io_wakeup_ports_1_bits_uop_prs1; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_prs2_0 = io_wakeup_ports_1_bits_uop_prs2; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_prs3_0 = io_wakeup_ports_1_bits_uop_prs3; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_ppred_0 = io_wakeup_ports_1_bits_uop_ppred; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_prs1_busy_0 = io_wakeup_ports_1_bits_uop_prs1_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_prs2_busy_0 = io_wakeup_ports_1_bits_uop_prs2_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_prs3_busy_0 = io_wakeup_ports_1_bits_uop_prs3_busy; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_ppred_busy_0 = io_wakeup_ports_1_bits_uop_ppred_busy; // @[issue-slot.scala:49:7]
wire [6:0] io_wakeup_ports_1_bits_uop_stale_pdst_0 = io_wakeup_ports_1_bits_uop_stale_pdst; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_exception_0 = io_wakeup_ports_1_bits_uop_exception; // @[issue-slot.scala:49:7]
wire [63:0] io_wakeup_ports_1_bits_uop_exc_cause_0 = io_wakeup_ports_1_bits_uop_exc_cause; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_mem_cmd_0 = io_wakeup_ports_1_bits_uop_mem_cmd; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_mem_size_0 = io_wakeup_ports_1_bits_uop_mem_size; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_mem_signed_0 = io_wakeup_ports_1_bits_uop_mem_signed; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_uses_ldq_0 = io_wakeup_ports_1_bits_uop_uses_ldq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_uses_stq_0 = io_wakeup_ports_1_bits_uop_uses_stq; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_is_unique_0 = io_wakeup_ports_1_bits_uop_is_unique; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_flush_on_commit_0 = io_wakeup_ports_1_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_csr_cmd_0 = io_wakeup_ports_1_bits_uop_csr_cmd; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_1_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_ldst_0 = io_wakeup_ports_1_bits_uop_ldst; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_lrs1_0 = io_wakeup_ports_1_bits_uop_lrs1; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_lrs2_0 = io_wakeup_ports_1_bits_uop_lrs2; // @[issue-slot.scala:49:7]
wire [5:0] io_wakeup_ports_1_bits_uop_lrs3_0 = io_wakeup_ports_1_bits_uop_lrs3; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_dst_rtype_0 = io_wakeup_ports_1_bits_uop_dst_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_lrs1_rtype_0 = io_wakeup_ports_1_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_lrs2_rtype_0 = io_wakeup_ports_1_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_frs3_en_0 = io_wakeup_ports_1_bits_uop_frs3_en; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fcn_dw_0 = io_wakeup_ports_1_bits_uop_fcn_dw; // @[issue-slot.scala:49:7]
wire [4:0] io_wakeup_ports_1_bits_uop_fcn_op_0 = io_wakeup_ports_1_bits_uop_fcn_op; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_fp_val_0 = io_wakeup_ports_1_bits_uop_fp_val; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_fp_rm_0 = io_wakeup_ports_1_bits_uop_fp_rm; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_uop_fp_typ_0 = io_wakeup_ports_1_bits_uop_fp_typ; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_1_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_1_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_1_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_bp_debug_if_0 = io_wakeup_ports_1_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_1_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_debug_fsrc_0 = io_wakeup_ports_1_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7]
wire [2:0] io_wakeup_ports_1_bits_uop_debug_tsrc_0 = io_wakeup_ports_1_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7]
wire io_in_uop_bits_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_0_bits_rebusy = 1'h0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_bypassable = 1'h0; // @[issue-slot.scala:49:7]
wire io_wakeup_ports_1_bits_rebusy = 1'h0; // @[issue-slot.scala:49:7]
wire io_pred_wakeup_port_valid = 1'h0; // @[issue-slot.scala:49:7]
wire next_uop_out_iw_issued_partial_agen = 1'h0; // @[util.scala:104:23]
wire next_uop_out_iw_issued_partial_dgen = 1'h0; // @[util.scala:104:23]
wire next_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:59:28]
wire next_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:59:28]
wire rebusied_prs1 = 1'h0; // @[issue-slot.scala:92:31]
wire rebusied_prs2 = 1'h0; // @[issue-slot.scala:93:31]
wire rebusied = 1'h0; // @[issue-slot.scala:94:32]
wire prs1_rebusys_0 = 1'h0; // @[issue-slot.scala:102:91]
wire prs1_rebusys_1 = 1'h0; // @[issue-slot.scala:102:91]
wire prs2_rebusys_0 = 1'h0; // @[issue-slot.scala:103:91]
wire prs2_rebusys_1 = 1'h0; // @[issue-slot.scala:103:91]
wire _next_uop_iw_p1_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _next_uop_iw_p2_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73]
wire _next_uop_iw_p3_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73]
wire agen_ready = 1'h0; // @[issue-slot.scala:137:114]
wire dgen_ready = 1'h0; // @[issue-slot.scala:138:114]
wire [1:0] io_in_uop_bits_iw_p1_speculative_child = 2'h0; // @[issue-slot.scala:49:7]
wire [1:0] io_in_uop_bits_iw_p2_speculative_child = 2'h0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_iw_p1_speculative_child = 2'h0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_iw_p2_speculative_child = 2'h0; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_0_bits_speculative_mask = 2'h0; // @[issue-slot.scala:49:7]
wire [1:0] io_wakeup_ports_1_bits_speculative_mask = 2'h0; // @[issue-slot.scala:49:7]
wire [1:0] io_child_rebusys = 2'h0; // @[issue-slot.scala:49:7]
wire [1:0] next_uop_iw_p1_speculative_child = 2'h0; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_iw_p2_speculative_child = 2'h0; // @[issue-slot.scala:59:28]
wire [1:0] _next_uop_iw_p1_speculative_child_T = 2'h0; // @[Mux.scala:30:73]
wire [1:0] _next_uop_iw_p1_speculative_child_T_1 = 2'h0; // @[Mux.scala:30:73]
wire [1:0] _next_uop_iw_p1_speculative_child_T_2 = 2'h0; // @[Mux.scala:30:73]
wire [1:0] _next_uop_iw_p1_speculative_child_WIRE = 2'h0; // @[Mux.scala:30:73]
wire [1:0] _next_uop_iw_p2_speculative_child_T = 2'h0; // @[Mux.scala:30:73]
wire [1:0] _next_uop_iw_p2_speculative_child_T_1 = 2'h0; // @[Mux.scala:30:73]
wire [1:0] _next_uop_iw_p2_speculative_child_T_2 = 2'h0; // @[Mux.scala:30:73]
wire [1:0] _next_uop_iw_p2_speculative_child_WIRE = 2'h0; // @[Mux.scala:30:73]
wire io_wakeup_ports_0_bits_bypassable = 1'h1; // @[issue-slot.scala:49:7]
wire [4:0] io_pred_wakeup_port_bits = 5'h0; // @[issue-slot.scala:49:7]
wire _io_will_be_valid_T_1; // @[issue-slot.scala:65:34]
wire _io_request_T_4; // @[issue-slot.scala:140:51]
wire [31:0] next_uop_inst; // @[issue-slot.scala:59:28]
wire [31:0] next_uop_debug_inst; // @[issue-slot.scala:59:28]
wire next_uop_is_rvc; // @[issue-slot.scala:59:28]
wire [39:0] next_uop_debug_pc; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_0; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_1; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_2; // @[issue-slot.scala:59:28]
wire next_uop_iq_type_3; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_0; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_1; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_2; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_3; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_4; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_5; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_6; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_7; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_8; // @[issue-slot.scala:59:28]
wire next_uop_fu_code_9; // @[issue-slot.scala:59:28]
wire next_uop_iw_issued; // @[issue-slot.scala:59:28]
wire next_uop_iw_p1_bypass_hint; // @[issue-slot.scala:59:28]
wire next_uop_iw_p2_bypass_hint; // @[issue-slot.scala:59:28]
wire next_uop_iw_p3_bypass_hint; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_dis_col_sel; // @[issue-slot.scala:59:28]
wire [11:0] next_uop_br_mask; // @[issue-slot.scala:59:28]
wire [3:0] next_uop_br_tag; // @[issue-slot.scala:59:28]
wire [3:0] next_uop_br_type; // @[issue-slot.scala:59:28]
wire next_uop_is_sfb; // @[issue-slot.scala:59:28]
wire next_uop_is_fence; // @[issue-slot.scala:59:28]
wire next_uop_is_fencei; // @[issue-slot.scala:59:28]
wire next_uop_is_sfence; // @[issue-slot.scala:59:28]
wire next_uop_is_amo; // @[issue-slot.scala:59:28]
wire next_uop_is_eret; // @[issue-slot.scala:59:28]
wire next_uop_is_sys_pc2epc; // @[issue-slot.scala:59:28]
wire next_uop_is_rocc; // @[issue-slot.scala:59:28]
wire next_uop_is_mov; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_ftq_idx; // @[issue-slot.scala:59:28]
wire next_uop_edge_inst; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_pc_lob; // @[issue-slot.scala:59:28]
wire next_uop_taken; // @[issue-slot.scala:59:28]
wire next_uop_imm_rename; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_imm_sel; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_pimm; // @[issue-slot.scala:59:28]
wire [19:0] next_uop_imm_packed; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_op1_sel; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_op2_sel; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ldst; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_wen; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ren1; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ren2; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_ren3; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_swap12; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_swap23; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_fromint; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_toint; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_fma; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_div; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_sqrt; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_wflags; // @[issue-slot.scala:59:28]
wire next_uop_fp_ctrl_vec; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_rob_idx; // @[issue-slot.scala:59:28]
wire [3:0] next_uop_ldq_idx; // @[issue-slot.scala:59:28]
wire [3:0] next_uop_stq_idx; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_rxq_idx; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_pdst; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_prs1; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_prs2; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_prs3; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_ppred; // @[issue-slot.scala:59:28]
wire next_uop_prs1_busy; // @[issue-slot.scala:59:28]
wire next_uop_prs2_busy; // @[issue-slot.scala:59:28]
wire next_uop_prs3_busy; // @[issue-slot.scala:59:28]
wire next_uop_ppred_busy; // @[issue-slot.scala:59:28]
wire [6:0] next_uop_stale_pdst; // @[issue-slot.scala:59:28]
wire next_uop_exception; // @[issue-slot.scala:59:28]
wire [63:0] next_uop_exc_cause; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_mem_cmd; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_mem_size; // @[issue-slot.scala:59:28]
wire next_uop_mem_signed; // @[issue-slot.scala:59:28]
wire next_uop_uses_ldq; // @[issue-slot.scala:59:28]
wire next_uop_uses_stq; // @[issue-slot.scala:59:28]
wire next_uop_is_unique; // @[issue-slot.scala:59:28]
wire next_uop_flush_on_commit; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_csr_cmd; // @[issue-slot.scala:59:28]
wire next_uop_ldst_is_rs1; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_ldst; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_lrs1; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_lrs2; // @[issue-slot.scala:59:28]
wire [5:0] next_uop_lrs3; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_dst_rtype; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_lrs1_rtype; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_lrs2_rtype; // @[issue-slot.scala:59:28]
wire next_uop_frs3_en; // @[issue-slot.scala:59:28]
wire next_uop_fcn_dw; // @[issue-slot.scala:59:28]
wire [4:0] next_uop_fcn_op; // @[issue-slot.scala:59:28]
wire next_uop_fp_val; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_fp_rm; // @[issue-slot.scala:59:28]
wire [1:0] next_uop_fp_typ; // @[issue-slot.scala:59:28]
wire next_uop_xcpt_pf_if; // @[issue-slot.scala:59:28]
wire next_uop_xcpt_ae_if; // @[issue-slot.scala:59:28]
wire next_uop_xcpt_ma_if; // @[issue-slot.scala:59:28]
wire next_uop_bp_debug_if; // @[issue-slot.scala:59:28]
wire next_uop_bp_xcpt_if; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_debug_fsrc; // @[issue-slot.scala:59:28]
wire [2:0] next_uop_debug_tsrc; // @[issue-slot.scala:59:28]
wire io_iss_uop_iq_type_0_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iq_type_1_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iq_type_2_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iq_type_3_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_0_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_1_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_2_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_3_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_4_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_5_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_6_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_7_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_8_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fu_code_9_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ldst_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_wen_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ren1_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ren2_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_ren3_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_swap12_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_swap23_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_fp_ctrl_typeTagIn_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_fp_ctrl_typeTagOut_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_fromint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_toint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_fastpipe_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_fma_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_div_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_sqrt_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_wflags_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_ctrl_vec_0; // @[issue-slot.scala:49:7]
wire [31:0] io_iss_uop_inst_0; // @[issue-slot.scala:49:7]
wire [31:0] io_iss_uop_debug_inst_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_rvc_0; // @[issue-slot.scala:49:7]
wire [39:0] io_iss_uop_debug_pc_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_issued_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_iw_p1_speculative_child_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_iw_p2_speculative_child_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_p1_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_p2_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_iw_p3_bypass_hint_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_dis_col_sel_0; // @[issue-slot.scala:49:7]
wire [11:0] io_iss_uop_br_mask_0; // @[issue-slot.scala:49:7]
wire [3:0] io_iss_uop_br_tag_0; // @[issue-slot.scala:49:7]
wire [3:0] io_iss_uop_br_type_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_sfb_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_fence_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_fencei_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_sfence_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_amo_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_eret_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_sys_pc2epc_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_rocc_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_mov_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_ftq_idx_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_edge_inst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_pc_lob_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_taken_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_imm_rename_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_imm_sel_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_pimm_0; // @[issue-slot.scala:49:7]
wire [19:0] io_iss_uop_imm_packed_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_op1_sel_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_op2_sel_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_rob_idx_0; // @[issue-slot.scala:49:7]
wire [3:0] io_iss_uop_ldq_idx_0; // @[issue-slot.scala:49:7]
wire [3:0] io_iss_uop_stq_idx_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_rxq_idx_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_pdst_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_prs1_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_prs2_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_prs3_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_ppred_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_prs1_busy_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_prs2_busy_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_prs3_busy_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_ppred_busy_0; // @[issue-slot.scala:49:7]
wire [6:0] io_iss_uop_stale_pdst_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_exception_0; // @[issue-slot.scala:49:7]
wire [63:0] io_iss_uop_exc_cause_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_mem_cmd_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_mem_size_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_mem_signed_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_uses_ldq_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_uses_stq_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_is_unique_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_flush_on_commit_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_csr_cmd_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_ldst_is_rs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_ldst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_lrs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_lrs2_0; // @[issue-slot.scala:49:7]
wire [5:0] io_iss_uop_lrs3_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_dst_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_lrs1_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_lrs2_rtype_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_frs3_en_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fcn_dw_0; // @[issue-slot.scala:49:7]
wire [4:0] io_iss_uop_fcn_op_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_fp_val_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_fp_rm_0; // @[issue-slot.scala:49:7]
wire [1:0] io_iss_uop_fp_typ_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_xcpt_pf_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_xcpt_ae_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_xcpt_ma_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_bp_debug_if_0; // @[issue-slot.scala:49:7]
wire io_iss_uop_bp_xcpt_if_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_debug_fsrc_0; // @[issue-slot.scala:49:7]
wire [2:0] io_iss_uop_debug_tsrc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_0_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_1_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_2_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iq_type_3_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_0_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_1_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_2_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_3_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_4_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_5_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_6_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_7_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_8_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fu_code_9_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ldst_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_wen_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ren1_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ren2_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_ren3_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_swap12_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_swap23_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_fp_ctrl_typeTagIn_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_fp_ctrl_typeTagOut_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_fromint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_toint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_fastpipe_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_fma_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_div_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_sqrt_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_wflags_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_ctrl_vec_0; // @[issue-slot.scala:49:7]
wire [31:0] io_out_uop_inst_0; // @[issue-slot.scala:49:7]
wire [31:0] io_out_uop_debug_inst_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_rvc_0; // @[issue-slot.scala:49:7]
wire [39:0] io_out_uop_debug_pc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_issued_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_p1_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_p2_bypass_hint_0; // @[issue-slot.scala:49:7]
wire io_out_uop_iw_p3_bypass_hint_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_dis_col_sel_0; // @[issue-slot.scala:49:7]
wire [11:0] io_out_uop_br_mask_0; // @[issue-slot.scala:49:7]
wire [3:0] io_out_uop_br_tag_0; // @[issue-slot.scala:49:7]
wire [3:0] io_out_uop_br_type_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_sfb_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_fence_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_fencei_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_sfence_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_amo_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_eret_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_sys_pc2epc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_rocc_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_mov_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_ftq_idx_0; // @[issue-slot.scala:49:7]
wire io_out_uop_edge_inst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_pc_lob_0; // @[issue-slot.scala:49:7]
wire io_out_uop_taken_0; // @[issue-slot.scala:49:7]
wire io_out_uop_imm_rename_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_imm_sel_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_pimm_0; // @[issue-slot.scala:49:7]
wire [19:0] io_out_uop_imm_packed_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_op1_sel_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_op2_sel_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_rob_idx_0; // @[issue-slot.scala:49:7]
wire [3:0] io_out_uop_ldq_idx_0; // @[issue-slot.scala:49:7]
wire [3:0] io_out_uop_stq_idx_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_rxq_idx_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_pdst_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_prs1_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_prs2_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_prs3_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_ppred_0; // @[issue-slot.scala:49:7]
wire io_out_uop_prs1_busy_0; // @[issue-slot.scala:49:7]
wire io_out_uop_prs2_busy_0; // @[issue-slot.scala:49:7]
wire io_out_uop_prs3_busy_0; // @[issue-slot.scala:49:7]
wire io_out_uop_ppred_busy_0; // @[issue-slot.scala:49:7]
wire [6:0] io_out_uop_stale_pdst_0; // @[issue-slot.scala:49:7]
wire io_out_uop_exception_0; // @[issue-slot.scala:49:7]
wire [63:0] io_out_uop_exc_cause_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_mem_cmd_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_mem_size_0; // @[issue-slot.scala:49:7]
wire io_out_uop_mem_signed_0; // @[issue-slot.scala:49:7]
wire io_out_uop_uses_ldq_0; // @[issue-slot.scala:49:7]
wire io_out_uop_uses_stq_0; // @[issue-slot.scala:49:7]
wire io_out_uop_is_unique_0; // @[issue-slot.scala:49:7]
wire io_out_uop_flush_on_commit_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_csr_cmd_0; // @[issue-slot.scala:49:7]
wire io_out_uop_ldst_is_rs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_ldst_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_lrs1_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_lrs2_0; // @[issue-slot.scala:49:7]
wire [5:0] io_out_uop_lrs3_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_dst_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_lrs1_rtype_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_lrs2_rtype_0; // @[issue-slot.scala:49:7]
wire io_out_uop_frs3_en_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fcn_dw_0; // @[issue-slot.scala:49:7]
wire [4:0] io_out_uop_fcn_op_0; // @[issue-slot.scala:49:7]
wire io_out_uop_fp_val_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_fp_rm_0; // @[issue-slot.scala:49:7]
wire [1:0] io_out_uop_fp_typ_0; // @[issue-slot.scala:49:7]
wire io_out_uop_xcpt_pf_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_xcpt_ae_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_xcpt_ma_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_bp_debug_if_0; // @[issue-slot.scala:49:7]
wire io_out_uop_bp_xcpt_if_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_debug_fsrc_0; // @[issue-slot.scala:49:7]
wire [2:0] io_out_uop_debug_tsrc_0; // @[issue-slot.scala:49:7]
wire io_valid_0; // @[issue-slot.scala:49:7]
wire io_will_be_valid_0; // @[issue-slot.scala:49:7]
wire io_request_0; // @[issue-slot.scala:49:7]
reg slot_valid; // @[issue-slot.scala:55:27]
assign io_valid_0 = slot_valid; // @[issue-slot.scala:49:7, :55:27]
reg [31:0] slot_uop_inst; // @[issue-slot.scala:56:21]
assign io_iss_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:49:7, :56:21]
wire [31:0] next_uop_out_inst = slot_uop_inst; // @[util.scala:104:23]
reg [31:0] slot_uop_debug_inst; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:49:7, :56:21]
wire [31:0] next_uop_out_debug_inst = slot_uop_debug_inst; // @[util.scala:104:23]
reg slot_uop_is_rvc; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_rvc = slot_uop_is_rvc; // @[util.scala:104:23]
reg [39:0] slot_uop_debug_pc; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:49:7, :56:21]
wire [39:0] next_uop_out_debug_pc = slot_uop_debug_pc; // @[util.scala:104:23]
reg slot_uop_iq_type_0; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_0_0 = slot_uop_iq_type_0; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_0 = slot_uop_iq_type_0; // @[util.scala:104:23]
reg slot_uop_iq_type_1; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_1_0 = slot_uop_iq_type_1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_1 = slot_uop_iq_type_1; // @[util.scala:104:23]
reg slot_uop_iq_type_2; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_2_0 = slot_uop_iq_type_2; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_2 = slot_uop_iq_type_2; // @[util.scala:104:23]
reg slot_uop_iq_type_3; // @[issue-slot.scala:56:21]
assign io_iss_uop_iq_type_3_0 = slot_uop_iq_type_3; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iq_type_3 = slot_uop_iq_type_3; // @[util.scala:104:23]
reg slot_uop_fu_code_0; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_0_0 = slot_uop_fu_code_0; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_0 = slot_uop_fu_code_0; // @[util.scala:104:23]
reg slot_uop_fu_code_1; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_1_0 = slot_uop_fu_code_1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_1 = slot_uop_fu_code_1; // @[util.scala:104:23]
reg slot_uop_fu_code_2; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_2_0 = slot_uop_fu_code_2; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_2 = slot_uop_fu_code_2; // @[util.scala:104:23]
reg slot_uop_fu_code_3; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_3_0 = slot_uop_fu_code_3; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_3 = slot_uop_fu_code_3; // @[util.scala:104:23]
reg slot_uop_fu_code_4; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_4_0 = slot_uop_fu_code_4; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_4 = slot_uop_fu_code_4; // @[util.scala:104:23]
reg slot_uop_fu_code_5; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_5_0 = slot_uop_fu_code_5; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_5 = slot_uop_fu_code_5; // @[util.scala:104:23]
reg slot_uop_fu_code_6; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_6_0 = slot_uop_fu_code_6; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_6 = slot_uop_fu_code_6; // @[util.scala:104:23]
reg slot_uop_fu_code_7; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_7_0 = slot_uop_fu_code_7; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_7 = slot_uop_fu_code_7; // @[util.scala:104:23]
reg slot_uop_fu_code_8; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_8_0 = slot_uop_fu_code_8; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_8 = slot_uop_fu_code_8; // @[util.scala:104:23]
reg slot_uop_fu_code_9; // @[issue-slot.scala:56:21]
assign io_iss_uop_fu_code_9_0 = slot_uop_fu_code_9; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fu_code_9 = slot_uop_fu_code_9; // @[util.scala:104:23]
reg slot_uop_iw_issued; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_issued_0 = slot_uop_iw_issued; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_issued = slot_uop_iw_issued; // @[util.scala:104:23]
reg [1:0] slot_uop_iw_p1_speculative_child; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p1_speculative_child_0 = slot_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_iw_p1_speculative_child = slot_uop_iw_p1_speculative_child; // @[util.scala:104:23]
reg [1:0] slot_uop_iw_p2_speculative_child; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p2_speculative_child_0 = slot_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_iw_p2_speculative_child = slot_uop_iw_p2_speculative_child; // @[util.scala:104:23]
reg slot_uop_iw_p1_bypass_hint; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p1_bypass_hint_0 = slot_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_p1_bypass_hint = slot_uop_iw_p1_bypass_hint; // @[util.scala:104:23]
reg slot_uop_iw_p2_bypass_hint; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p2_bypass_hint_0 = slot_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_p2_bypass_hint = slot_uop_iw_p2_bypass_hint; // @[util.scala:104:23]
reg slot_uop_iw_p3_bypass_hint; // @[issue-slot.scala:56:21]
assign io_iss_uop_iw_p3_bypass_hint_0 = slot_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_iw_p3_bypass_hint = slot_uop_iw_p3_bypass_hint; // @[util.scala:104:23]
reg [1:0] slot_uop_dis_col_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_dis_col_sel_0 = slot_uop_dis_col_sel; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_dis_col_sel = slot_uop_dis_col_sel; // @[util.scala:104:23]
reg [11:0] slot_uop_br_mask; // @[issue-slot.scala:56:21]
assign io_iss_uop_br_mask_0 = slot_uop_br_mask; // @[issue-slot.scala:49:7, :56:21]
reg [3:0] slot_uop_br_tag; // @[issue-slot.scala:56:21]
assign io_iss_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:49:7, :56:21]
wire [3:0] next_uop_out_br_tag = slot_uop_br_tag; // @[util.scala:104:23]
reg [3:0] slot_uop_br_type; // @[issue-slot.scala:56:21]
assign io_iss_uop_br_type_0 = slot_uop_br_type; // @[issue-slot.scala:49:7, :56:21]
wire [3:0] next_uop_out_br_type = slot_uop_br_type; // @[util.scala:104:23]
reg slot_uop_is_sfb; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_sfb = slot_uop_is_sfb; // @[util.scala:104:23]
reg slot_uop_is_fence; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_fence = slot_uop_is_fence; // @[util.scala:104:23]
reg slot_uop_is_fencei; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_fencei = slot_uop_is_fencei; // @[util.scala:104:23]
reg slot_uop_is_sfence; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_sfence_0 = slot_uop_is_sfence; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_sfence = slot_uop_is_sfence; // @[util.scala:104:23]
reg slot_uop_is_amo; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_amo = slot_uop_is_amo; // @[util.scala:104:23]
reg slot_uop_is_eret; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_eret_0 = slot_uop_is_eret; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_eret = slot_uop_is_eret; // @[util.scala:104:23]
reg slot_uop_is_sys_pc2epc; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_sys_pc2epc = slot_uop_is_sys_pc2epc; // @[util.scala:104:23]
reg slot_uop_is_rocc; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_rocc_0 = slot_uop_is_rocc; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_rocc = slot_uop_is_rocc; // @[util.scala:104:23]
reg slot_uop_is_mov; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_mov_0 = slot_uop_is_mov; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_mov = slot_uop_is_mov; // @[util.scala:104:23]
reg [4:0] slot_uop_ftq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_ftq_idx = slot_uop_ftq_idx; // @[util.scala:104:23]
reg slot_uop_edge_inst; // @[issue-slot.scala:56:21]
assign io_iss_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_edge_inst = slot_uop_edge_inst; // @[util.scala:104:23]
reg [5:0] slot_uop_pc_lob; // @[issue-slot.scala:56:21]
assign io_iss_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_pc_lob = slot_uop_pc_lob; // @[util.scala:104:23]
reg slot_uop_taken; // @[issue-slot.scala:56:21]
assign io_iss_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_taken = slot_uop_taken; // @[util.scala:104:23]
reg slot_uop_imm_rename; // @[issue-slot.scala:56:21]
assign io_iss_uop_imm_rename_0 = slot_uop_imm_rename; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_imm_rename = slot_uop_imm_rename; // @[util.scala:104:23]
reg [2:0] slot_uop_imm_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_imm_sel_0 = slot_uop_imm_sel; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_imm_sel = slot_uop_imm_sel; // @[util.scala:104:23]
reg [4:0] slot_uop_pimm; // @[issue-slot.scala:56:21]
assign io_iss_uop_pimm_0 = slot_uop_pimm; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_pimm = slot_uop_pimm; // @[util.scala:104:23]
reg [19:0] slot_uop_imm_packed; // @[issue-slot.scala:56:21]
assign io_iss_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:49:7, :56:21]
wire [19:0] next_uop_out_imm_packed = slot_uop_imm_packed; // @[util.scala:104:23]
reg [1:0] slot_uop_op1_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_op1_sel_0 = slot_uop_op1_sel; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_op1_sel = slot_uop_op1_sel; // @[util.scala:104:23]
reg [2:0] slot_uop_op2_sel; // @[issue-slot.scala:56:21]
assign io_iss_uop_op2_sel_0 = slot_uop_op2_sel; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_op2_sel = slot_uop_op2_sel; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ldst; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ldst_0 = slot_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ldst = slot_uop_fp_ctrl_ldst; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_wen; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_wen_0 = slot_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_wen = slot_uop_fp_ctrl_wen; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ren1; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ren1_0 = slot_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ren1 = slot_uop_fp_ctrl_ren1; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ren2; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ren2_0 = slot_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ren2 = slot_uop_fp_ctrl_ren2; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_ren3; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_ren3_0 = slot_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_ren3 = slot_uop_fp_ctrl_ren3; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_swap12; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_swap12_0 = slot_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_swap12 = slot_uop_fp_ctrl_swap12; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_swap23; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_swap23_0 = slot_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_swap23 = slot_uop_fp_ctrl_swap23; // @[util.scala:104:23]
reg [1:0] slot_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_typeTagIn_0 = slot_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_fp_ctrl_typeTagIn = slot_uop_fp_ctrl_typeTagIn; // @[util.scala:104:23]
reg [1:0] slot_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_typeTagOut_0 = slot_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_fp_ctrl_typeTagOut = slot_uop_fp_ctrl_typeTagOut; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_fromint; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_fromint_0 = slot_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_fromint = slot_uop_fp_ctrl_fromint; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_toint; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_toint_0 = slot_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_toint = slot_uop_fp_ctrl_toint; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_fastpipe_0 = slot_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_fastpipe = slot_uop_fp_ctrl_fastpipe; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_fma; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_fma_0 = slot_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_fma = slot_uop_fp_ctrl_fma; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_div; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_div_0 = slot_uop_fp_ctrl_div; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_div = slot_uop_fp_ctrl_div; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_sqrt; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_sqrt_0 = slot_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_sqrt = slot_uop_fp_ctrl_sqrt; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_wflags; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_wflags_0 = slot_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_wflags = slot_uop_fp_ctrl_wflags; // @[util.scala:104:23]
reg slot_uop_fp_ctrl_vec; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_ctrl_vec_0 = slot_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_ctrl_vec = slot_uop_fp_ctrl_vec; // @[util.scala:104:23]
reg [5:0] slot_uop_rob_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_rob_idx = slot_uop_rob_idx; // @[util.scala:104:23]
reg [3:0] slot_uop_ldq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [3:0] next_uop_out_ldq_idx = slot_uop_ldq_idx; // @[util.scala:104:23]
reg [3:0] slot_uop_stq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [3:0] next_uop_out_stq_idx = slot_uop_stq_idx; // @[util.scala:104:23]
reg [1:0] slot_uop_rxq_idx; // @[issue-slot.scala:56:21]
assign io_iss_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_rxq_idx = slot_uop_rxq_idx; // @[util.scala:104:23]
reg [6:0] slot_uop_pdst; // @[issue-slot.scala:56:21]
assign io_iss_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_pdst = slot_uop_pdst; // @[util.scala:104:23]
reg [6:0] slot_uop_prs1; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_prs1 = slot_uop_prs1; // @[util.scala:104:23]
reg [6:0] slot_uop_prs2; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_prs2 = slot_uop_prs2; // @[util.scala:104:23]
reg [6:0] slot_uop_prs3; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_prs3 = slot_uop_prs3; // @[util.scala:104:23]
reg [4:0] slot_uop_ppred; // @[issue-slot.scala:56:21]
assign io_iss_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_ppred = slot_uop_ppred; // @[util.scala:104:23]
reg slot_uop_prs1_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs1_busy_0 = slot_uop_prs1_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_prs1_busy = slot_uop_prs1_busy; // @[util.scala:104:23]
reg slot_uop_prs2_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs2_busy_0 = slot_uop_prs2_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_prs2_busy = slot_uop_prs2_busy; // @[util.scala:104:23]
reg slot_uop_prs3_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_prs3_busy_0 = slot_uop_prs3_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_prs3_busy = slot_uop_prs3_busy; // @[util.scala:104:23]
wire _iss_ready_T_6 = slot_uop_prs3_busy; // @[issue-slot.scala:56:21, :136:131]
reg slot_uop_ppred_busy; // @[issue-slot.scala:56:21]
assign io_iss_uop_ppred_busy_0 = slot_uop_ppred_busy; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_ppred_busy = slot_uop_ppred_busy; // @[util.scala:104:23]
wire _iss_ready_T_3 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :136:88]
wire _agen_ready_T_2 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :137:95]
wire _dgen_ready_T_2 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :138:95]
reg [6:0] slot_uop_stale_pdst; // @[issue-slot.scala:56:21]
assign io_iss_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:49:7, :56:21]
wire [6:0] next_uop_out_stale_pdst = slot_uop_stale_pdst; // @[util.scala:104:23]
reg slot_uop_exception; // @[issue-slot.scala:56:21]
assign io_iss_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_exception = slot_uop_exception; // @[util.scala:104:23]
reg [63:0] slot_uop_exc_cause; // @[issue-slot.scala:56:21]
assign io_iss_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:49:7, :56:21]
wire [63:0] next_uop_out_exc_cause = slot_uop_exc_cause; // @[util.scala:104:23]
reg [4:0] slot_uop_mem_cmd; // @[issue-slot.scala:56:21]
assign io_iss_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_mem_cmd = slot_uop_mem_cmd; // @[util.scala:104:23]
reg [1:0] slot_uop_mem_size; // @[issue-slot.scala:56:21]
assign io_iss_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_mem_size = slot_uop_mem_size; // @[util.scala:104:23]
reg slot_uop_mem_signed; // @[issue-slot.scala:56:21]
assign io_iss_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_mem_signed = slot_uop_mem_signed; // @[util.scala:104:23]
reg slot_uop_uses_ldq; // @[issue-slot.scala:56:21]
assign io_iss_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_uses_ldq = slot_uop_uses_ldq; // @[util.scala:104:23]
reg slot_uop_uses_stq; // @[issue-slot.scala:56:21]
assign io_iss_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_uses_stq = slot_uop_uses_stq; // @[util.scala:104:23]
reg slot_uop_is_unique; // @[issue-slot.scala:56:21]
assign io_iss_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_is_unique = slot_uop_is_unique; // @[util.scala:104:23]
reg slot_uop_flush_on_commit; // @[issue-slot.scala:56:21]
assign io_iss_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_flush_on_commit = slot_uop_flush_on_commit; // @[util.scala:104:23]
reg [2:0] slot_uop_csr_cmd; // @[issue-slot.scala:56:21]
assign io_iss_uop_csr_cmd_0 = slot_uop_csr_cmd; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_csr_cmd = slot_uop_csr_cmd; // @[util.scala:104:23]
reg slot_uop_ldst_is_rs1; // @[issue-slot.scala:56:21]
assign io_iss_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_ldst_is_rs1 = slot_uop_ldst_is_rs1; // @[util.scala:104:23]
reg [5:0] slot_uop_ldst; // @[issue-slot.scala:56:21]
assign io_iss_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_ldst = slot_uop_ldst; // @[util.scala:104:23]
reg [5:0] slot_uop_lrs1; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_lrs1 = slot_uop_lrs1; // @[util.scala:104:23]
reg [5:0] slot_uop_lrs2; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_lrs2 = slot_uop_lrs2; // @[util.scala:104:23]
reg [5:0] slot_uop_lrs3; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:49:7, :56:21]
wire [5:0] next_uop_out_lrs3 = slot_uop_lrs3; // @[util.scala:104:23]
reg [1:0] slot_uop_dst_rtype; // @[issue-slot.scala:56:21]
assign io_iss_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_dst_rtype = slot_uop_dst_rtype; // @[util.scala:104:23]
reg [1:0] slot_uop_lrs1_rtype; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs1_rtype_0 = slot_uop_lrs1_rtype; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_lrs1_rtype = slot_uop_lrs1_rtype; // @[util.scala:104:23]
reg [1:0] slot_uop_lrs2_rtype; // @[issue-slot.scala:56:21]
assign io_iss_uop_lrs2_rtype_0 = slot_uop_lrs2_rtype; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_lrs2_rtype = slot_uop_lrs2_rtype; // @[util.scala:104:23]
reg slot_uop_frs3_en; // @[issue-slot.scala:56:21]
assign io_iss_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_frs3_en = slot_uop_frs3_en; // @[util.scala:104:23]
reg slot_uop_fcn_dw; // @[issue-slot.scala:56:21]
assign io_iss_uop_fcn_dw_0 = slot_uop_fcn_dw; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fcn_dw = slot_uop_fcn_dw; // @[util.scala:104:23]
reg [4:0] slot_uop_fcn_op; // @[issue-slot.scala:56:21]
assign io_iss_uop_fcn_op_0 = slot_uop_fcn_op; // @[issue-slot.scala:49:7, :56:21]
wire [4:0] next_uop_out_fcn_op = slot_uop_fcn_op; // @[util.scala:104:23]
reg slot_uop_fp_val; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_fp_val = slot_uop_fp_val; // @[util.scala:104:23]
reg [2:0] slot_uop_fp_rm; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_rm_0 = slot_uop_fp_rm; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_fp_rm = slot_uop_fp_rm; // @[util.scala:104:23]
reg [1:0] slot_uop_fp_typ; // @[issue-slot.scala:56:21]
assign io_iss_uop_fp_typ_0 = slot_uop_fp_typ; // @[issue-slot.scala:49:7, :56:21]
wire [1:0] next_uop_out_fp_typ = slot_uop_fp_typ; // @[util.scala:104:23]
reg slot_uop_xcpt_pf_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_xcpt_pf_if = slot_uop_xcpt_pf_if; // @[util.scala:104:23]
reg slot_uop_xcpt_ae_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_xcpt_ae_if = slot_uop_xcpt_ae_if; // @[util.scala:104:23]
reg slot_uop_xcpt_ma_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_xcpt_ma_if = slot_uop_xcpt_ma_if; // @[util.scala:104:23]
reg slot_uop_bp_debug_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_bp_debug_if = slot_uop_bp_debug_if; // @[util.scala:104:23]
reg slot_uop_bp_xcpt_if; // @[issue-slot.scala:56:21]
assign io_iss_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:49:7, :56:21]
wire next_uop_out_bp_xcpt_if = slot_uop_bp_xcpt_if; // @[util.scala:104:23]
reg [2:0] slot_uop_debug_fsrc; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_debug_fsrc = slot_uop_debug_fsrc; // @[util.scala:104:23]
reg [2:0] slot_uop_debug_tsrc; // @[issue-slot.scala:56:21]
assign io_iss_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:49:7, :56:21]
wire [2:0] next_uop_out_debug_tsrc = slot_uop_debug_tsrc; // @[util.scala:104:23]
wire next_valid; // @[issue-slot.scala:58:28]
assign next_uop_inst = next_uop_out_inst; // @[util.scala:104:23]
assign next_uop_debug_inst = next_uop_out_debug_inst; // @[util.scala:104:23]
assign next_uop_is_rvc = next_uop_out_is_rvc; // @[util.scala:104:23]
assign next_uop_debug_pc = next_uop_out_debug_pc; // @[util.scala:104:23]
assign next_uop_iq_type_0 = next_uop_out_iq_type_0; // @[util.scala:104:23]
assign next_uop_iq_type_1 = next_uop_out_iq_type_1; // @[util.scala:104:23]
assign next_uop_iq_type_2 = next_uop_out_iq_type_2; // @[util.scala:104:23]
assign next_uop_iq_type_3 = next_uop_out_iq_type_3; // @[util.scala:104:23]
assign next_uop_fu_code_0 = next_uop_out_fu_code_0; // @[util.scala:104:23]
assign next_uop_fu_code_1 = next_uop_out_fu_code_1; // @[util.scala:104:23]
assign next_uop_fu_code_2 = next_uop_out_fu_code_2; // @[util.scala:104:23]
assign next_uop_fu_code_3 = next_uop_out_fu_code_3; // @[util.scala:104:23]
assign next_uop_fu_code_4 = next_uop_out_fu_code_4; // @[util.scala:104:23]
assign next_uop_fu_code_5 = next_uop_out_fu_code_5; // @[util.scala:104:23]
assign next_uop_fu_code_6 = next_uop_out_fu_code_6; // @[util.scala:104:23]
assign next_uop_fu_code_7 = next_uop_out_fu_code_7; // @[util.scala:104:23]
assign next_uop_fu_code_8 = next_uop_out_fu_code_8; // @[util.scala:104:23]
assign next_uop_fu_code_9 = next_uop_out_fu_code_9; // @[util.scala:104:23]
wire [11:0] _next_uop_out_br_mask_T_1; // @[util.scala:93:25]
assign next_uop_dis_col_sel = next_uop_out_dis_col_sel; // @[util.scala:104:23]
assign next_uop_br_mask = next_uop_out_br_mask; // @[util.scala:104:23]
assign next_uop_br_tag = next_uop_out_br_tag; // @[util.scala:104:23]
assign next_uop_br_type = next_uop_out_br_type; // @[util.scala:104:23]
assign next_uop_is_sfb = next_uop_out_is_sfb; // @[util.scala:104:23]
assign next_uop_is_fence = next_uop_out_is_fence; // @[util.scala:104:23]
assign next_uop_is_fencei = next_uop_out_is_fencei; // @[util.scala:104:23]
assign next_uop_is_sfence = next_uop_out_is_sfence; // @[util.scala:104:23]
assign next_uop_is_amo = next_uop_out_is_amo; // @[util.scala:104:23]
assign next_uop_is_eret = next_uop_out_is_eret; // @[util.scala:104:23]
assign next_uop_is_sys_pc2epc = next_uop_out_is_sys_pc2epc; // @[util.scala:104:23]
assign next_uop_is_rocc = next_uop_out_is_rocc; // @[util.scala:104:23]
assign next_uop_is_mov = next_uop_out_is_mov; // @[util.scala:104:23]
assign next_uop_ftq_idx = next_uop_out_ftq_idx; // @[util.scala:104:23]
assign next_uop_edge_inst = next_uop_out_edge_inst; // @[util.scala:104:23]
assign next_uop_pc_lob = next_uop_out_pc_lob; // @[util.scala:104:23]
assign next_uop_taken = next_uop_out_taken; // @[util.scala:104:23]
assign next_uop_imm_rename = next_uop_out_imm_rename; // @[util.scala:104:23]
assign next_uop_imm_sel = next_uop_out_imm_sel; // @[util.scala:104:23]
assign next_uop_pimm = next_uop_out_pimm; // @[util.scala:104:23]
assign next_uop_imm_packed = next_uop_out_imm_packed; // @[util.scala:104:23]
assign next_uop_op1_sel = next_uop_out_op1_sel; // @[util.scala:104:23]
assign next_uop_op2_sel = next_uop_out_op2_sel; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ldst = next_uop_out_fp_ctrl_ldst; // @[util.scala:104:23]
assign next_uop_fp_ctrl_wen = next_uop_out_fp_ctrl_wen; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ren1 = next_uop_out_fp_ctrl_ren1; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ren2 = next_uop_out_fp_ctrl_ren2; // @[util.scala:104:23]
assign next_uop_fp_ctrl_ren3 = next_uop_out_fp_ctrl_ren3; // @[util.scala:104:23]
assign next_uop_fp_ctrl_swap12 = next_uop_out_fp_ctrl_swap12; // @[util.scala:104:23]
assign next_uop_fp_ctrl_swap23 = next_uop_out_fp_ctrl_swap23; // @[util.scala:104:23]
assign next_uop_fp_ctrl_typeTagIn = next_uop_out_fp_ctrl_typeTagIn; // @[util.scala:104:23]
assign next_uop_fp_ctrl_typeTagOut = next_uop_out_fp_ctrl_typeTagOut; // @[util.scala:104:23]
assign next_uop_fp_ctrl_fromint = next_uop_out_fp_ctrl_fromint; // @[util.scala:104:23]
assign next_uop_fp_ctrl_toint = next_uop_out_fp_ctrl_toint; // @[util.scala:104:23]
assign next_uop_fp_ctrl_fastpipe = next_uop_out_fp_ctrl_fastpipe; // @[util.scala:104:23]
assign next_uop_fp_ctrl_fma = next_uop_out_fp_ctrl_fma; // @[util.scala:104:23]
assign next_uop_fp_ctrl_div = next_uop_out_fp_ctrl_div; // @[util.scala:104:23]
assign next_uop_fp_ctrl_sqrt = next_uop_out_fp_ctrl_sqrt; // @[util.scala:104:23]
assign next_uop_fp_ctrl_wflags = next_uop_out_fp_ctrl_wflags; // @[util.scala:104:23]
assign next_uop_fp_ctrl_vec = next_uop_out_fp_ctrl_vec; // @[util.scala:104:23]
assign next_uop_rob_idx = next_uop_out_rob_idx; // @[util.scala:104:23]
assign next_uop_ldq_idx = next_uop_out_ldq_idx; // @[util.scala:104:23]
assign next_uop_stq_idx = next_uop_out_stq_idx; // @[util.scala:104:23]
assign next_uop_rxq_idx = next_uop_out_rxq_idx; // @[util.scala:104:23]
assign next_uop_pdst = next_uop_out_pdst; // @[util.scala:104:23]
assign next_uop_prs1 = next_uop_out_prs1; // @[util.scala:104:23]
assign next_uop_prs2 = next_uop_out_prs2; // @[util.scala:104:23]
assign next_uop_prs3 = next_uop_out_prs3; // @[util.scala:104:23]
assign next_uop_ppred = next_uop_out_ppred; // @[util.scala:104:23]
assign next_uop_ppred_busy = next_uop_out_ppred_busy; // @[util.scala:104:23]
assign next_uop_stale_pdst = next_uop_out_stale_pdst; // @[util.scala:104:23]
assign next_uop_exception = next_uop_out_exception; // @[util.scala:104:23]
assign next_uop_exc_cause = next_uop_out_exc_cause; // @[util.scala:104:23]
assign next_uop_mem_cmd = next_uop_out_mem_cmd; // @[util.scala:104:23]
assign next_uop_mem_size = next_uop_out_mem_size; // @[util.scala:104:23]
assign next_uop_mem_signed = next_uop_out_mem_signed; // @[util.scala:104:23]
assign next_uop_uses_ldq = next_uop_out_uses_ldq; // @[util.scala:104:23]
assign next_uop_uses_stq = next_uop_out_uses_stq; // @[util.scala:104:23]
assign next_uop_is_unique = next_uop_out_is_unique; // @[util.scala:104:23]
assign next_uop_flush_on_commit = next_uop_out_flush_on_commit; // @[util.scala:104:23]
assign next_uop_csr_cmd = next_uop_out_csr_cmd; // @[util.scala:104:23]
assign next_uop_ldst_is_rs1 = next_uop_out_ldst_is_rs1; // @[util.scala:104:23]
assign next_uop_ldst = next_uop_out_ldst; // @[util.scala:104:23]
assign next_uop_lrs1 = next_uop_out_lrs1; // @[util.scala:104:23]
assign next_uop_lrs2 = next_uop_out_lrs2; // @[util.scala:104:23]
assign next_uop_lrs3 = next_uop_out_lrs3; // @[util.scala:104:23]
assign next_uop_dst_rtype = next_uop_out_dst_rtype; // @[util.scala:104:23]
assign next_uop_lrs1_rtype = next_uop_out_lrs1_rtype; // @[util.scala:104:23]
assign next_uop_lrs2_rtype = next_uop_out_lrs2_rtype; // @[util.scala:104:23]
assign next_uop_frs3_en = next_uop_out_frs3_en; // @[util.scala:104:23]
assign next_uop_fcn_dw = next_uop_out_fcn_dw; // @[util.scala:104:23]
assign next_uop_fcn_op = next_uop_out_fcn_op; // @[util.scala:104:23]
assign next_uop_fp_val = next_uop_out_fp_val; // @[util.scala:104:23]
assign next_uop_fp_rm = next_uop_out_fp_rm; // @[util.scala:104:23]
assign next_uop_fp_typ = next_uop_out_fp_typ; // @[util.scala:104:23]
assign next_uop_xcpt_pf_if = next_uop_out_xcpt_pf_if; // @[util.scala:104:23]
assign next_uop_xcpt_ae_if = next_uop_out_xcpt_ae_if; // @[util.scala:104:23]
assign next_uop_xcpt_ma_if = next_uop_out_xcpt_ma_if; // @[util.scala:104:23]
assign next_uop_bp_debug_if = next_uop_out_bp_debug_if; // @[util.scala:104:23]
assign next_uop_bp_xcpt_if = next_uop_out_bp_xcpt_if; // @[util.scala:104:23]
assign next_uop_debug_fsrc = next_uop_out_debug_fsrc; // @[util.scala:104:23]
assign next_uop_debug_tsrc = next_uop_out_debug_tsrc; // @[util.scala:104:23]
wire [11:0] _next_uop_out_br_mask_T = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:93:27]
assign _next_uop_out_br_mask_T_1 = slot_uop_br_mask & _next_uop_out_br_mask_T; // @[util.scala:93:{25,27}]
assign next_uop_out_br_mask = _next_uop_out_br_mask_T_1; // @[util.scala:93:25, :104:23]
assign io_out_uop_inst_0 = next_uop_inst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_inst_0 = next_uop_debug_inst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_rvc_0 = next_uop_is_rvc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_pc_0 = next_uop_debug_pc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_0_0 = next_uop_iq_type_0; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_1_0 = next_uop_iq_type_1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_2_0 = next_uop_iq_type_2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iq_type_3_0 = next_uop_iq_type_3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_0_0 = next_uop_fu_code_0; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_1_0 = next_uop_fu_code_1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_2_0 = next_uop_fu_code_2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_3_0 = next_uop_fu_code_3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_4_0 = next_uop_fu_code_4; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_5_0 = next_uop_fu_code_5; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_6_0 = next_uop_fu_code_6; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_7_0 = next_uop_fu_code_7; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_8_0 = next_uop_fu_code_8; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fu_code_9_0 = next_uop_fu_code_9; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_issued_0 = next_uop_iw_issued; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_p1_bypass_hint_0 = next_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_p2_bypass_hint_0 = next_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_iw_p3_bypass_hint_0 = next_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_dis_col_sel_0 = next_uop_dis_col_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_br_mask_0 = next_uop_br_mask; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_br_tag_0 = next_uop_br_tag; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_br_type_0 = next_uop_br_type; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_sfb_0 = next_uop_is_sfb; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_fence_0 = next_uop_is_fence; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_fencei_0 = next_uop_is_fencei; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_sfence_0 = next_uop_is_sfence; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_amo_0 = next_uop_is_amo; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_eret_0 = next_uop_is_eret; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_sys_pc2epc_0 = next_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_rocc_0 = next_uop_is_rocc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_mov_0 = next_uop_is_mov; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ftq_idx_0 = next_uop_ftq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_edge_inst_0 = next_uop_edge_inst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_pc_lob_0 = next_uop_pc_lob; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_taken_0 = next_uop_taken; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_imm_rename_0 = next_uop_imm_rename; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_imm_sel_0 = next_uop_imm_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_pimm_0 = next_uop_pimm; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_imm_packed_0 = next_uop_imm_packed; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_op1_sel_0 = next_uop_op1_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_op2_sel_0 = next_uop_op2_sel; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ldst_0 = next_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_wen_0 = next_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ren1_0 = next_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ren2_0 = next_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_ren3_0 = next_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_swap12_0 = next_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_swap23_0 = next_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_typeTagIn_0 = next_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_typeTagOut_0 = next_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_fromint_0 = next_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_toint_0 = next_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_fastpipe_0 = next_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_fma_0 = next_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_div_0 = next_uop_fp_ctrl_div; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_sqrt_0 = next_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_wflags_0 = next_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_ctrl_vec_0 = next_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_rob_idx_0 = next_uop_rob_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ldq_idx_0 = next_uop_ldq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_stq_idx_0 = next_uop_stq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_rxq_idx_0 = next_uop_rxq_idx; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_pdst_0 = next_uop_pdst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs1_0 = next_uop_prs1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs2_0 = next_uop_prs2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs3_0 = next_uop_prs3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ppred_0 = next_uop_ppred; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs1_busy_0 = next_uop_prs1_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs2_busy_0 = next_uop_prs2_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_prs3_busy_0 = next_uop_prs3_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ppred_busy_0 = next_uop_ppred_busy; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_stale_pdst_0 = next_uop_stale_pdst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_exception_0 = next_uop_exception; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_exc_cause_0 = next_uop_exc_cause; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_mem_cmd_0 = next_uop_mem_cmd; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_mem_size_0 = next_uop_mem_size; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_mem_signed_0 = next_uop_mem_signed; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_uses_ldq_0 = next_uop_uses_ldq; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_uses_stq_0 = next_uop_uses_stq; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_is_unique_0 = next_uop_is_unique; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_flush_on_commit_0 = next_uop_flush_on_commit; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_csr_cmd_0 = next_uop_csr_cmd; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ldst_is_rs1_0 = next_uop_ldst_is_rs1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_ldst_0 = next_uop_ldst; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs1_0 = next_uop_lrs1; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs2_0 = next_uop_lrs2; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs3_0 = next_uop_lrs3; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_dst_rtype_0 = next_uop_dst_rtype; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs1_rtype_0 = next_uop_lrs1_rtype; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_lrs2_rtype_0 = next_uop_lrs2_rtype; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_frs3_en_0 = next_uop_frs3_en; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fcn_dw_0 = next_uop_fcn_dw; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fcn_op_0 = next_uop_fcn_op; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_val_0 = next_uop_fp_val; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_rm_0 = next_uop_fp_rm; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_fp_typ_0 = next_uop_fp_typ; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_xcpt_pf_if_0 = next_uop_xcpt_pf_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_xcpt_ae_if_0 = next_uop_xcpt_ae_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_xcpt_ma_if_0 = next_uop_xcpt_ma_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_bp_debug_if_0 = next_uop_bp_debug_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_bp_xcpt_if_0 = next_uop_bp_xcpt_if; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_fsrc_0 = next_uop_debug_fsrc; // @[issue-slot.scala:49:7, :59:28]
assign io_out_uop_debug_tsrc_0 = next_uop_debug_tsrc; // @[issue-slot.scala:49:7, :59:28]
wire [11:0] _killed_T = io_brupdate_b1_mispredict_mask_0 & slot_uop_br_mask; // @[util.scala:126:51]
wire _killed_T_1 = |_killed_T; // @[util.scala:126:{51,59}]
wire killed = _killed_T_1 | io_kill_0; // @[util.scala:61:61, :126:59]
wire _io_will_be_valid_T = ~killed; // @[util.scala:61:61]
assign _io_will_be_valid_T_1 = next_valid & _io_will_be_valid_T; // @[issue-slot.scala:58:28, :65:{34,37}]
assign io_will_be_valid_0 = _io_will_be_valid_T_1; // @[issue-slot.scala:49:7, :65:34]
wire _slot_valid_T = ~killed; // @[util.scala:61:61]
wire _slot_valid_T_1 = next_valid & _slot_valid_T; // @[issue-slot.scala:58:28, :74:{30,33}] |
Generate the Verilog code corresponding to the following Chisel files.
File UARTTx.scala:
package sifive.blocks.devices.uart
import chisel3._
import chisel3.util._
import freechips.rocketchip.util._
/** UARTTx module recives TL bus data from Tx fifo in parallel and transmits them to Port(Tx).
*
* ==datapass==
* TL bus -> Tx fifo -> io.in -> shifter -> Port(Tx)
*
* ==Structure==
* - baud rate divisor counter:
* generate pulse, the enable signal for data shift.
* - data shift logic:
* parallel in, serial out
*
* @note Tx fifo transmits TL bus data to Tx module
*/
class UARTTx(c: UARTParams) extends Module {
val io = IO(new Bundle {
/** Tx enable signal from top */
val en = Input(Bool())
/** data from Tx fifo */
val in = Flipped(Decoupled(UInt(c.dataBits.W)))
/** Tx port */
val out = Output(UInt(1.W))
/** divisor bits */
val div = Input(UInt(c.divisorBits.W))
/** number of stop bits */
val nstop = Input(UInt(log2Up(c.stopBits).W))
val tx_busy = Output(Bool())
/** parity enable */
val enparity = c.includeParity.option(Input(Bool()))
/** parity select
*
* 0 -> even parity
* 1 -> odd parity
*/
val parity = c.includeParity.option(Input(Bool()))
/** databit select
*
* ture -> 8
* false -> 9
*/
val data8or9 = (c.dataBits == 9).option(Input(Bool()))
/** clear to sned signal */
val cts_n = c.includeFourWire.option(Input(Bool()))
})
val prescaler = RegInit(0.U(c.divisorBits.W))
val pulse = (prescaler === 0.U)
private val n = c.dataBits + 1 + c.includeParity.toInt
/** contains databit(8or9), start bit, stop bit and parity bit*/
val counter = RegInit(0.U((log2Floor(n + c.stopBits) + 1).W))
val shifter = Reg(UInt(n.W))
val out = RegInit(1.U(1.W))
io.out := out
val plusarg_tx = PlusArg("uart_tx", 1, "Enable/disable the TX to speed up simulation").orR
val plusarg_printf = PlusArg("uart_tx_printf", 0, "Enable/disable the TX printf").orR
val busy = (counter =/= 0.U)
io.in.ready := io.en && !busy
io.tx_busy := busy
when (io.in.fire && plusarg_printf) {
printf("UART TX (%x): %c\n", io.in.bits, io.in.bits)
}
when (io.in.fire && plusarg_tx) {
if (c.includeParity) {
val includebit9 = if (c.dataBits == 9) Mux(io.data8or9.get, false.B, io.in.bits(8)) else false.B
val parity = Mux(io.enparity.get, includebit9 ^ io.in.bits(7,0).asBools.reduce(_ ^ _) ^ io.parity.get, true.B)
val paritywithbit9 = if (c.dataBits == 9) Mux(io.data8or9.get, Cat(1.U(1.W), parity), Cat(parity, io.in.bits(8)))
else Cat(1.U(1.W), parity)
shifter := Cat(paritywithbit9, io.in.bits(7,0), 0.U(1.W))
counter := Mux1H((0 until c.stopBits).map(i =>
(io.nstop === i.U) -> (n + i + 1).U)) - (!io.enparity.get).asUInt - io.data8or9.getOrElse(0.U)
// n = max number of databits configured at elaboration + start bit + parity bit
// n + i + 1 = n + stop bits + pad bit(when counter === 0 no bit is transmitted)
// n + i + 1 - 8_bit_mode(if c.dataBits == 9) - parity_disabled_at_runtime
}
else {
val bit9 = if (c.dataBits == 9) Mux(io.data8or9.get, 1.U(1.W), io.in.bits(8)) else 1.U(1.W)
shifter := Cat(bit9, io.in.bits(7,0), 0.U(1.W))
counter := Mux1H((0 until c.stopBits).map(i =>
(io.nstop === i.U) -> (n + i + 1).U)) - io.data8or9.getOrElse(0.U)
}
}
when (busy) {
prescaler := Mux(pulse || io.cts_n.getOrElse(false.B), io.div, prescaler - 1.U)
}
when (pulse && busy) {
counter := counter - 1.U
shifter := Cat(1.U(1.W), shifter >> 1)
out := shifter(0)
}
}
/*
Copyright 2016 SiFive, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
| module UARTTx( // @[UARTTx.scala:21:7]
input clock, // @[UARTTx.scala:21:7]
input reset, // @[UARTTx.scala:21:7]
input io_en, // @[UARTTx.scala:22:14]
output io_in_ready, // @[UARTTx.scala:22:14]
input io_in_valid, // @[UARTTx.scala:22:14]
input [7:0] io_in_bits, // @[UARTTx.scala:22:14]
output io_out, // @[UARTTx.scala:22:14]
input [15:0] io_div, // @[UARTTx.scala:22:14]
input io_nstop, // @[UARTTx.scala:22:14]
output io_tx_busy // @[UARTTx.scala:22:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_en_0 = io_en; // @[UARTTx.scala:21:7]
wire io_in_valid_0 = io_in_valid; // @[UARTTx.scala:21:7]
wire [7:0] io_in_bits_0 = io_in_bits; // @[UARTTx.scala:21:7]
wire [15:0] io_div_0 = io_div; // @[UARTTx.scala:21:7]
wire io_nstop_0 = io_nstop; // @[UARTTx.scala:21:7]
wire _io_in_ready_T_1; // @[UARTTx.scala:66:24]
wire [7:0] _shifter_T = io_in_bits_0; // @[UARTTx.scala:21:7, :86:38]
wire busy; // @[UARTTx.scala:65:23]
wire _counter_T_1 = io_nstop_0; // @[UARTTx.scala:21:7, :88:19]
wire io_in_ready_0; // @[UARTTx.scala:21:7]
wire io_out_0; // @[UARTTx.scala:21:7]
wire io_tx_busy_0; // @[UARTTx.scala:21:7]
reg [15:0] prescaler; // @[UARTTx.scala:52:26]
wire pulse = prescaler == 16'h0; // @[UARTTx.scala:52:26, :53:26]
wire _prescaler_T = pulse; // @[UARTTx.scala:53:26, :92:28]
reg [3:0] counter; // @[UARTTx.scala:57:24]
reg [8:0] shifter; // @[UARTTx.scala:58:20]
reg out; // @[UARTTx.scala:59:20]
assign io_out_0 = out; // @[UARTTx.scala:21:7, :59:20]
wire plusarg_tx = |_plusarg_reader_out; // @[PlusArg.scala:80:11]
wire plusarg_printf = |_plusarg_reader_1_out; // @[PlusArg.scala:80:11]
assign busy = |counter; // @[UARTTx.scala:57:24, :65:23]
assign io_tx_busy_0 = busy; // @[UARTTx.scala:21:7, :65:23]
wire _io_in_ready_T = ~busy; // @[UARTTx.scala:65:23, :66:27]
assign _io_in_ready_T_1 = io_en_0 & _io_in_ready_T; // @[UARTTx.scala:21:7, :66:{24,27}]
assign io_in_ready_0 = _io_in_ready_T_1; // @[UARTTx.scala:21:7, :66:24]
wire _T_4 = io_in_ready_0 & io_in_valid_0; // @[Decoupled.scala:51:35] |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_301( // @[SynchronizerReg.scala:68:19]
input clock, // @[SynchronizerReg.scala:68:19]
input reset, // @[SynchronizerReg.scala:68:19]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19]
wire _sync_2_T = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19]
wire io_q_0; // @[SynchronizerReg.scala:68:19]
reg sync_0; // @[SynchronizerReg.scala:51:87]
assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19]
reg sync_1; // @[SynchronizerReg.scala:51:87]
reg sync_2; // @[SynchronizerReg.scala:51:87]
always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19]
if (reset) begin // @[SynchronizerReg.scala:68:19]
sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87]
sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87]
end
else begin // @[SynchronizerReg.scala:68:19]
sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87]
sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87]
sync_2 <= 1'h1; // @[SynchronizerReg.scala:51:87, :54:22, :68:19]
end
always @(posedge, posedge) |
Generate the Verilog code corresponding to the following Chisel files.
File ShiftReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
// Similar to the Chisel ShiftRegister but allows the user to suggest a
// name to the registers that get instantiated, and
// to provide a reset value.
object ShiftRegInit {
def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T =
(0 until n).foldRight(in) {
case (i, next) => {
val r = RegNext(next, init)
name.foreach { na => r.suggestName(s"${na}_${i}") }
r
}
}
}
/** These wrap behavioral
* shift registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
* The different types vary in their reset behavior:
* AsyncResetShiftReg -- Asynchronously reset register array
* A W(width) x D(depth) sized array is constructed from D instantiations of a
* W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg,
* but only used for timing applications
*/
abstract class AbstractPipelineReg(w: Int = 1) extends Module {
val io = IO(new Bundle {
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
}
)
}
object AbstractPipelineReg {
def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = {
val chain = Module(gen)
name.foreach{ chain.suggestName(_) }
chain.io.d := in.asUInt
chain.io.q.asTypeOf(in)
}
}
class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) {
require(depth > 0, "Depth must be greater than 0.")
override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}"
val chain = List.tabulate(depth) { i =>
Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}")
}
chain.last.io.d := io.d
chain.last.io.en := true.B
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := true.B
}
io.q := chain.head.io.q
}
object AsyncResetShiftReg {
def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name)
def apply [T <: Data](in: T, depth: Int, name: Option[String]): T =
apply(in, depth, 0, name)
def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T =
apply(in, depth, init.litValue.toInt, name)
def apply [T <: Data](in: T, depth: Int, init: T): T =
apply (in, depth, init.litValue.toInt, None)
}
File SynchronizerReg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util.{RegEnable, Cat}
/** These wrap behavioral
* shift and next registers into specific modules to allow for
* backend flows to replace or constrain
* them properly when used for CDC synchronization,
* rather than buffering.
*
*
* These are built up of *ResetSynchronizerPrimitiveShiftReg,
* intended to be replaced by the integrator's metastable flops chains or replaced
* at this level if they have a multi-bit wide synchronizer primitive.
* The different types vary in their reset behavior:
* NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin
* AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep
* 1-bit-wide shift registers.
* SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg
*
* [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference.
*
* ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross
* Clock Domains.
*/
object SynchronizerResetType extends Enumeration {
val NonSync, Inferred, Sync, Async = Value
}
// Note: this should not be used directly.
// Use the companion object to generate this with the correct reset type mixin.
private class SynchronizerPrimitiveShiftReg(
sync: Int,
init: Boolean,
resetType: SynchronizerResetType.Value)
extends AbstractPipelineReg(1) {
val initInt = if (init) 1 else 0
val initPostfix = resetType match {
case SynchronizerResetType.NonSync => ""
case _ => s"_i${initInt}"
}
override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}"
val chain = List.tabulate(sync) { i =>
val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B)
reg.suggestName(s"sync_$i")
}
chain.last := io.d.asBool
(chain.init zip chain.tail).foreach { case (sink, source) =>
sink := source
}
io.q := chain.head.asUInt
}
private object SynchronizerPrimitiveShiftReg {
def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = {
val gen: () => SynchronizerPrimitiveShiftReg = resetType match {
case SynchronizerResetType.NonSync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
case SynchronizerResetType.Async =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset
case SynchronizerResetType.Sync =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset
case SynchronizerResetType.Inferred =>
() => new SynchronizerPrimitiveShiftReg(sync, init, resetType)
}
AbstractPipelineReg(gen(), in)
}
}
// Note: This module may end up with a non-AsyncReset type reset.
// But the Primitives within will always have AsyncReset type.
class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int)
extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asAsyncReset){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async)
}
}
io.q := Cat(output.reverse)
}
object AsyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
// Note: This module may end up with a non-Bool type reset.
// But the Primitives within will always have Bool reset type.
@deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2")
class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
withReset(reset.asBool){
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync)
}
}
io.q := Cat(output.reverse)
}
object SyncResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}"
val output = Seq.tabulate(w) { i =>
val initBit = ((init >> i) & 1) > 0
SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred)
}
io.q := Cat(output.reverse)
}
object ResetSynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T =
AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name)
def apply [T <: Data](in: T, sync: Int, name: Option[String]): T =
apply (in, sync, 0, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, 0, None)
def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T =
apply(in, sync, init.litValue.toInt, name)
def apply [T <: Data](in: T, sync: Int, init: T): T =
apply (in, sync, init.litValue.toInt, None)
}
class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) {
require(sync > 1, s"Sync must be greater than 1, not ${sync}.")
override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}"
val output = Seq.tabulate(w) { i =>
SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync)
}
io.q := Cat(output.reverse)
}
object SynchronizerShiftReg {
def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T =
if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name)
def apply [T <: Data](in: T, sync: Int): T =
apply (in, sync, None)
def apply [T <: Data](in: T): T =
apply (in, 3, None)
}
class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module {
override def desiredName = s"ClockCrossingReg_w${w}"
val io = IO(new Bundle{
val d = Input(UInt(w.W))
val q = Output(UInt(w.W))
val en = Input(Bool())
})
val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en)
io.q := cdc_reg
}
object ClockCrossingReg {
def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = {
val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit))
name.foreach{ cdc_reg.suggestName(_) }
cdc_reg.io.d := in.asUInt
cdc_reg.io.en := en
cdc_reg.io.q.asTypeOf(in)
}
}
| module AsyncResetSynchronizerShiftReg_w1_d3_i0_177( // @[SynchronizerReg.scala:80:7]
input clock, // @[SynchronizerReg.scala:80:7]
input reset, // @[SynchronizerReg.scala:80:7]
input io_d, // @[ShiftReg.scala:36:14]
output io_q // @[ShiftReg.scala:36:14]
);
wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7]
wire _output_T = reset; // @[SynchronizerReg.scala:86:21]
wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41]
wire output_0; // @[ShiftReg.scala:48:24]
wire io_q_0; // @[SynchronizerReg.scala:80:7]
assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7]
AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_321 output_chain ( // @[ShiftReg.scala:45:23]
.clock (clock),
.reset (_output_T), // @[SynchronizerReg.scala:86:21]
.io_d (_output_T_1), // @[SynchronizerReg.scala:87:41]
.io_q (output_0)
); // @[ShiftReg.scala:45:23]
assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File primitives.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object lowMask
{
def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt =
{
require(topBound != bottomBound)
val numInVals = BigInt(1)<<in.getWidth
if (topBound < bottomBound) {
lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound)
} else if (numInVals > 64 /* Empirical */) {
// For simulation performance, we should avoid generating
// exteremely wide shifters, so we divide and conquer.
// Empirically, this does not impact synthesis QoR.
val mid = numInVals / 2
val msb = in(in.getWidth - 1)
val lsbs = in(in.getWidth - 2, 0)
if (mid < topBound) {
if (mid <= bottomBound) {
Mux(msb,
lowMask(lsbs, topBound - mid, bottomBound - mid),
0.U
)
} else {
Mux(msb,
lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U,
lowMask(lsbs, mid, bottomBound)
)
}
} else {
~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound))
}
} else {
val shift = (BigInt(-1)<<numInVals.toInt).S>>in
Reverse(
shift(
(numInVals - 1 - bottomBound).toInt,
(numInVals - topBound).toInt
)
)
}
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object countLeadingZeros
{
def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object orReduceBy2
{
def apply(in: UInt): UInt =
{
val reducedWidth = (in.getWidth + 1)>>1
val reducedVec = Wire(Vec(reducedWidth, Bool()))
for (ix <- 0 until reducedWidth - 1) {
reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR
}
reducedVec(reducedWidth - 1) :=
in(in.getWidth - 1, (reducedWidth - 1) * 2).orR
reducedVec.asUInt
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
object orReduceBy4
{
def apply(in: UInt): UInt =
{
val reducedWidth = (in.getWidth + 3)>>2
val reducedVec = Wire(Vec(reducedWidth, Bool()))
for (ix <- 0 until reducedWidth - 1) {
reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR
}
reducedVec(reducedWidth - 1) :=
in(in.getWidth - 1, (reducedWidth - 1) * 4).orR
reducedVec.asUInt
}
}
File MulAddRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle
{
//*** ENCODE SOME OF THESE CASES IN FEWER BITS?:
val isSigNaNAny = Bool()
val isNaNAOrB = Bool()
val isInfA = Bool()
val isZeroA = Bool()
val isInfB = Bool()
val isZeroB = Bool()
val signProd = Bool()
val isNaNC = Bool()
val isInfC = Bool()
val isZeroC = Bool()
val sExpSum = SInt((expWidth + 2).W)
val doSubMags = Bool()
val CIsDominant = Bool()
val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W)
val highAlignedSigC = UInt((sigWidth + 2).W)
val bit0AlignedSigC = UInt(1.W)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule
{
override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val op = Input(Bits(2.W))
val a = Input(Bits((expWidth + sigWidth + 1).W))
val b = Input(Bits((expWidth + sigWidth + 1).W))
val c = Input(Bits((expWidth + sigWidth + 1).W))
val mulAddA = Output(UInt(sigWidth.W))
val mulAddB = Output(UInt(sigWidth.W))
val mulAddC = Output(UInt((sigWidth * 2).W))
val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
//*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN
//*** UNSHIFTED C AND PRODUCT):
val sigSumWidth = sigWidth * 3 + 3
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a)
val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b)
val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c)
val signProd = rawA.sign ^ rawB.sign ^ io.op(1)
//*** REVIEW THE BIAS FOR 'sExpAlignedProd':
val sExpAlignedProd =
rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S
val doSubMags = signProd ^ rawC.sign ^ io.op(0)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sNatCAlignDist = sExpAlignedProd - rawC.sExp
val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0)
val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S)
val CIsDominant =
! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U))
val CAlignDist =
Mux(isMinCAlign,
0.U,
Mux(posNatCAlignDist < (sigSumWidth - 1).U,
posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0),
(sigSumWidth - 1).U
)
)
val mainAlignedSigC =
(Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist
val reduced4CExtra =
(orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) &
lowMask(
CAlignDist>>2,
//*** NOT NEEDED?:
// (sigSumWidth + 2)>>2,
(sigSumWidth - 1)>>2,
(sigSumWidth - sigWidth - 1)>>2
)
).orR
val alignedSigC =
Cat(mainAlignedSigC>>3,
Mux(doSubMags,
mainAlignedSigC(2, 0).andR && ! reduced4CExtra,
mainAlignedSigC(2, 0).orR || reduced4CExtra
)
)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
io.mulAddA := rawA.sig
io.mulAddB := rawB.sig
io.mulAddC := alignedSigC(sigWidth * 2, 1)
io.toPostMul.isSigNaNAny :=
isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) ||
isSigNaNRawFloat(rawC)
io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN
io.toPostMul.isInfA := rawA.isInf
io.toPostMul.isZeroA := rawA.isZero
io.toPostMul.isInfB := rawB.isInf
io.toPostMul.isZeroB := rawB.isZero
io.toPostMul.signProd := signProd
io.toPostMul.isNaNC := rawC.isNaN
io.toPostMul.isInfC := rawC.isInf
io.toPostMul.isZeroC := rawC.isZero
io.toPostMul.sExpSum :=
Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S)
io.toPostMul.doSubMags := doSubMags
io.toPostMul.CIsDominant := CIsDominant
io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0)
io.toPostMul.highAlignedSigC :=
alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1)
io.toPostMul.bit0AlignedSigC := alignedSigC(0)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule
{
override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth))
val mulAddResult = Input(UInt((sigWidth * 2 + 1).W))
val roundingMode = Input(UInt(3.W))
val invalidExc = Output(Bool())
val rawOut = Output(new RawFloat(expWidth, sigWidth + 2))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sigSumWidth = sigWidth * 3 + 3
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundingMode_min = (io.roundingMode === round_min)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags
val sigSum =
Cat(Mux(io.mulAddResult(sigWidth * 2),
io.fromPreMul.highAlignedSigC + 1.U,
io.fromPreMul.highAlignedSigC
),
io.mulAddResult(sigWidth * 2 - 1, 0),
io.fromPreMul.bit0AlignedSigC
)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val CDom_sign = opSignC
val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext
val CDom_absSigSum =
Mux(io.fromPreMul.doSubMags,
~sigSum(sigSumWidth - 1, sigWidth + 1),
0.U(1.W) ##
//*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO:
io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ##
sigSum(sigSumWidth - 3, sigWidth + 2)
)
val CDom_absSigSumExtra =
Mux(io.fromPreMul.doSubMags,
(~sigSum(sigWidth, 1)).orR,
sigSum(sigWidth + 1, 1).orR
)
val CDom_mainSig =
(CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)(
sigWidth * 2 + 1, sigWidth - 3)
val CDom_reduced4SigExtra =
(orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) &
lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR
val CDom_sig =
Cat(CDom_mainSig>>3,
CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra ||
CDom_absSigSumExtra
)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val notCDom_signSigSum = sigSum(sigWidth * 2 + 3)
val notCDom_absSigSum =
Mux(notCDom_signSigSum,
~sigSum(sigWidth * 2 + 2, 0),
sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags
)
val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum)
val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum)
val notCDom_nearNormDist = notCDom_normDistReduced2<<1
val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext
val notCDom_mainSig =
(notCDom_absSigSum<<notCDom_nearNormDist)(
sigWidth * 2 + 3, sigWidth - 1)
val notCDom_reduced4SigExtra =
(orReduceBy2(
notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) &
lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2)
).orR
val notCDom_sig =
Cat(notCDom_mainSig>>3,
notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra
)
val notCDom_completeCancellation =
(notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U)
val notCDom_sign =
Mux(notCDom_completeCancellation,
roundingMode_min,
io.fromPreMul.signProd ^ notCDom_signSigSum
)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB
val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC
val notNaN_addZeros =
(io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) &&
io.fromPreMul.isZeroC
io.invalidExc :=
io.fromPreMul.isSigNaNAny ||
(io.fromPreMul.isInfA && io.fromPreMul.isZeroB) ||
(io.fromPreMul.isZeroA && io.fromPreMul.isInfB) ||
(! io.fromPreMul.isNaNAOrB &&
(io.fromPreMul.isInfA || io.fromPreMul.isInfB) &&
io.fromPreMul.isInfC &&
io.fromPreMul.doSubMags)
io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC
io.rawOut.isInf := notNaN_isInfOut
//*** IMPROVE?:
io.rawOut.isZero :=
notNaN_addZeros ||
(! io.fromPreMul.CIsDominant && notCDom_completeCancellation)
io.rawOut.sign :=
(notNaN_isInfProd && io.fromPreMul.signProd) ||
(io.fromPreMul.isInfC && opSignC) ||
(notNaN_addZeros && ! roundingMode_min &&
io.fromPreMul.signProd && opSignC) ||
(notNaN_addZeros && roundingMode_min &&
(io.fromPreMul.signProd || opSignC)) ||
(! notNaN_isInfOut && ! notNaN_addZeros &&
Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign))
io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp)
io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig)
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule
{
override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val op = Input(Bits(2.W))
val a = Input(Bits((expWidth + sigWidth + 1).W))
val b = Input(Bits((expWidth + sigWidth + 1).W))
val c = Input(Bits((expWidth + sigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val mulAddRecFNToRaw_preMul =
Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth))
val mulAddRecFNToRaw_postMul =
Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth))
mulAddRecFNToRaw_preMul.io.op := io.op
mulAddRecFNToRaw_preMul.io.a := io.a
mulAddRecFNToRaw_preMul.io.b := io.b
mulAddRecFNToRaw_preMul.io.c := io.c
val mulAddResult =
(mulAddRecFNToRaw_preMul.io.mulAddA *
mulAddRecFNToRaw_preMul.io.mulAddB) +&
mulAddRecFNToRaw_preMul.io.mulAddC
mulAddRecFNToRaw_postMul.io.fromPreMul :=
mulAddRecFNToRaw_preMul.io.toPostMul
mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult
mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundRawFNToRecFN =
Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0))
roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc
roundRawFNToRecFN.io.infiniteExc := false.B
roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut
roundRawFNToRecFN.io.roundingMode := io.roundingMode
roundRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundRawFNToRecFN.io.out
io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags
}
| module MulAddRecFNToRaw_postMul_e8_s24_17( // @[MulAddRecFN.scala:169:7]
input io_fromPreMul_isSigNaNAny, // @[MulAddRecFN.scala:172:16]
input io_fromPreMul_isNaNAOrB, // @[MulAddRecFN.scala:172:16]
input io_fromPreMul_isInfA, // @[MulAddRecFN.scala:172:16]
input io_fromPreMul_isZeroA, // @[MulAddRecFN.scala:172:16]
input io_fromPreMul_signProd, // @[MulAddRecFN.scala:172:16]
input [9:0] io_fromPreMul_sExpSum, // @[MulAddRecFN.scala:172:16]
input io_fromPreMul_doSubMags, // @[MulAddRecFN.scala:172:16]
input [4:0] io_fromPreMul_CDom_CAlignDist, // @[MulAddRecFN.scala:172:16]
input [25:0] io_fromPreMul_highAlignedSigC, // @[MulAddRecFN.scala:172:16]
input io_fromPreMul_bit0AlignedSigC, // @[MulAddRecFN.scala:172:16]
input [48:0] io_mulAddResult, // @[MulAddRecFN.scala:172:16]
output io_invalidExc, // @[MulAddRecFN.scala:172:16]
output io_rawOut_isNaN, // @[MulAddRecFN.scala:172:16]
output io_rawOut_isInf, // @[MulAddRecFN.scala:172:16]
output io_rawOut_isZero, // @[MulAddRecFN.scala:172:16]
output io_rawOut_sign, // @[MulAddRecFN.scala:172:16]
output [9:0] io_rawOut_sExp, // @[MulAddRecFN.scala:172:16]
output [26:0] io_rawOut_sig // @[MulAddRecFN.scala:172:16]
);
wire io_fromPreMul_isSigNaNAny_0 = io_fromPreMul_isSigNaNAny; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_isNaNAOrB_0 = io_fromPreMul_isNaNAOrB; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_isInfA_0 = io_fromPreMul_isInfA; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_isZeroA_0 = io_fromPreMul_isZeroA; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_signProd_0 = io_fromPreMul_signProd; // @[MulAddRecFN.scala:169:7]
wire [9:0] io_fromPreMul_sExpSum_0 = io_fromPreMul_sExpSum; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_doSubMags_0 = io_fromPreMul_doSubMags; // @[MulAddRecFN.scala:169:7]
wire [4:0] io_fromPreMul_CDom_CAlignDist_0 = io_fromPreMul_CDom_CAlignDist; // @[MulAddRecFN.scala:169:7]
wire [25:0] io_fromPreMul_highAlignedSigC_0 = io_fromPreMul_highAlignedSigC; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_bit0AlignedSigC_0 = io_fromPreMul_bit0AlignedSigC; // @[MulAddRecFN.scala:169:7]
wire [48:0] io_mulAddResult_0 = io_mulAddResult; // @[MulAddRecFN.scala:169:7]
wire [2:0] io_roundingMode = 3'h0; // @[MulAddRecFN.scala:169:7, :172:16]
wire io_fromPreMul_isZeroC = 1'h1; // @[MulAddRecFN.scala:169:7]
wire _io_rawOut_isZero_T = 1'h1; // @[MulAddRecFN.scala:283:14]
wire _io_rawOut_sign_T_3 = 1'h1; // @[MulAddRecFN.scala:287:29]
wire io_fromPreMul_isInfB = 1'h0; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_isZeroB = 1'h0; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_isNaNC = 1'h0; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_isInfC = 1'h0; // @[MulAddRecFN.scala:169:7]
wire io_fromPreMul_CIsDominant = 1'h0; // @[MulAddRecFN.scala:169:7]
wire roundingMode_min = 1'h0; // @[MulAddRecFN.scala:186:45]
wire _io_invalidExc_T = 1'h0; // @[MulAddRecFN.scala:272:31]
wire _io_invalidExc_T_2 = 1'h0; // @[MulAddRecFN.scala:273:32]
wire _io_invalidExc_T_7 = 1'h0; // @[MulAddRecFN.scala:275:61]
wire _io_invalidExc_T_8 = 1'h0; // @[MulAddRecFN.scala:276:35]
wire _io_rawOut_sign_T_1 = 1'h0; // @[MulAddRecFN.scala:286:31]
wire _io_rawOut_sign_T_8 = 1'h0; // @[MulAddRecFN.scala:289:26]
wire _io_rawOut_sign_T_10 = 1'h0; // @[MulAddRecFN.scala:289:46]
wire _io_invalidExc_T_1 = io_fromPreMul_isSigNaNAny_0; // @[MulAddRecFN.scala:169:7, :271:35]
wire _io_rawOut_isNaN_T = io_fromPreMul_isNaNAOrB_0; // @[MulAddRecFN.scala:169:7, :278:48]
wire notNaN_isInfProd = io_fromPreMul_isInfA_0; // @[MulAddRecFN.scala:169:7, :264:49]
wire _io_invalidExc_T_5 = io_fromPreMul_isInfA_0; // @[MulAddRecFN.scala:169:7, :275:36]
wire _notNaN_addZeros_T = io_fromPreMul_isZeroA_0; // @[MulAddRecFN.scala:169:7, :267:32]
wire _io_invalidExc_T_9; // @[MulAddRecFN.scala:273:57]
wire notNaN_isInfOut; // @[MulAddRecFN.scala:265:44]
wire _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:282:25]
wire _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:290:50]
wire [9:0] _io_rawOut_sExp_T; // @[MulAddRecFN.scala:293:26]
wire [26:0] _io_rawOut_sig_T; // @[MulAddRecFN.scala:294:25]
wire io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7]
wire io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7]
wire io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7]
wire io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7]
wire [9:0] io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7]
wire [26:0] io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7]
wire io_invalidExc_0; // @[MulAddRecFN.scala:169:7]
wire opSignC = io_fromPreMul_signProd_0 ^ io_fromPreMul_doSubMags_0; // @[MulAddRecFN.scala:169:7, :190:42]
wire _sigSum_T = io_mulAddResult_0[48]; // @[MulAddRecFN.scala:169:7, :192:32]
wire [26:0] _sigSum_T_1 = {1'h0, io_fromPreMul_highAlignedSigC_0} + 27'h1; // @[MulAddRecFN.scala:169:7, :193:47]
wire [25:0] _sigSum_T_2 = _sigSum_T_1[25:0]; // @[MulAddRecFN.scala:193:47]
wire [25:0] _sigSum_T_3 = _sigSum_T ? _sigSum_T_2 : io_fromPreMul_highAlignedSigC_0; // @[MulAddRecFN.scala:169:7, :192:{16,32}, :193:47]
wire [47:0] _sigSum_T_4 = io_mulAddResult_0[47:0]; // @[MulAddRecFN.scala:169:7, :196:28]
wire [73:0] sigSum_hi = {_sigSum_T_3, _sigSum_T_4}; // @[MulAddRecFN.scala:192:{12,16}, :196:28]
wire [74:0] sigSum = {sigSum_hi, io_fromPreMul_bit0AlignedSigC_0}; // @[MulAddRecFN.scala:169:7, :192:12]
wire [1:0] _CDom_sExp_T = {1'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :203:69]
wire [10:0] _GEN = {io_fromPreMul_sExpSum_0[9], io_fromPreMul_sExpSum_0}; // @[MulAddRecFN.scala:169:7, :203:43]
wire [10:0] _CDom_sExp_T_1 = _GEN - {{9{_CDom_sExp_T[1]}}, _CDom_sExp_T}; // @[MulAddRecFN.scala:203:{43,69}]
wire [9:0] _CDom_sExp_T_2 = _CDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:203:43]
wire [9:0] CDom_sExp = _CDom_sExp_T_2; // @[MulAddRecFN.scala:203:43]
wire [49:0] _CDom_absSigSum_T = sigSum[74:25]; // @[MulAddRecFN.scala:192:12, :206:20]
wire [49:0] _CDom_absSigSum_T_1 = ~_CDom_absSigSum_T; // @[MulAddRecFN.scala:206:{13,20}]
wire [1:0] _CDom_absSigSum_T_2 = io_fromPreMul_highAlignedSigC_0[25:24]; // @[MulAddRecFN.scala:169:7, :209:46]
wire [2:0] _CDom_absSigSum_T_3 = {1'h0, _CDom_absSigSum_T_2}; // @[MulAddRecFN.scala:207:22, :209:46]
wire [46:0] _CDom_absSigSum_T_4 = sigSum[72:26]; // @[MulAddRecFN.scala:192:12, :210:23]
wire [49:0] _CDom_absSigSum_T_5 = {_CDom_absSigSum_T_3, _CDom_absSigSum_T_4}; // @[MulAddRecFN.scala:207:22, :209:71, :210:23]
wire [49:0] CDom_absSigSum = io_fromPreMul_doSubMags_0 ? _CDom_absSigSum_T_1 : _CDom_absSigSum_T_5; // @[MulAddRecFN.scala:169:7, :205:12, :206:13, :209:71]
wire [23:0] _CDom_absSigSumExtra_T = sigSum[24:1]; // @[MulAddRecFN.scala:192:12, :215:21]
wire [23:0] _CDom_absSigSumExtra_T_1 = ~_CDom_absSigSumExtra_T; // @[MulAddRecFN.scala:215:{14,21}]
wire _CDom_absSigSumExtra_T_2 = |_CDom_absSigSumExtra_T_1; // @[MulAddRecFN.scala:215:{14,36}]
wire [24:0] _CDom_absSigSumExtra_T_3 = sigSum[25:1]; // @[MulAddRecFN.scala:192:12, :216:19]
wire _CDom_absSigSumExtra_T_4 = |_CDom_absSigSumExtra_T_3; // @[MulAddRecFN.scala:216:{19,37}]
wire CDom_absSigSumExtra = io_fromPreMul_doSubMags_0 ? _CDom_absSigSumExtra_T_2 : _CDom_absSigSumExtra_T_4; // @[MulAddRecFN.scala:169:7, :214:12, :215:36, :216:37]
wire [80:0] _CDom_mainSig_T = {31'h0, CDom_absSigSum} << io_fromPreMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:169:7, :205:12, :219:24]
wire [28:0] CDom_mainSig = _CDom_mainSig_T[49:21]; // @[MulAddRecFN.scala:219:{24,56}]
wire [23:0] _CDom_reduced4SigExtra_T = CDom_absSigSum[23:0]; // @[MulAddRecFN.scala:205:12, :222:36]
wire [26:0] _CDom_reduced4SigExtra_T_1 = {_CDom_reduced4SigExtra_T, 3'h0}; // @[MulAddRecFN.scala:169:7, :172:16, :222:{36,53}]
wire _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:120:54]
wire _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:120:54]
wire _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:120:54]
wire _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:120:54]
wire _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:120:54]
wire _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:120:54]
wire _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:123:57]
wire CDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:118:30]
wire CDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:118:30]
wire CDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:118:30]
wire CDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:118:30]
wire CDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:118:30]
wire CDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:118:30]
wire CDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:118:30]
wire [3:0] _CDom_reduced4SigExtra_reducedVec_0_T = _CDom_reduced4SigExtra_T_1[3:0]; // @[primitives.scala:120:33]
assign _CDom_reduced4SigExtra_reducedVec_0_T_1 = |_CDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:120:{33,54}]
assign CDom_reduced4SigExtra_reducedVec_0 = _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:118:30, :120:54]
wire [3:0] _CDom_reduced4SigExtra_reducedVec_1_T = _CDom_reduced4SigExtra_T_1[7:4]; // @[primitives.scala:120:33]
assign _CDom_reduced4SigExtra_reducedVec_1_T_1 = |_CDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:120:{33,54}]
assign CDom_reduced4SigExtra_reducedVec_1 = _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:118:30, :120:54]
wire [3:0] _CDom_reduced4SigExtra_reducedVec_2_T = _CDom_reduced4SigExtra_T_1[11:8]; // @[primitives.scala:120:33]
assign _CDom_reduced4SigExtra_reducedVec_2_T_1 = |_CDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:120:{33,54}]
assign CDom_reduced4SigExtra_reducedVec_2 = _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:118:30, :120:54]
wire [3:0] _CDom_reduced4SigExtra_reducedVec_3_T = _CDom_reduced4SigExtra_T_1[15:12]; // @[primitives.scala:120:33]
assign _CDom_reduced4SigExtra_reducedVec_3_T_1 = |_CDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:120:{33,54}]
assign CDom_reduced4SigExtra_reducedVec_3 = _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:118:30, :120:54]
wire [3:0] _CDom_reduced4SigExtra_reducedVec_4_T = _CDom_reduced4SigExtra_T_1[19:16]; // @[primitives.scala:120:33]
assign _CDom_reduced4SigExtra_reducedVec_4_T_1 = |_CDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:120:{33,54}]
assign CDom_reduced4SigExtra_reducedVec_4 = _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:118:30, :120:54]
wire [3:0] _CDom_reduced4SigExtra_reducedVec_5_T = _CDom_reduced4SigExtra_T_1[23:20]; // @[primitives.scala:120:33]
assign _CDom_reduced4SigExtra_reducedVec_5_T_1 = |_CDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:120:{33,54}]
assign CDom_reduced4SigExtra_reducedVec_5 = _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:118:30, :120:54]
wire [2:0] _CDom_reduced4SigExtra_reducedVec_6_T = _CDom_reduced4SigExtra_T_1[26:24]; // @[primitives.scala:123:15]
assign _CDom_reduced4SigExtra_reducedVec_6_T_1 = |_CDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:123:{15,57}]
assign CDom_reduced4SigExtra_reducedVec_6 = _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:118:30, :123:57]
wire [1:0] CDom_reduced4SigExtra_lo_hi = {CDom_reduced4SigExtra_reducedVec_2, CDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:118:30, :124:20]
wire [2:0] CDom_reduced4SigExtra_lo = {CDom_reduced4SigExtra_lo_hi, CDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:118:30, :124:20]
wire [1:0] CDom_reduced4SigExtra_hi_lo = {CDom_reduced4SigExtra_reducedVec_4, CDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:118:30, :124:20]
wire [1:0] CDom_reduced4SigExtra_hi_hi = {CDom_reduced4SigExtra_reducedVec_6, CDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:118:30, :124:20]
wire [3:0] CDom_reduced4SigExtra_hi = {CDom_reduced4SigExtra_hi_hi, CDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:124:20]
wire [6:0] _CDom_reduced4SigExtra_T_2 = {CDom_reduced4SigExtra_hi, CDom_reduced4SigExtra_lo}; // @[primitives.scala:124:20]
wire [2:0] _CDom_reduced4SigExtra_T_3 = io_fromPreMul_CDom_CAlignDist_0[4:2]; // @[MulAddRecFN.scala:169:7, :223:51]
wire [2:0] _CDom_reduced4SigExtra_T_4 = ~_CDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21]
wire [8:0] CDom_reduced4SigExtra_shift = $signed(9'sh100 >>> _CDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56]
wire [5:0] _CDom_reduced4SigExtra_T_5 = CDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22]
wire [3:0] _CDom_reduced4SigExtra_T_6 = _CDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22]
wire [1:0] _CDom_reduced4SigExtra_T_7 = _CDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20]
wire _CDom_reduced4SigExtra_T_8 = _CDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20]
wire _CDom_reduced4SigExtra_T_9 = _CDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20]
wire [1:0] _CDom_reduced4SigExtra_T_10 = {_CDom_reduced4SigExtra_T_8, _CDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20]
wire [1:0] _CDom_reduced4SigExtra_T_11 = _CDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20]
wire _CDom_reduced4SigExtra_T_12 = _CDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20]
wire _CDom_reduced4SigExtra_T_13 = _CDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20]
wire [1:0] _CDom_reduced4SigExtra_T_14 = {_CDom_reduced4SigExtra_T_12, _CDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20]
wire [3:0] _CDom_reduced4SigExtra_T_15 = {_CDom_reduced4SigExtra_T_10, _CDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20]
wire [1:0] _CDom_reduced4SigExtra_T_16 = _CDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22]
wire _CDom_reduced4SigExtra_T_17 = _CDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20]
wire _CDom_reduced4SigExtra_T_18 = _CDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20]
wire [1:0] _CDom_reduced4SigExtra_T_19 = {_CDom_reduced4SigExtra_T_17, _CDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20]
wire [5:0] _CDom_reduced4SigExtra_T_20 = {_CDom_reduced4SigExtra_T_15, _CDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20]
wire [6:0] _CDom_reduced4SigExtra_T_21 = {1'h0, _CDom_reduced4SigExtra_T_2[5:0] & _CDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :124:20]
wire CDom_reduced4SigExtra = |_CDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:222:72, :223:73]
wire [25:0] _CDom_sig_T = CDom_mainSig[28:3]; // @[MulAddRecFN.scala:219:56, :225:25]
wire [2:0] _CDom_sig_T_1 = CDom_mainSig[2:0]; // @[MulAddRecFN.scala:219:56, :226:25]
wire _CDom_sig_T_2 = |_CDom_sig_T_1; // @[MulAddRecFN.scala:226:{25,32}]
wire _CDom_sig_T_3 = _CDom_sig_T_2 | CDom_reduced4SigExtra; // @[MulAddRecFN.scala:223:73, :226:{32,36}]
wire _CDom_sig_T_4 = _CDom_sig_T_3 | CDom_absSigSumExtra; // @[MulAddRecFN.scala:214:12, :226:{36,61}]
wire [26:0] CDom_sig = {_CDom_sig_T, _CDom_sig_T_4}; // @[MulAddRecFN.scala:225:{12,25}, :226:61]
wire notCDom_signSigSum = sigSum[51]; // @[MulAddRecFN.scala:192:12, :232:36]
wire [50:0] _notCDom_absSigSum_T = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20]
wire [50:0] _notCDom_absSigSum_T_2 = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20, :236:19]
wire [50:0] _notCDom_absSigSum_T_1 = ~_notCDom_absSigSum_T; // @[MulAddRecFN.scala:235:{13,20}]
wire [51:0] _notCDom_absSigSum_T_3 = {1'h0, _notCDom_absSigSum_T_2} + {51'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :236:{19,41}]
wire [50:0] _notCDom_absSigSum_T_4 = _notCDom_absSigSum_T_3[50:0]; // @[MulAddRecFN.scala:236:41]
wire [50:0] notCDom_absSigSum = notCDom_signSigSum ? _notCDom_absSigSum_T_1 : _notCDom_absSigSum_T_4; // @[MulAddRecFN.scala:232:36, :234:12, :235:13, :236:41]
wire _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:106:57]
wire notCDom_reduced2AbsSigSum_reducedVec_0; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_1; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_2; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_3; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_4; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_5; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_6; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_7; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_8; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_9; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_10; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_11; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_12; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_13; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_14; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_15; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_16; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_17; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_18; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_19; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_20; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_21; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_22; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_23; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_24; // @[primitives.scala:101:30]
wire notCDom_reduced2AbsSigSum_reducedVec_25; // @[primitives.scala:101:30]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_0_T = notCDom_absSigSum[1:0]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_0_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_0_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_0 = _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_1_T = notCDom_absSigSum[3:2]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_1_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_1_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_1 = _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_2_T = notCDom_absSigSum[5:4]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_2_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_2_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_2 = _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_3_T = notCDom_absSigSum[7:6]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_3_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_3_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_3 = _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_4_T = notCDom_absSigSum[9:8]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_4_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_4_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_4 = _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_5_T = notCDom_absSigSum[11:10]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_5_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_5_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_5 = _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_6_T = notCDom_absSigSum[13:12]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_6_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_6_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_6 = _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_7_T = notCDom_absSigSum[15:14]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_7_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_7_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_7 = _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_8_T = notCDom_absSigSum[17:16]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_8_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_8_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_8 = _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_9_T = notCDom_absSigSum[19:18]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_9_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_9_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_9 = _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_10_T = notCDom_absSigSum[21:20]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_10_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_10_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_10 = _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_11_T = notCDom_absSigSum[23:22]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_11_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_11_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_11 = _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_12_T = notCDom_absSigSum[25:24]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_12_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_12_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_12 = _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_13_T = notCDom_absSigSum[27:26]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_13_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_13_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_13 = _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_14_T = notCDom_absSigSum[29:28]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_14_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_14_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_14 = _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_15_T = notCDom_absSigSum[31:30]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_15_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_15_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_15 = _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_16_T = notCDom_absSigSum[33:32]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_16_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_16_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_16 = _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_17_T = notCDom_absSigSum[35:34]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_17_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_17_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_17 = _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_18_T = notCDom_absSigSum[37:36]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_18_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_18_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_18 = _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_19_T = notCDom_absSigSum[39:38]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_19_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_19_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_19 = _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_20_T = notCDom_absSigSum[41:40]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_20_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_20_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_20 = _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_21_T = notCDom_absSigSum[43:42]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_21_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_21_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_21 = _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_22_T = notCDom_absSigSum[45:44]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_22_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_22_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_22 = _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_23_T = notCDom_absSigSum[47:46]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_23_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_23_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_23 = _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_24_T = notCDom_absSigSum[49:48]; // @[primitives.scala:103:33]
assign _notCDom_reduced2AbsSigSum_reducedVec_24_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_24_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced2AbsSigSum_reducedVec_24 = _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:101:30, :103:54]
wire _notCDom_reduced2AbsSigSum_reducedVec_25_T = notCDom_absSigSum[50]; // @[primitives.scala:106:15]
assign _notCDom_reduced2AbsSigSum_reducedVec_25_T_1 = _notCDom_reduced2AbsSigSum_reducedVec_25_T; // @[primitives.scala:106:{15,57}]
assign notCDom_reduced2AbsSigSum_reducedVec_25 = _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:101:30, :106:57]
wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_2, notCDom_reduced2AbsSigSum_reducedVec_1}; // @[primitives.scala:101:30, :107:20]
wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_0}; // @[primitives.scala:101:30, :107:20]
wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_5, notCDom_reduced2AbsSigSum_reducedVec_4}; // @[primitives.scala:101:30, :107:20]
wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_hi = {notCDom_reduced2AbsSigSum_lo_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_3}; // @[primitives.scala:101:30, :107:20]
wire [5:0] notCDom_reduced2AbsSigSum_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_hi, notCDom_reduced2AbsSigSum_lo_lo_lo}; // @[primitives.scala:107:20]
wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_8, notCDom_reduced2AbsSigSum_reducedVec_7}; // @[primitives.scala:101:30, :107:20]
wire [2:0] notCDom_reduced2AbsSigSum_lo_hi_lo = {notCDom_reduced2AbsSigSum_lo_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_6}; // @[primitives.scala:101:30, :107:20]
wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_10, notCDom_reduced2AbsSigSum_reducedVec_9}; // @[primitives.scala:101:30, :107:20]
wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_12, notCDom_reduced2AbsSigSum_reducedVec_11}; // @[primitives.scala:101:30, :107:20]
wire [3:0] notCDom_reduced2AbsSigSum_lo_hi_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_hi_lo}; // @[primitives.scala:107:20]
wire [6:0] notCDom_reduced2AbsSigSum_lo_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_lo}; // @[primitives.scala:107:20]
wire [12:0] notCDom_reduced2AbsSigSum_lo = {notCDom_reduced2AbsSigSum_lo_hi, notCDom_reduced2AbsSigSum_lo_lo}; // @[primitives.scala:107:20]
wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_15, notCDom_reduced2AbsSigSum_reducedVec_14}; // @[primitives.scala:101:30, :107:20]
wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_lo = {notCDom_reduced2AbsSigSum_hi_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_13}; // @[primitives.scala:101:30, :107:20]
wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_18, notCDom_reduced2AbsSigSum_reducedVec_17}; // @[primitives.scala:101:30, :107:20]
wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_hi = {notCDom_reduced2AbsSigSum_hi_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_16}; // @[primitives.scala:101:30, :107:20]
wire [5:0] notCDom_reduced2AbsSigSum_hi_lo = {notCDom_reduced2AbsSigSum_hi_lo_hi, notCDom_reduced2AbsSigSum_hi_lo_lo}; // @[primitives.scala:107:20]
wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_21, notCDom_reduced2AbsSigSum_reducedVec_20}; // @[primitives.scala:101:30, :107:20]
wire [2:0] notCDom_reduced2AbsSigSum_hi_hi_lo = {notCDom_reduced2AbsSigSum_hi_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_19}; // @[primitives.scala:101:30, :107:20]
wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_23, notCDom_reduced2AbsSigSum_reducedVec_22}; // @[primitives.scala:101:30, :107:20]
wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_25, notCDom_reduced2AbsSigSum_reducedVec_24}; // @[primitives.scala:101:30, :107:20]
wire [3:0] notCDom_reduced2AbsSigSum_hi_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_hi_lo}; // @[primitives.scala:107:20]
wire [6:0] notCDom_reduced2AbsSigSum_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_lo}; // @[primitives.scala:107:20]
wire [12:0] notCDom_reduced2AbsSigSum_hi = {notCDom_reduced2AbsSigSum_hi_hi, notCDom_reduced2AbsSigSum_hi_lo}; // @[primitives.scala:107:20]
wire [25:0] notCDom_reduced2AbsSigSum = {notCDom_reduced2AbsSigSum_hi, notCDom_reduced2AbsSigSum_lo}; // @[primitives.scala:107:20]
wire _notCDom_normDistReduced2_T = notCDom_reduced2AbsSigSum[0]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_1 = notCDom_reduced2AbsSigSum[1]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_2 = notCDom_reduced2AbsSigSum[2]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_3 = notCDom_reduced2AbsSigSum[3]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_4 = notCDom_reduced2AbsSigSum[4]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_5 = notCDom_reduced2AbsSigSum[5]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_6 = notCDom_reduced2AbsSigSum[6]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_7 = notCDom_reduced2AbsSigSum[7]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_8 = notCDom_reduced2AbsSigSum[8]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_9 = notCDom_reduced2AbsSigSum[9]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_10 = notCDom_reduced2AbsSigSum[10]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_11 = notCDom_reduced2AbsSigSum[11]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_12 = notCDom_reduced2AbsSigSum[12]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_13 = notCDom_reduced2AbsSigSum[13]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_14 = notCDom_reduced2AbsSigSum[14]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_15 = notCDom_reduced2AbsSigSum[15]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_16 = notCDom_reduced2AbsSigSum[16]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_17 = notCDom_reduced2AbsSigSum[17]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_18 = notCDom_reduced2AbsSigSum[18]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_19 = notCDom_reduced2AbsSigSum[19]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_20 = notCDom_reduced2AbsSigSum[20]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_21 = notCDom_reduced2AbsSigSum[21]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_22 = notCDom_reduced2AbsSigSum[22]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_23 = notCDom_reduced2AbsSigSum[23]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_24 = notCDom_reduced2AbsSigSum[24]; // @[primitives.scala:91:52, :107:20]
wire _notCDom_normDistReduced2_T_25 = notCDom_reduced2AbsSigSum[25]; // @[primitives.scala:91:52, :107:20]
wire [4:0] _notCDom_normDistReduced2_T_26 = {4'hC, ~_notCDom_normDistReduced2_T_1}; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_27 = _notCDom_normDistReduced2_T_2 ? 5'h17 : _notCDom_normDistReduced2_T_26; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_28 = _notCDom_normDistReduced2_T_3 ? 5'h16 : _notCDom_normDistReduced2_T_27; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_29 = _notCDom_normDistReduced2_T_4 ? 5'h15 : _notCDom_normDistReduced2_T_28; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_30 = _notCDom_normDistReduced2_T_5 ? 5'h14 : _notCDom_normDistReduced2_T_29; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_31 = _notCDom_normDistReduced2_T_6 ? 5'h13 : _notCDom_normDistReduced2_T_30; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_32 = _notCDom_normDistReduced2_T_7 ? 5'h12 : _notCDom_normDistReduced2_T_31; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_33 = _notCDom_normDistReduced2_T_8 ? 5'h11 : _notCDom_normDistReduced2_T_32; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_34 = _notCDom_normDistReduced2_T_9 ? 5'h10 : _notCDom_normDistReduced2_T_33; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_35 = _notCDom_normDistReduced2_T_10 ? 5'hF : _notCDom_normDistReduced2_T_34; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_36 = _notCDom_normDistReduced2_T_11 ? 5'hE : _notCDom_normDistReduced2_T_35; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_37 = _notCDom_normDistReduced2_T_12 ? 5'hD : _notCDom_normDistReduced2_T_36; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_38 = _notCDom_normDistReduced2_T_13 ? 5'hC : _notCDom_normDistReduced2_T_37; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_39 = _notCDom_normDistReduced2_T_14 ? 5'hB : _notCDom_normDistReduced2_T_38; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_40 = _notCDom_normDistReduced2_T_15 ? 5'hA : _notCDom_normDistReduced2_T_39; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_41 = _notCDom_normDistReduced2_T_16 ? 5'h9 : _notCDom_normDistReduced2_T_40; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_42 = _notCDom_normDistReduced2_T_17 ? 5'h8 : _notCDom_normDistReduced2_T_41; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_43 = _notCDom_normDistReduced2_T_18 ? 5'h7 : _notCDom_normDistReduced2_T_42; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_44 = _notCDom_normDistReduced2_T_19 ? 5'h6 : _notCDom_normDistReduced2_T_43; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_45 = _notCDom_normDistReduced2_T_20 ? 5'h5 : _notCDom_normDistReduced2_T_44; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_46 = _notCDom_normDistReduced2_T_21 ? 5'h4 : _notCDom_normDistReduced2_T_45; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_47 = _notCDom_normDistReduced2_T_22 ? 5'h3 : _notCDom_normDistReduced2_T_46; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_48 = _notCDom_normDistReduced2_T_23 ? 5'h2 : _notCDom_normDistReduced2_T_47; // @[Mux.scala:50:70]
wire [4:0] _notCDom_normDistReduced2_T_49 = _notCDom_normDistReduced2_T_24 ? 5'h1 : _notCDom_normDistReduced2_T_48; // @[Mux.scala:50:70]
wire [4:0] notCDom_normDistReduced2 = _notCDom_normDistReduced2_T_25 ? 5'h0 : _notCDom_normDistReduced2_T_49; // @[Mux.scala:50:70]
wire [5:0] notCDom_nearNormDist = {notCDom_normDistReduced2, 1'h0}; // @[Mux.scala:50:70]
wire [6:0] _notCDom_sExp_T = {1'h0, notCDom_nearNormDist}; // @[MulAddRecFN.scala:240:56, :241:76]
wire [10:0] _notCDom_sExp_T_1 = _GEN - {{4{_notCDom_sExp_T[6]}}, _notCDom_sExp_T}; // @[MulAddRecFN.scala:203:43, :241:{46,76}]
wire [9:0] _notCDom_sExp_T_2 = _notCDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:241:46]
wire [9:0] notCDom_sExp = _notCDom_sExp_T_2; // @[MulAddRecFN.scala:241:46]
assign _io_rawOut_sExp_T = notCDom_sExp; // @[MulAddRecFN.scala:241:46, :293:26]
wire [113:0] _notCDom_mainSig_T = {63'h0, notCDom_absSigSum} << notCDom_nearNormDist; // @[MulAddRecFN.scala:234:12, :240:56, :243:27]
wire [28:0] notCDom_mainSig = _notCDom_mainSig_T[51:23]; // @[MulAddRecFN.scala:243:{27,50}]
wire [12:0] _notCDom_reduced4SigExtra_T = notCDom_reduced2AbsSigSum[12:0]; // @[primitives.scala:107:20]
wire [12:0] _notCDom_reduced4SigExtra_T_1 = _notCDom_reduced4SigExtra_T; // @[MulAddRecFN.scala:247:{39,55}]
wire _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:103:54]
wire _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:106:57]
wire notCDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:101:30]
wire notCDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:101:30]
wire notCDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:101:30]
wire notCDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:101:30]
wire notCDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:101:30]
wire notCDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:101:30]
wire notCDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:101:30]
wire [1:0] _notCDom_reduced4SigExtra_reducedVec_0_T = _notCDom_reduced4SigExtra_T_1[1:0]; // @[primitives.scala:103:33]
assign _notCDom_reduced4SigExtra_reducedVec_0_T_1 = |_notCDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced4SigExtra_reducedVec_0 = _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced4SigExtra_reducedVec_1_T = _notCDom_reduced4SigExtra_T_1[3:2]; // @[primitives.scala:103:33]
assign _notCDom_reduced4SigExtra_reducedVec_1_T_1 = |_notCDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced4SigExtra_reducedVec_1 = _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced4SigExtra_reducedVec_2_T = _notCDom_reduced4SigExtra_T_1[5:4]; // @[primitives.scala:103:33]
assign _notCDom_reduced4SigExtra_reducedVec_2_T_1 = |_notCDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced4SigExtra_reducedVec_2 = _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced4SigExtra_reducedVec_3_T = _notCDom_reduced4SigExtra_T_1[7:6]; // @[primitives.scala:103:33]
assign _notCDom_reduced4SigExtra_reducedVec_3_T_1 = |_notCDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced4SigExtra_reducedVec_3 = _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced4SigExtra_reducedVec_4_T = _notCDom_reduced4SigExtra_T_1[9:8]; // @[primitives.scala:103:33]
assign _notCDom_reduced4SigExtra_reducedVec_4_T_1 = |_notCDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced4SigExtra_reducedVec_4 = _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54]
wire [1:0] _notCDom_reduced4SigExtra_reducedVec_5_T = _notCDom_reduced4SigExtra_T_1[11:10]; // @[primitives.scala:103:33]
assign _notCDom_reduced4SigExtra_reducedVec_5_T_1 = |_notCDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:103:{33,54}]
assign notCDom_reduced4SigExtra_reducedVec_5 = _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54]
wire _notCDom_reduced4SigExtra_reducedVec_6_T = _notCDom_reduced4SigExtra_T_1[12]; // @[primitives.scala:106:15]
assign _notCDom_reduced4SigExtra_reducedVec_6_T_1 = _notCDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:106:{15,57}]
assign notCDom_reduced4SigExtra_reducedVec_6 = _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:101:30, :106:57]
wire [1:0] notCDom_reduced4SigExtra_lo_hi = {notCDom_reduced4SigExtra_reducedVec_2, notCDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:101:30, :107:20]
wire [2:0] notCDom_reduced4SigExtra_lo = {notCDom_reduced4SigExtra_lo_hi, notCDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:101:30, :107:20]
wire [1:0] notCDom_reduced4SigExtra_hi_lo = {notCDom_reduced4SigExtra_reducedVec_4, notCDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:101:30, :107:20]
wire [1:0] notCDom_reduced4SigExtra_hi_hi = {notCDom_reduced4SigExtra_reducedVec_6, notCDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:101:30, :107:20]
wire [3:0] notCDom_reduced4SigExtra_hi = {notCDom_reduced4SigExtra_hi_hi, notCDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:107:20]
wire [6:0] _notCDom_reduced4SigExtra_T_2 = {notCDom_reduced4SigExtra_hi, notCDom_reduced4SigExtra_lo}; // @[primitives.scala:107:20]
wire [3:0] _notCDom_reduced4SigExtra_T_3 = notCDom_normDistReduced2[4:1]; // @[Mux.scala:50:70]
wire [3:0] _notCDom_reduced4SigExtra_T_4 = ~_notCDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21]
wire [16:0] notCDom_reduced4SigExtra_shift = $signed(17'sh10000 >>> _notCDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56]
wire [5:0] _notCDom_reduced4SigExtra_T_5 = notCDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22]
wire [3:0] _notCDom_reduced4SigExtra_T_6 = _notCDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22]
wire [1:0] _notCDom_reduced4SigExtra_T_7 = _notCDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20]
wire _notCDom_reduced4SigExtra_T_8 = _notCDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20]
wire _notCDom_reduced4SigExtra_T_9 = _notCDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20]
wire [1:0] _notCDom_reduced4SigExtra_T_10 = {_notCDom_reduced4SigExtra_T_8, _notCDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20]
wire [1:0] _notCDom_reduced4SigExtra_T_11 = _notCDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20]
wire _notCDom_reduced4SigExtra_T_12 = _notCDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20]
wire _notCDom_reduced4SigExtra_T_13 = _notCDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20]
wire [1:0] _notCDom_reduced4SigExtra_T_14 = {_notCDom_reduced4SigExtra_T_12, _notCDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20]
wire [3:0] _notCDom_reduced4SigExtra_T_15 = {_notCDom_reduced4SigExtra_T_10, _notCDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20]
wire [1:0] _notCDom_reduced4SigExtra_T_16 = _notCDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22]
wire _notCDom_reduced4SigExtra_T_17 = _notCDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20]
wire _notCDom_reduced4SigExtra_T_18 = _notCDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20]
wire [1:0] _notCDom_reduced4SigExtra_T_19 = {_notCDom_reduced4SigExtra_T_17, _notCDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20]
wire [5:0] _notCDom_reduced4SigExtra_T_20 = {_notCDom_reduced4SigExtra_T_15, _notCDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20]
wire [6:0] _notCDom_reduced4SigExtra_T_21 = {1'h0, _notCDom_reduced4SigExtra_T_2[5:0] & _notCDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :107:20]
wire notCDom_reduced4SigExtra = |_notCDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:247:78, :249:11]
wire [25:0] _notCDom_sig_T = notCDom_mainSig[28:3]; // @[MulAddRecFN.scala:243:50, :251:28]
wire [2:0] _notCDom_sig_T_1 = notCDom_mainSig[2:0]; // @[MulAddRecFN.scala:243:50, :252:28]
wire _notCDom_sig_T_2 = |_notCDom_sig_T_1; // @[MulAddRecFN.scala:252:{28,35}]
wire _notCDom_sig_T_3 = _notCDom_sig_T_2 | notCDom_reduced4SigExtra; // @[MulAddRecFN.scala:249:11, :252:{35,39}]
wire [26:0] notCDom_sig = {_notCDom_sig_T, _notCDom_sig_T_3}; // @[MulAddRecFN.scala:251:{12,28}, :252:39]
assign _io_rawOut_sig_T = notCDom_sig; // @[MulAddRecFN.scala:251:12, :294:25]
wire [1:0] _notCDom_completeCancellation_T = notCDom_sig[26:25]; // @[MulAddRecFN.scala:251:12, :255:21]
wire notCDom_completeCancellation = _notCDom_completeCancellation_T == 2'h0; // @[primitives.scala:103:54]
wire _io_rawOut_isZero_T_1 = notCDom_completeCancellation; // @[MulAddRecFN.scala:255:50, :283:42]
wire _notCDom_sign_T = io_fromPreMul_signProd_0 ^ notCDom_signSigSum; // @[MulAddRecFN.scala:169:7, :232:36, :259:36]
wire notCDom_sign = ~notCDom_completeCancellation & _notCDom_sign_T; // @[MulAddRecFN.scala:255:50, :257:12, :259:36]
wire _io_rawOut_sign_T_15 = notCDom_sign; // @[MulAddRecFN.scala:257:12, :292:17]
assign notNaN_isInfOut = notNaN_isInfProd; // @[MulAddRecFN.scala:264:49, :265:44]
assign io_rawOut_isInf_0 = notNaN_isInfOut; // @[MulAddRecFN.scala:169:7, :265:44]
wire notNaN_addZeros = _notNaN_addZeros_T; // @[MulAddRecFN.scala:267:{32,58}]
wire _io_rawOut_sign_T_4 = notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :287:26]
wire _io_invalidExc_T_3 = _io_invalidExc_T_1; // @[MulAddRecFN.scala:271:35, :272:57]
assign _io_invalidExc_T_9 = _io_invalidExc_T_3; // @[MulAddRecFN.scala:272:57, :273:57]
wire _io_invalidExc_T_4 = ~io_fromPreMul_isNaNAOrB_0; // @[MulAddRecFN.scala:169:7, :274:10]
wire _io_invalidExc_T_6 = _io_invalidExc_T_4 & _io_invalidExc_T_5; // @[MulAddRecFN.scala:274:{10,36}, :275:36]
assign io_invalidExc_0 = _io_invalidExc_T_9; // @[MulAddRecFN.scala:169:7, :273:57]
assign io_rawOut_isNaN_0 = _io_rawOut_isNaN_T; // @[MulAddRecFN.scala:169:7, :278:48]
assign _io_rawOut_isZero_T_2 = notNaN_addZeros | _io_rawOut_isZero_T_1; // @[MulAddRecFN.scala:267:58, :282:25, :283:42]
assign io_rawOut_isZero_0 = _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:169:7, :282:25]
wire _io_rawOut_sign_T = notNaN_isInfProd & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :264:49, :285:27]
wire _io_rawOut_sign_T_2 = _io_rawOut_sign_T; // @[MulAddRecFN.scala:285:{27,54}]
wire _io_rawOut_sign_T_5 = _io_rawOut_sign_T_4 & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :287:{26,48}]
wire _io_rawOut_sign_T_6 = _io_rawOut_sign_T_5 & opSignC; // @[MulAddRecFN.scala:190:42, :287:48, :288:36]
wire _io_rawOut_sign_T_7 = _io_rawOut_sign_T_2 | _io_rawOut_sign_T_6; // @[MulAddRecFN.scala:285:54, :286:43, :288:36]
wire _io_rawOut_sign_T_11 = _io_rawOut_sign_T_7; // @[MulAddRecFN.scala:286:43, :288:48]
wire _io_rawOut_sign_T_9 = io_fromPreMul_signProd_0 | opSignC; // @[MulAddRecFN.scala:169:7, :190:42, :290:37]
wire _io_rawOut_sign_T_12 = ~notNaN_isInfOut; // @[MulAddRecFN.scala:265:44, :291:10]
wire _io_rawOut_sign_T_13 = ~notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :291:31]
wire _io_rawOut_sign_T_14 = _io_rawOut_sign_T_12 & _io_rawOut_sign_T_13; // @[MulAddRecFN.scala:291:{10,28,31}]
wire _io_rawOut_sign_T_16 = _io_rawOut_sign_T_14 & _io_rawOut_sign_T_15; // @[MulAddRecFN.scala:291:{28,49}, :292:17]
assign _io_rawOut_sign_T_17 = _io_rawOut_sign_T_11 | _io_rawOut_sign_T_16; // @[MulAddRecFN.scala:288:48, :290:50, :291:49]
assign io_rawOut_sign_0 = _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:169:7, :290:50]
assign io_rawOut_sExp_0 = _io_rawOut_sExp_T; // @[MulAddRecFN.scala:169:7, :293:26]
assign io_rawOut_sig_0 = _io_rawOut_sig_T; // @[MulAddRecFN.scala:169:7, :294:25]
assign io_invalidExc = io_invalidExc_0; // @[MulAddRecFN.scala:169:7]
assign io_rawOut_isNaN = io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7]
assign io_rawOut_isInf = io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7]
assign io_rawOut_isZero = io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7]
assign io_rawOut_sign = io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7]
assign io_rawOut_sExp = io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7]
assign io_rawOut_sig = io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File Monitor.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceLine
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import freechips.rocketchip.diplomacy.EnableMonitors
import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode}
import freechips.rocketchip.util.PlusArg
case class TLMonitorArgs(edge: TLEdge)
abstract class TLMonitorBase(args: TLMonitorArgs) extends Module
{
val io = IO(new Bundle {
val in = Input(new TLBundle(args.edge.bundle))
})
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit
legalize(io.in, args.edge, reset)
}
object TLMonitor {
def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = {
if (enable) {
EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) }
} else { node }
}
}
class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args)
{
require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal))
val cover_prop_class = PropertyClass.Default
//Like assert but can flip to being an assumption for formal verification
def monAssert(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir, cond, message, PropertyClass.Default)
}
def assume(cond: Bool, message: String): Unit =
if (monitorDir == MonitorDirection.Monitor) {
assert(cond, message)
} else {
Property(monitorDir.flip, cond, message, PropertyClass.Default)
}
def extra = {
args.edge.sourceInfo match {
case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)"
case _ => ""
}
}
def visible(address: UInt, source: UInt, edge: TLEdge) =
edge.client.clients.map { c =>
!c.sourceId.contains(source) ||
c.visibility.map(_.contains(address)).reduce(_ || _)
}.reduce(_ && _)
def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = {
//switch this flag to turn on diplomacy in error messages
def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n"
monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra)
// Reuse these subexpressions to save some firrtl lines
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility")
//The monitor doesnβt check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B
//TODO: check for acquireT?
when (bundle.opcode === TLMessages.AcquireBlock) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AcquirePerm) {
monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra)
monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra)
monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra)
monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra)
monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra)
monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra)
monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra)
monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra)
monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra)
monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra)
}
}
def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = {
monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra)
monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility")
// Reuse these subexpressions to save some firrtl lines
val address_ok = edge.manager.containsSafe(edge.address(bundle))
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val mask = edge.full_mask(bundle)
val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source
when (bundle.opcode === TLMessages.Probe) {
assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra)
assume (address_ok, "'B' channel Probe carries unmanaged address" + extra)
assume (legal_source, "'B' channel Probe carries source that is not first source" + extra)
assume (is_aligned, "'B' channel Probe address not aligned to size" + extra)
assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra)
assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra)
assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra)
}
when (bundle.opcode === TLMessages.Get) {
monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra)
}
when (bundle.opcode === TLMessages.PutFullData) {
monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra)
monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.PutPartialData) {
monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra)
monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra)
monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.ArithmeticData) {
monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra)
monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra)
monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.LogicalData) {
monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra)
monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra)
monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra)
}
when (bundle.opcode === TLMessages.Hint) {
monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra)
monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra)
monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra)
monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra)
monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra)
monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra)
}
}
def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = {
monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val is_aligned = edge.isAligned(bundle.address, bundle.size)
val address_ok = edge.manager.containsSafe(edge.address(bundle))
monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility")
when (bundle.opcode === TLMessages.ProbeAck) {
monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ProbeAckData) {
monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.Release) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra)
monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra)
}
when (bundle.opcode === TLMessages.ReleaseData) {
monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra)
monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra)
monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra)
monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra)
monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra)
monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra)
monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra)
monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra)
monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra)
monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra)
}
}
def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = {
assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra)
val source_ok = edge.client.contains(bundle.source)
val sink_ok = bundle.sink < edge.manager.endSinkId.U
val deny_put_ok = edge.manager.mayDenyPut.B
val deny_get_ok = edge.manager.mayDenyGet.B
when (bundle.opcode === TLMessages.ReleaseAck) {
assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra)
assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra)
assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra)
}
when (bundle.opcode === TLMessages.Grant) {
assume (source_ok, "'D' channel Grant carries invalid source ID" + extra)
assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra)
assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra)
}
when (bundle.opcode === TLMessages.GrantData) {
assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra)
assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra)
assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra)
assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra)
assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAck) {
assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra)
}
when (bundle.opcode === TLMessages.AccessAckData) {
assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra)
assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra)
assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra)
}
when (bundle.opcode === TLMessages.HintAck) {
assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra)
// size is ignored
assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra)
assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra)
assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra)
}
}
def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = {
val sink_ok = bundle.sink < edge.manager.endSinkId.U
monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra)
}
def legalizeFormat(bundle: TLBundle, edge: TLEdge) = {
when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) }
when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) }
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) }
when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) }
when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) }
} else {
monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra)
monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra)
monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra)
}
}
def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = {
val a_first = edge.first(a.bits, a.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (a.valid && !a_first) {
monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra)
monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra)
monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra)
monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra)
monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra)
}
when (a.fire && a_first) {
opcode := a.bits.opcode
param := a.bits.param
size := a.bits.size
source := a.bits.source
address := a.bits.address
}
}
def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = {
val b_first = edge.first(b.bits, b.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (b.valid && !b_first) {
monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra)
monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra)
monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra)
monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra)
monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra)
}
when (b.fire && b_first) {
opcode := b.bits.opcode
param := b.bits.param
size := b.bits.size
source := b.bits.source
address := b.bits.address
}
}
def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = {
// Symbolic variable
val sym_source = Wire(UInt(edge.client.endSourceId.W))
// TODO: Connect sym_source to a fixed value for simulation and to a
// free wire in formal
sym_source := 0.U
// Type casting Int to UInt
val maxSourceId = Wire(UInt(edge.client.endSourceId.W))
maxSourceId := edge.client.endSourceId.U
// Delayed verison of sym_source
val sym_source_d = Reg(UInt(edge.client.endSourceId.W))
sym_source_d := sym_source
// These will be constraints for FV setup
Property(
MonitorDirection.Monitor,
(sym_source === sym_source_d),
"sym_source should remain stable",
PropertyClass.Default)
Property(
MonitorDirection.Monitor,
(sym_source <= maxSourceId),
"sym_source should take legal value",
PropertyClass.Default)
val my_resp_pend = RegInit(false.B)
val my_opcode = Reg(UInt())
val my_size = Reg(UInt())
val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire)
val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire)
val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source)
val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source)
val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat)
val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend)
when (my_set_resp_pend) {
my_resp_pend := true.B
} .elsewhen (my_clr_resp_pend) {
my_resp_pend := false.B
}
when (my_a_first_beat) {
my_opcode := bundle.a.bits.opcode
my_size := bundle.a.bits.size
}
val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size)
val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode)
val my_resp_opcode_legal = Wire(Bool())
when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) ||
(my_resp_opcode === TLMessages.LogicalData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData)
} .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck)
} .otherwise {
my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck)
}
monAssert (IfThen(my_resp_pend, !my_a_first_beat),
"Request message should not be sent with a source ID, for which a response message" +
"is already pending (not received until current cycle) for a prior request message" +
"with the same source ID" + extra)
assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)),
"Response message should be accepted with a source ID only if a request message with the" +
"same source ID has been accepted or is being accepted in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)),
"Response message should be sent with a source ID only if a request message with the" +
"same source ID has been accepted or is being sent in the current cycle" + extra)
assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)),
"If d_valid is 1, then d_size should be same as a_size of the corresponding request" +
"message" + extra)
assume (IfThen(my_d_first_beat, my_resp_opcode_legal),
"If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" +
"request message" + extra)
}
def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = {
val c_first = edge.first(c.bits, c.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val address = Reg(UInt())
when (c.valid && !c_first) {
monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra)
monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra)
monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra)
monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra)
monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra)
}
when (c.fire && c_first) {
opcode := c.bits.opcode
param := c.bits.param
size := c.bits.size
source := c.bits.source
address := c.bits.address
}
}
def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = {
val d_first = edge.first(d.bits, d.fire)
val opcode = Reg(UInt())
val param = Reg(UInt())
val size = Reg(UInt())
val source = Reg(UInt())
val sink = Reg(UInt())
val denied = Reg(Bool())
when (d.valid && !d_first) {
assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra)
assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra)
assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra)
assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra)
assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra)
assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra)
}
when (d.fire && d_first) {
opcode := d.bits.opcode
param := d.bits.param
size := d.bits.size
source := d.bits.source
sink := d.bits.sink
denied := d.bits.denied
}
}
def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = {
legalizeMultibeatA(bundle.a, edge)
legalizeMultibeatD(bundle.d, edge)
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
legalizeMultibeatB(bundle.b, edge)
legalizeMultibeatC(bundle.c, edge)
}
}
//This is left in for almond which doesn't adhere to the tilelink protocol
@deprecated("Use legalizeADSource instead if possible","")
def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.client.endSourceId.W))
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val a_set = WireInit(0.U(edge.client.endSourceId.W))
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra)
}
if (edge.manager.minLatency > 0) {
assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = {
val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size)
val log_a_size_bus_size = log2Ceil(a_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error
inflight.suggestName("inflight")
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
inflight_opcodes.suggestName("inflight_opcodes")
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
inflight_sizes.suggestName("inflight_sizes")
val a_first = edge.first(bundle.a.bits, bundle.a.fire)
a_first.suggestName("a_first")
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
d_first.suggestName("d_first")
val a_set = WireInit(0.U(edge.client.endSourceId.W))
val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
a_set.suggestName("a_set")
a_set_wo_ready.suggestName("a_set_wo_ready")
val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
a_opcodes_set.suggestName("a_opcodes_set")
val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
a_sizes_set.suggestName("a_sizes_set")
val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W))
a_opcode_lookup.suggestName("a_opcode_lookup")
a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U
val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W))
a_size_lookup.suggestName("a_size_lookup")
a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U
val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant))
val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant))
val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W))
a_opcodes_set_interm.suggestName("a_opcodes_set_interm")
val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W))
a_sizes_set_interm.suggestName("a_sizes_set_interm")
when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) {
a_set_wo_ready := UIntToOH(bundle.a.bits.source)
}
when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) {
a_set := UIntToOH(bundle.a.bits.source)
a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U
a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U
a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U)
a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U)
monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra)
}
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W))
d_opcodes_clr.suggestName("d_opcodes_clr")
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W))
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) {
val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) ||
(bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra)
assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) ||
(bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra)
assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) {
assume((!bundle.d.ready) || bundle.a.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra)
}
inflight := (inflight | a_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = {
val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset)
val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything
val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size)
val log_c_size_bus_size = log2Ceil(c_size_bus_size)
def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits
val inflight = RegInit(0.U((2 max edge.client.endSourceId).W))
val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
inflight.suggestName("inflight")
inflight_opcodes.suggestName("inflight_opcodes")
inflight_sizes.suggestName("inflight_sizes")
val c_first = edge.first(bundle.c.bits, bundle.c.fire)
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
c_first.suggestName("c_first")
d_first.suggestName("d_first")
val c_set = WireInit(0.U(edge.client.endSourceId.W))
val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
c_set.suggestName("c_set")
c_set_wo_ready.suggestName("c_set_wo_ready")
c_opcodes_set.suggestName("c_opcodes_set")
c_sizes_set.suggestName("c_sizes_set")
val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W))
val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W))
c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U
c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U
c_opcode_lookup.suggestName("c_opcode_lookup")
c_size_lookup.suggestName("c_size_lookup")
val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W))
val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W))
c_opcodes_set_interm.suggestName("c_opcodes_set_interm")
c_sizes_set_interm.suggestName("c_sizes_set_interm")
when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) {
c_set_wo_ready := UIntToOH(bundle.c.bits.source)
}
when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) {
c_set := UIntToOH(bundle.c.bits.source)
c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U
c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U
c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U)
c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U)
monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra)
}
val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData
val d_clr = WireInit(0.U(edge.client.endSourceId.W))
val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W))
val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W))
val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W))
d_clr.suggestName("d_clr")
d_clr_wo_ready.suggestName("d_clr_wo_ready")
d_opcodes_clr.suggestName("d_opcodes_clr")
d_sizes_clr.suggestName("d_sizes_clr")
val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr_wo_ready := UIntToOH(bundle.d.bits.source)
}
when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
d_clr := UIntToOH(bundle.d.bits.source)
d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U)
d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U)
}
when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) {
val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source)
assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra)
when (same_cycle_resp) {
assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra)
} .otherwise {
assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra)
}
}
when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) {
assume((!bundle.d.ready) || bundle.c.ready, "ready check")
}
if (edge.manager.minLatency > 0) {
when (c_set_wo_ready.orR) {
assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra)
}
}
inflight := (inflight | c_set) & ~d_clr
inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr
inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr
val watchdog = RegInit(0.U(32.W))
val limit = PlusArg("tilelink_timeout",
docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.")
monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra)
watchdog := watchdog + 1.U
when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U }
}
def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = {
val inflight = RegInit(0.U(edge.manager.endSinkId.W))
val d_first = edge.first(bundle.d.bits, bundle.d.fire)
val e_first = true.B
val d_set = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) {
d_set := UIntToOH(bundle.d.bits.sink)
assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra)
}
val e_clr = WireInit(0.U(edge.manager.endSinkId.W))
when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) {
e_clr := UIntToOH(bundle.e.bits.sink)
monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra)
}
// edge.client.minLatency applies to BC, not DE
inflight := (inflight | d_set) & ~e_clr
}
def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = {
val sourceBits = log2Ceil(edge.client.endSourceId)
val tooBig = 14 // >16kB worth of flight information gets to be too much
if (sourceBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked")
} else {
if (args.edge.params(TestplanTestType).simulation) {
if (args.edge.params(TLMonitorStrictMode)) {
legalizeADSource(bundle, edge)
legalizeCDSource(bundle, edge)
} else {
legalizeADSourceOld(bundle, edge)
}
}
if (args.edge.params(TestplanTestType).formal) {
legalizeADSourceFormal(bundle, edge)
}
}
if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) {
// legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize...
val sinkBits = log2Ceil(edge.manager.endSinkId)
if (sinkBits > tooBig) {
println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked")
} else {
legalizeDESink(bundle, edge)
}
}
}
def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = {
legalizeFormat (bundle, edge)
legalizeMultibeat (bundle, edge)
legalizeUnique (bundle, edge)
}
}
File Misc.scala:
// See LICENSE.Berkeley for license details.
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.util._
import chisel3.util.random.LFSR
import org.chipsalliance.cde.config.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle
trait Clocked extends Bundle {
val clock = Clock()
val reset = Bool()
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!")
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
def fire() = {
rvs.reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4))
}
/** Creates a cascade of n MuxTs to search for a key value. */
object MuxTLookup {
def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = {
var res = default
for ((k, v) <- mapping.reverse)
res = MuxT(k === key, v, res)
res
}
}
object ValidMux {
def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = {
apply(v1 +: v2.toSeq)
}
def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = {
val out = Wire(Valid(valids.head.bits.cloneType))
out.valid := valids.map(_.valid).reduce(_ || _)
out.bits := MuxCase(valids.head.bits,
valids.map(v => (v.valid -> v.bits)))
out
}
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
i.U((s.length*8).W)
}
def apply(x: Char): UInt = {
require(validChar(x))
x.U(8.W)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = radix.U
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < 0.S
val abs = x.abs.asUInt
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = radix.U
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === 0.U
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
def apply(x: UInt, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
def apply(x: UInt, n2: Int, n1: Int, n0: Int) = {
val w = x.getWidth
(x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0))
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR(16)
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U)
}
object Majority {
def apply(in: Set[Bool]): Bool = {
val n = (in.size >> 1) + 1
val clauses = in.subsets(n).map(_.reduce(_ && _))
clauses.reduce(_ || _)
}
def apply(in: Seq[Bool]): Bool = apply(in.toSet)
def apply(in: UInt): Bool = apply(in.asBools.toSet)
}
object PopCountAtLeast {
private def two(x: UInt): (Bool, Bool) = x.getWidth match {
case 1 => (x.asBool, false.B)
case n =>
val half = x.getWidth / 2
val (leftOne, leftTwo) = two(x(half - 1, 0))
val (rightOne, rightTwo) = two(x(x.getWidth - 1, half))
(leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne))
}
def apply(x: UInt, n: Int): Bool = n match {
case 0 => true.B
case 1 => x.orR
case 2 => two(x)._2
case 3 => PopCount(x) >= n.U
}
}
// This gets used everywhere, so make the smallest circuit possible ...
// Given an address and size, create a mask of beatBytes size
// eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111
// groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01
object MaskGen {
def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = {
require (groupBy >= 1 && beatBytes >= groupBy)
require (isPow2(beatBytes) && isPow2(groupBy))
val lgBytes = log2Ceil(beatBytes)
val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U
def helper(i: Int): Seq[(Bool, Bool)] = {
if (i == 0) {
Seq((lgSize >= lgBytes.asUInt, true.B))
} else {
val sub = helper(i-1)
val size = sizeOH(lgBytes - i)
val bit = addr_lo(lgBytes - i)
val nbit = !bit
Seq.tabulate (1 << i) { j =>
val (sub_acc, sub_eq) = sub(j/2)
val eq = sub_eq && (if (j % 2 == 1) bit else nbit)
val acc = sub_acc || (size && eq)
(acc, eq)
}
}
}
if (groupBy == beatBytes) 1.U else
Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse)
}
}
File PlusArg.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.util
import chisel3._
import chisel3.experimental._
import chisel3.util.HasBlackBoxResource
@deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05")
case class PlusArgInfo(default: BigInt, docstring: String)
/** Case class for PlusArg information
*
* @tparam A scala type of the PlusArg value
* @param default optional default value
* @param docstring text to include in the help
* @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT)
*/
private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String)
/** Typeclass for converting a type to a doctype string
* @tparam A some type
*/
trait Doctypeable[A] {
/** Return the doctype string for some option */
def toDoctype(a: Option[A]): String
}
/** Object containing implementations of the Doctypeable typeclass */
object Doctypes {
/** Converts an Int => "INT" */
implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" }
/** Converts a BigInt => "INT" */
implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" }
/** Converts a String => "STRING" */
implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" }
}
class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map(
"FORMAT" -> StringParam(format),
"DEFAULT" -> IntParam(default),
"WIDTH" -> IntParam(width)
)) with HasBlackBoxResource {
val io = IO(new Bundle {
val out = Output(UInt(width.W))
})
addResource("/vsrc/plusarg_reader.v")
}
/* This wrapper class has no outputs, making it clear it is a simulation-only construct */
class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module {
val io = IO(new Bundle {
val count = Input(UInt(width.W))
})
val max = Module(new plusarg_reader(format, default, docstring, width)).io.out
when (max > 0.U) {
assert (io.count < max, s"Timeout exceeded: $docstring")
}
}
import Doctypes._
object PlusArg
{
/** PlusArg("foo") will return 42.U if the simulation is run with +foo=42
* Do not use this as an initial register value. The value is set in an
* initial block and thus accessing it from another initial is racey.
* Add a docstring to document the arg, which can be dumped in an elaboration
* pass.
*/
def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out
}
/** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert
* to kill the simulation when count exceeds the specified integer argument.
* Default 0 will never assert.
*/
def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = {
PlusArgArtefacts.append(name, Some(default), docstring)
Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count
}
}
object PlusArgArtefacts {
private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty
/* Add a new PlusArg */
@deprecated(
"Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08",
"Rocket Chip 2020.05"
)
def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring)
/** Add a new PlusArg
*
* @tparam A scala type of the PlusArg value
* @param name name for the PlusArg
* @param default optional default value
* @param docstring text to include in the help
*/
def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit =
artefacts = artefacts ++
Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default)))
/* From plus args, generate help text */
private def serializeHelp_cHeader(tab: String = ""): String = artefacts
.map{ case(arg, info) =>
s"""|$tab+$arg=${info.doctype}\\n\\
|$tab${" "*20}${info.docstring}\\n\\
|""".stripMargin ++ info.default.map{ case default =>
s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("")
}.toSeq.mkString("\\n\\\n") ++ "\""
/* From plus args, generate a char array of their names */
private def serializeArray_cHeader(tab: String = ""): String = {
val prettyTab = tab + " " * 44 // Length of 'static const ...'
s"${tab}static const char * verilog_plusargs [] = {\\\n" ++
artefacts
.map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" }
.mkString("")++
s"${prettyTab}0};"
}
/* Generate C code to be included in emulator.cc that helps with
* argument parsing based on available Verilog PlusArgs */
def serialize_cHeader(): String =
s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\
|${serializeHelp_cHeader(" "*7)}
|${serializeArray_cHeader()}
|""".stripMargin
}
File package.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip
import chisel3._
import chisel3.util._
import scala.math.min
import scala.collection.{immutable, mutable}
package object util {
implicit class UnzippableOption[S, T](val x: Option[(S, T)]) {
def unzip = (x.map(_._1), x.map(_._2))
}
implicit class UIntIsOneOf(private val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal {
/** Like Vec.apply(idx), but tolerates indices of mismatched width */
def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0))
}
implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size <= 1) {
x.head
} else if (!isPow2(x.size)) {
// For non-power-of-2 seqs, reflect elements to simplify decoder
(x ++ x.takeRight(x.size & -x.size)).toSeq(idx)
} else {
// Ignore MSBs of idx
val truncIdx =
if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx
else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0)
x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) }
}
}
def extract(idx: UInt): T = VecInit(x).extract(idx)
def asUInt: UInt = Cat(x.map(_.asUInt).reverse)
def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n)
def rotate(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n)
def rotateRight(n: UInt): Seq[T] = {
if (x.size <= 1) {
x
} else {
require(isPow2(x.size))
val amt = n.padTo(log2Ceil(x.size))
(0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) })
}
}
}
// allow bitwise ops on Seq[Bool] just like UInt
implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal {
def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b }
def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b }
def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b }
def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x
def >> (n: Int): Seq[Bool] = x drop n
def unary_~ : Seq[Bool] = x.map(!_)
def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_)
def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_)
def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_)
private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B)
}
implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal {
def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable))
def getElements: Seq[Element] = x match {
case e: Element => Seq(e)
case a: Aggregate => a.getElements.flatMap(_.getElements)
}
}
/** Any Data subtype that has a Bool member named valid. */
type DataCanBeValid = Data { val valid: Bool }
implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal {
def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable)
}
implicit class StringToAugmentedString(private val x: String) extends AnyVal {
/** converts from camel case to to underscores, also removing all spaces */
def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") {
case (acc, c) if c.isUpper => acc + "_" + c.toLower
case (acc, c) if c == ' ' => acc
case (acc, c) => acc + c
}
/** converts spaces or underscores to hyphens, also lowering case */
def kebab: String = x.toLowerCase map {
case ' ' => '-'
case '_' => '-'
case c => c
}
def named(name: Option[String]): String = {
x + name.map("_named_" + _ ).getOrElse("_with_no_name")
}
def named(name: String): String = named(Some(name))
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
}
def padTo(n: Int): UInt = {
require(x.getWidth <= n)
if (x.getWidth == n) x
else Cat(0.U((n - x.getWidth).W), x)
}
// shifts left by n if n >= 0, or right by -n if n < 0
def << (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << n(w-1, 0)
Mux(n(w), shifted >> (1 << w), shifted)
}
// shifts right by n if n >= 0, or left by -n if n < 0
def >> (n: SInt): UInt = {
val w = n.getWidth - 1
require(w <= 30)
val shifted = x << (1 << w) >> n(w-1, 0)
Mux(n(w), shifted, shifted >> (1 << w))
}
// Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts
def extract(hi: Int, lo: Int): UInt = {
require(hi >= lo-1)
if (hi == lo-1) 0.U
else x(hi, lo)
}
// Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts
def extractOption(hi: Int, lo: Int): Option[UInt] = {
require(hi >= lo-1)
if (hi == lo-1) None
else Some(x(hi, lo))
}
// like x & ~y, but first truncate or zero-extend y to x's width
def andNot(y: UInt): UInt = x & ~(y | (x & 0.U))
def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n)
def rotateRight(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r))
}
}
def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n))
def rotateLeft(n: UInt): UInt = {
if (x.getWidth <= 1) {
x
} else {
val amt = n.padTo(log2Ceil(x.getWidth))
(0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r))
}
}
// compute (this + y) % n, given (this < n) and (y < n)
def addWrap(y: UInt, n: Int): UInt = {
val z = x +& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0)
}
// compute (this - y) % n, given (this < n) and (y < n)
def subWrap(y: UInt, n: Int): UInt = {
val z = x -& y
if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0)
}
def grouped(width: Int): Seq[UInt] =
(0 until x.getWidth by width).map(base => x(base + width - 1, base))
def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds
def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x)
// Like >=, but prevents x-prop for ('x >= 0)
def >== (y: UInt): Bool = x >= y || y === 0.U
}
implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal {
def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y)
def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y)
}
implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
implicit class IntToAugmentedInt(private val x: Int) extends AnyVal {
// exact log2
def log2: Int = {
require(isPow2(x))
log2Ceil(x)
}
}
def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x)
def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x))
def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0)
def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1)
def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None
// Fill 1s from low bits to high bits
def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth)
def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0))
helper(1, x)(width-1, 0)
}
// Fill 1s form high bits to low bits
def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth)
def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = {
val stop = min(width, cap)
def helper(s: Int, x: UInt): UInt =
if (s >= stop) x else helper(s+s, x | (x >> s))
helper(1, x)(width-1, 0)
}
def OptimizationBarrier[T <: Data](in: T): T = {
val barrier = Module(new Module {
val io = IO(new Bundle {
val x = Input(chiselTypeOf(in))
val y = Output(chiselTypeOf(in))
})
io.y := io.x
override def desiredName = s"OptimizationBarrier_${in.typeName}"
})
barrier.io.x := in
barrier.io.y
}
/** Similar to Seq.groupBy except this returns a Seq instead of a Map
* Useful for deterministic code generation
*/
def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = {
val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]]
for (x <- xs) {
val key = f(x)
val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A])
l += x
}
map.view.map({ case (k, vs) => k -> vs.toList }).toList
}
def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match {
case 1 => List.fill(n)(in.head)
case x if x == n => in
case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in")
}
// HeterogeneousBag moved to standalond diplomacy
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts)
@deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0")
val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag
}
File Parameters.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.diplomacy
import chisel3._
import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor}
import freechips.rocketchip.util.ShiftQueue
/** Options for describing the attributes of memory regions */
object RegionType {
// Define the 'more relaxed than' ordering
val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS)
sealed trait T extends Ordered[T] {
def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this)
}
case object CACHED extends T // an intermediate agent may have cached a copy of the region for you
case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided
case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible
case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached
case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects
case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed
case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively
}
// A non-empty half-open range; [start, end)
case class IdRange(start: Int, end: Int) extends Ordered[IdRange]
{
require (start >= 0, s"Ids cannot be negative, but got: $start.")
require (start <= end, "Id ranges cannot be negative.")
def compare(x: IdRange) = {
val primary = (this.start - x.start).signum
val secondary = (x.end - this.end).signum
if (primary != 0) primary else secondary
}
def overlaps(x: IdRange) = start < x.end && x.start < end
def contains(x: IdRange) = start <= x.start && x.end <= end
def contains(x: Int) = start <= x && x < end
def contains(x: UInt) =
if (size == 0) {
false.B
} else if (size == 1) { // simple comparison
x === start.U
} else {
// find index of largest different bit
val largestDeltaBit = log2Floor(start ^ (end-1))
val smallestCommonBit = largestDeltaBit + 1 // may not exist in x
val uncommonMask = (1 << smallestCommonBit) - 1
val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0)
// the prefix must match exactly (note: may shift ALL bits away)
(x >> smallestCommonBit) === (start >> smallestCommonBit).U &&
// firrtl constant prop range analysis can eliminate these two:
(start & uncommonMask).U <= uncommonBits &&
uncommonBits <= ((end-1) & uncommonMask).U
}
def shift(x: Int) = IdRange(start+x, end+x)
def size = end - start
def isEmpty = end == start
def range = start until end
}
object IdRange
{
def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else {
val ranges = s.sorted
(ranges.tail zip ranges.init) find { case (a, b) => a overlaps b }
}
}
// An potentially empty inclusive range of 2-powers [min, max] (in bytes)
case class TransferSizes(min: Int, max: Int)
{
def this(x: Int) = this(x, x)
require (min <= max, s"Min transfer $min > max transfer $max")
require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)")
require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max")
require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min")
require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)")
def none = min == 0
def contains(x: Int) = isPow2(x) && min <= x && x <= max
def containsLg(x: Int) = contains(1 << x)
def containsLg(x: UInt) =
if (none) false.B
else if (min == max) { log2Ceil(min).U === x }
else { log2Ceil(min).U <= x && x <= log2Ceil(max).U }
def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max)
def intersect(x: TransferSizes) =
if (x.max < min || max < x.min) TransferSizes.none
else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max))
// Not a union, because the result may contain sizes contained by neither term
// NOT TO BE CONFUSED WITH COVERPOINTS
def mincover(x: TransferSizes) = {
if (none) {
x
} else if (x.none) {
this
} else {
TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max))
}
}
override def toString() = "TransferSizes[%d, %d]".format(min, max)
}
object TransferSizes {
def apply(x: Int) = new TransferSizes(x)
val none = new TransferSizes(0)
def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _)
def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _)
implicit def asBool(x: TransferSizes) = !x.none
}
// AddressSets specify the address space managed by the manager
// Base is the base address, and mask are the bits consumed by the manager
// e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff
// e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ...
case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet]
{
// Forbid misaligned base address (and empty sets)
require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}")
require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous
// We do allow negative mask (=> ignore all high bits)
def contains(x: BigInt) = ((x ^ base) & ~mask) == 0
def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S
// turn x into an address contained in this set
def legalize(x: UInt): UInt = base.U | (mask.U & x)
// overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1)
def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0
// contains iff bitwise: x.mask => mask && contains(x.base)
def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0
// The number of bytes to which the manager must be aligned
def alignment = ((mask + 1) & ~mask)
// Is this a contiguous memory range
def contiguous = alignment == mask+1
def finite = mask >= 0
def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask }
// Widen the match function to ignore all bits in imask
def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask)
// Return an AddressSet that only contains the addresses both sets contain
def intersect(x: AddressSet): Option[AddressSet] = {
if (!overlaps(x)) {
None
} else {
val r_mask = mask & x.mask
val r_base = base | x.base
Some(AddressSet(r_base, r_mask))
}
}
def subtract(x: AddressSet): Seq[AddressSet] = {
intersect(x) match {
case None => Seq(this)
case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit =>
val nmask = (mask & (bit-1)) | remove.mask
val nbase = (remove.base ^ bit) & ~nmask
AddressSet(nbase, nmask)
}
}
}
// AddressSets have one natural Ordering (the containment order, if contiguous)
def compare(x: AddressSet) = {
val primary = (this.base - x.base).signum // smallest address first
val secondary = (x.mask - this.mask).signum // largest mask first
if (primary != 0) primary else secondary
}
// We always want to see things in hex
override def toString() = {
if (mask >= 0) {
"AddressSet(0x%x, 0x%x)".format(base, mask)
} else {
"AddressSet(0x%x, ~0x%x)".format(base, ~mask)
}
}
def toRanges = {
require (finite, "Ranges cannot be calculated on infinite mask")
val size = alignment
val fragments = mask & ~(size-1)
val bits = bitIndexes(fragments)
(BigInt(0) until (BigInt(1) << bits.size)).map { i =>
val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) }
AddressRange(off, size)
}
}
}
object AddressSet
{
val everything = AddressSet(0, -1)
def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = {
if (size == 0) tail.reverse else {
val maxBaseAlignment = base & (-base) // 0 for infinite (LSB)
val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size
val step =
if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment)
maxSizeAlignment else maxBaseAlignment
misaligned(base+step, size-step, AddressSet(base, step-1) +: tail)
}
}
def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = {
// Pair terms up by ignoring 'bit'
seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) =>
if (seq.size == 1) {
seq.head // singleton -> unaffected
} else {
key.copy(mask = key.mask | bit) // pair - widen mask by bit
}
}.toList
}
def unify(seq: Seq[AddressSet]): Seq[AddressSet] = {
val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _)
AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted
}
def enumerateMask(mask: BigInt): Seq[BigInt] = {
def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] =
if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail)
helper(0, Nil)
}
def enumerateBits(mask: BigInt): Seq[BigInt] = {
def helper(x: BigInt): Seq[BigInt] = {
if (x == 0) {
Nil
} else {
val bit = x & (-x)
bit +: helper(x & ~bit)
}
}
helper(mask)
}
}
case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean)
{
require (depth >= 0, "Buffer depth must be >= 0")
def isDefined = depth > 0
def latency = if (isDefined && !flow) 1 else 0
def apply[T <: Data](x: DecoupledIO[T]) =
if (isDefined) Queue(x, depth, flow=flow, pipe=pipe)
else x
def irrevocable[T <: Data](x: ReadyValidIO[T]) =
if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe)
else x
def sq[T <: Data](x: DecoupledIO[T]) =
if (!isDefined) x else {
val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe))
sq.io.enq <> x
sq.io.deq
}
override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "")
}
object BufferParams
{
implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false)
val default = BufferParams(2)
val none = BufferParams(0)
val flow = BufferParams(1, true, false)
val pipe = BufferParams(1, false, true)
}
case class TriStateValue(value: Boolean, set: Boolean)
{
def update(orig: Boolean) = if (set) value else orig
}
object TriStateValue
{
implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true)
def unset = TriStateValue(false, false)
}
trait DirectedBuffers[T] {
def copyIn(x: BufferParams): T
def copyOut(x: BufferParams): T
def copyInOut(x: BufferParams): T
}
trait IdMapEntry {
def name: String
def from: IdRange
def to: IdRange
def isCache: Boolean
def requestFifo: Boolean
def maxTransactionsInFlight: Option[Int]
def pretty(fmt: String) =
if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5
fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
} else {
fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "")
}
}
abstract class IdMap[T <: IdMapEntry] {
protected val fmt: String
val mapping: Seq[T]
def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n")
}
File Edges.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.util._
class TLEdge(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdgeParameters(client, manager, params, sourceInfo)
{
def isAligned(address: UInt, lgSize: UInt): Bool = {
if (maxLgSize == 0) true.B else {
val mask = UIntToOH1(lgSize, maxLgSize)
(address & mask) === 0.U
}
}
def mask(address: UInt, lgSize: UInt): UInt =
MaskGen(address, lgSize, manager.beatBytes)
def staticHasData(bundle: TLChannel): Option[Boolean] = {
bundle match {
case _:TLBundleA => {
// Do there exist A messages with Data?
val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial
// Do there exist A messages without Data?
val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint
// Statically optimize the case where hasData is a constant
if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None
}
case _:TLBundleB => {
// Do there exist B messages with Data?
val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial
// Do there exist B messages without Data?
val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint
// Statically optimize the case where hasData is a constant
if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None
}
case _:TLBundleC => {
// Do there eixst C messages with Data?
val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe
// Do there exist C messages without Data?
val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe
if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None
}
case _:TLBundleD => {
// Do there eixst D messages with Data?
val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB
// Do there exist D messages without Data?
val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT
if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None
}
case _:TLBundleE => Some(false)
}
}
def isRequest(x: TLChannel): Bool = {
x match {
case a: TLBundleA => true.B
case b: TLBundleB => true.B
case c: TLBundleC => c.opcode(2) && c.opcode(1)
// opcode === TLMessages.Release ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(2) && !d.opcode(1)
// opcode === TLMessages.Grant ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
}
def isResponse(x: TLChannel): Bool = {
x match {
case a: TLBundleA => false.B
case b: TLBundleB => false.B
case c: TLBundleC => !c.opcode(2) || !c.opcode(1)
// opcode =/= TLMessages.Release &&
// opcode =/= TLMessages.ReleaseData
case d: TLBundleD => true.B // Grant isResponse + isRequest
case e: TLBundleE => true.B
}
}
def hasData(x: TLChannel): Bool = {
val opdata = x match {
case a: TLBundleA => !a.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case b: TLBundleB => !b.opcode(2)
// opcode === TLMessages.PutFullData ||
// opcode === TLMessages.PutPartialData ||
// opcode === TLMessages.ArithmeticData ||
// opcode === TLMessages.LogicalData
case c: TLBundleC => c.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.ProbeAckData ||
// opcode === TLMessages.ReleaseData
case d: TLBundleD => d.opcode(0)
// opcode === TLMessages.AccessAckData ||
// opcode === TLMessages.GrantData
case e: TLBundleE => false.B
}
staticHasData(x).map(_.B).getOrElse(opdata)
}
def opcode(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.opcode
case b: TLBundleB => b.opcode
case c: TLBundleC => c.opcode
case d: TLBundleD => d.opcode
}
}
def param(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.param
case b: TLBundleB => b.param
case c: TLBundleC => c.param
case d: TLBundleD => d.param
}
}
def size(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.size
case b: TLBundleB => b.size
case c: TLBundleC => c.size
case d: TLBundleD => d.size
}
}
def data(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.data
case b: TLBundleB => b.data
case c: TLBundleC => c.data
case d: TLBundleD => d.data
}
}
def corrupt(x: TLDataChannel): Bool = {
x match {
case a: TLBundleA => a.corrupt
case b: TLBundleB => b.corrupt
case c: TLBundleC => c.corrupt
case d: TLBundleD => d.corrupt
}
}
def mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.mask
case b: TLBundleB => b.mask
case c: TLBundleC => mask(c.address, c.size)
}
}
def full_mask(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => mask(a.address, a.size)
case b: TLBundleB => mask(b.address, b.size)
case c: TLBundleC => mask(c.address, c.size)
}
}
def address(x: TLAddrChannel): UInt = {
x match {
case a: TLBundleA => a.address
case b: TLBundleB => b.address
case c: TLBundleC => c.address
}
}
def source(x: TLDataChannel): UInt = {
x match {
case a: TLBundleA => a.source
case b: TLBundleB => b.source
case c: TLBundleC => c.source
case d: TLBundleD => d.source
}
}
def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes)
def addr_lo(x: UInt): UInt =
if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0)
def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x))
def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x))
def numBeats(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 1.U
case bundle: TLDataChannel => {
val hasData = this.hasData(bundle)
val size = this.size(bundle)
val cutoff = log2Ceil(manager.beatBytes)
val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U
val decode = UIntToOH(size, maxLgSize+1) >> cutoff
Mux(hasData, decode | small.asUInt, 1.U)
}
}
}
def numBeats1(x: TLChannel): UInt = {
x match {
case _: TLBundleE => 0.U
case bundle: TLDataChannel => {
if (maxLgSize == 0) {
0.U
} else {
val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes)
Mux(hasData(bundle), decode, 0.U)
}
}
}
}
def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val beats1 = numBeats1(bits)
val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W))
val counter1 = counter - 1.U
val first = counter === 0.U
val last = counter === 1.U || beats1 === 0.U
val done = last && fire
val count = (beats1 & ~counter1)
when (fire) {
counter := Mux(first, beats1, counter1)
}
(first, last, done, count)
}
def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1
def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire)
def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid)
def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2
def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire)
def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid)
def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3
def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire)
def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid)
def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3)
}
def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire)
def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid)
def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4)
}
def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire)
def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid)
def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = {
val r = firstlastHelper(bits, fire)
(r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes))
}
def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire)
def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid)
// Does the request need T permissions to be executed?
def needT(a: TLBundleA): Bool = {
val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLPermissions.NtoB -> false.B,
TLPermissions.NtoT -> true.B,
TLPermissions.BtoT -> true.B))
MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array(
TLMessages.PutFullData -> true.B,
TLMessages.PutPartialData -> true.B,
TLMessages.ArithmeticData -> true.B,
TLMessages.LogicalData -> true.B,
TLMessages.Get -> false.B,
TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array(
TLHints.PREFETCH_READ -> false.B,
TLHints.PREFETCH_WRITE -> true.B)),
TLMessages.AcquireBlock -> acq_needT,
TLMessages.AcquirePerm -> acq_needT))
}
// This is a very expensive circuit; use only if you really mean it!
def inFlight(x: TLBundle): (UInt, UInt) = {
val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W))
val bce = manager.anySupportAcquireB && client.anySupportProbe
val (a_first, a_last, _) = firstlast(x.a)
val (b_first, b_last, _) = firstlast(x.b)
val (c_first, c_last, _) = firstlast(x.c)
val (d_first, d_last, _) = firstlast(x.d)
val (e_first, e_last, _) = firstlast(x.e)
val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits))
val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits))
val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits))
val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits))
val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits))
val a_inc = x.a.fire && a_first && a_request
val b_inc = x.b.fire && b_first && b_request
val c_inc = x.c.fire && c_first && c_request
val d_inc = x.d.fire && d_first && d_request
val e_inc = x.e.fire && e_first && e_request
val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil))
val a_dec = x.a.fire && a_last && a_response
val b_dec = x.b.fire && b_last && b_response
val c_dec = x.c.fire && c_last && c_response
val d_dec = x.d.fire && d_last && d_response
val e_dec = x.e.fire && e_last && e_response
val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil))
val next_flight = flight + PopCount(inc) - PopCount(dec)
flight := next_flight
(flight, next_flight)
}
def prettySourceMapping(context: String): String = {
s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n"
}
}
class TLEdgeOut(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
// Transfers
def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquireBlock
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.AcquirePerm
a.param := growPermissions
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.Release
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = {
require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsAcquireBFast(toAddress, lgSize)
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ReleaseData
c.param := shrinkPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
(legal, c)
}
def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) =
Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B)
def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAck
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(b.source, b.address, b.size, reportPermissions, data)
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.ProbeAckData
c.param := reportPermissions
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC =
ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B)
def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink)
def GrantAck(toSink: UInt): TLBundleE = {
val e = Wire(new TLBundleE(bundle))
e.sink := toSink
e
}
// Accesses
def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsGetFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Get
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutFullFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutFullData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) =
Put(fromSource, toAddress, lgSize, data, mask, false.B)
def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = {
require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsPutPartialFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.PutPartialData
a.param := 0.U
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = {
require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsArithmeticFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.ArithmeticData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsLogicalFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.LogicalData
a.param := atomic
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := data
a.corrupt := corrupt
(legal, a)
}
def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = {
require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}")
val legal = manager.supportsHintFast(toAddress, lgSize)
val a = Wire(new TLBundleA(bundle))
a.opcode := TLMessages.Hint
a.param := param
a.size := lgSize
a.source := fromSource
a.address := toAddress
a.user := DontCare
a.echo := DontCare
a.mask := mask(toAddress, lgSize)
a.data := DontCare
a.corrupt := false.B
(legal, a)
}
def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data)
def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B)
def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.AccessAckData
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := data
c.corrupt := corrupt
c
}
def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size)
def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = {
val c = Wire(new TLBundleC(bundle))
c.opcode := TLMessages.HintAck
c.param := 0.U
c.size := lgSize
c.source := fromSource
c.address := toAddress
c.user := DontCare
c.echo := DontCare
c.data := DontCare
c.corrupt := false.B
c
}
}
class TLEdgeIn(
client: TLClientPortParameters,
manager: TLManagerPortParameters,
params: Parameters,
sourceInfo: SourceInfo)
extends TLEdge(client, manager, params, sourceInfo)
{
private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = {
val todo = x.filter(!_.isEmpty)
val heads = todo.map(_.head)
val tails = todo.map(_.tail)
if (todo.isEmpty) Nil else { heads +: myTranspose(tails) }
}
// Transfers
def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = {
require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}")
val legal = client.supportsProbe(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Probe
b.param := capPermissions
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.Grant
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B)
def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.GrantData
d.param := capPermissions
d.size := lgSize
d.source := toSource
d.sink := fromSink
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B)
def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.ReleaseAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
// Accesses
def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = {
require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsGet(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Get
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}")
val legal = client.supportsPutFull(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutFullData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) =
Put(fromAddress, toSource, lgSize, data, mask, false.B)
def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = {
require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsPutPartial(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.PutPartialData
b.param := 0.U
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsArithmetic(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.ArithmeticData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = {
require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsLogical(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.LogicalData
b.param := atomic
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := data
b.corrupt := corrupt
(legal, b)
}
def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = {
require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}")
val legal = client.supportsHint(toSource, lgSize)
val b = Wire(new TLBundleB(bundle))
b.opcode := TLMessages.Hint
b.param := param
b.size := lgSize
b.source := toSource
b.address := fromAddress
b.mask := mask(fromAddress, lgSize)
b.data := DontCare
b.corrupt := false.B
(legal, b)
}
def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size)
def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied)
def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data)
def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B)
def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.AccessAckData
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := data
d.corrupt := corrupt
d
}
def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B)
def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied)
def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B)
def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = {
val d = Wire(new TLBundleD(bundle))
d.opcode := TLMessages.HintAck
d.param := 0.U
d.size := lgSize
d.source := toSource
d.sink := 0.U
d.denied := denied
d.user := DontCare
d.echo := DontCare
d.data := DontCare
d.corrupt := false.B
d
}
}
| module TLMonitor( // @[Monitor.scala:36:7]
input clock, // @[Monitor.scala:36:7]
input reset, // @[Monitor.scala:36:7]
input io_in_a_ready, // @[Monitor.scala:20:14]
input io_in_a_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_a_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14]
input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14]
input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14]
input io_in_a_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_b_ready, // @[Monitor.scala:20:14]
input io_in_b_valid, // @[Monitor.scala:20:14]
input [1:0] io_in_b_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_b_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_b_bits_address, // @[Monitor.scala:20:14]
input io_in_c_ready, // @[Monitor.scala:20:14]
input io_in_c_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_opcode, // @[Monitor.scala:20:14]
input [2:0] io_in_c_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_c_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_c_bits_source, // @[Monitor.scala:20:14]
input [31:0] io_in_c_bits_address, // @[Monitor.scala:20:14]
input [63:0] io_in_c_bits_data, // @[Monitor.scala:20:14]
input io_in_c_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_d_ready, // @[Monitor.scala:20:14]
input io_in_d_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14]
input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14]
input [3:0] io_in_d_bits_source, // @[Monitor.scala:20:14]
input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14]
input io_in_d_bits_denied, // @[Monitor.scala:20:14]
input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14]
input io_in_d_bits_corrupt, // @[Monitor.scala:20:14]
input io_in_e_ready, // @[Monitor.scala:20:14]
input io_in_e_valid, // @[Monitor.scala:20:14]
input [2:0] io_in_e_bits_sink // @[Monitor.scala:20:14]
);
wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11]
wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11]
wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7]
wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7]
wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7]
wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7]
wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_b_ready_0 = io_in_b_ready; // @[Monitor.scala:36:7]
wire io_in_b_valid_0 = io_in_b_valid; // @[Monitor.scala:36:7]
wire [1:0] io_in_b_bits_param_0 = io_in_b_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_b_bits_source_0 = io_in_b_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_b_bits_address_0 = io_in_b_bits_address; // @[Monitor.scala:36:7]
wire io_in_c_ready_0 = io_in_c_ready; // @[Monitor.scala:36:7]
wire io_in_c_valid_0 = io_in_c_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_c_bits_opcode_0 = io_in_c_bits_opcode; // @[Monitor.scala:36:7]
wire [2:0] io_in_c_bits_param_0 = io_in_c_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_c_bits_size_0 = io_in_c_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_c_bits_source_0 = io_in_c_bits_source; // @[Monitor.scala:36:7]
wire [31:0] io_in_c_bits_address_0 = io_in_c_bits_address; // @[Monitor.scala:36:7]
wire [63:0] io_in_c_bits_data_0 = io_in_c_bits_data; // @[Monitor.scala:36:7]
wire io_in_c_bits_corrupt_0 = io_in_c_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7]
wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7]
wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7]
wire [3:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7]
wire [2:0] io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7]
wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7]
wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7]
wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7]
wire io_in_e_ready_0 = io_in_e_ready; // @[Monitor.scala:36:7]
wire io_in_e_valid_0 = io_in_e_valid; // @[Monitor.scala:36:7]
wire [2:0] io_in_e_bits_sink_0 = io_in_e_bits_sink; // @[Monitor.scala:36:7]
wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire _source_ok_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire _source_ok_T_8 = 1'h1; // @[Parameters.scala:54:32]
wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_10 = 1'h1; // @[Parameters.scala:54:67]
wire sink_ok = 1'h1; // @[Monitor.scala:309:31]
wire mask_sub_sub_sub_0_1_1 = 1'h1; // @[Misc.scala:206:21]
wire mask_sub_sub_size_1 = 1'h1; // @[Misc.scala:209:26]
wire mask_sub_sub_0_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_sub_1_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_0_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_1_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_2_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_sub_3_1_1 = 1'h1; // @[Misc.scala:215:29]
wire mask_size_1 = 1'h1; // @[Misc.scala:209:26]
wire mask_acc_8 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_9 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_10 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_11 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_12 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_13 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_14 = 1'h1; // @[Misc.scala:215:29]
wire mask_acc_15 = 1'h1; // @[Misc.scala:215:29]
wire _legal_source_T_1 = 1'h1; // @[Parameters.scala:54:32]
wire _legal_source_T_2 = 1'h1; // @[Parameters.scala:56:32]
wire _legal_source_T_3 = 1'h1; // @[Parameters.scala:54:67]
wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:54:32]
wire _source_ok_T_16 = 1'h1; // @[Parameters.scala:56:32]
wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:54:67]
wire sink_ok_1 = 1'h1; // @[Monitor.scala:367:31]
wire _b_first_beats1_opdata_T = 1'h1; // @[Edges.scala:97:37]
wire _b_first_last_T_1 = 1'h1; // @[Edges.scala:232:43]
wire b_first_last = 1'h1; // @[Edges.scala:232:33]
wire [3:0] io_in_b_bits_size = 4'h6; // @[Monitor.scala:36:7]
wire [3:0] _mask_sizeOH_T_3 = 4'h6; // @[Misc.scala:202:34]
wire [2:0] io_in_b_bits_opcode = 3'h6; // @[Monitor.scala:36:7]
wire [7:0] io_in_b_bits_mask = 8'hFF; // @[Monitor.scala:36:7]
wire [7:0] mask_1 = 8'hFF; // @[Misc.scala:222:10]
wire [63:0] io_in_b_bits_data = 64'h0; // @[Monitor.scala:36:7]
wire io_in_b_bits_corrupt = 1'h0; // @[Monitor.scala:36:7]
wire _source_ok_T = 1'h0; // @[Parameters.scala:54:10]
wire _source_ok_T_7 = 1'h0; // @[Parameters.scala:54:10]
wire mask_sub_size_1 = 1'h0; // @[Misc.scala:209:26]
wire _mask_sub_acc_T_4 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_5 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_6 = 1'h0; // @[Misc.scala:215:38]
wire _mask_sub_acc_T_7 = 1'h0; // @[Misc.scala:215:38]
wire _legal_source_T = 1'h0; // @[Parameters.scala:54:10]
wire _legal_source_T_7 = 1'h0; // @[Mux.scala:30:73]
wire _source_ok_T_14 = 1'h0; // @[Parameters.scala:54:10]
wire b_first_beats1_opdata = 1'h0; // @[Edges.scala:97:28]
wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57]
wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57]
wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57]
wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57]
wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57]
wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57]
wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51]
wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51]
wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51]
wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57]
wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57]
wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57]
wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57]
wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57]
wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57]
wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51]
wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51]
wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51]
wire [3:0] _mask_sizeOH_T_4 = 4'h4; // @[OneHot.scala:65:12]
wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123]
wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48]
wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123]
wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48]
wire [2:0] _mask_sizeOH_T_5 = 3'h4; // @[OneHot.scala:65:27]
wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42]
wire [2:0] mask_sizeOH_1 = 3'h5; // @[Misc.scala:202:81]
wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42]
wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42]
wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42]
wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42]
wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42]
wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42]
wire [8:0] b_first_beats1 = 9'h0; // @[Edges.scala:221:14]
wire [8:0] b_first_count = 9'h0; // @[Edges.scala:234:25]
wire [8:0] b_first_beats1_decode = 9'h7; // @[Edges.scala:220:59]
wire [11:0] is_aligned_mask_1 = 12'h3F; // @[package.scala:243:46]
wire [11:0] _b_first_beats1_decode_T_2 = 12'h3F; // @[package.scala:243:46]
wire [11:0] _is_aligned_mask_T_3 = 12'hFC0; // @[package.scala:243:76]
wire [11:0] _b_first_beats1_decode_T_1 = 12'hFC0; // @[package.scala:243:76]
wire [26:0] _is_aligned_mask_T_2 = 27'h3FFC0; // @[package.scala:243:71]
wire [26:0] _b_first_beats1_decode_T = 27'h3FFC0; // @[package.scala:243:71]
wire [3:0] mask_lo_1 = 4'hF; // @[Misc.scala:222:10]
wire [3:0] mask_hi_1 = 4'hF; // @[Misc.scala:222:10]
wire [1:0] mask_lo_lo_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_lo_hi_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_hi_hi_1 = 2'h3; // @[Misc.scala:222:10]
wire [1:0] mask_sizeOH_shiftAmount_1 = 2'h2; // @[OneHot.scala:64:49]
wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117]
wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48]
wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119]
wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48]
wire [3:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34]
wire [3:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_11 = io_in_b_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _legal_source_uncommonBits_T = io_in_b_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_12 = io_in_b_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_uncommonBits_T_2 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_13 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_14 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_15 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_16 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _uncommonBits_T_17 = io_in_c_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] _source_ok_uncommonBits_T_1 = io_in_d_bits_source_0; // @[Monitor.scala:36:7]
wire [3:0] source_ok_uncommonBits = _source_ok_uncommonBits_T; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_4 = source_ok_uncommonBits < 4'h9; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_5 = _source_ok_T_4; // @[Parameters.scala:56:48, :57:20]
wire _source_ok_WIRE_0 = _source_ok_T_5; // @[Parameters.scala:1138:31]
wire _source_ok_T_6 = io_in_a_bits_source_0 == 4'h9; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31]
wire source_ok = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46]
wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71]
wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71]
assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71]
assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71]
wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71]
wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46]
wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}]
wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49]
wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12]
wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}]
wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27]
wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 4'h2; // @[Misc.scala:206:21]
wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}]
wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}]
wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26]
wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26]
wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20]
wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}]
wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}]
wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}]
wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}]
wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}]
wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}]
wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}]
wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38]
wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}]
wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10]
wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10]
wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10]
wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10]
wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10]
wire [3:0] uncommonBits = _uncommonBits_T; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_1 = _uncommonBits_T_1; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_2 = _uncommonBits_T_2; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_3 = _uncommonBits_T_3; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_4 = _uncommonBits_T_4; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_5 = _uncommonBits_T_5; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_6 = _uncommonBits_T_6; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_7 = _uncommonBits_T_7; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_8 = _uncommonBits_T_8; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_9 = _uncommonBits_T_9; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_10 = _uncommonBits_T_10; // @[Parameters.scala:52:{29,56}]
wire [3:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_11 = source_ok_uncommonBits_1 < 4'h9; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_12 = _source_ok_T_11; // @[Parameters.scala:56:48, :57:20]
wire _source_ok_WIRE_1_0 = _source_ok_T_12; // @[Parameters.scala:1138:31]
wire _source_ok_T_13 = io_in_d_bits_source_0 == 4'h9; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_1_1 = _source_ok_T_13; // @[Parameters.scala:1138:31]
wire source_ok_1 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46]
wire [3:0] uncommonBits_11 = _uncommonBits_T_11; // @[Parameters.scala:52:{29,56}]
wire _legal_source_T_6 = io_in_b_bits_source_0 == 4'h9; // @[Monitor.scala:36:7]
wire [13:0] _GEN_0 = io_in_b_bits_address_0[13:0] ^ 14'h3000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T = {io_in_b_bits_address_0[31:14], _GEN_0}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_1 = {1'h0, _address_ok_T}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_2 = _address_ok_T_1 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_3 = _address_ok_T_2; // @[Parameters.scala:137:46]
wire _address_ok_T_4 = _address_ok_T_3 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_0 = _address_ok_T_4; // @[Parameters.scala:612:40]
wire [20:0] _GEN_1 = io_in_b_bits_address_0[20:0] ^ 21'h100000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_5 = {io_in_b_bits_address_0[31:21], _GEN_1}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_6 = {1'h0, _address_ok_T_5}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_7 = _address_ok_T_6 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_8 = _address_ok_T_7; // @[Parameters.scala:137:46]
wire _address_ok_T_9 = _address_ok_T_8 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1 = _address_ok_T_9; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_10 = {io_in_b_bits_address_0[31:21], io_in_b_bits_address_0[20:0] ^ 21'h110000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_11 = {1'h0, _address_ok_T_10}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_12 = _address_ok_T_11 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_13 = _address_ok_T_12; // @[Parameters.scala:137:46]
wire _address_ok_T_14 = _address_ok_T_13 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_2 = _address_ok_T_14; // @[Parameters.scala:612:40]
wire [25:0] _GEN_2 = io_in_b_bits_address_0[25:0] ^ 26'h2010000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_15 = {io_in_b_bits_address_0[31:26], _GEN_2}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_16 = {1'h0, _address_ok_T_15}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_17 = _address_ok_T_16 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_18 = _address_ok_T_17; // @[Parameters.scala:137:46]
wire _address_ok_T_19 = _address_ok_T_18 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_3 = _address_ok_T_19; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_20 = io_in_b_bits_address_0 ^ 32'h80000000; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_21 = {1'h0, _address_ok_T_20}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_22 = _address_ok_T_21 & 33'h1F0000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_23 = _address_ok_T_22; // @[Parameters.scala:137:46]
wire _address_ok_T_24 = _address_ok_T_23 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_4 = _address_ok_T_24; // @[Parameters.scala:612:40]
wire _address_ok_T_25 = _address_ok_WIRE_0 | _address_ok_WIRE_1; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_26 = _address_ok_T_25 | _address_ok_WIRE_2; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_27 = _address_ok_T_26 | _address_ok_WIRE_3; // @[Parameters.scala:612:40, :636:64]
wire address_ok = _address_ok_T_27 | _address_ok_WIRE_4; // @[Parameters.scala:612:40, :636:64]
wire [31:0] _is_aligned_T_1 = {26'h0, io_in_b_bits_address_0[5:0]}; // @[Monitor.scala:36:7]
wire is_aligned_1 = _is_aligned_T_1 == 32'h0; // @[Edges.scala:21:{16,24}]
wire mask_sub_sub_bit_1 = io_in_b_bits_address_0[2]; // @[Misc.scala:210:26]
wire mask_sub_sub_1_2_1 = mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_sub_sub_nbit_1 = ~mask_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_sub_0_2_1 = mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_sub_sub_acc_T_2 = mask_sub_sub_0_2_1; // @[Misc.scala:214:27, :215:38]
wire _mask_sub_sub_acc_T_3 = mask_sub_sub_1_2_1; // @[Misc.scala:214:27, :215:38]
wire mask_sub_bit_1 = io_in_b_bits_address_0[1]; // @[Misc.scala:210:26]
wire mask_sub_nbit_1 = ~mask_sub_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_sub_0_2_1 = mask_sub_sub_0_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire mask_sub_1_2_1 = mask_sub_sub_0_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_sub_2_2_1 = mask_sub_sub_1_2_1 & mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27]
wire mask_sub_3_2_1 = mask_sub_sub_1_2_1 & mask_sub_bit_1; // @[Misc.scala:210:26, :214:27]
wire mask_bit_1 = io_in_b_bits_address_0[0]; // @[Misc.scala:210:26]
wire mask_nbit_1 = ~mask_bit_1; // @[Misc.scala:210:26, :211:20]
wire mask_eq_8 = mask_sub_0_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_8 = mask_eq_8; // @[Misc.scala:214:27, :215:38]
wire mask_eq_9 = mask_sub_0_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_9 = mask_eq_9; // @[Misc.scala:214:27, :215:38]
wire mask_eq_10 = mask_sub_1_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_10 = mask_eq_10; // @[Misc.scala:214:27, :215:38]
wire mask_eq_11 = mask_sub_1_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_11 = mask_eq_11; // @[Misc.scala:214:27, :215:38]
wire mask_eq_12 = mask_sub_2_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_12 = mask_eq_12; // @[Misc.scala:214:27, :215:38]
wire mask_eq_13 = mask_sub_2_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_13 = mask_eq_13; // @[Misc.scala:214:27, :215:38]
wire mask_eq_14 = mask_sub_3_2_1 & mask_nbit_1; // @[Misc.scala:211:20, :214:27]
wire _mask_acc_T_14 = mask_eq_14; // @[Misc.scala:214:27, :215:38]
wire mask_eq_15 = mask_sub_3_2_1 & mask_bit_1; // @[Misc.scala:210:26, :214:27]
wire _mask_acc_T_15 = mask_eq_15; // @[Misc.scala:214:27, :215:38]
wire [3:0] legal_source_uncommonBits = _legal_source_uncommonBits_T; // @[Parameters.scala:52:{29,56}]
wire _legal_source_T_4 = legal_source_uncommonBits < 4'h9; // @[Parameters.scala:52:56, :57:20]
wire _legal_source_T_5 = _legal_source_T_4; // @[Parameters.scala:56:48, :57:20]
wire _legal_source_WIRE_0 = _legal_source_T_5; // @[Parameters.scala:1138:31]
wire _legal_source_WIRE_1 = _legal_source_T_6; // @[Parameters.scala:1138:31]
wire [3:0] _legal_source_T_8 = _legal_source_WIRE_1 ? 4'h9 : 4'h0; // @[Mux.scala:30:73]
wire [3:0] _legal_source_T_9 = _legal_source_T_8; // @[Mux.scala:30:73]
wire [3:0] _legal_source_WIRE_1_0 = _legal_source_T_9; // @[Mux.scala:30:73]
wire legal_source = _legal_source_WIRE_1_0 == io_in_b_bits_source_0; // @[Mux.scala:30:73]
wire [3:0] uncommonBits_12 = _uncommonBits_T_12; // @[Parameters.scala:52:{29,56}]
wire [3:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2; // @[Parameters.scala:52:{29,56}]
wire _source_ok_T_18 = source_ok_uncommonBits_2 < 4'h9; // @[Parameters.scala:52:56, :57:20]
wire _source_ok_T_19 = _source_ok_T_18; // @[Parameters.scala:56:48, :57:20]
wire _source_ok_WIRE_2_0 = _source_ok_T_19; // @[Parameters.scala:1138:31]
wire _source_ok_T_20 = io_in_c_bits_source_0 == 4'h9; // @[Monitor.scala:36:7]
wire _source_ok_WIRE_2_1 = _source_ok_T_20; // @[Parameters.scala:1138:31]
wire source_ok_2 = _source_ok_WIRE_2_0 | _source_ok_WIRE_2_1; // @[Parameters.scala:1138:31, :1139:46]
wire [26:0] _GEN_3 = 27'hFFF << io_in_c_bits_size_0; // @[package.scala:243:71]
wire [26:0] _is_aligned_mask_T_4; // @[package.scala:243:71]
assign _is_aligned_mask_T_4 = _GEN_3; // @[package.scala:243:71]
wire [26:0] _c_first_beats1_decode_T; // @[package.scala:243:71]
assign _c_first_beats1_decode_T = _GEN_3; // @[package.scala:243:71]
wire [26:0] _c_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _c_first_beats1_decode_T_3 = _GEN_3; // @[package.scala:243:71]
wire [11:0] _is_aligned_mask_T_5 = _is_aligned_mask_T_4[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] is_aligned_mask_2 = ~_is_aligned_mask_T_5; // @[package.scala:243:{46,76}]
wire [31:0] _is_aligned_T_2 = {20'h0, io_in_c_bits_address_0[11:0] & is_aligned_mask_2}; // @[package.scala:243:46]
wire is_aligned_2 = _is_aligned_T_2 == 32'h0; // @[Edges.scala:21:{16,24}]
wire [13:0] _GEN_4 = io_in_c_bits_address_0[13:0] ^ 14'h3000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_28 = {io_in_c_bits_address_0[31:14], _GEN_4}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_29 = {1'h0, _address_ok_T_28}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_30 = _address_ok_T_29 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_31 = _address_ok_T_30; // @[Parameters.scala:137:46]
wire _address_ok_T_32 = _address_ok_T_31 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_0 = _address_ok_T_32; // @[Parameters.scala:612:40]
wire [20:0] _GEN_5 = io_in_c_bits_address_0[20:0] ^ 21'h100000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_33 = {io_in_c_bits_address_0[31:21], _GEN_5}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_34 = {1'h0, _address_ok_T_33}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_35 = _address_ok_T_34 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_36 = _address_ok_T_35; // @[Parameters.scala:137:46]
wire _address_ok_T_37 = _address_ok_T_36 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_1 = _address_ok_T_37; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_38 = {io_in_c_bits_address_0[31:21], io_in_c_bits_address_0[20:0] ^ 21'h110000}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_39 = {1'h0, _address_ok_T_38}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_40 = _address_ok_T_39 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_41 = _address_ok_T_40; // @[Parameters.scala:137:46]
wire _address_ok_T_42 = _address_ok_T_41 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_2 = _address_ok_T_42; // @[Parameters.scala:612:40]
wire [25:0] _GEN_6 = io_in_c_bits_address_0[25:0] ^ 26'h2010000; // @[Monitor.scala:36:7]
wire [31:0] _address_ok_T_43 = {io_in_c_bits_address_0[31:26], _GEN_6}; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_44 = {1'h0, _address_ok_T_43}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_45 = _address_ok_T_44 & 33'h1FFFFF000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_46 = _address_ok_T_45; // @[Parameters.scala:137:46]
wire _address_ok_T_47 = _address_ok_T_46 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_3 = _address_ok_T_47; // @[Parameters.scala:612:40]
wire [31:0] _address_ok_T_48 = io_in_c_bits_address_0 ^ 32'h80000000; // @[Monitor.scala:36:7]
wire [32:0] _address_ok_T_49 = {1'h0, _address_ok_T_48}; // @[Parameters.scala:137:{31,41}]
wire [32:0] _address_ok_T_50 = _address_ok_T_49 & 33'h1F0000000; // @[Parameters.scala:137:{41,46}]
wire [32:0] _address_ok_T_51 = _address_ok_T_50; // @[Parameters.scala:137:46]
wire _address_ok_T_52 = _address_ok_T_51 == 33'h0; // @[Parameters.scala:137:{46,59}]
wire _address_ok_WIRE_1_4 = _address_ok_T_52; // @[Parameters.scala:612:40]
wire _address_ok_T_53 = _address_ok_WIRE_1_0 | _address_ok_WIRE_1_1; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_54 = _address_ok_T_53 | _address_ok_WIRE_1_2; // @[Parameters.scala:612:40, :636:64]
wire _address_ok_T_55 = _address_ok_T_54 | _address_ok_WIRE_1_3; // @[Parameters.scala:612:40, :636:64]
wire address_ok_1 = _address_ok_T_55 | _address_ok_WIRE_1_4; // @[Parameters.scala:612:40, :636:64]
wire [3:0] uncommonBits_13 = _uncommonBits_T_13; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_14 = _uncommonBits_T_14; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_15 = _uncommonBits_T_15; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_16 = _uncommonBits_T_16; // @[Parameters.scala:52:{29,56}]
wire [3:0] uncommonBits_17 = _uncommonBits_T_17; // @[Parameters.scala:52:{29,56}]
wire _T_1715 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35]
wire _a_first_T; // @[Decoupled.scala:51:35]
assign _a_first_T = _T_1715; // @[Decoupled.scala:51:35]
wire _a_first_T_1; // @[Decoupled.scala:51:35]
assign _a_first_T_1 = _T_1715; // @[Decoupled.scala:51:35]
wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}]
wire [8:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [8:0] a_first_counter; // @[Edges.scala:229:27]
wire [9:0] _a_first_counter1_T = {1'h0, a_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] a_first_counter1 = _a_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire a_first = a_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T = a_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_1 = a_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode; // @[Monitor.scala:387:22]
reg [2:0] param; // @[Monitor.scala:388:22]
reg [3:0] size; // @[Monitor.scala:389:22]
reg [3:0] source; // @[Monitor.scala:390:22]
reg [31:0] address; // @[Monitor.scala:391:22]
wire _T_1789 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35]
wire _d_first_T; // @[Decoupled.scala:51:35]
assign _d_first_T = _T_1789; // @[Decoupled.scala:51:35]
wire _d_first_T_1; // @[Decoupled.scala:51:35]
assign _d_first_T_1 = _T_1789; // @[Decoupled.scala:51:35]
wire _d_first_T_2; // @[Decoupled.scala:51:35]
assign _d_first_T_2 = _T_1789; // @[Decoupled.scala:51:35]
wire _d_first_T_3; // @[Decoupled.scala:51:35]
assign _d_first_T_3 = _T_1789; // @[Decoupled.scala:51:35]
wire [26:0] _GEN_7 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71]
assign _d_first_beats1_decode_T = _GEN_7; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_3 = _GEN_7; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_6 = _GEN_7; // @[package.scala:243:71]
wire [26:0] _d_first_beats1_decode_T_9; // @[package.scala:243:71]
assign _d_first_beats1_decode_T_9 = _GEN_7; // @[package.scala:243:71]
wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire d_first_beats1_opdata_3 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [8:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T = {1'h0, d_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1 = _d_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire d_first = d_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T = d_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_1 = d_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_1; // @[Monitor.scala:538:22]
reg [1:0] param_1; // @[Monitor.scala:539:22]
reg [3:0] size_1; // @[Monitor.scala:540:22]
reg [3:0] source_1; // @[Monitor.scala:541:22]
reg [2:0] sink; // @[Monitor.scala:542:22]
reg denied; // @[Monitor.scala:543:22]
wire _b_first_T = io_in_b_ready_0 & io_in_b_valid_0; // @[Decoupled.scala:51:35]
wire b_first_done = _b_first_T; // @[Decoupled.scala:51:35]
reg [8:0] b_first_counter; // @[Edges.scala:229:27]
wire [9:0] _b_first_counter1_T = {1'h0, b_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] b_first_counter1 = _b_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire b_first = b_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _b_first_last_T = b_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire [8:0] _b_first_count_T = ~b_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] _b_first_counter_T = b_first ? 9'h0 : b_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21]
reg [1:0] param_2; // @[Monitor.scala:411:22]
reg [3:0] source_2; // @[Monitor.scala:413:22]
reg [31:0] address_1; // @[Monitor.scala:414:22]
wire _T_1786 = io_in_c_ready_0 & io_in_c_valid_0; // @[Decoupled.scala:51:35]
wire _c_first_T; // @[Decoupled.scala:51:35]
assign _c_first_T = _T_1786; // @[Decoupled.scala:51:35]
wire _c_first_T_1; // @[Decoupled.scala:51:35]
assign _c_first_T_1 = _T_1786; // @[Decoupled.scala:51:35]
wire [11:0] _c_first_beats1_decode_T_1 = _c_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _c_first_beats1_decode_T_2 = ~_c_first_beats1_decode_T_1; // @[package.scala:243:{46,76}]
wire [8:0] c_first_beats1_decode = _c_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46]
wire c_first_beats1_opdata = io_in_c_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire c_first_beats1_opdata_1 = io_in_c_bits_opcode_0[0]; // @[Monitor.scala:36:7]
wire [8:0] c_first_beats1 = c_first_beats1_opdata ? c_first_beats1_decode : 9'h0; // @[Edges.scala:102:36, :220:59, :221:14]
reg [8:0] c_first_counter; // @[Edges.scala:229:27]
wire [9:0] _c_first_counter1_T = {1'h0, c_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] c_first_counter1 = _c_first_counter1_T[8:0]; // @[Edges.scala:230:28]
wire c_first = c_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _c_first_last_T = c_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _c_first_last_T_1 = c_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire c_first_last = _c_first_last_T | _c_first_last_T_1; // @[Edges.scala:232:{25,33,43}]
wire c_first_done = c_first_last & _c_first_T; // @[Decoupled.scala:51:35]
wire [8:0] _c_first_count_T = ~c_first_counter1; // @[Edges.scala:230:28, :234:27]
wire [8:0] c_first_count = c_first_beats1 & _c_first_count_T; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _c_first_counter_T = c_first ? c_first_beats1 : c_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
reg [2:0] opcode_3; // @[Monitor.scala:515:22]
reg [2:0] param_3; // @[Monitor.scala:516:22]
reg [3:0] size_3; // @[Monitor.scala:517:22]
reg [3:0] source_3; // @[Monitor.scala:518:22]
reg [31:0] address_2; // @[Monitor.scala:519:22]
reg [9:0] inflight; // @[Monitor.scala:614:27]
reg [39:0] inflight_opcodes; // @[Monitor.scala:616:35]
reg [79:0] inflight_sizes; // @[Monitor.scala:618:33]
wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}]
wire [8:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14]
reg [8:0] a_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] a_first_counter1_1 = _a_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _a_first_last_T_2 = a_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _a_first_last_T_3 = a_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_1 = _d_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_2 = d_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_3 = d_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [9:0] a_set; // @[Monitor.scala:626:34]
wire [9:0] a_set_wo_ready; // @[Monitor.scala:627:34]
wire [39:0] a_opcodes_set; // @[Monitor.scala:630:33]
wire [79:0] a_sizes_set; // @[Monitor.scala:632:31]
wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35]
wire [6:0] _GEN_8 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69]
wire [6:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69]
assign _a_opcode_lookup_T = _GEN_8; // @[Monitor.scala:637:69]
wire [6:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101]
assign _d_opcodes_clr_T_4 = _GEN_8; // @[Monitor.scala:637:69, :680:101]
wire [6:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69]
assign _c_opcode_lookup_T = _GEN_8; // @[Monitor.scala:637:69, :749:69]
wire [6:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101]
assign _d_opcodes_clr_T_10 = _GEN_8; // @[Monitor.scala:637:69, :790:101]
wire [39:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}]
wire [39:0] _a_opcode_lookup_T_6 = {36'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}]
wire [39:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[39:1]}; // @[Monitor.scala:637:{97,152}]
assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}]
wire [7:0] a_size_lookup; // @[Monitor.scala:639:33]
wire [6:0] _GEN_9 = {io_in_d_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :641:65]
wire [6:0] _a_size_lookup_T; // @[Monitor.scala:641:65]
assign _a_size_lookup_T = _GEN_9; // @[Monitor.scala:641:65]
wire [6:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99]
assign _d_sizes_clr_T_4 = _GEN_9; // @[Monitor.scala:641:65, :681:99]
wire [6:0] _c_size_lookup_T; // @[Monitor.scala:750:67]
assign _c_size_lookup_T = _GEN_9; // @[Monitor.scala:641:65, :750:67]
wire [6:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99]
assign _d_sizes_clr_T_10 = _GEN_9; // @[Monitor.scala:641:65, :791:99]
wire [79:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}]
wire [79:0] _a_size_lookup_T_6 = {72'h0, _a_size_lookup_T_1[7:0]}; // @[Monitor.scala:641:{40,91}]
wire [79:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[79:1]}; // @[Monitor.scala:641:{91,144}]
assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}]
wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40]
wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38]
wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44]
wire [15:0] _GEN_10 = 16'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _a_set_wo_ready_T = _GEN_10; // @[OneHot.scala:58:35]
wire [15:0] _a_set_T; // @[OneHot.scala:58:35]
assign _a_set_T = _GEN_10; // @[OneHot.scala:58:35]
assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_1641 = _T_1715 & a_first_1; // @[Decoupled.scala:51:35]
assign a_set = _T_1641 ? _a_set_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53]
wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}]
assign a_opcodes_set_interm = _T_1641 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}]
wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51]
wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}]
assign a_sizes_set_interm = _T_1641 ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}]
wire [6:0] _a_opcodes_set_T = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79]
wire [130:0] _a_opcodes_set_T_1 = {127'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}]
assign a_opcodes_set = _T_1641 ? _a_opcodes_set_T_1[39:0] : 40'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}]
wire [6:0] _a_sizes_set_T = {io_in_a_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :660:77]
wire [131:0] _a_sizes_set_T_1 = {127'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}]
assign a_sizes_set = _T_1641 ? _a_sizes_set_T_1[79:0] : 80'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}]
wire [9:0] d_clr; // @[Monitor.scala:664:34]
wire [9:0] d_clr_wo_ready; // @[Monitor.scala:665:34]
wire [39:0] d_opcodes_clr; // @[Monitor.scala:668:33]
wire [79:0] d_sizes_clr; // @[Monitor.scala:670:31]
wire _GEN_11 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46]
wire d_release_ack; // @[Monitor.scala:673:46]
assign d_release_ack = _GEN_11; // @[Monitor.scala:673:46]
wire d_release_ack_1; // @[Monitor.scala:783:46]
assign d_release_ack_1 = _GEN_11; // @[Monitor.scala:673:46, :783:46]
wire _T_1687 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26]
wire [15:0] _GEN_12 = 16'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T = _GEN_12; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_T; // @[OneHot.scala:58:35]
assign _d_clr_T = _GEN_12; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35]
assign _d_clr_wo_ready_T_1 = _GEN_12; // @[OneHot.scala:58:35]
wire [15:0] _d_clr_T_1; // @[OneHot.scala:58:35]
assign _d_clr_T_1 = _GEN_12; // @[OneHot.scala:58:35]
assign d_clr_wo_ready = _T_1687 & ~d_release_ack ? _d_clr_wo_ready_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_1656 = _T_1789 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35]
assign d_clr = _T_1656 ? _d_clr_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [142:0] _d_opcodes_clr_T_5 = 143'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}]
assign d_opcodes_clr = _T_1656 ? _d_opcodes_clr_T_5[39:0] : 40'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}]
wire [142:0] _d_sizes_clr_T_5 = 143'hFF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}]
assign d_sizes_clr = _T_1656 ? _d_sizes_clr_T_5[79:0] : 80'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}]
wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}]
wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113]
wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}]
wire [9:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27]
wire [9:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38]
wire [9:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}]
wire [39:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43]
wire [39:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62]
wire [39:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}]
wire [79:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39]
wire [79:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56]
wire [79:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}]
reg [31:0] watchdog; // @[Monitor.scala:709:27]
wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26]
wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26]
reg [9:0] inflight_1; // @[Monitor.scala:726:35]
reg [39:0] inflight_opcodes_1; // @[Monitor.scala:727:35]
reg [79:0] inflight_sizes_1; // @[Monitor.scala:728:35]
wire [11:0] _c_first_beats1_decode_T_4 = _c_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _c_first_beats1_decode_T_5 = ~_c_first_beats1_decode_T_4; // @[package.scala:243:{46,76}]
wire [8:0] c_first_beats1_decode_1 = _c_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46]
wire [8:0] c_first_beats1_1 = c_first_beats1_opdata_1 ? c_first_beats1_decode_1 : 9'h0; // @[Edges.scala:102:36, :220:59, :221:14]
reg [8:0] c_first_counter_1; // @[Edges.scala:229:27]
wire [9:0] _c_first_counter1_T_1 = {1'h0, c_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] c_first_counter1_1 = _c_first_counter1_T_1[8:0]; // @[Edges.scala:230:28]
wire c_first_1 = c_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _c_first_last_T_2 = c_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _c_first_last_T_3 = c_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire c_first_last_1 = _c_first_last_T_2 | _c_first_last_T_3; // @[Edges.scala:232:{25,33,43}]
wire c_first_done_1 = c_first_last_1 & _c_first_T_1; // @[Decoupled.scala:51:35]
wire [8:0] _c_first_count_T_1 = ~c_first_counter1_1; // @[Edges.scala:230:28, :234:27]
wire [8:0] c_first_count_1 = c_first_beats1_1 & _c_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _c_first_counter_T_1 = c_first_1 ? c_first_beats1_1 : c_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_2; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_2 = _d_first_counter1_T_2[8:0]; // @[Edges.scala:230:28]
wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_4 = d_first_counter_2 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_5 = d_first_beats1_2 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [9:0] c_set; // @[Monitor.scala:738:34]
wire [9:0] c_set_wo_ready; // @[Monitor.scala:739:34]
wire [39:0] c_opcodes_set; // @[Monitor.scala:740:34]
wire [79:0] c_sizes_set; // @[Monitor.scala:741:34]
wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35]
wire [7:0] c_size_lookup; // @[Monitor.scala:748:35]
wire [39:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}]
wire [39:0] _c_opcode_lookup_T_6 = {36'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}]
wire [39:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[39:1]}; // @[Monitor.scala:749:{97,152}]
assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}]
wire [79:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}]
wire [79:0] _c_size_lookup_T_6 = {72'h0, _c_size_lookup_T_1[7:0]}; // @[Monitor.scala:750:{42,93}]
wire [79:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[79:1]}; // @[Monitor.scala:750:{93,146}]
assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}]
wire [3:0] c_opcodes_set_interm; // @[Monitor.scala:754:40]
wire [4:0] c_sizes_set_interm; // @[Monitor.scala:755:40]
wire _same_cycle_resp_T_3 = io_in_c_valid_0 & c_first_1; // @[Monitor.scala:36:7, :759:26, :795:44]
wire _same_cycle_resp_T_4 = io_in_c_bits_opcode_0[2]; // @[Monitor.scala:36:7]
wire _same_cycle_resp_T_5 = io_in_c_bits_opcode_0[1]; // @[Monitor.scala:36:7]
wire [15:0] _GEN_13 = 16'h1 << io_in_c_bits_source_0; // @[OneHot.scala:58:35]
wire [15:0] _c_set_wo_ready_T; // @[OneHot.scala:58:35]
assign _c_set_wo_ready_T = _GEN_13; // @[OneHot.scala:58:35]
wire [15:0] _c_set_T; // @[OneHot.scala:58:35]
assign _c_set_T = _GEN_13; // @[OneHot.scala:58:35]
assign c_set_wo_ready = _same_cycle_resp_T_3 & _same_cycle_resp_T_4 & _same_cycle_resp_T_5 ? _c_set_wo_ready_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_1728 = _T_1786 & c_first_1 & _same_cycle_resp_T_4 & _same_cycle_resp_T_5; // @[Decoupled.scala:51:35]
assign c_set = _T_1728 ? _c_set_T[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [3:0] _c_opcodes_set_interm_T = {io_in_c_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :765:53]
wire [3:0] _c_opcodes_set_interm_T_1 = {_c_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:765:{53,61}]
assign c_opcodes_set_interm = _T_1728 ? _c_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:754:40, :763:{25,36,70}, :765:{28,61}]
wire [4:0] _c_sizes_set_interm_T = {io_in_c_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :766:51]
wire [4:0] _c_sizes_set_interm_T_1 = {_c_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:766:{51,59}]
assign c_sizes_set_interm = _T_1728 ? _c_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:755:40, :763:{25,36,70}, :766:{28,59}]
wire [6:0] _c_opcodes_set_T = {1'h0, io_in_c_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :767:79]
wire [130:0] _c_opcodes_set_T_1 = {127'h0, c_opcodes_set_interm} << _c_opcodes_set_T; // @[Monitor.scala:659:54, :754:40, :767:{54,79}]
assign c_opcodes_set = _T_1728 ? _c_opcodes_set_T_1[39:0] : 40'h0; // @[Monitor.scala:740:34, :763:{25,36,70}, :767:{28,54}]
wire [6:0] _c_sizes_set_T = {io_in_c_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :768:77]
wire [131:0] _c_sizes_set_T_1 = {127'h0, c_sizes_set_interm} << _c_sizes_set_T; // @[Monitor.scala:659:54, :755:40, :768:{52,77}]
assign c_sizes_set = _T_1728 ? _c_sizes_set_T_1[79:0] : 80'h0; // @[Monitor.scala:741:34, :763:{25,36,70}, :768:{28,52}]
wire _c_probe_ack_T = io_in_c_bits_opcode_0 == 3'h4; // @[Monitor.scala:36:7, :772:47]
wire _c_probe_ack_T_1 = io_in_c_bits_opcode_0 == 3'h5; // @[Monitor.scala:36:7, :772:95]
wire c_probe_ack = _c_probe_ack_T | _c_probe_ack_T_1; // @[Monitor.scala:772:{47,71,95}]
wire [9:0] d_clr_1; // @[Monitor.scala:774:34]
wire [9:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34]
wire [39:0] d_opcodes_clr_1; // @[Monitor.scala:776:34]
wire [79:0] d_sizes_clr_1; // @[Monitor.scala:777:34]
wire _T_1759 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26]
assign d_clr_wo_ready_1 = _T_1759 & d_release_ack_1 ? _d_clr_wo_ready_T_1[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire _T_1741 = _T_1789 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35]
assign d_clr_1 = _T_1741 ? _d_clr_T_1[9:0] : 10'h0; // @[OneHot.scala:58:35]
wire [142:0] _d_opcodes_clr_T_11 = 143'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}]
assign d_opcodes_clr_1 = _T_1741 ? _d_opcodes_clr_T_11[39:0] : 40'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}]
wire [142:0] _d_sizes_clr_T_11 = 143'hFF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}]
assign d_sizes_clr_1 = _T_1741 ? _d_sizes_clr_T_11[79:0] : 80'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}]
wire _same_cycle_resp_T_6 = _same_cycle_resp_T_4 & _same_cycle_resp_T_5; // @[Edges.scala:68:{36,40,51}]
wire _same_cycle_resp_T_7 = _same_cycle_resp_T_3 & _same_cycle_resp_T_6; // @[Monitor.scala:795:{44,55}]
wire _same_cycle_resp_T_8 = io_in_c_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :795:113]
wire same_cycle_resp_1 = _same_cycle_resp_T_7 & _same_cycle_resp_T_8; // @[Monitor.scala:795:{55,88,113}]
wire [9:0] _inflight_T_3 = inflight_1 | c_set; // @[Monitor.scala:726:35, :738:34, :814:35]
wire [9:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46]
wire [9:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}]
wire [39:0] _inflight_opcodes_T_3 = inflight_opcodes_1 | c_opcodes_set; // @[Monitor.scala:727:35, :740:34, :815:43]
wire [39:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62]
wire [39:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}]
wire [79:0] _inflight_sizes_T_3 = inflight_sizes_1 | c_sizes_set; // @[Monitor.scala:728:35, :741:34, :816:41]
wire [79:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58]
wire [79:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}]
reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
wire [32:0] _watchdog_T_2 = {1'h0, watchdog_1} + 33'h1; // @[Monitor.scala:818:27, :823:26]
wire [31:0] _watchdog_T_3 = _watchdog_T_2[31:0]; // @[Monitor.scala:823:26]
reg [7:0] inflight_2; // @[Monitor.scala:828:27]
wire [11:0] _d_first_beats1_decode_T_10 = _d_first_beats1_decode_T_9[11:0]; // @[package.scala:243:{71,76}]
wire [11:0] _d_first_beats1_decode_T_11 = ~_d_first_beats1_decode_T_10; // @[package.scala:243:{46,76}]
wire [8:0] d_first_beats1_decode_3 = _d_first_beats1_decode_T_11[11:3]; // @[package.scala:243:46]
wire [8:0] d_first_beats1_3 = d_first_beats1_opdata_3 ? d_first_beats1_decode_3 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14]
reg [8:0] d_first_counter_3; // @[Edges.scala:229:27]
wire [9:0] _d_first_counter1_T_3 = {1'h0, d_first_counter_3} - 10'h1; // @[Edges.scala:229:27, :230:28]
wire [8:0] d_first_counter1_3 = _d_first_counter1_T_3[8:0]; // @[Edges.scala:230:28]
wire d_first_3 = d_first_counter_3 == 9'h0; // @[Edges.scala:229:27, :231:25]
wire _d_first_last_T_6 = d_first_counter_3 == 9'h1; // @[Edges.scala:229:27, :232:25]
wire _d_first_last_T_7 = d_first_beats1_3 == 9'h0; // @[Edges.scala:221:14, :232:43]
wire d_first_last_3 = _d_first_last_T_6 | _d_first_last_T_7; // @[Edges.scala:232:{25,33,43}]
wire d_first_done_3 = d_first_last_3 & _d_first_T_3; // @[Decoupled.scala:51:35]
wire [8:0] _d_first_count_T_3 = ~d_first_counter1_3; // @[Edges.scala:230:28, :234:27]
wire [8:0] d_first_count_3 = d_first_beats1_3 & _d_first_count_T_3; // @[Edges.scala:221:14, :234:{25,27}]
wire [8:0] _d_first_counter_T_3 = d_first_3 ? d_first_beats1_3 : d_first_counter1_3; // @[Edges.scala:221:14, :230:28, :231:25, :236:21]
wire [7:0] d_set; // @[Monitor.scala:833:25]
wire _T_1795 = _T_1789 & d_first_3 & io_in_d_bits_opcode_0[2] & ~(io_in_d_bits_opcode_0[1]); // @[Decoupled.scala:51:35]
wire [7:0] _GEN_14 = {5'h0, io_in_d_bits_sink_0}; // @[OneHot.scala:58:35]
wire [7:0] _d_set_T = 8'h1 << _GEN_14; // @[OneHot.scala:58:35]
assign d_set = _T_1795 ? _d_set_T : 8'h0; // @[OneHot.scala:58:35]
wire [7:0] e_clr; // @[Monitor.scala:839:25]
wire _T_1804 = io_in_e_ready_0 & io_in_e_valid_0; // @[Decoupled.scala:51:35]
wire [7:0] _GEN_15 = {5'h0, io_in_e_bits_sink_0}; // @[OneHot.scala:58:35]
wire [7:0] _e_clr_T = 8'h1 << _GEN_15; // @[OneHot.scala:58:35]
assign e_clr = _T_1804 ? _e_clr_T : 8'h0; // @[OneHot.scala:58:35] |
Generate the Verilog code corresponding to the following Chisel files.
File Fragmenter.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.tilelink
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy._
import org.chipsalliance.diplomacy.lazymodule._
import freechips.rocketchip.diplomacy.{AddressSet, BufferParams, IdRange, TransferSizes}
import freechips.rocketchip.util.{Repeater, OH1ToUInt, UIntToOH1}
import scala.math.min
import freechips.rocketchip.util.DataToAugmentedData
object EarlyAck {
sealed trait T
case object AllPuts extends T
case object PutFulls extends T
case object None extends T
}
// minSize: minimum size of transfers supported by all outward managers
// maxSize: maximum size of transfers supported after the Fragmenter is applied
// alwaysMin: fragment all requests down to minSize (else fragment to maximum supported by manager)
// earlyAck: should a multibeat Put should be acknowledged on the first beat or last beat
// holdFirstDeny: allow the Fragmenter to unsafely combine multibeat Gets by taking the first denied for the whole burst
// nameSuffix: appends a suffix to the module name
// Fragmenter modifies: PutFull, PutPartial, LogicalData, Get, Hint
// Fragmenter passes: ArithmeticData (truncated to minSize if alwaysMin)
// Fragmenter cannot modify acquire (could livelock); thus it is unsafe to put caches on both sides
class TLFragmenter(val minSize: Int, val maxSize: Int, val alwaysMin: Boolean = false, val earlyAck: EarlyAck.T = EarlyAck.None, val holdFirstDeny: Boolean = false, val nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule
{
require(isPow2 (maxSize), s"TLFragmenter expects pow2(maxSize), but got $maxSize")
require(isPow2 (minSize), s"TLFragmenter expects pow2(minSize), but got $minSize")
require(minSize <= maxSize, s"TLFragmenter expects min <= max, but got $minSize > $maxSize")
val fragmentBits = log2Ceil(maxSize / minSize)
val fullBits = if (earlyAck == EarlyAck.PutFulls) 1 else 0
val toggleBits = 1
val addedBits = fragmentBits + toggleBits + fullBits
def expandTransfer(x: TransferSizes, op: String) = if (!x) x else {
// validate that we can apply the fragmenter correctly
require (x.max >= minSize, s"TLFragmenter (with parent $parent) max transfer size $op(${x.max}) must be >= min transfer size (${minSize})")
TransferSizes(x.min, maxSize)
}
private def noChangeRequired = minSize == maxSize
private def shrinkTransfer(x: TransferSizes) =
if (!alwaysMin) x
else if (x.min <= minSize) TransferSizes(x.min, min(minSize, x.max))
else TransferSizes.none
private def mapManager(m: TLSlaveParameters) = m.v1copy(
supportsArithmetic = shrinkTransfer(m.supportsArithmetic),
supportsLogical = shrinkTransfer(m.supportsLogical),
supportsGet = expandTransfer(m.supportsGet, "Get"),
supportsPutFull = expandTransfer(m.supportsPutFull, "PutFull"),
supportsPutPartial = expandTransfer(m.supportsPutPartial, "PutParital"),
supportsHint = expandTransfer(m.supportsHint, "Hint"))
val node = new TLAdapterNode(
// We require that all the responses are mutually FIFO
// Thus we need to compact all of the masters into one big master
clientFn = { c => (if (noChangeRequired) c else c.v2copy(
masters = Seq(TLMasterParameters.v2(
name = "TLFragmenter",
sourceId = IdRange(0, if (minSize == maxSize) c.endSourceId else (c.endSourceId << addedBits)),
requestFifo = true,
emits = TLMasterToSlaveTransferSizes(
acquireT = shrinkTransfer(c.masters.map(_.emits.acquireT) .reduce(_ mincover _)),
acquireB = shrinkTransfer(c.masters.map(_.emits.acquireB) .reduce(_ mincover _)),
arithmetic = shrinkTransfer(c.masters.map(_.emits.arithmetic).reduce(_ mincover _)),
logical = shrinkTransfer(c.masters.map(_.emits.logical) .reduce(_ mincover _)),
get = shrinkTransfer(c.masters.map(_.emits.get) .reduce(_ mincover _)),
putFull = shrinkTransfer(c.masters.map(_.emits.putFull) .reduce(_ mincover _)),
putPartial = shrinkTransfer(c.masters.map(_.emits.putPartial).reduce(_ mincover _)),
hint = shrinkTransfer(c.masters.map(_.emits.hint) .reduce(_ mincover _))
)
))
))},
managerFn = { m => if (noChangeRequired) m else m.v2copy(slaves = m.slaves.map(mapManager)) }
) {
override def circuitIdentity = noChangeRequired
}
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
override def desiredName = (Seq("TLFragmenter") ++ nameSuffix).mkString("_")
(node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) =>
if (noChangeRequired) {
out <> in
} else {
// All managers must share a common FIFO domain (responses might end up interleaved)
val manager = edgeOut.manager
val managers = manager.managers
val beatBytes = manager.beatBytes
val fifoId = managers(0).fifoId
require (fifoId.isDefined && managers.map(_.fifoId == fifoId).reduce(_ && _))
require (!manager.anySupportAcquireB || !edgeOut.client.anySupportProbe,
s"TLFragmenter (with parent $parent) can't fragment a caching client's requests into a cacheable region")
require (minSize >= beatBytes, s"TLFragmenter (with parent $parent) can't support fragmenting ($minSize) to sub-beat ($beatBytes) accesses")
// We can't support devices which are cached on both sides of us
require (!edgeOut.manager.anySupportAcquireB || !edgeIn.client.anySupportProbe)
// We can't support denied because we reassemble fragments
require (!edgeOut.manager.mayDenyGet || holdFirstDeny, s"TLFragmenter (with parent $parent) can't support denials without holdFirstDeny=true")
require (!edgeOut.manager.mayDenyPut || earlyAck == EarlyAck.None)
/* The Fragmenter is a bit tricky, because there are 5 sizes in play:
* max size -- the maximum transfer size possible
* orig size -- the original pre-fragmenter size
* frag size -- the modified post-fragmenter size
* min size -- the threshold below which frag=orig
* beat size -- the amount transfered on any given beat
*
* The relationships are as follows:
* max >= orig >= frag
* max > min >= beat
* It IS possible that orig <= min (then frag=orig; ie: no fragmentation)
*
* The fragment# (sent via TL.source) is measured in multiples of min size.
* Meanwhile, to track the progress, counters measure in multiples of beat size.
*
* Here is an example of a bus with max=256, min=8, beat=4 and a device supporting 16.
*
* in.A out.A (frag#) out.D (frag#) in.D gen# ack#
* get64 get16 6 ackD16 6 ackD64 12 15
* ackD16 6 ackD64 14
* ackD16 6 ackD64 13
* ackD16 6 ackD64 12
* get16 4 ackD16 4 ackD64 8 11
* ackD16 4 ackD64 10
* ackD16 4 ackD64 9
* ackD16 4 ackD64 8
* get16 2 ackD16 2 ackD64 4 7
* ackD16 2 ackD64 6
* ackD16 2 ackD64 5
* ackD16 2 ackD64 4
* get16 0 ackD16 0 ackD64 0 3
* ackD16 0 ackD64 2
* ackD16 0 ackD64 1
* ackD16 0 ackD64 0
*
* get8 get8 0 ackD8 0 ackD8 0 1
* ackD8 0 ackD8 0
*
* get4 get4 0 ackD4 0 ackD4 0 0
* get1 get1 0 ackD1 0 ackD1 0 0
*
* put64 put16 6 15
* put64 put16 6 14
* put64 put16 6 13
* put64 put16 6 ack16 6 12 12
* put64 put16 4 11
* put64 put16 4 10
* put64 put16 4 9
* put64 put16 4 ack16 4 8 8
* put64 put16 2 7
* put64 put16 2 6
* put64 put16 2 5
* put64 put16 2 ack16 2 4 4
* put64 put16 0 3
* put64 put16 0 2
* put64 put16 0 1
* put64 put16 0 ack16 0 ack64 0 0
*
* put8 put8 0 1
* put8 put8 0 ack8 0 ack8 0 0
*
* put4 put4 0 ack4 0 ack4 0 0
* put1 put1 0 ack1 0 ack1 0 0
*/
val counterBits = log2Up(maxSize/beatBytes)
val maxDownSize = if (alwaysMin) minSize else min(manager.maxTransfer, maxSize)
// Consider the following waveform for two 4-beat bursts:
// ---A----A------------
// -------D-----DDD-DDDD
// Under TL rules, the second A can use the same source as the first A,
// because the source is released for reuse on the first response beat.
//
// However, if we fragment the requests, it looks like this:
// ---3210-3210---------
// -------3-----210-3210
// ... now we've broken the rules because 210 are twice inflight.
//
// This phenomenon means we can have essentially 2*maxSize/minSize-1
// fragmented transactions in flight per original transaction source.
//
// To keep the source unique, we encode the beat counter in the low
// bits of the source. To solve the overlap, we use a toggle bit.
// Whatever toggle bit the D is reassembling, A will use the opposite.
// First, handle the return path
val acknum = RegInit(0.U(counterBits.W))
val dOrig = Reg(UInt())
val dToggle = RegInit(false.B)
val dFragnum = out.d.bits.source(fragmentBits-1, 0)
val dFirst = acknum === 0.U
val dLast = dFragnum === 0.U // only for AccessAck (!Data)
val dsizeOH = UIntToOH (out.d.bits.size, log2Ceil(maxDownSize)+1)
val dsizeOH1 = UIntToOH1(out.d.bits.size, log2Up(maxDownSize))
val dHasData = edgeOut.hasData(out.d.bits)
// calculate new acknum
val acknum_fragment = dFragnum << log2Ceil(minSize/beatBytes)
val acknum_size = dsizeOH1 >> log2Ceil(beatBytes)
assert (!out.d.valid || (acknum_fragment & acknum_size) === 0.U)
val dFirst_acknum = acknum_fragment | Mux(dHasData, acknum_size, 0.U)
val ack_decrement = Mux(dHasData, 1.U, dsizeOH >> log2Ceil(beatBytes))
// calculate the original size
val dFirst_size = OH1ToUInt((dFragnum << log2Ceil(minSize)) | dsizeOH1)
when (out.d.fire) {
acknum := Mux(dFirst, dFirst_acknum, acknum - ack_decrement)
when (dFirst) {
dOrig := dFirst_size
dToggle := out.d.bits.source(fragmentBits)
}
}
// Swallow up non-data ack fragments
val doEarlyAck = earlyAck match {
case EarlyAck.AllPuts => true.B
case EarlyAck.PutFulls => out.d.bits.source(fragmentBits+1)
case EarlyAck.None => false.B
}
val drop = !dHasData && !Mux(doEarlyAck, dFirst, dLast)
out.d.ready := in.d.ready || drop
in.d.valid := out.d.valid && !drop
in.d.bits := out.d.bits // pass most stuff unchanged
in.d.bits.source := out.d.bits.source >> addedBits
in.d.bits.size := Mux(dFirst, dFirst_size, dOrig)
if (edgeOut.manager.mayDenyPut) {
val r_denied = Reg(Bool())
val d_denied = (!dFirst && r_denied) || out.d.bits.denied
when (out.d.fire) { r_denied := d_denied }
in.d.bits.denied := d_denied
}
if (edgeOut.manager.mayDenyGet) {
// Take denied only from the first beat and hold that value
val d_denied = out.d.bits.denied holdUnless dFirst
when (dHasData) {
in.d.bits.denied := d_denied
in.d.bits.corrupt := d_denied || out.d.bits.corrupt
}
}
// What maximum transfer sizes do downstream devices support?
val maxArithmetics = managers.map(_.supportsArithmetic.max)
val maxLogicals = managers.map(_.supportsLogical.max)
val maxGets = managers.map(_.supportsGet.max)
val maxPutFulls = managers.map(_.supportsPutFull.max)
val maxPutPartials = managers.map(_.supportsPutPartial.max)
val maxHints = managers.map(m => if (m.supportsHint) maxDownSize else 0)
// We assume that the request is valid => size 0 is impossible
val lgMinSize = log2Ceil(minSize).U
val maxLgArithmetics = maxArithmetics.map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgLogicals = maxLogicals .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgGets = maxGets .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgPutFulls = maxPutFulls .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgPutPartials = maxPutPartials.map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
val maxLgHints = maxHints .map(m => if (m == 0) lgMinSize else log2Ceil(m).U)
// Make the request repeatable
val repeater = Module(new Repeater(in.a.bits))
repeater.io.enq <> in.a
val in_a = repeater.io.deq
// If this is infront of a single manager, these become constants
val find = manager.findFast(edgeIn.address(in_a.bits))
val maxLgArithmetic = Mux1H(find, maxLgArithmetics)
val maxLgLogical = Mux1H(find, maxLgLogicals)
val maxLgGet = Mux1H(find, maxLgGets)
val maxLgPutFull = Mux1H(find, maxLgPutFulls)
val maxLgPutPartial = Mux1H(find, maxLgPutPartials)
val maxLgHint = Mux1H(find, maxLgHints)
val limit = if (alwaysMin) lgMinSize else
MuxLookup(in_a.bits.opcode, lgMinSize)(Array(
TLMessages.PutFullData -> maxLgPutFull,
TLMessages.PutPartialData -> maxLgPutPartial,
TLMessages.ArithmeticData -> maxLgArithmetic,
TLMessages.LogicalData -> maxLgLogical,
TLMessages.Get -> maxLgGet,
TLMessages.Hint -> maxLgHint))
val aOrig = in_a.bits.size
val aFrag = Mux(aOrig > limit, limit, aOrig)
val aOrigOH1 = UIntToOH1(aOrig, log2Ceil(maxSize))
val aFragOH1 = UIntToOH1(aFrag, log2Up(maxDownSize))
val aHasData = edgeIn.hasData(in_a.bits)
val aMask = Mux(aHasData, 0.U, aFragOH1)
val gennum = RegInit(0.U(counterBits.W))
val aFirst = gennum === 0.U
val old_gennum1 = Mux(aFirst, aOrigOH1 >> log2Ceil(beatBytes), gennum - 1.U)
val new_gennum = ~(~old_gennum1 | (aMask >> log2Ceil(beatBytes))) // ~(~x|y) is width safe
val aFragnum = ~(~(old_gennum1 >> log2Ceil(minSize/beatBytes)) | (aFragOH1 >> log2Ceil(minSize)))
val aLast = aFragnum === 0.U
val aToggle = !Mux(aFirst, dToggle, RegEnable(dToggle, aFirst))
val aFull = if (earlyAck == EarlyAck.PutFulls) Some(in_a.bits.opcode === TLMessages.PutFullData) else None
when (out.a.fire) { gennum := new_gennum }
repeater.io.repeat := !aHasData && aFragnum =/= 0.U
out.a <> in_a
out.a.bits.address := in_a.bits.address | ~(old_gennum1 << log2Ceil(beatBytes) | ~aOrigOH1 | aFragOH1 | (minSize-1).U)
out.a.bits.source := Cat(Seq(in_a.bits.source) ++ aFull ++ Seq(aToggle.asUInt, aFragnum))
out.a.bits.size := aFrag
// Optimize away some of the Repeater's registers
assert (!repeater.io.full || !aHasData)
out.a.bits.data := in.a.bits.data
val fullMask = ((BigInt(1) << beatBytes) - 1).U
assert (!repeater.io.full || in_a.bits.mask === fullMask)
out.a.bits.mask := Mux(repeater.io.full, fullMask, in.a.bits.mask)
out.a.bits.user.waiveAll :<= in.a.bits.user.subset(_.isData)
// Tie off unused channels
in.b.valid := false.B
in.c.ready := true.B
in.e.ready := true.B
out.b.ready := true.B
out.c.valid := false.B
out.e.valid := false.B
}
}
}
}
object TLFragmenter
{
def apply(minSize: Int, maxSize: Int, alwaysMin: Boolean = false, earlyAck: EarlyAck.T = EarlyAck.None, holdFirstDeny: Boolean = false, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode =
{
if (minSize <= maxSize) {
val fragmenter = LazyModule(new TLFragmenter(minSize, maxSize, alwaysMin, earlyAck, holdFirstDeny, nameSuffix))
fragmenter.node
} else { TLEphemeralNode()(ValName("no_fragmenter")) }
}
def apply(wrapper: TLBusWrapper, nameSuffix: Option[String])(implicit p: Parameters): TLNode = apply(wrapper.beatBytes, wrapper.blockBytes, nameSuffix = nameSuffix)
def apply(wrapper: TLBusWrapper)(implicit p: Parameters): TLNode = apply(wrapper, None)
}
// Synthesizable unit tests
import freechips.rocketchip.unittest._
class TLRAMFragmenter(ramBeatBytes: Int, maxSize: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("Fragmenter"))
val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff), beatBytes = ramBeatBytes))
(ram.node
:= TLDelayer(0.1)
:= TLBuffer(BufferParams.flow)
:= TLDelayer(0.1)
:= TLFragmenter(ramBeatBytes, maxSize, earlyAck = EarlyAck.AllPuts)
:= TLDelayer(0.1)
:= TLBuffer(BufferParams.flow)
:= TLFragmenter(ramBeatBytes, maxSize/2)
:= TLDelayer(0.1)
:= TLBuffer(BufferParams.flow)
:= model.node
:= fuzz.node)
lazy val module = new Impl
class Impl extends LazyModuleImp(this) with UnitTestModule {
io.finished := fuzz.module.io.finished
}
}
class TLRAMFragmenterTest(ramBeatBytes: Int, maxSize: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
val dut = Module(LazyModule(new TLRAMFragmenter(ramBeatBytes,maxSize,txns)).module)
io.finished := dut.io.finished
dut.io.start := io.start
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
| module TLInterconnectCoupler_pbus_to_bootaddressreg( // @[LazyModuleImp.scala:138:7]
input clock, // @[LazyModuleImp.scala:138:7]
input reset, // @[LazyModuleImp.scala:138:7]
input auto_fragmenter_anon_out_a_ready, // @[LazyModuleImp.scala:107:25]
output auto_fragmenter_anon_out_a_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_fragmenter_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_fragmenter_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_fragmenter_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25]
output [12:0] auto_fragmenter_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25]
output [12:0] auto_fragmenter_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25]
output [7:0] auto_fragmenter_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_fragmenter_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_fragmenter_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
output auto_fragmenter_anon_out_d_ready, // @[LazyModuleImp.scala:107:25]
input auto_fragmenter_anon_out_d_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_fragmenter_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_fragmenter_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25]
input [12:0] auto_fragmenter_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_fragmenter_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_a_ready, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_a_valid, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_param, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_tl_in_a_bits_size, // @[LazyModuleImp.scala:107:25]
input [8:0] auto_tl_in_a_bits_source, // @[LazyModuleImp.scala:107:25]
input [12:0] auto_tl_in_a_bits_address, // @[LazyModuleImp.scala:107:25]
input [7:0] auto_tl_in_a_bits_mask, // @[LazyModuleImp.scala:107:25]
input [63:0] auto_tl_in_a_bits_data, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25]
input auto_tl_in_d_ready, // @[LazyModuleImp.scala:107:25]
output auto_tl_in_d_valid, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_tl_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_tl_in_d_bits_size, // @[LazyModuleImp.scala:107:25]
output [8:0] auto_tl_in_d_bits_source, // @[LazyModuleImp.scala:107:25]
output [63:0] auto_tl_in_d_bits_data // @[LazyModuleImp.scala:107:25]
);
wire tlOut_d_valid; // @[MixedNode.scala:542:17]
wire [63:0] tlOut_d_bits_data; // @[MixedNode.scala:542:17]
wire [8:0] tlOut_d_bits_source; // @[MixedNode.scala:542:17]
wire [2:0] tlOut_d_bits_size; // @[MixedNode.scala:542:17]
wire [2:0] tlOut_d_bits_opcode; // @[MixedNode.scala:542:17]
wire tlOut_a_ready; // @[MixedNode.scala:542:17]
wire auto_fragmenter_anon_out_a_ready_0 = auto_fragmenter_anon_out_a_ready; // @[LazyModuleImp.scala:138:7]
wire auto_fragmenter_anon_out_d_valid_0 = auto_fragmenter_anon_out_d_valid; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_fragmenter_anon_out_d_bits_opcode_0 = auto_fragmenter_anon_out_d_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire [1:0] auto_fragmenter_anon_out_d_bits_size_0 = auto_fragmenter_anon_out_d_bits_size; // @[LazyModuleImp.scala:138:7]
wire [12:0] auto_fragmenter_anon_out_d_bits_source_0 = auto_fragmenter_anon_out_d_bits_source; // @[LazyModuleImp.scala:138:7]
wire [63:0] auto_fragmenter_anon_out_d_bits_data_0 = auto_fragmenter_anon_out_d_bits_data; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_a_valid_0 = auto_tl_in_a_valid; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_a_bits_opcode_0 = auto_tl_in_a_bits_opcode; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_a_bits_param_0 = auto_tl_in_a_bits_param; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_a_bits_size_0 = auto_tl_in_a_bits_size; // @[LazyModuleImp.scala:138:7]
wire [8:0] auto_tl_in_a_bits_source_0 = auto_tl_in_a_bits_source; // @[LazyModuleImp.scala:138:7]
wire [12:0] auto_tl_in_a_bits_address_0 = auto_tl_in_a_bits_address; // @[LazyModuleImp.scala:138:7]
wire [7:0] auto_tl_in_a_bits_mask_0 = auto_tl_in_a_bits_mask; // @[LazyModuleImp.scala:138:7]
wire [63:0] auto_tl_in_a_bits_data_0 = auto_tl_in_a_bits_data; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_a_bits_corrupt_0 = auto_tl_in_a_bits_corrupt; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_d_ready_0 = auto_tl_in_d_ready; // @[LazyModuleImp.scala:138:7]
wire auto_fragmenter_anon_out_d_bits_sink = 1'h0; // @[Fragmenter.scala:345:34]
wire auto_fragmenter_anon_out_d_bits_denied = 1'h0; // @[Fragmenter.scala:345:34]
wire auto_fragmenter_anon_out_d_bits_corrupt = 1'h0; // @[Fragmenter.scala:345:34]
wire auto_tl_in_d_bits_sink = 1'h0; // @[Fragmenter.scala:345:34]
wire auto_tl_in_d_bits_denied = 1'h0; // @[Fragmenter.scala:345:34]
wire auto_tl_in_d_bits_corrupt = 1'h0; // @[Fragmenter.scala:345:34]
wire tlOut_d_bits_sink = 1'h0; // @[Fragmenter.scala:345:34]
wire tlOut_d_bits_denied = 1'h0; // @[Fragmenter.scala:345:34]
wire tlOut_d_bits_corrupt = 1'h0; // @[Fragmenter.scala:345:34]
wire tlIn_d_bits_sink = 1'h0; // @[Fragmenter.scala:345:34]
wire tlIn_d_bits_denied = 1'h0; // @[Fragmenter.scala:345:34]
wire tlIn_d_bits_corrupt = 1'h0; // @[Fragmenter.scala:345:34]
wire [1:0] auto_fragmenter_anon_out_d_bits_param = 2'h0; // @[Fragmenter.scala:345:34]
wire [1:0] auto_tl_in_d_bits_param = 2'h0; // @[Fragmenter.scala:345:34]
wire [1:0] tlOut_d_bits_param = 2'h0; // @[Fragmenter.scala:345:34]
wire [1:0] tlIn_d_bits_param = 2'h0; // @[Fragmenter.scala:345:34]
wire tlIn_a_ready; // @[MixedNode.scala:551:17]
wire tlIn_a_valid = auto_tl_in_a_valid_0; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_a_bits_opcode = auto_tl_in_a_bits_opcode_0; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_a_bits_param = auto_tl_in_a_bits_param_0; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_a_bits_size = auto_tl_in_a_bits_size_0; // @[MixedNode.scala:551:17]
wire [8:0] tlIn_a_bits_source = auto_tl_in_a_bits_source_0; // @[MixedNode.scala:551:17]
wire [12:0] tlIn_a_bits_address = auto_tl_in_a_bits_address_0; // @[MixedNode.scala:551:17]
wire [7:0] tlIn_a_bits_mask = auto_tl_in_a_bits_mask_0; // @[MixedNode.scala:551:17]
wire [63:0] tlIn_a_bits_data = auto_tl_in_a_bits_data_0; // @[MixedNode.scala:551:17]
wire tlIn_a_bits_corrupt = auto_tl_in_a_bits_corrupt_0; // @[MixedNode.scala:551:17]
wire tlIn_d_ready = auto_tl_in_d_ready_0; // @[MixedNode.scala:551:17]
wire tlIn_d_valid; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_d_bits_opcode; // @[MixedNode.scala:551:17]
wire [2:0] tlIn_d_bits_size; // @[MixedNode.scala:551:17]
wire [8:0] tlIn_d_bits_source; // @[MixedNode.scala:551:17]
wire [63:0] tlIn_d_bits_data; // @[MixedNode.scala:551:17]
wire [2:0] auto_fragmenter_anon_out_a_bits_opcode_0; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_fragmenter_anon_out_a_bits_param_0; // @[LazyModuleImp.scala:138:7]
wire [1:0] auto_fragmenter_anon_out_a_bits_size_0; // @[LazyModuleImp.scala:138:7]
wire [12:0] auto_fragmenter_anon_out_a_bits_source_0; // @[LazyModuleImp.scala:138:7]
wire [12:0] auto_fragmenter_anon_out_a_bits_address_0; // @[LazyModuleImp.scala:138:7]
wire [7:0] auto_fragmenter_anon_out_a_bits_mask_0; // @[LazyModuleImp.scala:138:7]
wire [63:0] auto_fragmenter_anon_out_a_bits_data_0; // @[LazyModuleImp.scala:138:7]
wire auto_fragmenter_anon_out_a_bits_corrupt_0; // @[LazyModuleImp.scala:138:7]
wire auto_fragmenter_anon_out_a_valid_0; // @[LazyModuleImp.scala:138:7]
wire auto_fragmenter_anon_out_d_ready_0; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_a_ready_0; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_d_bits_opcode_0; // @[LazyModuleImp.scala:138:7]
wire [2:0] auto_tl_in_d_bits_size_0; // @[LazyModuleImp.scala:138:7]
wire [8:0] auto_tl_in_d_bits_source_0; // @[LazyModuleImp.scala:138:7]
wire [63:0] auto_tl_in_d_bits_data_0; // @[LazyModuleImp.scala:138:7]
wire auto_tl_in_d_valid_0; // @[LazyModuleImp.scala:138:7]
assign tlIn_a_ready = tlOut_a_ready; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_valid = tlOut_d_valid; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_opcode = tlOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_size = tlOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_source = tlOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign tlIn_d_bits_data = tlOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17]
wire [2:0] tlOut_a_bits_opcode; // @[MixedNode.scala:542:17]
wire [2:0] tlOut_a_bits_param; // @[MixedNode.scala:542:17]
wire [2:0] tlOut_a_bits_size; // @[MixedNode.scala:542:17]
wire [8:0] tlOut_a_bits_source; // @[MixedNode.scala:542:17]
wire [12:0] tlOut_a_bits_address; // @[MixedNode.scala:542:17]
wire [7:0] tlOut_a_bits_mask; // @[MixedNode.scala:542:17]
wire [63:0] tlOut_a_bits_data; // @[MixedNode.scala:542:17]
wire tlOut_a_bits_corrupt; // @[MixedNode.scala:542:17]
wire tlOut_a_valid; // @[MixedNode.scala:542:17]
wire tlOut_d_ready; // @[MixedNode.scala:542:17]
assign auto_tl_in_a_ready_0 = tlIn_a_ready; // @[MixedNode.scala:551:17]
assign tlOut_a_valid = tlIn_a_valid; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_opcode = tlIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_param = tlIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_size = tlIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_source = tlIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_address = tlIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_mask = tlIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_data = tlIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_a_bits_corrupt = tlIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17]
assign tlOut_d_ready = tlIn_d_ready; // @[MixedNode.scala:542:17, :551:17]
assign auto_tl_in_d_valid_0 = tlIn_d_valid; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_opcode_0 = tlIn_d_bits_opcode; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_size_0 = tlIn_d_bits_size; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_source_0 = tlIn_d_bits_source; // @[MixedNode.scala:551:17]
assign auto_tl_in_d_bits_data_0 = tlIn_d_bits_data; // @[MixedNode.scala:551:17]
TLFragmenter_BootAddrReg fragmenter ( // @[Fragmenter.scala:345:34]
.clock (clock),
.reset (reset),
.auto_anon_in_a_ready (tlOut_a_ready),
.auto_anon_in_a_valid (tlOut_a_valid), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_opcode (tlOut_a_bits_opcode), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_param (tlOut_a_bits_param), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_size (tlOut_a_bits_size), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_source (tlOut_a_bits_source), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_address (tlOut_a_bits_address), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_mask (tlOut_a_bits_mask), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_data (tlOut_a_bits_data), // @[MixedNode.scala:542:17]
.auto_anon_in_a_bits_corrupt (tlOut_a_bits_corrupt), // @[MixedNode.scala:542:17]
.auto_anon_in_d_ready (tlOut_d_ready), // @[MixedNode.scala:542:17]
.auto_anon_in_d_valid (tlOut_d_valid),
.auto_anon_in_d_bits_opcode (tlOut_d_bits_opcode),
.auto_anon_in_d_bits_size (tlOut_d_bits_size),
.auto_anon_in_d_bits_source (tlOut_d_bits_source),
.auto_anon_in_d_bits_data (tlOut_d_bits_data),
.auto_anon_out_a_ready (auto_fragmenter_anon_out_a_ready_0), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_a_valid (auto_fragmenter_anon_out_a_valid_0),
.auto_anon_out_a_bits_opcode (auto_fragmenter_anon_out_a_bits_opcode_0),
.auto_anon_out_a_bits_param (auto_fragmenter_anon_out_a_bits_param_0),
.auto_anon_out_a_bits_size (auto_fragmenter_anon_out_a_bits_size_0),
.auto_anon_out_a_bits_source (auto_fragmenter_anon_out_a_bits_source_0),
.auto_anon_out_a_bits_address (auto_fragmenter_anon_out_a_bits_address_0),
.auto_anon_out_a_bits_mask (auto_fragmenter_anon_out_a_bits_mask_0),
.auto_anon_out_a_bits_data (auto_fragmenter_anon_out_a_bits_data_0),
.auto_anon_out_a_bits_corrupt (auto_fragmenter_anon_out_a_bits_corrupt_0),
.auto_anon_out_d_ready (auto_fragmenter_anon_out_d_ready_0),
.auto_anon_out_d_valid (auto_fragmenter_anon_out_d_valid_0), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_d_bits_opcode (auto_fragmenter_anon_out_d_bits_opcode_0), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_d_bits_size (auto_fragmenter_anon_out_d_bits_size_0), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_d_bits_source (auto_fragmenter_anon_out_d_bits_source_0), // @[LazyModuleImp.scala:138:7]
.auto_anon_out_d_bits_data (auto_fragmenter_anon_out_d_bits_data_0) // @[LazyModuleImp.scala:138:7]
); // @[Fragmenter.scala:345:34]
assign auto_fragmenter_anon_out_a_valid = auto_fragmenter_anon_out_a_valid_0; // @[LazyModuleImp.scala:138:7]
assign auto_fragmenter_anon_out_a_bits_opcode = auto_fragmenter_anon_out_a_bits_opcode_0; // @[LazyModuleImp.scala:138:7]
assign auto_fragmenter_anon_out_a_bits_param = auto_fragmenter_anon_out_a_bits_param_0; // @[LazyModuleImp.scala:138:7]
assign auto_fragmenter_anon_out_a_bits_size = auto_fragmenter_anon_out_a_bits_size_0; // @[LazyModuleImp.scala:138:7]
assign auto_fragmenter_anon_out_a_bits_source = auto_fragmenter_anon_out_a_bits_source_0; // @[LazyModuleImp.scala:138:7]
assign auto_fragmenter_anon_out_a_bits_address = auto_fragmenter_anon_out_a_bits_address_0; // @[LazyModuleImp.scala:138:7]
assign auto_fragmenter_anon_out_a_bits_mask = auto_fragmenter_anon_out_a_bits_mask_0; // @[LazyModuleImp.scala:138:7]
assign auto_fragmenter_anon_out_a_bits_data = auto_fragmenter_anon_out_a_bits_data_0; // @[LazyModuleImp.scala:138:7]
assign auto_fragmenter_anon_out_a_bits_corrupt = auto_fragmenter_anon_out_a_bits_corrupt_0; // @[LazyModuleImp.scala:138:7]
assign auto_fragmenter_anon_out_d_ready = auto_fragmenter_anon_out_d_ready_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_a_ready = auto_tl_in_a_ready_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_valid = auto_tl_in_d_valid_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_opcode = auto_tl_in_d_bits_opcode_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_size = auto_tl_in_d_bits_size_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_source = auto_tl_in_d_bits_source_0; // @[LazyModuleImp.scala:138:7]
assign auto_tl_in_d_bits_data = auto_tl_in_d_bits_data_0; // @[LazyModuleImp.scala:138:7]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File RecFNToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import consts._
class
RecFNToRecFN(
inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int)
extends chisel3.RawModule
{
val io = IO(new Bundle {
val in = Input(Bits((inExpWidth + inSigWidth + 1).W))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((outExpWidth + outSigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val rawIn = rawFloatFromRecFN(inExpWidth, inSigWidth, io.in);
if ((inExpWidth == outExpWidth) && (inSigWidth <= outSigWidth)) {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
io.out := io.in<<(outSigWidth - inSigWidth)
io.exceptionFlags := isSigNaNRawFloat(rawIn) ## 0.U(4.W)
} else {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
inExpWidth,
inSigWidth,
outExpWidth,
outSigWidth,
flRoundOpt_sigMSBitAlwaysZero
))
roundAnyRawFNToRecFN.io.invalidExc := isSigNaNRawFloat(rawIn)
roundAnyRawFNToRecFN.io.infiniteExc := false.B
roundAnyRawFNToRecFN.io.in := rawIn
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
}
File rawFloatFromRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util._
/*----------------------------------------------------------------------------
| In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be
| set.
*----------------------------------------------------------------------------*/
object rawFloatFromRecFN
{
def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat =
{
val exp = in(expWidth + sigWidth - 1, sigWidth - 1)
val isZero = exp(expWidth, expWidth - 2) === 0.U
val isSpecial = exp(expWidth, expWidth - 1) === 3.U
val out = Wire(new RawFloat(expWidth, sigWidth))
out.isNaN := isSpecial && exp(expWidth - 2)
out.isInf := isSpecial && ! exp(expWidth - 2)
out.isZero := isZero
out.sign := in(expWidth + sigWidth)
out.sExp := exp.zext
out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0)
out
}
}
| module RecFNToRecFN_59( // @[RecFNToRecFN.scala:44:5]
input [32:0] io_in, // @[RecFNToRecFN.scala:48:16]
output [32:0] io_out // @[RecFNToRecFN.scala:48:16]
);
wire [32:0] io_in_0 = io_in; // @[RecFNToRecFN.scala:44:5]
wire io_detectTininess = 1'h1; // @[RecFNToRecFN.scala:44:5, :48:16]
wire [2:0] io_roundingMode = 3'h0; // @[RecFNToRecFN.scala:44:5, :48:16]
wire [32:0] _io_out_T = io_in_0; // @[RecFNToRecFN.scala:44:5, :64:35]
wire [4:0] _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:65:54]
wire [32:0] io_out_0; // @[RecFNToRecFN.scala:44:5]
wire [4:0] io_exceptionFlags; // @[RecFNToRecFN.scala:44:5]
wire [8:0] rawIn_exp = io_in_0[31:23]; // @[rawFloatFromRecFN.scala:51:21]
wire [2:0] _rawIn_isZero_T = rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28]
wire rawIn_isZero = _rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}]
wire rawIn_isZero_0 = rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23]
wire [1:0] _rawIn_isSpecial_T = rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28]
wire rawIn_isSpecial = &_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}]
wire _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33]
wire _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33]
wire _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25]
wire [9:0] _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27]
wire [24:0] _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44]
wire rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23]
wire rawIn_sign; // @[rawFloatFromRecFN.scala:55:23]
wire [9:0] rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23]
wire [24:0] rawIn_sig; // @[rawFloatFromRecFN.scala:55:23]
wire _rawIn_out_isNaN_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41]
wire _rawIn_out_isInf_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41]
assign _rawIn_out_isNaN_T_1 = rawIn_isSpecial & _rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}]
assign rawIn_isNaN = _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33]
wire _rawIn_out_isInf_T_1 = ~_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}]
assign _rawIn_out_isInf_T_2 = rawIn_isSpecial & _rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}]
assign rawIn_isInf = _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33]
assign _rawIn_out_sign_T = io_in_0[32]; // @[rawFloatFromRecFN.scala:59:25]
assign rawIn_sign = _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25]
assign _rawIn_out_sExp_T = {1'h0, rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27]
assign rawIn_sExp = _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27]
wire _rawIn_out_sig_T = ~rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35]
wire [1:0] _rawIn_out_sig_T_1 = {1'h0, _rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}]
wire [22:0] _rawIn_out_sig_T_2 = io_in_0[22:0]; // @[rawFloatFromRecFN.scala:61:49]
assign _rawIn_out_sig_T_3 = {_rawIn_out_sig_T_1, _rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}]
assign rawIn_sig = _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44]
assign io_out_0 = _io_out_T; // @[RecFNToRecFN.scala:44:5, :64:35]
wire _io_exceptionFlags_T = rawIn_sig[22]; // @[rawFloatFromRecFN.scala:55:23]
wire _io_exceptionFlags_T_1 = ~_io_exceptionFlags_T; // @[common.scala:82:{49,56}]
wire _io_exceptionFlags_T_2 = rawIn_isNaN & _io_exceptionFlags_T_1; // @[rawFloatFromRecFN.scala:55:23]
assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, 4'h0}; // @[common.scala:82:46]
assign io_exceptionFlags = _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:44:5, :65:54]
assign io_out = io_out_0; // @[RecFNToRecFN.scala:44:5]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File ClockDomain.scala:
package freechips.rocketchip.prci
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing
{
def clockBundle: ClockBundle
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
childClock := clockBundle.clock
childReset := clockBundle.reset
override def provideImplicitClockToLazyChildren = true
// these are just for backwards compatibility with external devices
// that were manually wiring themselves to the domain's clock/reset input:
val clock = IO(Output(chiselTypeOf(clockBundle.clock)))
val reset = IO(Output(chiselTypeOf(clockBundle.reset)))
clock := clockBundle.clock
reset := clockBundle.reset
}
}
abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing
class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain
{
def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name))
val clockNode = ClockSinkNode(Seq(clockSinkParams))
def clockBundle = clockNode.in.head._1
override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString
}
class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain
{
def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name))
val clockNode = ClockSourceNode(Seq(clockSourceParams))
def clockBundle = clockNode.out.head._1
override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString
}
abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File NoC.scala:
package constellation.noc
import chisel3._
import chisel3.util._
import org.chipsalliance.cde.config.{Field, Parameters}
import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp, BundleBridgeSink, InModuleBody}
import freechips.rocketchip.util.ElaborationArtefacts
import freechips.rocketchip.prci._
import constellation.router._
import constellation.channel._
import constellation.routing.{RoutingRelation, ChannelRoutingInfo}
import constellation.topology.{PhysicalTopology, UnidirectionalLine}
class NoCTerminalIO(
val ingressParams: Seq[IngressChannelParams],
val egressParams: Seq[EgressChannelParams])(implicit val p: Parameters) extends Bundle {
val ingress = MixedVec(ingressParams.map { u => Flipped(new IngressChannel(u)) })
val egress = MixedVec(egressParams.map { u => new EgressChannel(u) })
}
class NoC(nocParams: NoCParams)(implicit p: Parameters) extends LazyModule {
override def shouldBeInlined = nocParams.inlineNoC
val internalParams = InternalNoCParams(nocParams)
val allChannelParams = internalParams.channelParams
val allIngressParams = internalParams.ingressParams
val allEgressParams = internalParams.egressParams
val allRouterParams = internalParams.routerParams
val iP = p.alterPartial({ case InternalNoCKey => internalParams })
val nNodes = nocParams.topology.nNodes
val nocName = nocParams.nocName
val skipValidationChecks = nocParams.skipValidationChecks
val clockSourceNodes = Seq.tabulate(nNodes) { i => ClockSourceNode(Seq(ClockSourceParameters())) }
val router_sink_domains = Seq.tabulate(nNodes) { i =>
val router_sink_domain = LazyModule(new ClockSinkDomain(ClockSinkParameters(
name = Some(s"${nocName}_router_$i")
)))
router_sink_domain.clockNode := clockSourceNodes(i)
router_sink_domain
}
val routers = Seq.tabulate(nNodes) { i => router_sink_domains(i) {
val inParams = allChannelParams.filter(_.destId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val outParams = allChannelParams.filter(_.srcId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val ingressParams = allIngressParams.filter(_.destId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val egressParams = allEgressParams.filter(_.srcId == i).map(
_.copy(payloadBits=allRouterParams(i).user.payloadBits)
)
val noIn = inParams.size + ingressParams.size == 0
val noOut = outParams.size + egressParams.size == 0
if (noIn || noOut) {
println(s"Constellation WARNING: $nocName router $i seems to be unused, it will not be generated")
None
} else {
Some(LazyModule(new Router(
routerParams = allRouterParams(i),
preDiplomaticInParams = inParams,
preDiplomaticIngressParams = ingressParams,
outDests = outParams.map(_.destId),
egressIds = egressParams.map(_.egressId)
)(iP)))
}
}}.flatten
val ingressNodes = allIngressParams.map { u => IngressChannelSourceNode(u.destId) }
val egressNodes = allEgressParams.map { u => EgressChannelDestNode(u) }
// Generate channels between routers diplomatically
Seq.tabulate(nNodes, nNodes) { case (i, j) => if (i != j) {
val routerI = routers.find(_.nodeId == i)
val routerJ = routers.find(_.nodeId == j)
if (routerI.isDefined && routerJ.isDefined) {
val sourceNodes: Seq[ChannelSourceNode] = routerI.get.sourceNodes.filter(_.destId == j)
val destNodes: Seq[ChannelDestNode] = routerJ.get.destNodes.filter(_.destParams.srcId == i)
require (sourceNodes.size == destNodes.size)
(sourceNodes zip destNodes).foreach { case (src, dst) =>
val channelParam = allChannelParams.find(c => c.srcId == i && c.destId == j).get
router_sink_domains(j) {
implicit val p: Parameters = iP
(dst
:= ChannelWidthWidget(routerJ.get.payloadBits, routerI.get.payloadBits)
:= channelParam.channelGen(p)(src)
)
}
}
}
}}
// Generate terminal channels diplomatically
routers.foreach { dst => router_sink_domains(dst.nodeId) {
implicit val p: Parameters = iP
dst.ingressNodes.foreach(n => {
val ingressId = n.destParams.ingressId
require(dst.payloadBits <= allIngressParams(ingressId).payloadBits)
(n
:= IngressWidthWidget(dst.payloadBits, allIngressParams(ingressId).payloadBits)
:= ingressNodes(ingressId)
)
})
dst.egressNodes.foreach(n => {
val egressId = n.egressId
require(dst.payloadBits <= allEgressParams(egressId).payloadBits)
(egressNodes(egressId)
:= EgressWidthWidget(allEgressParams(egressId).payloadBits, dst.payloadBits)
:= n
)
})
}}
val debugNodes = routers.map { r =>
val sink = BundleBridgeSink[DebugBundle]()
sink := r.debugNode
sink
}
val ctrlNodes = if (nocParams.hasCtrl) {
(0 until nNodes).map { i =>
routers.find(_.nodeId == i).map { r =>
val sink = BundleBridgeSink[RouterCtrlBundle]()
sink := r.ctrlNode.get
sink
}
}
} else {
Nil
}
println(s"Constellation: $nocName Finished parameter validation")
lazy val module = new Impl
class Impl extends LazyModuleImp(this) {
println(s"Constellation: $nocName Starting NoC RTL generation")
val io = IO(new NoCTerminalIO(allIngressParams, allEgressParams)(iP) {
val router_clocks = Vec(nNodes, Input(new ClockBundle(ClockBundleParameters())))
val router_ctrl = if (nocParams.hasCtrl) Vec(nNodes, new RouterCtrlBundle) else Nil
})
(io.ingress zip ingressNodes.map(_.out(0)._1)).foreach { case (l,r) => r <> l }
(io.egress zip egressNodes .map(_.in (0)._1)).foreach { case (l,r) => l <> r }
(io.router_clocks zip clockSourceNodes.map(_.out(0)._1)).foreach { case (l,r) => l <> r }
if (nocParams.hasCtrl) {
ctrlNodes.zipWithIndex.map { case (c,i) =>
if (c.isDefined) {
io.router_ctrl(i) <> c.get.in(0)._1
} else {
io.router_ctrl(i) <> DontCare
}
}
}
// TODO: These assume a single clock-domain across the entire noc
val debug_va_stall_ctr = RegInit(0.U(64.W))
val debug_sa_stall_ctr = RegInit(0.U(64.W))
val debug_any_stall_ctr = debug_va_stall_ctr + debug_sa_stall_ctr
debug_va_stall_ctr := debug_va_stall_ctr + debugNodes.map(_.in(0)._1.va_stall.reduce(_+_)).reduce(_+_)
debug_sa_stall_ctr := debug_sa_stall_ctr + debugNodes.map(_.in(0)._1.sa_stall.reduce(_+_)).reduce(_+_)
dontTouch(debug_va_stall_ctr)
dontTouch(debug_sa_stall_ctr)
dontTouch(debug_any_stall_ctr)
def prepend(s: String) = Seq(nocName, s).mkString(".")
ElaborationArtefacts.add(prepend("noc.graphml"), graphML)
val adjList = routers.map { r =>
val outs = r.outParams.map(o => s"${o.destId}").mkString(" ")
val egresses = r.egressParams.map(e => s"e${e.egressId}").mkString(" ")
val ingresses = r.ingressParams.map(i => s"i${i.ingressId} ${r.nodeId}")
(Seq(s"${r.nodeId} $outs $egresses") ++ ingresses).mkString("\n")
}.mkString("\n")
ElaborationArtefacts.add(prepend("noc.adjlist"), adjList)
val xys = routers.map(r => {
val n = r.nodeId
val ids = (Seq(r.nodeId.toString)
++ r.egressParams.map(e => s"e${e.egressId}")
++ r.ingressParams.map(i => s"i${i.ingressId}")
)
val plotter = nocParams.topology.plotter
val coords = (Seq(plotter.node(r.nodeId))
++ Seq.tabulate(r.egressParams.size ) { i => plotter. egress(i, r. egressParams.size, r.nodeId) }
++ Seq.tabulate(r.ingressParams.size) { i => plotter.ingress(i, r.ingressParams.size, r.nodeId) }
)
(ids zip coords).map { case (i, (x, y)) => s"$i $x $y" }.mkString("\n")
}).mkString("\n")
ElaborationArtefacts.add(prepend("noc.xy"), xys)
val edgeProps = routers.map { r =>
val outs = r.outParams.map { o =>
(Seq(s"${r.nodeId} ${o.destId}") ++ (if (o.possibleFlows.size == 0) Some("unused") else None))
.mkString(" ")
}
val egresses = r.egressParams.map { e =>
(Seq(s"${r.nodeId} e${e.egressId}") ++ (if (e.possibleFlows.size == 0) Some("unused") else None))
.mkString(" ")
}
val ingresses = r.ingressParams.map { i =>
(Seq(s"i${i.ingressId} ${r.nodeId}") ++ (if (i.possibleFlows.size == 0) Some("unused") else None))
.mkString(" ")
}
(outs ++ egresses ++ ingresses).mkString("\n")
}.mkString("\n")
ElaborationArtefacts.add(prepend("noc.edgeprops"), edgeProps)
println(s"Constellation: $nocName Finished NoC RTL generation")
}
}
| module TLSplitACDxBENoC_acd_router_12ClockSinkDomain( // @[ClockDomain.scala:14:9]
output [2:0] auto_routers_debug_out_va_stall_0, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_routers_debug_out_va_stall_1, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_routers_debug_out_sa_stall_0, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_routers_debug_out_sa_stall_1, // @[LazyModuleImp.scala:107:25]
input auto_routers_egress_nodes_out_1_flit_ready, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_1_flit_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_1_flit_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_1_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
output [72:0] auto_routers_egress_nodes_out_1_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
input auto_routers_egress_nodes_out_0_flit_ready, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_0_flit_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_0_flit_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_egress_nodes_out_0_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
output [72:0] auto_routers_egress_nodes_out_0_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
output auto_routers_ingress_nodes_in_flit_ready, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_flit_valid, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_flit_bits_head, // @[LazyModuleImp.scala:107:25]
input auto_routers_ingress_nodes_in_flit_bits_tail, // @[LazyModuleImp.scala:107:25]
input [72:0] auto_routers_ingress_nodes_in_flit_bits_payload, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_routers_ingress_nodes_in_flit_bits_egress_id, // @[LazyModuleImp.scala:107:25]
output auto_routers_source_nodes_out_flit_0_valid, // @[LazyModuleImp.scala:107:25]
output auto_routers_source_nodes_out_flit_0_bits_head, // @[LazyModuleImp.scala:107:25]
output auto_routers_source_nodes_out_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25]
output [72:0] auto_routers_source_nodes_out_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_routers_source_nodes_out_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25]
output [3:0] auto_routers_source_nodes_out_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25]
output [1:0] auto_routers_source_nodes_out_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25]
output [2:0] auto_routers_source_nodes_out_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_routers_source_nodes_out_credit_return, // @[LazyModuleImp.scala:107:25]
input [5:0] auto_routers_source_nodes_out_vc_free, // @[LazyModuleImp.scala:107:25]
input auto_routers_dest_nodes_in_flit_0_valid, // @[LazyModuleImp.scala:107:25]
input auto_routers_dest_nodes_in_flit_0_bits_head, // @[LazyModuleImp.scala:107:25]
input auto_routers_dest_nodes_in_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25]
input [72:0] auto_routers_dest_nodes_in_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_routers_dest_nodes_in_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25]
input [3:0] auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25]
input [1:0] auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25]
input [2:0] auto_routers_dest_nodes_in_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_routers_dest_nodes_in_credit_return, // @[LazyModuleImp.scala:107:25]
output [5:0] auto_routers_dest_nodes_in_vc_free, // @[LazyModuleImp.scala:107:25]
input auto_clock_in_clock, // @[LazyModuleImp.scala:107:25]
input auto_clock_in_reset // @[LazyModuleImp.scala:107:25]
);
Router_12 routers ( // @[NoC.scala:67:22]
.clock (auto_clock_in_clock),
.reset (auto_clock_in_reset),
.auto_debug_out_va_stall_0 (auto_routers_debug_out_va_stall_0),
.auto_debug_out_va_stall_1 (auto_routers_debug_out_va_stall_1),
.auto_debug_out_sa_stall_0 (auto_routers_debug_out_sa_stall_0),
.auto_debug_out_sa_stall_1 (auto_routers_debug_out_sa_stall_1),
.auto_egress_nodes_out_1_flit_ready (auto_routers_egress_nodes_out_1_flit_ready),
.auto_egress_nodes_out_1_flit_valid (auto_routers_egress_nodes_out_1_flit_valid),
.auto_egress_nodes_out_1_flit_bits_head (auto_routers_egress_nodes_out_1_flit_bits_head),
.auto_egress_nodes_out_1_flit_bits_tail (auto_routers_egress_nodes_out_1_flit_bits_tail),
.auto_egress_nodes_out_1_flit_bits_payload (auto_routers_egress_nodes_out_1_flit_bits_payload),
.auto_egress_nodes_out_0_flit_ready (auto_routers_egress_nodes_out_0_flit_ready),
.auto_egress_nodes_out_0_flit_valid (auto_routers_egress_nodes_out_0_flit_valid),
.auto_egress_nodes_out_0_flit_bits_head (auto_routers_egress_nodes_out_0_flit_bits_head),
.auto_egress_nodes_out_0_flit_bits_tail (auto_routers_egress_nodes_out_0_flit_bits_tail),
.auto_egress_nodes_out_0_flit_bits_payload (auto_routers_egress_nodes_out_0_flit_bits_payload),
.auto_ingress_nodes_in_flit_ready (auto_routers_ingress_nodes_in_flit_ready),
.auto_ingress_nodes_in_flit_valid (auto_routers_ingress_nodes_in_flit_valid),
.auto_ingress_nodes_in_flit_bits_head (auto_routers_ingress_nodes_in_flit_bits_head),
.auto_ingress_nodes_in_flit_bits_tail (auto_routers_ingress_nodes_in_flit_bits_tail),
.auto_ingress_nodes_in_flit_bits_payload (auto_routers_ingress_nodes_in_flit_bits_payload),
.auto_ingress_nodes_in_flit_bits_egress_id (auto_routers_ingress_nodes_in_flit_bits_egress_id),
.auto_source_nodes_out_flit_0_valid (auto_routers_source_nodes_out_flit_0_valid),
.auto_source_nodes_out_flit_0_bits_head (auto_routers_source_nodes_out_flit_0_bits_head),
.auto_source_nodes_out_flit_0_bits_tail (auto_routers_source_nodes_out_flit_0_bits_tail),
.auto_source_nodes_out_flit_0_bits_payload (auto_routers_source_nodes_out_flit_0_bits_payload),
.auto_source_nodes_out_flit_0_bits_flow_vnet_id (auto_routers_source_nodes_out_flit_0_bits_flow_vnet_id),
.auto_source_nodes_out_flit_0_bits_flow_ingress_node (auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node),
.auto_source_nodes_out_flit_0_bits_flow_ingress_node_id (auto_routers_source_nodes_out_flit_0_bits_flow_ingress_node_id),
.auto_source_nodes_out_flit_0_bits_flow_egress_node (auto_routers_source_nodes_out_flit_0_bits_flow_egress_node),
.auto_source_nodes_out_flit_0_bits_flow_egress_node_id (auto_routers_source_nodes_out_flit_0_bits_flow_egress_node_id),
.auto_source_nodes_out_flit_0_bits_virt_channel_id (auto_routers_source_nodes_out_flit_0_bits_virt_channel_id),
.auto_source_nodes_out_credit_return (auto_routers_source_nodes_out_credit_return),
.auto_source_nodes_out_vc_free (auto_routers_source_nodes_out_vc_free),
.auto_dest_nodes_in_flit_0_valid (auto_routers_dest_nodes_in_flit_0_valid),
.auto_dest_nodes_in_flit_0_bits_head (auto_routers_dest_nodes_in_flit_0_bits_head),
.auto_dest_nodes_in_flit_0_bits_tail (auto_routers_dest_nodes_in_flit_0_bits_tail),
.auto_dest_nodes_in_flit_0_bits_payload (auto_routers_dest_nodes_in_flit_0_bits_payload),
.auto_dest_nodes_in_flit_0_bits_flow_vnet_id (auto_routers_dest_nodes_in_flit_0_bits_flow_vnet_id),
.auto_dest_nodes_in_flit_0_bits_flow_ingress_node (auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node),
.auto_dest_nodes_in_flit_0_bits_flow_ingress_node_id (auto_routers_dest_nodes_in_flit_0_bits_flow_ingress_node_id),
.auto_dest_nodes_in_flit_0_bits_flow_egress_node (auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node),
.auto_dest_nodes_in_flit_0_bits_flow_egress_node_id (auto_routers_dest_nodes_in_flit_0_bits_flow_egress_node_id),
.auto_dest_nodes_in_flit_0_bits_virt_channel_id (auto_routers_dest_nodes_in_flit_0_bits_virt_channel_id),
.auto_dest_nodes_in_credit_return (auto_routers_dest_nodes_in_credit_return),
.auto_dest_nodes_in_vc_free (auto_routers_dest_nodes_in_vc_free)
); // @[NoC.scala:67:22]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File NullIntSource.scala:
// See LICENSE.SiFive for license details.
package freechips.rocketchip.interrupts
import chisel3._
import org.chipsalliance.cde.config._
import org.chipsalliance.diplomacy.lazymodule._
/** Useful for stubbing out parts of an interrupt interface where certain devices might be missing */
class NullIntSource(num: Int = 1, ports: Int = 1, sources: Int = 1)(implicit p: Parameters) extends LazyModule
{
val intnode = IntSourceNode(IntSourcePortSimple(num, ports, sources))
lazy val module = new Impl
class Impl extends LazyRawModuleImp(this) {
intnode.out.foreach { case (o, _) => o.foreach { _ := false.B } }
}
}
object NullIntSource {
def apply(num: Int = 1, ports: Int = 1, sources: Int = 1)(implicit p: Parameters): IntOutwardNode = {
val null_int_source = LazyModule(new NullIntSource(num, ports, sources))
null_int_source.intnode
}
}
object NullIntSyncSource {
def apply(num: Int = 1, ports: Int = 1, sources: Int = 1)(implicit p: Parameters): IntSyncOutwardNode = {
IntSyncCrossingSource(alreadyRegistered = true) := NullIntSource(num, ports, sources)
}
}
File LazyModuleImp.scala:
package org.chipsalliance.diplomacy.lazymodule
import chisel3.{withClockAndReset, Module, RawModule, Reset, _}
import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo}
import firrtl.passes.InlineAnnotation
import org.chipsalliance.cde.config.Parameters
import org.chipsalliance.diplomacy.nodes.Dangle
import scala.collection.immutable.SortedMap
/** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]].
*
* This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy.
*/
sealed trait LazyModuleImpLike extends RawModule {
/** [[LazyModule]] that contains this instance. */
val wrapper: LazyModule
/** IOs that will be automatically "punched" for this instance. */
val auto: AutoBundle
/** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */
protected[diplomacy] val dangles: Seq[Dangle]
// [[wrapper.module]] had better not be accessed while LazyModules are still being built!
require(
LazyModule.scope.isEmpty,
s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}"
)
/** Set module name. Defaults to the containing LazyModule's desiredName. */
override def desiredName: String = wrapper.desiredName
suggestName(wrapper.suggestedName)
/** [[Parameters]] for chisel [[Module]]s. */
implicit val p: Parameters = wrapper.p
/** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and
* submodules.
*/
protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = {
// 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]],
// 2. return [[Dangle]]s from each module.
val childDangles = wrapper.children.reverse.flatMap { c =>
implicit val sourceInfo: SourceInfo = c.info
c.cloneProto.map { cp =>
// If the child is a clone, then recursively set cloneProto of its children as well
def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = {
require(bases.size == clones.size)
(bases.zip(clones)).map { case (l, r) =>
require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}")
l.cloneProto = Some(r)
assignCloneProtos(l.children, r.children)
}
}
assignCloneProtos(c.children, cp.children)
// Clone the child module as a record, and get its [[AutoBundle]]
val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName)
val clonedAuto = clone("auto").asInstanceOf[AutoBundle]
// Get the empty [[Dangle]]'s of the cloned child
val rawDangles = c.cloneDangles()
require(rawDangles.size == clonedAuto.elements.size)
// Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s
val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) }
dangles
}.getOrElse {
// For non-clones, instantiate the child module
val mod = try {
Module(c.module)
} catch {
case e: ChiselException => {
println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}")
throw e
}
}
mod.dangles
}
}
// Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]].
// This will result in a sequence of [[Dangle]] from these [[BaseNode]]s.
val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate())
// Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]]
val allDangles = nodeDangles ++ childDangles
// Group [[allDangles]] by their [[source]].
val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*)
// For each [[source]] set of [[Dangle]]s of size 2, ensure that these
// can be connected as a source-sink pair (have opposite flipped value).
// Make the connection and mark them as [[done]].
val done = Set() ++ pairing.values.filter(_.size == 2).map {
case Seq(a, b) =>
require(a.flipped != b.flipped)
// @todo <> in chisel3 makes directionless connection.
if (a.flipped) {
a.data <> b.data
} else {
b.data <> a.data
}
a.source
case _ => None
}
// Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module.
val forward = allDangles.filter(d => !done(d.source))
// Generate [[AutoBundle]] IO from [[forward]].
val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*))
// Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]]
val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) =>
if (d.flipped) {
d.data <> io
} else {
io <> d.data
}
d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name)
}
// Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]].
wrapper.inModuleBody.reverse.foreach {
_()
}
if (wrapper.shouldBeInlined) {
chisel3.experimental.annotate(new ChiselAnnotation {
def toFirrtl = InlineAnnotation(toNamed)
})
}
// Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]].
(auto, dangles)
}
}
/** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike {
/** Instantiate hardware of this `Module`. */
val (auto, dangles) = instantiate()
}
/** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]].
*
* @param wrapper
* the [[LazyModule]] from which the `.module` call is being made.
*/
class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike {
// These wires are the default clock+reset for all LazyModule children.
// It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the
// [[LazyRawModuleImp]] children.
// Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly.
/** drive clock explicitly. */
val childClock: Clock = Wire(Clock())
/** drive reset explicitly. */
val childReset: Reset = Wire(Reset())
// the default is that these are disabled
childClock := false.B.asClock
childReset := chisel3.DontCare
def provideImplicitClockToLazyChildren: Boolean = false
val (auto, dangles) =
if (provideImplicitClockToLazyChildren) {
withClockAndReset(childClock, childReset) { instantiate() }
} else {
instantiate()
}
}
File MixedNode.scala:
package org.chipsalliance.diplomacy.nodes
import chisel3.{Data, DontCare, Wire}
import chisel3.experimental.SourceInfo
import org.chipsalliance.cde.config.{Field, Parameters}
import org.chipsalliance.diplomacy.ValName
import org.chipsalliance.diplomacy.sourceLine
/** One side metadata of a [[Dangle]].
*
* Describes one side of an edge going into or out of a [[BaseNode]].
*
* @param serial
* the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to.
* @param index
* the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to.
*/
case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] {
import scala.math.Ordered.orderingToOrdered
def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that))
}
/** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]]
* connects.
*
* [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] ,
* [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]].
*
* @param source
* the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within
* that [[BaseNode]].
* @param sink
* sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that
* [[BaseNode]].
* @param flipped
* flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to
* `danglesIn`.
* @param dataOpt
* actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module
*/
case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) {
def data = dataOpt.get
}
/** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often
* derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually
* implement the protocol.
*/
case class Edges[EI, EO](in: Seq[EI], out: Seq[EO])
/** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */
case object MonitorsEnabled extends Field[Boolean](true)
/** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented.
*
* For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but
* [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink
* nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the
* [[LazyModule]].
*/
case object RenderFlipped extends Field[Boolean](false)
/** The sealed node class in the package, all node are derived from it.
*
* @param inner
* Sink interface implementation.
* @param outer
* Source interface implementation.
* @param valName
* val name of this node.
* @tparam DI
* Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters
* describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected
* [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port
* parameters.
* @tparam UI
* Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing
* the protocol parameters of a sink. For an [[InwardNode]], it is determined itself.
* @tparam EI
* Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers
* specified for a sink according to protocol.
* @tparam BI
* Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface.
* It should extends from [[chisel3.Data]], which represents the real hardware.
* @tparam DO
* Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters
* describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself.
* @tparam UO
* Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing
* the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]].
* Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters.
* @tparam EO
* Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers
* specified for a source according to protocol.
* @tparam BO
* Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source
* interface. It should extends from [[chisel3.Data]], which represents the real hardware.
*
* @note
* Call Graph of [[MixedNode]]
* - line `β`: source is process by a function and generate pass to others
* - Arrow `β`: target of arrow is generated by source
*
* {{{
* (from the other node)
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ[[InwardNode.uiParams]]ββββββββββββββ
* β β
* (binding node when elaboration) [[OutwardNode.uoParams]]ββββββββββββββββββββββββ[[MixedNode.mapParamsU]]ββββββββββββ β
* [[InwardNode.accPI]] β β β
* β β (based on protocol) β
* β β [[MixedNode.inner.edgeI]] β
* β β β β
* β β β β
* (immobilize after elaboration) (inward port from [[OutwardNode]]) β β β
* [[InwardNode.iBindings]]βββ [[MixedNode.iDirectPorts]]βββββββββββββββββββββ[[MixedNode.iPorts]] [[InwardNode.uiParams]] β
* β β β β β β
* β β β [[OutwardNode.doParams]] β β
* β β β (from the other node) β β
* β β β β β β
* β β β β β β
* β β β ββββββββββ¬βββββββββββββββ€ β
* β β β β β β
* β β β β (based on protocol) β
* β β β β [[MixedNode.inner.edgeI]] β
* β β β β β β
* β β (from the other node) β β β
* β ββββ[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] β [[MixedNode.edgesIn]]ββββ β
* β β β β β β β
* β β β β β [[MixedNode.in]] β
* β β β β β β β
* β (solve star connection) β β β [[MixedNode.bundleIn]]βββ β
* ββββ[[MixedNode.resolveStar]]βββΌββββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββββββββββ β
* β β β [[MixedNode.bundleOut]]ββ β β
* β β β β β β β
* β β β β [[MixedNode.out]] β β
* β β β β β β β
* β ββββββ[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]βββ β β
* β β (from the other node) β β β
* β β β β β β
* β β β [[MixedNode.outer.edgeO]] β β
* β β β (based on protocol) β β
* β β β β β β
* β β β ββββββββββββββββββββββββββββββββββββββββββ€ β β
* β β β β β β β
* β β β β β β β
* β β β β β β β
* (immobilize after elaboration)β β β β β β
* [[OutwardNode.oBindings]]ββ [[MixedNode.oDirectPorts]]ββββ[[MixedNode.oPorts]] [[OutwardNode.doParams]] β β
* β (inward port from [[OutwardNode]]) β β β β
* β βββββββββββββββββββββββββββββββββββββββββββ€ β β β
* β β β β β β
* β β β β β β
* [[OutwardNode.accPO]] β β β β β
* (binding node when elaboration) β [[InwardNode.diParams]]ββββββ[[MixedNode.mapParamsD]]βββββββββββββββββββββββββββββ β β
* β β β β
* β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
* ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
* }}}
*/
abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data](
val inner: InwardNodeImp[DI, UI, EI, BI],
val outer: OutwardNodeImp[DO, UO, EO, BO]
)(
implicit valName: ValName)
extends BaseNode
with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO]
with InwardNode[DI, UI, BI]
with OutwardNode[DO, UO, BO] {
// Generate a [[NodeHandle]] with inward and outward node are both this node.
val inward = this
val outward = this
/** Debug info of nodes binding. */
def bindingInfo: String = s"""$iBindingInfo
|$oBindingInfo
|""".stripMargin
/** Debug info of ports connecting. */
def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}]
|${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}]
|""".stripMargin
/** Debug info of parameters propagations. */
def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}]
|${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}]
|${diParams.size} downstream inward parameters: [${diParams.mkString(",")}]
|${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}]
|""".stripMargin
/** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and
* [[MixedNode.iPortMapping]].
*
* Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward
* stars and outward stars.
*
* This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type
* of node.
*
* @param iKnown
* Number of known-size ([[BIND_ONCE]]) input bindings.
* @param oKnown
* Number of known-size ([[BIND_ONCE]]) output bindings.
* @param iStar
* Number of unknown size ([[BIND_STAR]]) input bindings.
* @param oStar
* Number of unknown size ([[BIND_STAR]]) output bindings.
* @return
* A Tuple of the resolved number of input and output connections.
*/
protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int)
/** Function to generate downward-flowing outward params from the downward-flowing input params and the current output
* ports.
*
* @param n
* The size of the output sequence to generate.
* @param p
* Sequence of downward-flowing input parameters of this node.
* @return
* A `n`-sized sequence of downward-flowing output edge parameters.
*/
protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO]
/** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]].
*
* @param n
* Size of the output sequence.
* @param p
* Upward-flowing output edge parameters.
* @return
* A n-sized sequence of upward-flowing input edge parameters.
*/
protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI]
/** @return
* The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with
* [[BIND_STAR]].
*/
protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR)
/** @return
* The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of
* output bindings bound with [[BIND_STAR]].
*/
protected[diplomacy] lazy val sourceCard: Int =
iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR)
/** @return list of nodes involved in flex bindings with this node. */
protected[diplomacy] lazy val flexes: Seq[BaseNode] =
oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2)
/** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin
* greedily taking up the remaining connections.
*
* @return
* A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return
* value is not relevant.
*/
protected[diplomacy] lazy val flexOffset: Int = {
/** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex
* operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a
* connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of
* each node in the current set and decide whether they should be added to the set or not.
*
* @return
* the mapping of [[BaseNode]] indexed by their serial numbers.
*/
def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = {
if (visited.contains(v.serial) || !v.flexibleArityDirection) {
visited
} else {
v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum))
}
}
/** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node.
*
* @example
* {{{
* a :*=* b :*=* c
* d :*=* b
* e :*=* f
* }}}
*
* `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)`
*/
val flexSet = DFS(this, Map()).values
/** The total number of :*= operators where we're on the left. */
val allSink = flexSet.map(_.sinkCard).sum
/** The total number of :=* operators used when we're on the right. */
val allSource = flexSet.map(_.sourceCard).sum
require(
allSink == 0 || allSource == 0,
s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction."
)
allSink - allSource
}
/** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */
protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = {
if (flexibleArityDirection) flexOffset
else if (n.flexibleArityDirection) n.flexOffset
else 0
}
/** For a node which is connected between two nodes, select the one that will influence the direction of the flex
* resolution.
*/
protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = {
val dir = edgeArityDirection(n)
if (dir < 0) l
else if (dir > 0) r
else 1
}
/** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */
private var starCycleGuard = false
/** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star"
* connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also
* need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct
* edge parameters and later build up correct bundle connections.
*
* [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding
* operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort
* (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*=
* bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N`
*/
protected[diplomacy] lazy val (
oPortMapping: Seq[(Int, Int)],
iPortMapping: Seq[(Int, Int)],
oStar: Int,
iStar: Int
) = {
try {
if (starCycleGuard) throw StarCycleException()
starCycleGuard = true
// For a given node N...
// Number of foo :=* N
// + Number of bar :=* foo :*=* N
val oStars = oBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0)
}
// Number of N :*= foo
// + Number of N :*=* foo :*= bar
val iStars = iBindings.count { case (_, n, b, _, _) =>
b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0)
}
// 1 for foo := N
// + bar.iStar for bar :*= foo :*=* N
// + foo.iStar for foo :*= N
// + 0 for foo :=* N
val oKnown = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, 0, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => 0
}
}.sum
// 1 for N := foo
// + bar.oStar for N :*=* foo :=* bar
// + foo.oStar for N :=* foo
// + 0 for N :*= foo
val iKnown = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, 0)
case BIND_QUERY => n.oStar
case BIND_STAR => 0
}
}.sum
// Resolve star depends on the node subclass to implement the algorithm for this.
val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars)
// Cumulative list of resolved outward binding range starting points
val oSum = oBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar)
case BIND_QUERY => n.iStar
case BIND_STAR => oStar
}
}.scanLeft(0)(_ + _)
// Cumulative list of resolved inward binding range starting points
val iSum = iBindings.map { case (_, n, b, _, _) =>
b match {
case BIND_ONCE => 1
case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar)
case BIND_QUERY => n.oStar
case BIND_STAR => iStar
}
}.scanLeft(0)(_ + _)
// Create ranges for each binding based on the running sums and return
// those along with resolved values for the star operations.
(oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar)
} catch {
case c: StarCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Sequence of inward ports.
*
* This should be called after all star bindings are resolved.
*
* Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding.
* `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this
* connection was made in the source code.
*/
protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] =
oBindings.flatMap { case (i, n, _, p, s) =>
// for each binding operator in this node, look at what it connects to
val (start, end) = n.iPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
/** Sequence of outward ports.
*
* This should be called after all star bindings are resolved.
*
* `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of
* outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection
* was made in the source code.
*/
protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] =
iBindings.flatMap { case (i, n, _, p, s) =>
// query this port index range of this node in the other side of node.
val (start, end) = n.oPortMapping(i)
(start until end).map { j => (j, n, p, s) }
}
// Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree
// Thus, there must exist an Eulerian path and the below algorithms terminate
@scala.annotation.tailrec
private def oTrace(
tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)
): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.iForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => oTrace((j, m, p, s))
}
}
@scala.annotation.tailrec
private def iTrace(
tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)
): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match {
case (i, n, p, s) => n.oForward(i) match {
case None => (i, n, p, s)
case Some((j, m)) => iTrace((j, m, p, s))
}
}
/** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - Numeric index of this binding in the [[InwardNode]] on the other end.
* - [[InwardNode]] on the other end of this binding.
* - A view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace)
/** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved.
*
* Each Port is a tuple of:
* - numeric index of this binding in [[OutwardNode]] on the other end.
* - [[OutwardNode]] on the other end of this binding.
* - a view of [[Parameters]] where the binding occurred.
* - [[SourceInfo]] for source-level error reporting.
*/
lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace)
private var oParamsCycleGuard = false
protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) }
protected[diplomacy] lazy val doParams: Seq[DO] = {
try {
if (oParamsCycleGuard) throw DownwardCycleException()
oParamsCycleGuard = true
val o = mapParamsD(oPorts.size, diParams)
require(
o.size == oPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of outward ports should equal the number of produced outward parameters.
|$context
|$connectedPortsInfo
|Downstreamed inward parameters: [${diParams.mkString(",")}]
|Produced outward parameters: [${o.mkString(",")}]
|""".stripMargin
)
o.map(outer.mixO(_, this))
} catch {
case c: DownwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
private var iParamsCycleGuard = false
protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) }
protected[diplomacy] lazy val uiParams: Seq[UI] = {
try {
if (iParamsCycleGuard) throw UpwardCycleException()
iParamsCycleGuard = true
val i = mapParamsU(iPorts.size, uoParams)
require(
i.size == iPorts.size,
s"""Diplomacy has detected a problem with your graph:
|At the following node, the number of inward ports should equal the number of produced inward parameters.
|$context
|$connectedPortsInfo
|Upstreamed outward parameters: [${uoParams.mkString(",")}]
|Produced inward parameters: [${i.mkString(",")}]
|""".stripMargin
)
i.map(inner.mixI(_, this))
} catch {
case c: UpwardCycleException => throw c.copy(loop = context +: c.loop)
}
}
/** Outward edge parameters. */
protected[diplomacy] lazy val edgesOut: Seq[EO] =
(oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) }
/** Inward edge parameters. */
protected[diplomacy] lazy val edgesIn: Seq[EI] =
(iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) }
/** A tuple of the input edge parameters and output edge parameters for the edges bound to this node.
*
* If you need to access to the edges of a foreign Node, use this method (in/out create bundles).
*/
lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut)
/** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */
protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e =>
val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
/** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */
protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e =>
val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In")
// TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue,
// In the future, we should add an option to decide whether allowing unconnected in the LazyModule
x := DontCare
x
}
private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(serial, i),
sink = HalfEdge(n.serial, j),
flipped = false,
name = wirePrefix + "out",
dataOpt = None
)
}
private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) =>
Dangle(
source = HalfEdge(n.serial, j),
sink = HalfEdge(serial, i),
flipped = true,
name = wirePrefix + "in",
dataOpt = None
)
}
/** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */
protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleOut(i)))
}
/** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */
protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) =>
d.copy(dataOpt = Some(bundleIn(i)))
}
private[diplomacy] var instantiated = false
/** Gather Bundle and edge parameters of outward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def out: Seq[(BO, EO)] = {
require(
instantiated,
s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleOut.zip(edgesOut)
}
/** Gather Bundle and edge parameters of inward ports.
*
* Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within
* [[LazyModuleImp]] code or after its instantiation has completed.
*/
def in: Seq[(BI, EI)] = {
require(
instantiated,
s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun"
)
bundleIn.zip(edgesIn)
}
/** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires,
* instantiate monitors on all input ports if appropriate, and return all the dangles of this node.
*/
protected[diplomacy] def instantiate(): Seq[Dangle] = {
instantiated = true
if (!circuitIdentity) {
(iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) }
}
danglesOut ++ danglesIn
}
protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn
/** Connects the outward part of a node with the inward part of this node. */
protected[diplomacy] def bind(
h: OutwardNode[DI, UI, BI],
binding: NodeBinding
)(
implicit p: Parameters,
sourceInfo: SourceInfo
): Unit = {
val x = this // x := y
val y = h
sourceLine(sourceInfo, " at ", "")
val i = x.iPushed
val o = y.oPushed
y.oPush(
i,
x,
binding match {
case BIND_ONCE => BIND_ONCE
case BIND_FLEX => BIND_FLEX
case BIND_STAR => BIND_QUERY
case BIND_QUERY => BIND_STAR
}
)
x.iPush(o, y, binding)
}
/* Metadata for printing the node graph. */
def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) =>
val re = inner.render(e)
(n, re.copy(flipped = re.flipped != p(RenderFlipped)))
}
/** Metadata for printing the node graph */
def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) }
}
| module NullIntSource_2(); // @[NullIntSource.scala:16:9]
wire childClock = 1'h0; // @[LazyModuleImp.scala:155:31]
wire childReset = 1'h0; // @[LazyModuleImp.scala:158:31]
wire _childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25]
wire intnodeOut_0 = 1'h0; // @[MixedNode.scala:542:17]
endmodule |
Generate the Verilog code corresponding to the following Chisel files.
File RoundAnyRawFNToRecFN.scala:
/*============================================================================
This Chisel source file is part of a pre-release version of the HardFloat IEEE
Floating-Point Arithmetic Package, by John R. Hauser (with some contributions
from Yunsup Lee and Andrew Waterman, mainly concerning testing).
Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
package hardfloat
import chisel3._
import chisel3.util.Fill
import consts._
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundAnyRawFNToRecFN(
inExpWidth: Int,
inSigWidth: Int,
outExpWidth: Int,
outSigWidth: Int,
options: Int
)
extends RawModule
{
override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(inExpWidth, inSigWidth))
// (allowed exponent range has limits)
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((outExpWidth + outSigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0)
val effectiveInSigWidth =
if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1
val neverUnderflows =
((options &
(flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact)
) != 0) ||
(inExpWidth < outExpWidth)
val neverOverflows =
((options & flRoundOpt_neverOverflows) != 0) ||
(inExpWidth < outExpWidth)
val outNaNExp = BigInt(7)<<(outExpWidth - 2)
val outInfExp = BigInt(6)<<(outExpWidth - 2)
val outMaxFiniteExp = outInfExp - 1
val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2
val outMinNonzeroExp = outMinNormExp - outSigWidth + 1
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val roundingMode_near_even = (io.roundingMode === round_near_even)
val roundingMode_minMag = (io.roundingMode === round_minMag)
val roundingMode_min = (io.roundingMode === round_min)
val roundingMode_max = (io.roundingMode === round_max)
val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag)
val roundingMode_odd = (io.roundingMode === round_odd)
val roundMagUp =
(roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign)
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val sAdjustedExp =
if (inExpWidth < outExpWidth)
(io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
)(outExpWidth, 0).zext
else if (inExpWidth == outExpWidth)
io.in.sExp
else
io.in.sExp +&
((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S
val adjustedSig =
if (inSigWidth <= outSigWidth + 2)
io.in.sig<<(outSigWidth - inSigWidth + 2)
else
(io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ##
io.in.sig(inSigWidth - outSigWidth - 2, 0).orR
)
val doShiftSigDown1 =
if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2)
val common_expOut = Wire(UInt((outExpWidth + 1).W))
val common_fractOut = Wire(UInt((outSigWidth - 1).W))
val common_overflow = Wire(Bool())
val common_totalUnderflow = Wire(Bool())
val common_underflow = Wire(Bool())
val common_inexact = Wire(Bool())
if (
neverOverflows && neverUnderflows
&& (effectiveInSigWidth <= outSigWidth)
) {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1
common_fractOut :=
Mux(doShiftSigDown1,
adjustedSig(outSigWidth + 1, 3),
adjustedSig(outSigWidth, 2)
)
common_overflow := false.B
common_totalUnderflow := false.B
common_underflow := false.B
common_inexact := false.B
} else {
//--------------------------------------------------------------------
//--------------------------------------------------------------------
val roundMask =
if (neverUnderflows)
0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W)
else
(lowMask(
sAdjustedExp(outExpWidth, 0),
outMinNormExp - outSigWidth - 1,
outMinNormExp
) | doShiftSigDown1) ##
3.U(2.W)
val shiftedRoundMask = 0.U(1.W) ## roundMask>>1
val roundPosMask = ~shiftedRoundMask & roundMask
val roundPosBit = (adjustedSig & roundPosMask).orR
val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR
val anyRound = roundPosBit || anyRoundExtra
val roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
roundPosBit) ||
(roundMagUp && anyRound)
val roundedSig: Bits =
Mux(roundIncr,
(((adjustedSig | roundMask)>>2) +& 1.U) &
~Mux(roundingMode_near_even && roundPosBit &&
! anyRoundExtra,
roundMask>>1,
0.U((outSigWidth + 2).W)
),
(adjustedSig & ~roundMask)>>2 |
Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U)
)
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext
common_expOut := sRoundedExp(outExpWidth, 0)
common_fractOut :=
Mux(doShiftSigDown1,
roundedSig(outSigWidth - 1, 1),
roundedSig(outSigWidth - 2, 0)
)
common_overflow :=
(if (neverOverflows) false.B else
//*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?:
(sRoundedExp>>(outExpWidth - 1) >= 3.S))
common_totalUnderflow :=
(if (neverUnderflows) false.B else
//*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?:
(sRoundedExp < outMinNonzeroExp.S))
val unboundedRange_roundPosBit =
Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1))
val unboundedRange_anyRound =
(doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR
val unboundedRange_roundIncr =
((roundingMode_near_even || roundingMode_near_maxMag) &&
unboundedRange_roundPosBit) ||
(roundMagUp && unboundedRange_anyRound)
val roundCarry =
Mux(doShiftSigDown1,
roundedSig(outSigWidth + 1),
roundedSig(outSigWidth)
)
common_underflow :=
(if (neverUnderflows) false.B else
common_totalUnderflow ||
//*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING
//*** M.S. BIT OF SUBNORMAL SIG?
(anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) &&
Mux(doShiftSigDown1, roundMask(3), roundMask(2)) &&
! ((io.detectTininess === tininess_afterRounding) &&
! Mux(doShiftSigDown1,
roundMask(4),
roundMask(3)
) &&
roundCarry && roundPosBit &&
unboundedRange_roundIncr)))
common_inexact := common_totalUnderflow || anyRound
}
//------------------------------------------------------------------------
//------------------------------------------------------------------------
val isNaNOut = io.invalidExc || io.in.isNaN
val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf
val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero
val overflow = commonCase && common_overflow
val underflow = commonCase && common_underflow
val inexact = overflow || (commonCase && common_inexact)
val overflow_roundMagUp =
roundingMode_near_even || roundingMode_near_maxMag || roundMagUp
val pegMinNonzeroMagOut =
commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd)
val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp
val notNaN_isInfOut =
notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp)
val signOut = Mux(isNaNOut, false.B, io.in.sign)
val expOut =
(common_expOut &
~Mux(io.in.isZero || common_totalUnderflow,
(BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMinNonzeroMagOut,
~outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) &
~Mux(pegMaxFiniteMagOut,
(BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W),
0.U
) &
~Mux(notNaN_isInfOut,
(BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W),
0.U
)) |
Mux(pegMinNonzeroMagOut,
outMinNonzeroExp.U((outExpWidth + 1).W),
0.U
) |
Mux(pegMaxFiniteMagOut,
outMaxFiniteExp.U((outExpWidth + 1).W),
0.U
) |
Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) |
Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U)
val fractOut =
Mux(isNaNOut || io.in.isZero || common_totalUnderflow,
Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U),
common_fractOut
) |
Fill(outSigWidth - 1, pegMaxFiniteMagOut)
io.out := signOut ## expOut ## fractOut
io.exceptionFlags :=
io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
class
RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int)
extends RawModule
{
override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}"
val io = IO(new Bundle {
val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in'
val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign'
val in = Input(new RawFloat(expWidth, sigWidth + 2))
val roundingMode = Input(UInt(3.W))
val detectTininess = Input(UInt(1.W))
val out = Output(Bits((expWidth + sigWidth + 1).W))
val exceptionFlags = Output(Bits(5.W))
})
val roundAnyRawFNToRecFN =
Module(
new RoundAnyRawFNToRecFN(
expWidth, sigWidth + 2, expWidth, sigWidth, options))
roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc
roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc
roundAnyRawFNToRecFN.io.in := io.in
roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode
roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess
io.out := roundAnyRawFNToRecFN.io.out
io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags
}
| module RoundRawFNToRecFN_e8_s24_105( // @[RoundAnyRawFNToRecFN.scala:295:5]
input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:299:16]
input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:299:16]
input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:299:16]
input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:299:16]
output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:299:16]
output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:299:16]
);
wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15]
wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_105 roundAnyRawFNToRecFN ( // @[RoundAnyRawFNToRecFN.scala:310:15]
.io_invalidExc (io_invalidExc_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isNaN (io_in_isNaN_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isInf (io_in_isInf_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_isZero (io_in_isZero_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sign (io_in_sign_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sExp (io_in_sExp_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_in_sig (io_in_sig_0), // @[RoundAnyRawFNToRecFN.scala:295:5]
.io_out (io_out_0),
.io_exceptionFlags (io_exceptionFlags_0)
); // @[RoundAnyRawFNToRecFN.scala:310:15]
assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5]
endmodule |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.